Skew cellular algebras

and application to Hecke and related algebras of complex reflection groups

$\label{eq:salim ROSTAM} \mbox{(joint work with Jun HU and Andrew MATHAS)}$

Univ Rennes

Application of Hecke and related algebras École de Physique des Houches, 2023

Contents

Cellular algebras

2 Hecke and related algebras of complex reflection groups

3 Skew cellular algebras

4 Applications for Hecke and related algebras of G(r, p, n)

You are here

Cellular algebras

2 Hecke and related algebras of complex reflection groups

3 Skew cellular algebras

4 Applications for Hecke and related algebras of G(r, p, n)

Let *F* be a field and *A* be a finite dimensional *F*-algebra. The algebra *A* is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$,

such that:

Let *F* be a field and *A* be a finite dimensional *F*-algebra. The algebra *A* is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$,

such that:

• the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,

Let *F* be a field and *A* be a finite dimensional *F*-algebra. The algebra *A* is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$,

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,
- the linear map $*: A \to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}} \coloneqq c_{\mathfrak{t},\mathfrak{s}}$ is an algebra antiautomorphism,

Let *F* be a field and *A* be a finite dimensional *F*-algebra. The algebra *A* is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$,

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,
- the linear map $*: A \to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}} \coloneqq c_{\mathfrak{t},\mathfrak{s}}$ is an algebra antiautomorphism,
- for all a ∈ A, the product c_{s,t}a ∈ A decomposes in the basis {c_{u,v}} in a (particular) triangular fashion.

Let *F* be a field and *A* be a finite dimensional *F*-algebra. The algebra *A* is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$,

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,
- the linear map $*: A \to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}} \coloneqq c_{\mathfrak{t},\mathfrak{s}}$ is an algebra antiautomorphism,
- for all $a \in A$, the product $c_{s,t}a \in A$ decomposes in the basis $\{c_{u,v}\}$ in a (particular) triangular fashion.

Use in the study of the representations of A

Cellularity allows to have a combinatorial description of a complete family of non-isomorphic irreducible modules, indexed by a certain subfamily of \mathcal{P} .

Examples

Toy example ("triangular fashion")

The algebra $F[x]/(x^n)$ is cellular with the following data:

•
$$\mathcal{P} \coloneqq \{0, \ldots, n-1\}$$
 with $\mathcal{T}(i) \coloneqq \{i\}$,

•
$$c_{i,i} \coloneqq x^i$$
.

Examples

Toy example ("triangular fashion")

The algebra $F[x]/(x^n)$ is cellular with the following data:

•
$$\mathcal{P} \coloneqq \{0, \ldots, n-1\}$$
 with $\mathcal{T}(i) \coloneqq \{i\}$,

•
$$c_{i,i} \coloneqq x^i$$
.

Toy example ("particular")

The algebra $Mat_{n \times n}(F)$ is cellular with the following data:

- $\mathcal{P} \coloneqq \{n\}$ a singleton with $\mathcal{T}(n) \coloneqq \{1, \dots, n\}$,
- $c_{i,j} := E_{i,j}$ the elementary matrix with 1 at position (i,j) and zeros elsewhere.

In particular, any semisimple algebra is cellular.

Examples

Toy example ("triangular fashion")

The algebra $F[x]/(x^n)$ is cellular with the following data:

•
$$\mathcal{P} \coloneqq \{0, \ldots, n-1\}$$
 with $\mathcal{T}(i) \coloneqq \{i\}$,

•
$$c_{i,i} \coloneqq x^i$$
.

Toy example ("particular")

The algebra $Mat_{n \times n}(F)$ is cellular with the following data:

- $\mathcal{P} \coloneqq \{n\}$ a singleton with $\mathcal{T}(n) \coloneqq \{1, \dots, n\}$,
- $c_{i,j} := E_{i,j}$ the elementary matrix with 1 at position (i,j) and zeros elsewhere.

In particular, any semisimple algebra is cellular.

A non-trivial example of a cellular algebra is the Temperley–Lieb algebra, with poset the set of integers $t \in \{0, ..., n\}$ satisfying $n - t \in 2\mathbb{Z}$ (Graham–Lehrer 96).

Salim ROSTAM (Univ Rennes)

You are here

Cellular algebras

Pecke and related algebras of complex reflection groups

3 Skew cellular algebras

4 Applications for Hecke and related algebras of G(r, p, n)

Complex reflection groups

Definition

- A complex reflection is a linear automorphism of \mathbb{C}^n of finite order, different from identity, that fixes a hyperplane.
- A complex reflection group is a finite subgroup of $\operatorname{GL}(\mathbb{C}^n)$ spanned by complex reflections.

Theorem (Shephard–Todd 54)

Irreducible complex reflection groups are divided into two families:

- an infinite family $\{G(r, p, n)\}$ with $p \mid r$;
- 34 exceptions.

Complex reflection groups

Definition

- A complex reflection is a linear automorphism of \mathbb{C}^n of finite order, different from identity, that fixes a hyperplane.
- A complex reflection group is a finite subgroup of $\operatorname{GL}(\mathbb{C}^n)$ spanned by complex reflections.

Theorem (Shephard–Todd 54)

Irreducible complex reflection groups are divided into two families:

- an infinite family $\{G(r, p, n)\}$ with $p \mid r$;
- 34 exceptions.
- The group G(r, 1, n) is isomorphic to the group of n × n monomial matrices with entries in μ_r(ℂ).
- The group G(r, p, n) is a subgroup of index p of G(r, 1, n).

Complex reflection groups

Definition

- A complex reflection is a linear automorphism of \mathbb{C}^n of finite order, different from identity, that fixes a hyperplane.
- A complex reflection group is a finite subgroup of $\operatorname{GL}(\mathbb{C}^n)$ spanned by complex reflections.

Theorem (Shephard–Todd 54)

Irreducible complex reflection groups are divided into two families:

- an infinite family $\{G(r, p, n)\}$ with $p \mid r$;
- 34 exceptions.
- The group G(r, 1, n) is isomorphic to the group of n × n monomial matrices with entries in μ_r(ℂ).
- The group G(r, p, n) is a subgroup of index p of G(r, 1, n).
- To any complex reflection group one can associate a Hecke algebra (Broué-Malle-Rouquier 98).

Particular case of real reflection groups

• Real reflection groups coincide with finite Coxeter groups.

Particular case of real reflection groups

- Real reflection groups coincide with finite Coxeter groups.
- In the Coxeter classification we have:

$$\begin{array}{ll} A_{n-1} = G(1,1,n), & B_n = G(2,1,n), \\ D_n = G(2,2,n), & I_2(r) = G(r,r,2). \end{array}$$

Particular case of real reflection groups

- Real reflection groups coincide with finite Coxeter groups.
- In the Coxeter classification we have:

$$A_{n-1} = G(1, 1, n),$$
 $B_n = G(2, 1, n),$
 $D_n = G(2, 2, n),$ $I_2(r) = G(r, r, 2).$

Theorem (Geck 07)

The Hecke algebra of a real reflection group is cellular.

Geck's proof relies heavily on Kazhdan-Lusztig theory.

Definition (Broué-Malle 93, Ariki-Koike 94, BMR 98)

The Ariki–Koike algebra $\mathcal{H}_{r,n}$ is the Hecke algebra of G(r, 1, n). It is isomorphic to a certain "cyclotomic" quotient of the affine Hecke algebra of type A.

Definition (Broué-Malle 93, Ariki-Koike 94, BMR 98)

The Ariki–Koike algebra $\mathcal{H}_{r,n}$ is the Hecke algebra of G(r, 1, n). It is isomorphic to a certain "cyclotomic" quotient of the affine Hecke algebra of type A.

Theorem (Murphy 95, Graham–Lehrer 96, Hu–Mathas 10, Webster 13, Bowman 17)

The algebra $\mathcal{H}_{r,n}$ is cellular, with poset the set of r-partitions of n.

Definition (Broué-Malle 93, Ariki-Koike 94, BMR 98)

The Ariki–Koike algebra $\mathcal{H}_{r,n}$ is the Hecke algebra of G(r, 1, n). It is isomorphic to a certain "cyclotomic" quotient of the affine Hecke algebra of type A.

Theorem (Murphy 95, Graham–Lehrer 96, Hu–Mathas 10, Webster 13, Bowman 17)

The algebra $\mathcal{H}_{r,n}$ is cellular, with poset the set of r-partitions of n.

• From Murphy to Hu–Mathas, the order is always the dominance order on *r*-partitions.

Definition (Broué-Malle 93, Ariki-Koike 94, BMR 98)

The Ariki–Koike algebra $\mathcal{H}_{r,n}$ is the Hecke algebra of G(r, 1, n). It is isomorphic to a certain "cyclotomic" quotient of the affine Hecke algebra of type A.

Theorem (Murphy 95, Graham–Lehrer 96, Hu–Mathas 10, Webster 13, Bowman 17)

The algebra $\mathcal{H}_{r,n}$ is cellular, with poset the set of r-partitions of n.

- From Murphy to Hu–Mathas, the order is always the dominance order on *r*-partitions.
- Webster and Bowman gave in fact many different cellular bases, associated with many different orders (generalising the dominance order). They intensively use a diagrammatic Cherednik algebra.

Temperley–Lieb algebra of type G(r, 1, n)

Definition (Lehrer–Lyu 22)

The Temperley–Lieb algebra $\mathcal{TL}_{r,n}$ of type G(r, 1, n) is a certain quotient of the Ariki–Koike algebra $\mathcal{H}_{r,n}$.

- $\mathcal{TL}_{1,n}$ is the Temperley–Lieb algebra of type A (Steinberg 82).
- $\mathcal{TL}_{2,n}$ is the Temperley–Lieb algebra of type *B* or "blob algebra" (defined by Martin–Saleur 94).

Temperley–Lieb algebra of type G(r, 1, n)

Definition (Lehrer–Lyu 22)

The Temperley–Lieb algebra $\mathcal{TL}_{r,n}$ of type G(r, 1, n) is a certain quotient of the Ariki–Koike algebra $\mathcal{H}_{r,n}$.

- $\mathcal{TL}_{1,n}$ is the Temperley–Lieb algebra of type A (Steinberg 82).
- $\mathcal{TL}_{2,n}$ is the Temperley–Lieb algebra of type *B* or "blob algebra" (defined by Martin–Saleur 94).

Theorem (Lehrer–Lyu 22)

Assume $r \ge 2$. The algebra $\mathcal{TL}_{r,n}$ is cellular, with poset the set of *r*-one-column partitions of *n* with at most two non-empty components.

You are here

Cellular algebras

2 Hecke and related algebras of complex reflection groups

3 Skew cellular algebras

4 Applications for Hecke and related algebras of G(r, p, n)

Setting

Let A be a cellular algebra and let σ be an algebra automorphism of A.

Question

What can we say about the subalgebra

$$A^{\sigma} = \{ a \in A : \sigma(a) = a \},\$$

for instance, is A^{σ} cellular?

Setting

Let A be a cellular algebra and let σ be an algebra automorphism of A.

Question

What can we say about the subalgebra

$$A^{\sigma} = \{ a \in A : \sigma(a) = a \},\$$

for instance, is A^{σ} cellular?

- We will introduce the notion of skew cellular algebra.
- If σ satisfies some conditions then A^{σ} will be skew cellular.

Let A be a finite dimensional F-algebra. The algebra A is **cellular** if there exists a poset (\mathcal{P}, \rhd) with:

- for each $\lambda \in \mathcal{P}$, an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}} \in A$ for $\mathfrak{s},\mathfrak{t} \in \mathcal{T}(\lambda)$,

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,
- the linear map $*:A\to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}}:=c_{-\mathfrak{t},-\mathfrak{s}}$ is an algebra antiautomorphism,
- for all a ∈ A, the product c_{s,t}a ∈ A decomposes in the basis {c_{u,v}} in a (particular) triangular fashion.

Let A be a finite dimensional F-algebra. The algebra A is skew-cellular if there exists a poset (\mathcal{P}, \rhd) with:

- a poset involution ι of \mathcal{P} ,
- for each $\lambda \in \mathcal{P}$, an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}} \in A$ for $\mathfrak{s},\mathfrak{t} \in \mathcal{T}(\lambda)$,
- a bijection $\iota_{\lambda} : \mathcal{T}(\lambda) \to \mathcal{T}(\iota\lambda)$ such that $\iota_{\iota\lambda} \circ \iota_{\lambda} = \mathrm{id}_{\mathcal{T}(\lambda)}$,

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,
- the linear map $*: A \to A$ defined by $c_{\mathfrak{s},\mathfrak{t}}^* \coloneqq c_{\iota_{\lambda}\mathfrak{t},\iota_{\lambda}\mathfrak{s}}$ is an algebra antiautomorphism,
- for all a ∈ A, the product c_{s,t}a ∈ A decomposes in the basis {c_{u,v}} in a (particular) triangular fashion.

Let A be a finite dimensional F-algebra. The algebra A is skew-cellular if there exists a poset (\mathcal{P}, \rhd) with:

- a poset involution ι of \mathcal{P} ,
- for each $\lambda \in \mathcal{P}$, an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}} \in A$ for $\mathfrak{s},\mathfrak{t} \in \mathcal{T}(\lambda)$,
- a bijection $\iota_{\lambda} : \mathcal{T}(\lambda) \to \mathcal{T}(\iota\lambda)$ such that $\iota_{\iota\lambda} \circ \iota_{\lambda} = id_{\mathcal{T}(\lambda)}$,

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,
- the linear map $*: A \to A$ defined by $c_{\mathfrak{s},\mathfrak{t}}^* \coloneqq c_{\iota_{\lambda}\mathfrak{t},\iota_{\lambda}\mathfrak{s}}$ is an algebra antiautomorphism,
- for all a ∈ A, the product c_{s,t}a ∈ A decomposes in the basis {c_{u,v}} in a (particular) triangular fashion.

Remark

• If $\iota = id_{\mathcal{P}}$ and $\iota_{\lambda} = id_{\mathcal{T}(\lambda)}$ for all $\lambda \in \mathcal{P}$ then we recover Graham–Lehrer's definition of a cellular algebra.

Let A be a finite dimensional F-algebra. The algebra A is skew-cellular if there exists a poset (\mathcal{P}, \rhd) with:

- a poset involution ι of \mathcal{P} ,
- for each $\lambda \in \mathcal{P}$, an indexing set $\mathcal{T}(\lambda)$,
- elements $c_{\mathfrak{s},\mathfrak{t}} \in A$ for $\mathfrak{s},\mathfrak{t} \in \mathcal{T}(\lambda)$,
- a bijection $\iota_{\lambda} : \mathcal{T}(\lambda) \to \mathcal{T}(\iota\lambda)$ such that $\iota_{\iota\lambda} \circ \iota_{\lambda} = id_{\mathcal{T}(\lambda)}$,

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*,
- the linear map $*: A \to A$ defined by $c_{\mathfrak{s},\mathfrak{t}}^* \coloneqq c_{\iota_{\lambda}\mathfrak{t},\iota_{\lambda}\mathfrak{s}}$ is an algebra antiautomorphism,
- for all a ∈ A, the product c_{s,t}a ∈ A decomposes in the basis {c_{u,v}} in a (particular) triangular fashion.

Remark

- If $\iota = id_{\mathcal{P}}$ and $\iota_{\lambda} = id_{\mathcal{T}(\lambda)}$ for all $\lambda \in \mathcal{P}$ then we recover Graham–Lehrer's definition of a cellular algebra.
- We have the same main consequences for the representation theory of *A* as for cellularity.

Definition (Hu-Mathas-R. 21)

Let (A, \mathcal{P}, \rhd) be a cellular algebra. A shift automorphism of A is a triple $(\sigma_A, \sigma_{\mathcal{P}}, \sigma_{\mathcal{T}})$ where:

- σ_A is an algebra automorphism of A,
- $\sigma_{\mathcal{P}}$ is a poset automorphism of \mathcal{P} ,
- $\sigma_{\mathcal{T}}$ is an automorphism of the set $\mathcal{T} = \coprod_{\lambda \in \mathcal{P}} \mathcal{T}(\lambda)$,

such that:

Definition (Hu-Mathas-R. 21)

Let $(A, \mathcal{P}, \triangleright)$ be a cellular algebra. A shift automorphism of A is a triple $(\sigma_A, \sigma_{\mathcal{P}}, \sigma_{\mathcal{T}})$ where:

- σ_A is an algebra automorphism of A,
- $\sigma_{\mathcal{P}}$ is a poset automorphism of \mathcal{P} ,
- $\sigma_{\mathcal{T}}$ is an automorphism of the set $\mathcal{T} = \coprod_{\lambda \in \mathcal{P}} \mathcal{T}(\lambda)$,

such that:

• if
$$\mathfrak{s} \in \mathcal{T}(\lambda)$$
 then $\sigma_{\mathcal{T}}(\mathfrak{s}) \in \mathcal{T}(\sigma_{\mathcal{P}}(\lambda))$,

• if $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ then $\sigma_A(c_{\mathfrak{s},\mathfrak{t}}) = c_{\sigma_{\mathcal{T}}(\mathfrak{s}),\sigma_{\mathcal{T}}(\mathfrak{t})}$,

Definition (Hu-Mathas-R. 21)

Let $(A, \mathcal{P}, \triangleright)$ be a cellular algebra. A shift automorphism of A is a triple $(\sigma_A, \sigma_{\mathcal{P}}, \sigma_{\mathcal{T}})$ where:

- σ_A is an algebra automorphism of A,
- $\sigma_{\mathcal{P}}$ is a poset automorphism of \mathcal{P} ,
- $\sigma_{\mathcal{T}}$ is an automorphism of the set $\mathcal{T} = \coprod_{\lambda \in \mathcal{P}} \mathcal{T}(\lambda)$,

such that:

- if $\mathfrak{s} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{T}}(\mathfrak{s}) \in \mathcal{T}(\sigma_{\mathcal{P}}(\lambda))$,
- if $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{A}}(c_{\mathfrak{s},\mathfrak{t}}) = c_{\sigma_{\mathcal{T}}(\mathfrak{s}),\sigma_{\mathcal{T}}(\mathfrak{t})}$,
- an extra technical condition.

Definition (Hu-Mathas-R. 21)

Let $(A, \mathcal{P}, \triangleright)$ be a cellular algebra. A shift automorphism of A is a triple $(\sigma_A, \sigma_{\mathcal{P}}, \sigma_{\mathcal{T}})$ where:

- σ_A is an algebra automorphism of A,
- $\sigma_{\mathcal{P}}$ is a poset automorphism of \mathcal{P} ,
- $\sigma_{\mathcal{T}}$ is an automorphism of the set $\mathcal{T} = \coprod_{\lambda \in \mathcal{P}} \mathcal{T}(\lambda)$,

such that:

- if $\mathfrak{s} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{T}}(\mathfrak{s}) \in \mathcal{T}(\sigma_{\mathcal{P}}(\lambda))$,
- if $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{A}}(c_{\mathfrak{s},\mathfrak{t}}) = c_{\sigma_{\mathcal{T}}(\mathfrak{s}),\sigma_{\mathcal{T}}(\mathfrak{t})}$,
- an extra technical condition.

We denote by \mathcal{P}_{σ} the poset of orbits of \mathcal{P} under the action of $\langle \sigma_{\mathcal{P}} \rangle$.

Skew cellularity of the subalgebra of fixed points

Theorem (Hu-Mathas-R. 21)

Let A be a cellular algebra with a shift automorphism ($\sigma_A, \sigma_P, \sigma_T$). Assume that F contains a primitive p-th root of unity, where p is the order of σ_A . Then the subalgebra A^{σ} of fixed points is a skew cellular algebra.

Skew cellularity of the subalgebra of fixed points

Theorem (Hu-Mathas-R. 21)

Let A be a cellular algebra with a shift automorphism $(\sigma_A, \sigma_P, \sigma_T)$. Assume that F contains a primitive p-th root of unity, where p is the order of σ_A . Then the subalgebra A^{σ} of fixed points is a skew cellular algebra.

In more details:

- the poset is $\{(\Lambda, k) : \Lambda \in \mathcal{P}_{\sigma}, k \in \mathbb{Z}/o_{\Lambda}\mathbb{Z}\}$ where $o_{\Lambda} \mid p$,
- the involution ι on the poset is $(\Lambda, k) \longmapsto (\Lambda, -k)$,
- the skew cellular basis of A^{σ} consists in weighted sums of σ_A -averages of the cellular basis elements of A.

Skew cellularity of the subalgebra of fixed points

Theorem (Hu-Mathas-R. 21)

Let A be a cellular algebra with a shift automorphism $(\sigma_A, \sigma_P, \sigma_T)$. Assume that F contains a primitive p-th root of unity, where p is the order of σ_A . Then the subalgebra A^{σ} of fixed points is a skew cellular algebra.

In more details:

- the poset is $\{(\Lambda, k) : \Lambda \in \mathcal{P}_{\sigma}, k \in \mathbb{Z}/o_{\Lambda}\mathbb{Z}\}$ where $o_{\Lambda} \mid p$,
- the involution ι on the poset is $(\Lambda, k) \longmapsto (\Lambda, -k)$,
- the skew cellular basis of A^{σ} consists in weighted sums of σ_A -averages of the cellular basis elements of A.

Corollary

If σ_A has order p = 2 then A^{σ} is cellular.

You are here

Cellular algebras

2 Hecke and related algebras of complex reflection groups

3 Skew cellular algebras

4 Applications for Hecke and related algebras of G(r, p, n)

Under some assumptions, the Ariki–Koike algebra $\mathcal{H}_{r,n}$ is naturally equipped with an automorphism σ of order $p \mid r$.

Proposition (Ariki 95)

The Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is isomorphic to the subalgebra of fixed points of $\mathcal{H}_{r,n}$ for the automorphism σ .

Under some assumptions, the Ariki–Koike algebra $\mathcal{H}_{r,n}$ is naturally equipped with an automorphism σ of order $p \mid r$.

Proposition (Ariki 95)

The Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is isomorphic to the subalgebra of fixed points of $\mathcal{H}_{r,n}$ for the automorphism σ .

Theorem (Hu-Mathas-R. 21)

For a particular cellular structure on $\mathcal{H}_{r,n}$, the automorphism σ is a shift automorphism. In particular:

- the Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is skew cellular,
- if p = 2 then $\mathcal{H}_{r,2,n}$ is in fact cellular.

Under some assumptions, the Ariki–Koike algebra $\mathcal{H}_{r,n}$ is naturally equipped with an automorphism σ of order $p \mid r$.

Proposition (Ariki 95)

The Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is isomorphic to the subalgebra of fixed points of $\mathcal{H}_{r,n}$ for the automorphism σ .

Theorem (Hu-Mathas-R. 21)

For a particular cellular structure on $\mathcal{H}_{r,n}$, the automorphism σ is a shift automorphism. In particular:

- the Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is skew cellular,
- if p = 2 then $\mathcal{H}_{r,2,n}$ is in fact cellular.
- An important point of the proof is to construct very explicit diagrams inside the Cherednik algebra of Webster–Bowman.

Under some assumptions, the Ariki–Koike algebra $\mathcal{H}_{r,n}$ is naturally equipped with an automorphism σ of order $p \mid r$.

Proposition (Ariki 95)

The Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is isomorphic to the subalgebra of fixed points of $\mathcal{H}_{r,n}$ for the automorphism σ .

Theorem (Hu-Mathas-R. 21)

For a particular cellular structure on $\mathcal{H}_{r,n}$, the automorphism σ is a shift automorphism. In particular:

- the Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is skew cellular,
- if p = 2 then $\mathcal{H}_{r,2,n}$ is in fact cellular.
- An important point of the proof is to construct very explicit diagrams inside the Cherednik algebra of Webster–Bowman.
- Geck's result can be applied for $(r, p, n) \in \{(2, 2, n), (p, p, 2)\}$. Our result is stronger that Geck's in the (2, 2, n) case since we prove in general the graded skew cellularity.

Salim ROSTAM (Univ Rennes)

A glimpse inside the diagrammatic Cherednik algebra

Here is an example of a kind of diagram, inside the diagrammatic Cherednik algebra of Webster–Bowman, that we used to prove the previous theorem:

Cellularity of the Temperley–Lieb algebra of type G(r, p, n)

Under some assumptions, the previous automorphism σ of $\mathcal{H}_{r,n}$ induces an automorphism of the Temperley–Lieb algebra $\mathcal{TL}_{r,n}$ of type G(r, 1, n).

Definition (Lehrer-Lyu 22)

The Temperley–Lieb algebra of type G(r, p, n) is the subalgebra of fixed points of $\mathcal{TL}_{r,n}$ for the automorphism σ .

Cellularity of the Temperley–Lieb algebra of type G(r, p, n)

Under some assumptions, the previous automorphism σ of $\mathcal{H}_{r,n}$ induces an automorphism of the Temperley–Lieb algebra $\mathcal{TL}_{r,n}$ of type G(r, 1, n).

Definition (Lehrer-Lyu 22)

The Temperley–Lieb algebra of type G(r, p, n) is the subalgebra of fixed points of $\mathcal{TL}_{r,n}$ for the automorphism σ .

Theorem (Lehrer–Lyu 22)

The Temperley–Lieb algebra of type G(r, p, n) is cellular.

In fact Lehrer–Lyu prove the skew cellularity, and it turns out that the associated maps ι are the identity maps, whence the cellularity.

The end

Thank you!