Stuttering multipartitions and blocks of Ariki–Koike algebras

 $\mathsf{Salim}\ \mathrm{Rostam}$

Université de Paris-Saclay

25/05/2018

GABY 2018, Milan

2 A theorem in combinatorics

- Let \mathcal{H}_n^X be a semisimple Hecke algebra of type $X \in \{B, D\}$.
 - The irreducible representations of $\mathcal{H}_n^{\mathrm{B}}$ are indexed by the *bipartitions* $\{(\lambda, \mu)\}$ of *n*.

- Let $\mathcal{H}_n^{\rm X}$ be a semisimple Hecke algebra of type ${\rm X}\in\{{\rm B},{\rm D}\}.$
 - The irreducible representations of $\mathcal{H}_n^{\mathrm{B}}$ are indexed by the *bipartitions* $\{(\lambda, \mu)\}$ of *n*.
 - By Clifford theory, the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu} \downarrow_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda = \mu$ or $\lambda \neq \mu$.

- Let \mathcal{H}_n^X be a semisimple Hecke algebra of type $X \in \{B, D\}$.
 - The irreducible representations of $\mathcal{H}_n^{\mathrm{B}}$ are indexed by the *bipartitions* $\{(\lambda, \mu)\}$ of *n*.
 - By Clifford theory, the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu} \downarrow_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda = \mu$ or $\lambda \neq \mu$.

The irreducible $\mathcal{H}_n^{\mathrm{B}}$ -module $\mathcal{D}^{\lambda,\mu}$ belong to a *block* entirely determined by $\alpha := \alpha(\lambda, \mu)$. We define $\sigma \cdot \alpha := \alpha(\mu, \lambda)$.

• If
$$\lambda = \mu$$
 then $\sigma \cdot \alpha = \alpha$.

• If $\sigma \cdot \alpha = \alpha$, does there necessarily exist ν such that $\alpha = \alpha(\nu, \nu)$?

- Let \mathcal{H}_n^X be a semisimple Hecke algebra of type $X \in \{B, D\}$.
 - The irreducible representations of $\mathcal{H}_n^{\mathrm{B}}$ are indexed by the *bipartitions* $\{(\lambda, \mu)\}$ of *n*.
 - By Clifford theory, the irreducible $\mathcal{H}_n^{\mathrm{D}}$ -modules are exactly the irreducible summands in the restrictions $\mathcal{D}^{\lambda,\mu} \downarrow_{\mathcal{H}_n^{\mathrm{D}}}^{\mathcal{H}_n^{\mathrm{B}}}$. The number of these irreducible summands entirely depends whether $\lambda = \mu$ or $\lambda \neq \mu$.

The irreducible $\mathcal{H}_n^{\mathrm{B}}$ -module $\mathcal{D}^{\lambda,\mu}$ belong to a *block* entirely determined by $\alpha := \alpha(\lambda, \mu)$. We define $\sigma \cdot \alpha := \alpha(\mu, \lambda)$.

• If
$$\lambda = \mu$$
 then $\sigma \cdot \alpha = \alpha$.

• If $\sigma \cdot \alpha = \alpha$, does there necessarily exist ν such that $\alpha = \alpha(\nu, \nu)$?

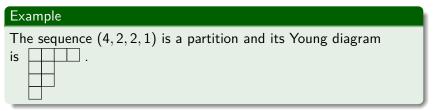
The theory of *cellular algebras* gives a general framework to construct Specht modules. The algebra $\mathcal{H}_n^{\mathrm{B}}$ is cellular, and the above problem appears when studying the cellularity of $\mathcal{H}_n^{\mathrm{D}}$.

2 A theorem in combinatorics

Definition

A partition is a non-increasing sequence of positive integers.

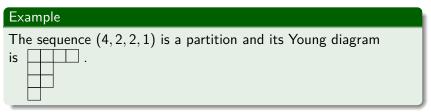
We can picture a partition with its Young diagram.



Definition

A partition is a non-increasing sequence of positive integers.

We can picture a partition with its Young diagram.



Definition

A bipartition is a pair of partitions.

Example

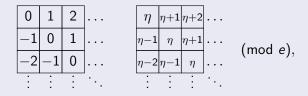
The pair ((5,1),(2)) is a bipartition, constructed with the partitions (5,1) and (2).

Multiset of residues

Let η be a positive integer and set $e := 2\eta$.

Definition

The multiset of residues of the bipartition (λ, μ) is the part of



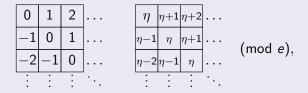
corresponding to the Young diagram of (λ, μ) .

Multiset of residues

Let η be a positive integer and set $e := 2\eta$.

Definition

The multiset of residues of the bipartition (λ, μ) is the part of



corresponding to the Young diagram of (λ, μ) .

Example

The multiset of residues of the bipartition $\bigl((5,1),(2)\bigr)$ is given for

$$e = 4$$
 by $\begin{bmatrix} 0 & 1 & 2 & 3 & 0 \\ 3 & & & \end{bmatrix}$.

Let $e = 2\eta \in 2\mathbb{N}^*$. If (λ, μ) is a bipartition, write $\alpha(\lambda, \mu) \in \mathbb{N}^e$ for the *e*-tuple of multiplicities of the multiset of residues.

Example

The multiset of residues of the bipartition ((4, 2), (1)) for e = 6

is
$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ \hline 5 & 0 & 0 \end{bmatrix}$$
, thus $\alpha((4, 2), (1)) = (2, 1, 1, 2, 0, 1).$

Let $e = 2\eta \in 2\mathbb{N}^*$. If (λ, μ) is a bipartition, write $\alpha(\lambda, \mu) \in \mathbb{N}^e$ for the *e*-tuple of multiplicities of the multiset of residues.

Example

The multiset of residues of the bipartition ((4, 2), (1)) for e = 6

is
$$\begin{array}{c|c} \hline 0 & 1 & 2 & 3 \\ \hline 5 & 0 & \end{array}$$
, thus $\alpha((4,2),(1)) = (2,1,1,2,0,1).$

Definition (Shift)

For
$$\alpha = (\alpha_i) \in \mathbb{N}^e$$
, we define $\sigma \cdot \alpha \in \mathbb{N}^e$ by $(\sigma \cdot \alpha)_i \coloneqq \alpha_{\eta+i}$.

We have
$$\sigma \cdot \alpha = (\alpha_{\eta}, \alpha_{\eta+1}, \dots, \alpha_{e-1}, \alpha_0, \alpha_1, \dots, \alpha_{\eta-1}).$$

Proposition

We have $\alpha(\mu, \lambda) = \sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha := \alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha = \alpha$.

Proposition

We have $\alpha(\mu, \lambda) = \sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha := \alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha = \alpha$.

Theorem (R.)

Let (λ, μ) be a bipartition and let $\alpha := \alpha(\lambda, \mu) \in \mathbb{N}^e$. If $\sigma \cdot \alpha = \alpha$ then there exists a partition ν such that $\alpha = \alpha(\nu, \nu)$.

Proposition

We have $\alpha(\mu, \lambda) = \sigma \cdot \alpha(\lambda, \mu)$. In particular, if $\alpha := \alpha(\lambda, \lambda)$ then $\sigma \cdot \alpha = \alpha$.

Theorem (R.)

Let (λ, μ) be a bipartition and let $\alpha \coloneqq \alpha(\lambda, \mu) \in \mathbb{N}^e$. If $\sigma \cdot \alpha = \alpha$ then there exists a partition ν such that $\alpha = \alpha(\nu, \nu)$.

Example

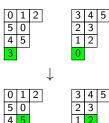
Take e = 6. The multisets

coincide (and $\alpha = (2, 1, 2, 2, 1, 2)$).

We have $\alpha(\underline{\ },\underline{\ }) = (2,1,2,2,1,2).$

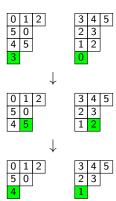
$$\alpha = (3, 2, 3, 3, 2, 3)$$

We have $\alpha(\underline{\ },\underline{\ }) = (2,1,2,2,1,2).$



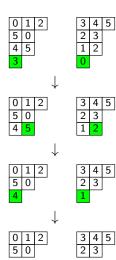
 $\alpha = (3, 2, 3, 3, 2, 3)$ \downarrow $\alpha = (2, 2, 3, 2, 2, 3)$

We have $\alpha(\underline{\ },\underline{\ }) = (2,1,2,2,1,2).$



 $\alpha = (3, 2, 3, 3, 2, 3)$ \downarrow $\alpha = (2, 2, 3, 2, 2, 3)$ \downarrow $\alpha = (2, 2, 2, 2, 2, 2, 2)$

We have $\alpha(\underline{\ },\underline{\ }) = (2,1,2,2,1,2).$



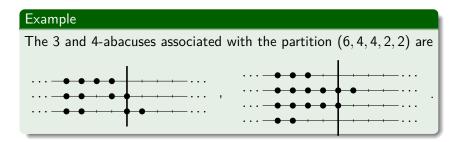
 $\alpha = (3, 2, 3, 3, 2, 3)$ $\alpha = (2, 2, 3, 2, 2, 3)$ $\alpha = (2, 2, 2, 2, 2, 2)$ $\alpha = (2, 1, 2, 2, 1, 2)$ We have $\alpha(\underline{\ }, \underline{\ }) = (2, 1, 2, 2, 1, 2).$ $\begin{array}{c} 0 & 1 & 2 \\ 5 & 0 \\ 4 & 5 \\ \hline 3 \\ \hline \end{array} \qquad \begin{array}{c} 3 & 4 & 5 \\ 2 & 3 \\ \hline 1 & 2 \\ \hline \end{array} \qquad \alpha = (3, 2, 3, 3, 2, 3)$ We have $\alpha(\underline{\ }, \underline{\ }) = (2, 1, 2, 2, 1, 2).$ $\begin{array}{c} 0 & 1 & 2 \\ 5 & 0 \\ 4 & 5 \\ 3 \\ \end{array}$ $\begin{array}{c} 0 & 1 & 2 \\ 4 & 5 \\ 3 \\ \end{array}$ $\begin{array}{c} 3 & 4 & 5 \\ 2 & 3 \\ 1 & 2 \\ \end{array}$ $\alpha = (3, 2, 3, 3, 2, 3)$ \downarrow \downarrow $\begin{array}{c} 0 & 1 & 2 \\ 5 & 0 \\ 4 & 5 \\ \end{array}$ $\begin{array}{c} 3 & 4 & 5 \\ 2 & 3 \\ 1 & 2 \\ \end{array}$ $\alpha = (2, 2, 3, 2, 2, 3)$ We have $\alpha(\underline{\ },\underline{\ }) = (2,1,2,2,1,2).$ 2 5 5 0 4 5 3 23 $\alpha = (3, 2, 3, 3, 2, 3)$ $\alpha = (2, 2, 3, 2, 2, 3)$ 5 0 3 4 5 0 $\alpha = (2, 2, 2, 2, 2, 2)$ 5

2 A theorem in combinatorics

Abaci and cores

To a partition $\lambda = (\lambda_1, \dots, \lambda_h)$, we associate an abacus with *e* runners such that for each $a \in \mathbb{N}^*$,

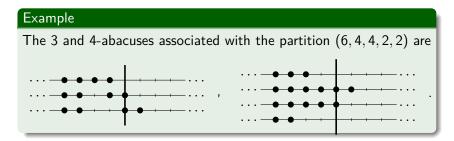
there are exactly λ_a gaps above and on the left of the bead a.



Abaci and cores

To a partition $\lambda = (\lambda_1, \dots, \lambda_h)$, we associate an abacus with e runners such that for each $a \in \mathbb{N}^*$,

there are exactly λ_a gaps above and on the left of the bead a.

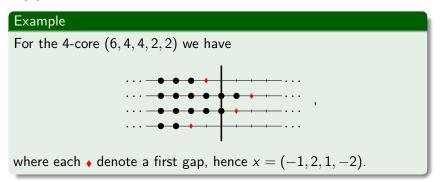


Definition

If no runner of the *e*-abacus of a partition λ has a gap between its beads, we say that λ is an *e*-core.

The partition of the above example is not a 3-core but a 4-core.

To the *e*-abacus of an *e*-core λ , we associate the coordinates $x(\lambda) \in \mathbb{Z}^e$ of the first gaps.



Using the parametrisation

Proposition

Let λ be an e-core, let $\alpha := \alpha(\lambda) \in \mathbb{N}^e$ be the e-tuple of multiplicities of the multiset of residues and $x := x(\lambda) \in \mathbb{Z}^e$ the parameter of the e-abacus. We have:

$$\begin{aligned} x_0 + \cdots + x_{e-1} &= 0, \\ \frac{1}{2} \|x\|^2 &= \alpha_0, \\ x_i &= \alpha_i - \alpha_{i+1} \text{ for all } i \in \{0, \dots, e-1\}. \end{aligned}$$

Using the parametrisation

Proposition

Let λ be an e-core, let $\alpha := \alpha(\lambda) \in \mathbb{N}^e$ be the e-tuple of multiplicities of the multiset of residues and $x := x(\lambda) \in \mathbb{Z}^e$ the parameter of the e-abacus. We have:

$$\begin{aligned} x_0 + \cdots + x_{e-1} &= 0, \\ \frac{1}{2} \|x\|^2 &= \alpha_0, \\ x_i &= \alpha_i - \alpha_{i+1} \text{ for all } i \in \{0, \dots, e-1\}. \end{aligned}$$

Corollary

If
$$x = x(\lambda)$$
 and $y = x(\mu)$ then $\alpha_0(\lambda, \mu) = q(x, y)$, where

$$q: \begin{vmatrix} \mathbb{Q}^e \times \mathbb{Q}^e & \longrightarrow & \mathbb{Q} \\ (x,y) & \longmapsto & \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 - y_0 - \cdots - y_{\eta-1} \end{vmatrix}$$

٠

Key lemma

Let (λ, μ) be an *e*-bicore, define $x := x(\lambda)$ and $y := x(\mu)$. We assume that $\alpha := \alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha = \alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu) = \alpha$.

Key lemma

Let (λ, μ) be an *e*-bicore, define $x := x(\lambda)$ and $y := x(\mu)$. We assume that $\alpha := \alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha = \alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu) = \alpha$.

Lemma

It suffices to find an element $z \in \mathbb{Z}^e$ such that:

$$\left\{ egin{aligned} q(z,z) &\leq q(x,y), \ z_0 + \cdots + z_{e-1} &= 0, \ z_i + z_{i+\eta} &= x_i + y_{i+\eta}, \end{aligned}
ight.$$
 for all $i.$

(E)

Key lemma

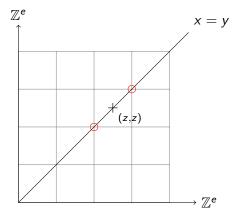
Let (λ, μ) be an *e*-bicore, define $x := x(\lambda)$ and $y := x(\mu)$. We assume that $\alpha := \alpha(\lambda, \mu)$ satisfies $\sigma \cdot \alpha = \alpha$ and we want to prove that there exists a partition ν such that $\alpha(\nu, \nu) = \alpha$.

Lemma

It suffices to find an element $z \in \mathbb{Z}^e$ such that:

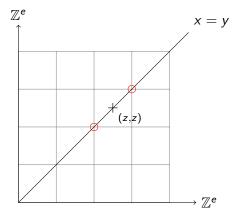
$$\begin{cases} q(z,z) \le q(x,y), \\ z_0 + \dots + z_{e-1} = 0, \\ z_i + z_{i+\eta} = x_i + y_{i+\eta}, & \text{ for all } i. \end{cases}$$
(E

Thanks to the convexity of q, the element $z := \frac{x+y}{2}$ satisfies (*E*). However, we may have $z \notin \mathbb{Z}^e$: in general $z \in \frac{1}{2}\mathbb{Z}^e$.



We want to prove that we can choose a red point such that:

- the constraints are still satisfied
- estimate the error made



We want to prove that we can choose a red point such that:

- \bullet the constraints are still satisfied \rightarrow binary matrices
- $\bullet\,$ estimate the error made $\rightarrow\,$ strong convexity

а	t	t	е	n	t	i	0	n
Т	h	а	n	k				
у	0	u	r					
у	0	u						
f	0	r						
!								