Taille du cœur des partitions sous la mesure de Plancherel

Salim ROSTAM

Univ Rennes

03 janvier 2022

Séminaire de probabilités, IRMAR

Mesure de Plancherel

2 Cœur d'une partition

Asymptotique du cœur sous la mesure de Plancherel

Partitions

Soit $n \in \mathbb{N}$.

Définition

Une partition de (taille) n est une suite $\lambda = (\lambda_1 \ge \cdots \ge \lambda_h > 0)$ d'entiers positifs décroissants de somme n.

Exemple

Les partitions de 5 sont (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1).

Partitions

Soit $n \in \mathbb{N}$.

Définition

Une partition de (taille) n est une suite $\lambda = (\lambda_1 \ge \cdots \ge \lambda_h > 0)$ d'entiers positifs décroissants de somme n.

Exemple

Les partitions de 5 sont (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1).

On peut représenter une partition à l'aide de son diagramme de Young.

Exemple

Le diagramme de Young de la partition (5,3,3,2) est

Mesure de Plancherel

Soit λ une partition de n. Un tableau standard de forme λ est une numérotation des cases du diagramme de Young de λ par les entiers de 1 à n de sorte que les lignes (resp. les colonnes) soient croissantes de gauche à droite (resp. de haut en bas).

Exemple

Le tableau $\begin{bmatrix} 1 & 2 & 5 \\ \hline 3 & 6 & 7 \\ \hline 4 \end{bmatrix}$ est standard de forme (3, 3, 1).

On note $std(\lambda)$ le nombre de tableaux standards de forme λ .

Mesure de Plancherel

Soit λ une partition de n. Un tableau standard de forme λ est une numérotation des cases du diagramme de Young de λ par les entiers de 1 à n de sorte que les lignes (resp. les colonnes) soient croissantes de gauche à droite (resp. de haut en bas).

Exemple

Le tableau $\begin{bmatrix} 1 & 2 & 5 \\ \hline 3 & 6 & 7 \\ \hline 4 \end{bmatrix}$ est standard de forme (3,3,1).

On note $std(\lambda)$ le nombre de tableaux standards de forme λ .

Proposition

$$n! = \sum_{\substack{\lambda \text{ partition de } n}} \operatorname{std}(\lambda)^2$$

La mesure de Plancherel sur l'ensemble des partitions de n est définie par $\operatorname{Pl}_n(\lambda) := \frac{\operatorname{std}(\lambda)^2}{n!}$.

Mesure de Plancherel pour n = 4

Convention Russe

On tourne les diagrammes de Young de 135° et on regarde la fonction 1-lipschitzienne $\mathbb{R}\to\mathbb{R}$ qui correspond à la frontière supérieure. Par exemple, pour (4,4,2,1) on obtient :

Forme limite universelle

Soit $\Omega:\mathbb{R}\to\mathbb{R}$ définie par

$$\Omega(s) := egin{cases} rac{2}{\pi} \left(s \arcsin \left(rac{s}{2}
ight) + \sqrt{4-s^2}
ight), & ext{si } |s| \leq 2, \ |s|, & ext{sinon}. \end{cases}$$

Théorème (Kerov–Vershik, Logan–Shepp, 1977)

Sous la mesure de Plancherel Pl_n , la fonction $\widetilde{\omega}_{\lambda}: s \mapsto \frac{1}{\sqrt{n}}\omega_{\lambda}(s\sqrt{n})$ converge uniformément en probabilité vers Ω quand $n \to +\infty$. En d'autres termes, pour tout $\epsilon > 0$ on a

$$\operatorname{Pl}_n\left(\sup_{\mathbb{R}}|\widetilde{\omega}_{\lambda}-\Omega|>\epsilon\right)\xrightarrow{n\to+\infty}0.$$

Forme limite universelle

Figure – Représentation d'une partition de n = 700 et de la forme limite.

Mesure de Plancherel

2 Cœur d'une partition

Asymptotique du cœur sous la mesure de Plancherel

Ensemble de descente

Définition (Ensemble de descente)

L'ensemble de descente associé à la partition $\lambda=(\lambda_i)_{i\geq 1}$ est

$$\mathcal{D}(\lambda) := \{\lambda_i - i : i \ge 1\} \subseteq \mathbb{Z}.$$

Par exemple, $\mathcal{D}(4,4,2,1) = \{3,2,-1,-3,-5,-6,-7,\ldots\}.$

Processus déterminantal

Soit t > 0.

Définition (Mesure de Plancherel poissonisé)

La mesure de Plancherel poissonisée sur l'ensemble des partitions est définie par, si λ est une partition de taille n,

$$\operatorname{pl}_t(\lambda) := \frac{\exp(-t)t^n}{n!} \operatorname{Pl}_n(\lambda).$$

Processus déterminantal

Soit t > 0.

Définition (Mesure de Plancherel poissonisé)

La mesure de Plancherel poissonisée sur l'ensemble des partitions est définie par, si λ est une partition de taille n,

$$\operatorname{pl}_t(\lambda) := \frac{\exp(-t)t^n}{n!} \operatorname{Pl}_n(\lambda).$$

Le noyau de Bessel discret est défini pour $x, y \in \mathbb{R}$ par

$$\mathcal{J}^t(x,y) := \sqrt{t} \frac{J_x J_{y+1} - J_{x+1} J_y}{x - y} (2\sqrt{t}),$$

où J_x est la fonction de Bessel de première espèce d'ordre x.

Théorème (Borodin-Okounkov-Olshanski 2000)

Soient $x_1, \ldots, x_s \in \mathbb{Z}$ distincts. On a

$$\operatorname{pl}_t(x_1,\ldots,x_s\in\mathcal{D}(\lambda))=\det\left[\mathcal{J}^t(x_a,x_b)\right]_{1\leq a,b\leq s}.$$

Équerres et rubans

Soit λ une partition.

- Une équerre du diagramme de Young de λ est l'ensemble des boîtes qui se trouvent directement en bas ou directement à droite d'une boîte donnée.
- Un ruban du diagramme de Young de λ est l'ensemble des boîtes de la frontière qui se trouvent entre les deux extrémités d'une équerre.

Lien avec l'ensemble de descente

Proposition

Si on enlève un ruban d'un diagramme de Young alors on obtient encore un diagramme de Young.

Sur l'exemple précédent, la partition

Lien avec l'ensemble de descente

Proposition

Si on enlève un ruban d'un diagramme de Young alors on obtient encore un diagramme de Young.

Sur l'exemple précédent, la partition

devient

Proposition

Soient λ, μ deux partitions. On peut passer du diagramme de Young de λ à celui de μ en enlevant un ruban de taille e si et seulement si $\mathcal{D}(\mu) = (\mathcal{D}(\lambda) \setminus \{b\}) \cup \{b-e\}$ pour un certain $b \in \mathcal{D}(\lambda)$ avec $b-e \notin \mathcal{D}(\lambda)$.

Sur l'exemple précédent, l'ensemble de descente

$$\mathcal{D}(5,5,5,4,2) = \{4,3,2,0,-3,-6,-7,\ldots\},\$$

devient

$$\mathcal{D}(4,4,3,1,1) = \{3,2,0,-3,-4,-6,-7,\ldots\}.$$

Cœur d'une partition

Soit λ une partition et $e \geq 1$.

Définition (Cœur)

Le e-cœur de λ est la partition obtenue après avoir enlevé tous les rubans de taille e possibles du diagramme de Young de λ .

Exemple

 \bullet Le 8-cœur de (5,5,5,4,2) est (3,2) :

• Le 4-cœur de (3,2,2,1) est la partition vide :

Cœur d'une partition

Soit λ une partition et $e \geq 1$.

Définition (Cœur)

Le e-cœur de λ est la partition obtenue après avoir enlevé tous les rubans de taille e possibles du diagramme de Young de λ .

Exemple

• Le 8-cœur de (5,5,5,4,2) est (3,2):

• Le 4-cœur de (3, 2, 2, 1) est la partition vide :

Cœur d'une partition

Soit λ une partition et $e \geq 1$.

Définition (Cœur)

Le e-cœur de λ est la partition obtenue après avoir enlevé tous les rubans de taille e possibles du diagramme de Young de λ .

Le 8-cœur de (5, 5, 5, 4, 2) est (3, 2) : ______. Le 4-cœur de (3, 2, 2, 1) est la partition vide : ______ ou ____.

Le lien avec $\mathcal{D}(\lambda)$ montre que l'ordre dans lequel on enlève les rubans n'importe pas.

Mesure de Plancherel

2 Cœur d'une partition

3 Asymptotique du cœur sous la mesure de Plancherel

Présentation du problème

Sous la mesure de Plancherel, les partitions ont une forme limite universelle. Que dire du *e*-cœur pour de telles partitions?

Figure – Quelques 5-cœurs (en vert) pour n = 700.

Variables auxiliaires

On se propose d'étudier la taille du *e*-cœur des partitions tirées selon la mesure de Plancherel. Pour $i \in \mathbb{Z}/e\mathbb{Z}$, on définit

$$c_i(\lambda)\coloneqq rac{1}{2}\sum_{k\in\mathbb{Z}}\omega_\lambda(i+\mathsf{ke})-|i+\mathsf{ke}|\in\mathbb{N}$$

(nombre de « boîtes de résidu i ») et

$$x_i(\lambda) := c_i(\lambda) - c_{i+1}(\lambda).$$

Variables auxiliaires

On se propose d'étudier la taille du e-cœur des partitions tirées selon la mesure de Plancherel. Pour $i \in \mathbb{Z}/e\mathbb{Z}$, on définit

$$c_i(\lambda) \coloneqq rac{1}{2} \sum_{k \in \mathbb{Z}} \omega_{\lambda}(i + k e) - |i + k e| \in \mathbb{N}$$

(nombre de « boîtes de résidu i ») et

$$x_i(\lambda) := c_i(\lambda) - c_{i+1}(\lambda).$$

Proposition (Garvan-Kim-Stanton 1990, Fayers 2006)

La taille $\ell_e(\lambda)$ du e-cœur de λ est donnée par

$$\ell_e(\lambda) = \frac{e}{2} \sum_{i \in \mathbb{Z}/e\mathbb{Z}} x_i(\lambda)^2 + \sum_{i=0}^{e-1} i x_i(\lambda).$$

Expression en fonction du processus de descente

Proposition (R. 21)

Pour tout $i \in \{0, \dots, e-1\}$ on a

$$x_i(\lambda) := \#(e\mathbb{Z}_{\geq 0} + i) \cap \mathcal{D}(\lambda) - \#(e\mathbb{Z}_{< 0} + i) \cap \mathcal{D}(\lambda)^c.$$

Expression en fonction du processus de descente

Proposition (R. 21)

Pour tout $i \in \{0, \dots, e-1\}$ on a

$$x_i(\lambda) := \#(e\mathbb{Z}_{\geq 0} + i) \cap \mathcal{D}(\lambda) - \#(e\mathbb{Z}_{< 0} + i) \cap \mathcal{D}(\lambda)^c.$$

Proposition (R. 21)

Pour $i \in \{0, \dots, e-1\}$ on a

$$x_i(\lambda) = \#(e\mathbb{Z}_{\geq -t^2} + i) \cap \mathcal{D}(\lambda) - t^2 + R(\lambda),$$

$$o\grave{u} R(\lambda) \xrightarrow[t \to +\infty]{L^2} 0.$$

Théorème central limite

Pour $i \in \{0, ..., e-1\}$ on note $\#_i := \#(e\mathbb{Z}_{\geq -t^2} + i) \cap \mathcal{D}(\lambda)$ et \mathbb{E}_t , Var_t , Cov_t l'espérance, la variance et la covariance sous pl_t .

Théorème (Costin–Lebowitz 1995, Soshnikov 2000)

Si
$$\operatorname{Var}_t \#_i \xrightarrow[t \to +\infty]{t \to +\infty} +\infty$$
 et s'il existe $b_{ij} \in \mathbb{R}$ tel que

$$\frac{\operatorname{Cov}_{\mathsf{t}}(\#_i,\#_j)}{\sqrt{\operatorname{Var}_{\mathsf{t}}\#_i\operatorname{Var}_{\mathsf{t}}\#_j}}\xrightarrow[t\to+\infty]{}b_{ij},$$

alors, avec $B := (b_{ij})_{i,j \in \mathbb{Z}/e\mathbb{Z}}$,

$$\left(\frac{\#_i - \mathbb{E}_t \#_i}{\sqrt{\operatorname{Var}_t \#_i}}\right)_{i \in \mathbb{Z}/e\mathbb{Z}} \xrightarrow{t \to +\infty} \mathcal{N}(0, B).$$

Théorème central limite

Pour $i \in \{0, \dots, e-1\}$ on note $\#_i := \#(e\mathbb{Z}_{\geq -t^2} + i) \cap \mathcal{D}(\lambda)$ et \mathbb{E}_t , Var_t , Cov_t l'espérance, la variance et la covariance sous pl_t .

Théorème (Costin–Lebowitz 1995, Soshnikov 2000)

Si
$$\operatorname{Var}_t \#_i \xrightarrow[t \to +\infty]{t \to +\infty} +\infty$$
 et s'il existe $b_{ij} \in \mathbb{R}$ tel que

$$\frac{\operatorname{Cov}_{\mathsf{t}}\left(\#_{i},\#_{j}\right)}{\sqrt{\operatorname{Var}_{\mathsf{t}}\#_{i}\operatorname{Var}_{\mathsf{t}}\#_{j}}}\xrightarrow[t\to+\infty]{}b_{ij},$$

alors, avec $B := (b_{ij})_{i,j \in \mathbb{Z}/e\mathbb{Z}}$,

$$\left(\frac{\#_i - \mathbb{E}_t \#_i}{\sqrt{\operatorname{Var}_t \#_i}}\right)_{i \in \mathbb{Z}/e\mathbb{Z}} \xrightarrow{t \to +\infty} \mathcal{N}(0, B).$$

- Le théorème s'énonce dans un cadre plus général.
- La convergence a lieu en moments.

Espérance, covariance

Proposition

Avec $\rho^t(m) := \mathcal{J}^t(m,m)$ on a

$$\mathbb{E}_t x_i(\lambda) = \sum_{m \in e\mathbb{Z}_{>0} + i} \rho^t(m) - \sum_{n \in e\mathbb{Z}_{<0} + i} (1 - \rho^t(n)),$$

et, pour $i \neq j$,

$$\operatorname{Cov}_{\mathsf{t}}(x_{i}(\lambda), x_{j}(\lambda)) = -\sum_{m \in e\mathbb{Z}+i} \sum_{n \in e\mathbb{Z}+i} \mathcal{J}^{\mathsf{t}}(m, n)^{2}.$$

Espérance, covariance

Proposition

Avec $\rho^t(m) := \mathcal{J}^t(m,m)$ on a

$$\mathbb{E}_{t} x_{i}(\lambda) = \sum_{m \in e\mathbb{Z}_{>0} + i} \rho^{t}(m) - \sum_{n \in e\mathbb{Z}_{<0} + i} (1 - \rho^{t}(n)),$$

et, pour $i \neq j$,

$$\operatorname{Cov}_{\mathsf{t}}(x_{i}(\lambda), x_{j}(\lambda)) = -\sum_{m \in e\mathbb{Z}+i} \sum_{n \in e\mathbb{Z}+i} \mathcal{J}^{\mathsf{t}}(m, n)^{2}.$$

Théorème (R. 21)

Quand $t \to +\infty$, on a $\mathbb{E}_t x_i(\lambda) = O(1)$ et

$$\operatorname{Cov}_{\mathsf{t}}(x_i(\lambda), x_j(\lambda)) \sim \frac{2\sqrt{t}}{\pi e^2} \Big[\cot(j - i + \frac{1}{2}) \frac{\pi}{e} - \cot(j - i - \frac{1}{2}) \frac{\pi}{e} \Big].$$

On a notamment $\operatorname{Var}_{\mathbf{t}} x_i(\lambda) \sim \frac{4\sqrt{t}}{\pi e^2} \cot \frac{\pi}{2e}$ quand $t \to +\infty$.

Loi de la longueur du cœur

Corollaire (R. 21)

$$e\sqrt{\frac{\pi}{2}}\left(\frac{x_i(\lambda)}{t^{1/4}}\right)_{i\in\mathbb{Z}/e\mathbb{Z}}\xrightarrow{t\to+\infty}\mathcal{N}(0,B),$$

où $B=(b_{ij})$ avec $b_{ij} \coloneqq \cot(j-i+\frac{1}{2})\frac{\pi}{e}-\cot(j-i-\frac{1}{2})\frac{\pi}{e}$.

Loi de la longueur du cœur

Corollaire (R. 21)

$$e\sqrt{\frac{\pi}{2}}\left(\frac{x_i(\lambda)}{t^{1/4}}\right)_{i\in\mathbb{Z}/e\mathbb{Z}}\xrightarrow{t\to+\infty}\mathcal{N}(0,B),$$

où
$$B = (b_{ij})$$
 avec $b_{ij} := \cot(j - i + \frac{1}{2})\frac{\pi}{e} - \cot(j - i - \frac{1}{2})\frac{\pi}{e}$.

On rappelle que $\ell_e(\lambda) = \frac{e}{2} \sum_{i \in \mathbb{Z}/e\mathbb{Z}} x_i(\lambda)^2 + \sum_{i=0}^{e-1} i x_i(\lambda)$.

Corollaire (R. 21)

Si $\lambda_0, \dots, \lambda_{e-1}$ sont les valeurs propres de B alors

$$\frac{e\pi}{2\sqrt{t}}\ell_e(\lambda) \xrightarrow[t\to+\infty]{\mathcal{L}} \sum_{i=0}^{e-1} \Gamma(\frac{1}{2},\lambda_i).$$

Loi de la longueur du cœur

Corollaire (R. 21)

$$e\sqrt{\frac{\pi}{2}}\left(\frac{x_i(\lambda)}{t^{1/4}}\right)_{i\in\mathbb{Z}/e\mathbb{Z}}\xrightarrow{t\to+\infty}\mathcal{N}(0,B),$$

où
$$B=(b_{ij})$$
 avec $b_{ij}\coloneqq\cot(j-i+\frac{1}{2})\frac{\pi}{e}-\cot(j-i-\frac{1}{2})\frac{\pi}{e}$.

On rappelle que $\ell_e(\lambda) = \frac{e}{2} \sum_{i \in \mathbb{Z}/e\mathbb{Z}} x_i(\lambda)^2 + \sum_{i=0}^{e-1} i x_i(\lambda)$.

Corollaire (R. 21)

Si $\lambda_0, \dots, \lambda_{e-1}$ sont les valeurs propres de B alors

$$\frac{e\pi}{2\sqrt{t}}\ell_e(\lambda) \xrightarrow[t\to+\infty]{} \sum_{i=0}^{e-1} \Gamma(\frac{1}{2},\lambda_i).$$

Proposition (R. 21)

Pour tout $k \in \{0, \dots, e-1\}$ on a $\lambda_k = 2e \sin \frac{k\pi}{e}$.

Théorème (R. 21)

Sous la mesure de Plancherel poissonisée pl_t on a

$$\frac{\pi}{4\sqrt{t}}\ell_{e}(\lambda) \xrightarrow[t \to +\infty]{\mathcal{L}} \sum_{k=1}^{e-1} \Gamma(\frac{1}{2}, \sin\frac{k\pi}{e})$$

(somme de variables mutuellement indépendantes).

Théorème (R. 21)

Sous la mesure de Plancherel poissonisée pl_t on a

$$\frac{\pi}{4\sqrt{t}}\ell_e(\lambda) \xrightarrow[t\to+\infty]{\mathcal{L}} \sum_{k=1}^{e-1} \Gamma(\frac{1}{2}, \sin\frac{k\pi}{e})$$

(somme de variables mutuellement indépendantes).

Corollaire (R. 21)

Quand
$$t \to +\infty$$
 on a $\mathbb{E}_t \ell_e(\lambda) \sim \frac{2\sqrt{t}}{\pi} \cot \frac{\pi}{2e}$ et $\operatorname{Var}_t \ell_e(\lambda) \sim \frac{4et}{\pi^2}$.

Théorème (R. 21)

Sous la mesure de Plancherel poissonisée pl_t on a

$$\frac{\pi}{4\sqrt{t}}\ell_e(\lambda) \xrightarrow[t \to +\infty]{\mathcal{L}} \sum_{k=1}^{e-1} \Gamma(\frac{1}{2}, \sin\frac{k\pi}{e})$$

(somme de variables mutuellement indépendantes).

Corollaire (R. 21)

Quand
$$t \to +\infty$$
 on a $\mathbb{E}_t \ell_e(\lambda) \sim \frac{2\sqrt{t}}{\pi} \cot \frac{\pi}{2e}$ et $\operatorname{Var}_t \ell_e(\lambda) \sim \frac{4et}{\pi^2}$.

• Les convergences ont vraisemblablement lieu pour la mesure de Plancherel Pl_n quand $n \to +\infty$ (« dé-poissonisation »).

Théorème (R. 21)

Sous la mesure de Plancherel poissonisée pl_t on a

$$\frac{\pi}{4\sqrt{t}}\ell_e(\lambda) \xrightarrow[t \to +\infty]{\mathcal{L}} \sum_{k=1}^{e-1} \Gamma(\frac{1}{2}, \sin\frac{k\pi}{e})$$

(somme de variables mutuellement indépendantes).

Corollaire (R. 21)

Quand
$$t \to +\infty$$
 on a $\mathbb{E}_t \ell_e(\lambda) \sim \frac{2\sqrt{t}}{\pi} \cot \frac{\pi}{2e}$ et $\mathrm{Var}_t \ell_e(\lambda) \sim \frac{4et}{\pi^2}$.

- Les convergences ont vraisemblablement lieu pour la mesure de Plancherel Pl_n quand $n \to +\infty$ (« dé-poissonisation »).
- Lulov–Pittel (1999) et Ayyer–Sinha (2020) ont montré que sous la mesure uniforme sur les partitions de *n* on a

$$\frac{\pi}{\sqrt{n}}\ell_e(\lambda) \xrightarrow[n \to +\infty]{\mathcal{L}} \Gamma(\frac{e-1}{2}, \sqrt{6}).$$

En images

Figure – Convergence en loi de $\frac{\pi}{4\sqrt{n}}\ell_e(\lambda)$ vers $\sum_{k=1}^{e-1}\Gamma\left(\frac{1}{2},\sin\frac{k\pi}{e}\right)$ pour e=7 et n=100,500,3000.

Fin

а	t	t	е	n	t	i	0	n
М	е	r	С	i				
٧	0	t	r	е				
d	е							
!								

Rappel

- La mesure de Plancherel est donnée par $\operatorname{Pl}_n(\lambda) = \frac{\operatorname{std}(\lambda)^2}{n!}$ où $\operatorname{std}(\lambda)$ est le nombre de tableaux standards de forme λ .
- Une équerre d'un diagramme de Young est l'ensemble des boîtes qui se trouvent directement en bas ou directement à droite d'une boîte donnée

Rappel

- La mesure de Plancherel est donnée par $\operatorname{Pl}_n(\lambda) = \frac{\operatorname{std}(\lambda)^2}{n!}$ où $\operatorname{std}(\lambda)$ est le nombre de tableaux standards de forme λ .
- Une équerre d'un diagramme de Young est l'ensemble des boîtes qui se trouvent directement en bas ou directement à droite d'une boîte donnée

• Un tableau pris uniformément est standard ssi chaque boîte b possède l'étiquette minimale dans son équerre \leadsto probabilité $\frac{1}{h(b)}$ si l'équerre possède h(b) boîtes.

Rappel

- La mesure de Plancherel est donnée par $\operatorname{Pl}_n(\lambda) = \frac{\operatorname{std}(\lambda)^2}{n!}$ où $\operatorname{std}(\lambda)$ est le nombre de tableaux standards de forme λ .
- Une équerre d'un diagramme de Young est l'ensemble des boîtes qui se trouvent directement en bas ou directement à droite d'une boîte donnée ••••

• On en « déduit » que la probabilité d'être standard est $\frac{1}{\prod_b h(b)}$, où b parcourt l'ensemble des boîtes du diagramme de Young.

Rappel

- La mesure de Plancherel est donnée par $\operatorname{Pl}_n(\lambda) = \frac{\operatorname{std}(\lambda)^2}{n!}$ où $\operatorname{std}(\lambda)$ est le nombre de tableaux standards de forme λ .
- Une équerre d'un diagramme de Young est l'ensemble des boîtes qui se trouvent directement en bas ou directement à droite d'une boîte donnée

- On en « déduit » que la probabilité d'être standard est $\frac{1}{\prod_b h(b)}$, où b parcourt l'ensemble des boîtes du diagramme de Young.
- Ainsi $\operatorname{std}(\lambda) = \frac{n!}{\prod_b h(b)}$ et $\operatorname{Pl}_n(\lambda) = \frac{n!}{\prod_b h(b)^2}$.