Fixed-point subalgebra of quiver Hecke algebras for a quiver automorphism and application to the Hecke algebra of G(r, p, n)

Salim ROSTAM

Laboratoire de mathématiques de Versailles (LMV) Université de Versailles Saint-Quentin (UVSQ)

Nikolaus conference 2016

Motivations

Let $n, e, p \in \mathbb{N}^*$ with $e \ge 2$. Let q, ζ be some elements of a field F of respective order e, p. Let $\mathbf{\Lambda} = (\Lambda_i)_i$ be a $\mathbb{Z}/e\mathbb{Z}$ -tuple of non-negative integers and set $r := p \sum_i \Lambda_i$.

The Ariki–Koike algebra $\operatorname{H}_{n}^{\Lambda}(q,\zeta)$ is a Hecke algebra of the complex reflection group G(r,1,n). It is a *F*-algebra generated by $S, T_{1}, \ldots, T_{n-1}$, the "cyclotomic relation" being:

$$\prod_{i\in\mathbb{Z}/e\mathbb{Z}}\prod_{j\in\mathbb{Z}/p\mathbb{Z}}\left(S-\zeta^{j}q^{i}\right)^{\Lambda_{i}}=0.$$

Motivations

Let $n, e, p \in \mathbb{N}^*$ with $e \ge 2$. Let q, ζ be some elements of a field F of respective order e, p. Let $\mathbf{\Lambda} = (\Lambda_i)_i$ be a $\mathbb{Z}/e\mathbb{Z}$ -tuple of non-negative integers and set $r := p \sum_i \Lambda_i$.

The Ariki–Koike algebra $\operatorname{H}_{n}^{\Lambda}(q,\zeta)$ is a Hecke algebra of the complex reflection group G(r,1,n). It is a *F*-algebra generated by $S, T_{1}, \ldots, T_{n-1}$, the "cyclotomic relation" being:

$$\prod_{i\in\mathbb{Z}/\mathbf{e}\mathbb{Z}}\prod_{j\in\mathbb{Z}/\mathbf{p}\mathbb{Z}}\left(S-\zeta^{j}q^{i}\right)^{\Lambda_{i}}=0.$$

There is an automorphism σ^{H} of $\mathrm{H}_{n}^{\Lambda}(q,\zeta)$ of order p given by:

$$\sigma^{\mathrm{H}}(S) \coloneqq \zeta S,$$

$$\forall \mathsf{a}, \sigma^{\mathrm{H}}(T_{\mathsf{a}}) \coloneqq T_{\mathsf{a}}.$$

The subalgebra $\operatorname{H}_{n}^{\Lambda}(q,\zeta)^{\sigma^{H}}$ of fixed points is a Hecke algebra of G(r, p, n).

Cyclotomic quiver Hecke algebra

Let Γ be a quiver (= oriented graph) with vertex set K. The quiver Hecke algebra $\mathbb{R}_n(\Gamma)$ is generated over F by:

$$e(\mathbf{k})$$
 for $\mathbf{k} \in K^n$,
 y_1, \dots, y_n ,
 $\psi_1, \dots, \psi_{n-1}$,

together with some relations.

Exemple of relation

For
$$\mathbf{k} \in K^n$$
 such that $k_a \xrightarrow{\Gamma} k_{a+1}$ then $\psi_a^2 e(\mathbf{k}) = (y_{a+1} - y_a)e(\mathbf{k})$.

Cyclotomic quiver Hecke algebra

Let Γ be a quiver (= oriented graph) with vertex set K. The quiver Hecke algebra $R_n(\Gamma)$ is generated over F by:

$$e(\mathbf{k})$$
 for $\mathbf{k} \in K^n$,
 y_1, \dots, y_n ,
 $\psi_1, \dots, \psi_{n-1}$,

together with some relations.

Exemple of relation

For
$$\mathbf{k} \in K^n$$
 such that $k_a \xrightarrow{\Gamma} k_{a+1}$ then $\psi_a^2 e(\mathbf{k}) = (y_{a+1} - y_a)e(\mathbf{k})$.

For $\mathbf{\Lambda} = (\Lambda_k)_{k \in K} \in \mathbb{N}^K$, the *cyclotomic* quiver Hecke algebra $\mathrm{R}_n^{\mathbf{\Lambda}}(\Gamma)$ is the quotient of $\mathrm{R}_n(\Gamma)$ by the following relations:

$$\forall \mathbf{k} \in K^n, y_1^{\Lambda_{k_1}} e(\mathbf{k}) = 0$$

Graded isomorphism theorem

Theorem (Brundan–Kleshchev, Rouquier)

The Ariki–Koike algebra $\operatorname{H}_{n}^{\Lambda}(q,\zeta)$ is isomorphic over F to the cyclotomic quiver Hecke algebra $\operatorname{R}_{n}^{\Lambda}(\Gamma_{e,p})$, where $\Gamma_{e,p}$ is given by:



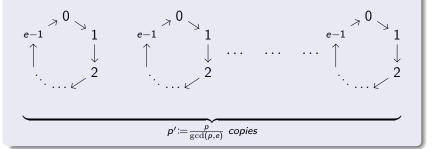
Remark

The integer p' is the smallest integer $m \ge 1$ such that $\zeta^m \in \langle q \rangle$.

Graded isomorphism theorem

Theorem (Brundan–Kleshchev, Rouquier)

The Ariki–Koike algebra $\operatorname{H}_{n}^{\Lambda}(q,\zeta)$ is isomorphic over F to the cyclotomic quiver Hecke algebra $\operatorname{R}_{n}^{\Lambda}(\Gamma_{e,p})$, where $\Gamma_{e,p}$ is given by:



Remark

The integer p' is the smallest integer $m \ge 1$ such that $\zeta^m \in \langle q \rangle$.

Our aim is to find an isomorphism $\Phi : \mathrm{H}_{n}^{\Lambda}(q,\zeta) \to \mathrm{R}_{n}^{\Lambda}(\Gamma_{e,p})$ such that we get a "nice" automorphism $\Phi \circ \sigma^{\mathrm{H}} \circ \Phi^{-1}$ of $\mathrm{R}_{n}^{\Lambda}(\Gamma_{e,p})$.

Fixed-point quiver Hecke subalgebra

Let $\sigma: K \to K$ a bijection of finite order p such that:

$$\forall k, k' \in K, k \rightarrow k' \implies \sigma(k) \rightarrow \sigma(k').$$

Fixed-point quiver Hecke subalgebra

Let $\sigma: K \to K$ a bijection of finite order p such that:

$$\forall k, k' \in K, k
ightarrow k' \implies \sigma(k)
ightarrow \sigma(k').$$

Theorem

The map σ induces a well-defined automorphism of $R_n(\Gamma)$ by:

$$\begin{array}{l} \forall \pmb{k} \in \mathcal{K}^n, \quad \sigma(e(\pmb{k})) \coloneqq e(\sigma(\pmb{k})), \\ \forall \pmb{a} \in \{1, \dots, n\}, \qquad \sigma(y_{\pmb{a}}) \coloneqq y_{\pmb{a}}, \\ \forall \pmb{a} \in \{1, \dots, n-1\}, \qquad \sigma(\psi_{\pmb{a}}) \coloneqq \psi_{\pmb{a}}. \end{array}$$

Definition

We set:

$$\mathbf{R}_n(\Gamma)^{\sigma} := \{h \in \mathbf{R}_n(\Gamma) : \sigma(h) = h\}.$$

Fixed-point cyclotomic quiver Hecke subalgebra

Theorem

We can give a presentation of $R_n(\Gamma)^{\sigma}$ in terms of the following generators:

$$e(\gamma) \coloneqq e(\boldsymbol{k}) + e(\sigma(\boldsymbol{k})) + \dots + e(\sigma^{p-1}(\boldsymbol{k})) \text{ for } \gamma = [\boldsymbol{k}] \in \mathcal{K}^n/\langle \sigma \rangle,$$

 $y_1, \dots, y_n,$
 $\psi_1, \dots, \psi_{n-1}.$

Exemple of relation

If
$$\gamma \in \mathcal{K}^n/\langle \sigma \rangle$$
 verifies " $\gamma_a \to \gamma_{a+1}$ " then $\psi_a^2 e(\gamma) = (y_{a+1} - y_a)e(\gamma)$.

Fixed-point cyclotomic quiver Hecke subalgebra

Theorem

We can give a presentation of $\mathrm{R}_n(\Gamma)^\sigma$ in terms of the following generators:

$$e(\gamma) \coloneqq e(\boldsymbol{k}) + e(\sigma(\boldsymbol{k})) + \dots + e(\sigma^{p-1}(\boldsymbol{k})) \text{ for } \gamma = [\boldsymbol{k}] \in \mathcal{K}^n / \langle \sigma \rangle,$$

 $y_1, \dots, y_n,$
 $\psi_1, \dots, \psi_{n-1}.$

Exemple of relation

If
$$\gamma \in \mathcal{K}^n/\langle \sigma \rangle$$
 verifies " $\gamma_a \to \gamma_{a+1}$ " then $\psi_a^2 e(\gamma) = (y_{a+1} - y_a)e(\gamma)$.

We now assume that $\Lambda_k = \Lambda_{\sigma(k)}$ for all $k \in K$.

Theorem

The automorphism σ induces an automorphism of $\mathbb{R}^{\Lambda}_{n}(\Gamma)$. Moreover:

$$\mathrm{R}_n^{\boldsymbol{\Lambda}}(\boldsymbol{\Gamma})^{\sigma} \simeq \mathrm{R}_n(\boldsymbol{\Gamma})^{\sigma} \left/ \left\langle y_1^{\boldsymbol{\Lambda}_{\gamma_1}} \boldsymbol{e}(\gamma) = \boldsymbol{0} : \gamma \in \mathcal{K}^n / \langle \sigma \rangle \right\rangle$$

