Salim ROSTAM (joint work with Jun HU and Andrew MATHAS)

Univ Rennes

CoRepTiL conference Lausanne, September 2021

Definition (Graham-Lehrer 96)

The algebra A is cellular if there exists a poset $(\mathcal{P}, \triangleright)$ with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$

such that:

Definition (Graham-Lehrer 96)

The algebra A is cellular if there exists a poset $(\mathcal{P}, \triangleright)$ with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$

such that:

• the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*

Definition (Graham-Lehrer 96)

The algebra A is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*
- the linear map $*:A\to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}}:=c_{\mathfrak{t},\mathfrak{s}}$ is an algebra antiautomorphism

Definition (Graham-Lehrer 96)

The algebra A is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$
- elements $c_{\mathfrak{s},\mathfrak{t}} \in A$ for $\mathfrak{s},\mathfrak{t} \in \mathcal{T}(\lambda)$

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*
- the linear map $*:A\to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}}:=c_{\mathfrak{t},\mathfrak{s}}$ is an algebra antiautomorphism
- for all $a \in A$, the product $c_{s,t}a \in A$ decomposes in the basis $\{c_{u,v}\}$ in a (particular) triangular fashion

Toy examples

Example

The algebra $F[x]/(x^n)$ is cellular with the following data:

•
$$\mathcal{P} \coloneqq \{0, \ldots, n-1\}$$

•
$$\mathcal{T}(i) \coloneqq \{i\}$$

•
$$c_{i,i} \coloneqq x^i$$

Toy examples

Example

The algebra $F[x]/(x^n)$ is cellular with the following data:

•
$$\mathcal{P} \coloneqq \{0, \ldots, n-1\}$$

•
$$\mathcal{T}(i) \coloneqq \{i\}$$

•
$$c_{i,i} \coloneqq x^i$$

Example

The algebra $Mat_{n \times n}(F)$ is cellular with the following data:

- $\mathcal{P} \coloneqq \{n\}$ a singleton
- $\mathcal{T}(n) \coloneqq \{1, \ldots, n\}$
- $c_{i,j} := E_{i,j}$ the elementary matrix with a 1 at position (i, j) and a zero elsewhere.

Proposition

Any semisimple algebra is cellular.

Theorem (Murphy 95, Graham–Lehrer 96, Dipper-James-Mathas 98, Hu–Mathas 10, Webster 13, Bowman 17)

The Ariki–Koike algebra $\mathcal{H}_{r,n}$ is cellular, the poset being the set of *r*-partitions of *n*.

Theorem (Murphy 95, Graham–Lehrer 96, Dipper-James-Mathas 98, Hu–Mathas 10, Webster 13, Bowman 17)

The Ariki–Koike algebra $\mathcal{H}_{r,n}$ is cellular, the poset being the set of *r*-partitions of *n*.

• From Murphy to Hu–Mathas, the order is always the dominance order on *r*-partitions.

Theorem (Murphy 95, Graham–Lehrer 96, Dipper-James-Mathas 98, Hu–Mathas 10, Webster 13, Bowman 17)

The Ariki–Koike algebra $\mathcal{H}_{r,n}$ is cellular, the poset being the set of *r*-partitions of *n*.

- From Murphy to Hu–Mathas, the order is always the dominance order on *r*-partitions.
- Webster and Bowman gave in fact many different cellular bases, associated with many different orders (generalising the dominance order). They intensively use a diagrammatic Cherednik algebra.

Let (A, \mathcal{P}, \rhd) be a cellular algebra. For all $\lambda \in \mathcal{P}$, we can construct a particular *A*-module C^{λ} , called cell module, together with a symmetric bilinear form ϕ_{λ} .

Let (A, \mathcal{P}, \rhd) be a cellular algebra. For all $\lambda \in \mathcal{P}$, we can construct a particular *A*-module C^{λ} , called cell module, together with a symmetric bilinear form ϕ_{λ} .

Definition (Graham-Lehrer 96)

For any $\lambda \in \mathcal{P}$, define the A-module $D^{\lambda} \coloneqq C^{\lambda}/\mathrm{rad} \phi_{\lambda}$.

Let $\mathcal{P}_0 \coloneqq \{\lambda \in \mathcal{P} : D^\lambda \neq \{0\}\}$, and define the decomposition matrix $D_A = (d_{\lambda,\mu})_{\lambda \in \mathcal{P}, \mu \in \mathcal{P}_0}$ by $d_{\lambda,\mu} \coloneqq [C^\lambda, D^\mu]$.

Let (A, \mathcal{P}, \rhd) be a cellular algebra. For all $\lambda \in \mathcal{P}$, we can construct a particular *A*-module C^{λ} , called cell module, together with a symmetric bilinear form ϕ_{λ} .

Definition (Graham–Lehrer 96)

For any $\lambda \in \mathcal{P}$, define the A-module $D^{\lambda} \coloneqq C^{\lambda}/\mathrm{rad}\,\phi_{\lambda}$.

Let $\mathcal{P}_0 \coloneqq \{\lambda \in \mathcal{P} : D^\lambda \neq \{0\}\}$, and define the decomposition matrix $D_A = (d_{\lambda,\mu})_{\lambda \in \mathcal{P}, \mu \in \mathcal{P}_0}$ by $d_{\lambda,\mu} \coloneqq [C^\lambda, D^\mu]$.

Theorem (Graham–Lehrer 96)

- The family {D^λ : λ ∈ P₀} is a complete collection of non-isomorphic simple A-modules.
- For any $\lambda \in \mathcal{P}$ and $\mu \in \mathcal{P}_0$ we have $d_{\mu,\mu} = 1$ and $d_{\lambda,\mu} \neq 0 \iff \lambda \trianglerighteq \mu$, in other words the decomposition matrix D_A is upper unitriangular.
- The A-module D^{λ} is self-dual.

Cellular algebras

Let $(A, \mathcal{P}, \triangleright)$ be a cellular algebra and let σ_A be an algebra automorphism of A.

Question

What can we say about the subalgebra

$$A^{\sigma} = \{ a \in A : \sigma_A(a) = a \} ?$$

Let $(A, \mathcal{P}, \triangleright)$ be a cellular algebra and let σ_A be an algebra automorphism of A.

Question

What can we say about the subalgebra

$$A^{\sigma} = \{ a \in A : \sigma_A(a) = a \} ?$$

- We will introduce the notion of skew cellular algebra.
- If σ_A satisfies some conditions then A^{σ} will be skew cellular.

Let A be a finite dimensional F-algebra

Definition (Graham-Lehrer 96)

The algebra A is cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*
- the linear map $*:A\to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}}\coloneqq c_{-\mathfrak{t},-\mathfrak{s}}$ is an algebra antiautomorphism
- for all $a \in A$, the product $c_{s,t}a \in A$ decomposes in the basis $\{c_{u,v}\}$ in a (particular) triangular fashion

Let A be a finite dimensional F-algebra and ι a poset involution of \mathcal{P} .

Definition (Hu-Mathas-R. 21)

The algebra A is skew-cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$
- a bijection $\iota_{\lambda} : \mathcal{T}(\lambda) \to \mathcal{T}(\iota\lambda)$ such that $\iota_{\iota\lambda} \circ \iota_{\lambda} = \mathrm{id}_{\mathcal{T}(\lambda)}$

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*
- the linear map $*: A \to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}} \coloneqq c_{\iota_{\lambda}\mathfrak{t},\iota_{\lambda}\mathfrak{s}}$ is an algebra antiautomorphism
- for all $a \in A$, the product $c_{s,t}a \in A$ decomposes in the basis $\{c_{u,v}\}$ in a (particular) triangular fashion

Let A be a finite dimensional F-algebra and ι a poset involution of \mathcal{P} .

Definition (Hu-Mathas-R. 21)

The algebra A is skew-cellular if there exists a poset (\mathcal{P}, \rhd) with, for each $\lambda \in \mathcal{P}$,

- an indexing set $\mathcal{T}(\lambda)$
- elements $c_{\mathfrak{s},\mathfrak{t}}\in A$ for $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)$
- a bijection $\iota_{\lambda} : \mathcal{T}(\lambda) \to \mathcal{T}(\iota\lambda)$ such that $\iota_{\iota\lambda} \circ \iota_{\lambda} = \mathrm{id}_{\mathcal{T}(\lambda)}$

such that:

- the set $\{c_{\mathfrak{s},\mathfrak{t}}:\lambda\in\mathcal{P},\mathfrak{s},\mathfrak{t}\in\mathcal{T}(\lambda)\}$ is an *F*-basis of *A*
- the linear map $*: A \to A$ defined by $c^*_{\mathfrak{s},\mathfrak{t}} \coloneqq c_{\iota_{\lambda}\mathfrak{t},\iota_{\lambda}\mathfrak{s}}$ is an algebra antiautomorphism
- for all $a \in A$, the product $c_{s,t}a \in A$ decomposes in the basis $\{c_{u,v}\}$ in a (particular) triangular fashion

If $\iota = id_{\mathcal{P}}$ and $\iota_{\lambda} = id_{\mathcal{T}(\lambda)}$ then we recover Graham–Lehrer's definition of a cellular algebra.

Let $(A, \mathcal{P}, \rhd, \iota)$ be a skew cellular algebra. For all $\lambda \in \mathcal{P}$, again we can construct a particular *A*-module C^{λ} , called cell module, together with a bilinear form ϕ_{λ} (not necessarily symmetric).

Definition (Graham-Lehrer 96, Hu-Mathas-R. 21)

For any $\lambda \in \mathcal{P}$, define the A-module $D^{\lambda} \coloneqq C^{\lambda}/\mathrm{rad} \phi_{\lambda}$.

Let $(A, \mathcal{P}, \rhd, \iota)$ be a skew cellular algebra. For all $\lambda \in \mathcal{P}$, again we can construct a particular *A*-module C^{λ} , called cell module, together with a bilinear form ϕ_{λ} (not necessarily symmetric).

Definition (Graham-Lehrer 96, Hu-Mathas-R. 21)

For any $\lambda \in \mathcal{P}$, define the A-module $D^{\lambda} \coloneqq C^{\lambda}/\mathrm{rad} \phi_{\lambda}$.

Let $\mathcal{P}_0 := \{\lambda \in \mathcal{P} : D^\lambda \neq \{0\}\}$. The same results as for the cellular case still hold, namely:

- the family {D^λ : λ ∈ P₀} is a complete collection of non-isomorphic simple A-modules;
- the decomposition matrix is upper unitriangular.

Let $(A, \mathcal{P}, \rhd, \iota)$ be a skew cellular algebra. For all $\lambda \in \mathcal{P}$, again we can construct a particular A-module C^{λ} , called cell module, together with a bilinear form ϕ_{λ} (not necessarily symmetric).

Definition (Graham-Lehrer 96, Hu-Mathas-R. 21)

For any $\lambda \in \mathcal{P}$, define the A-module $D^{\lambda} \coloneqq C^{\lambda}/\mathrm{rad} \phi_{\lambda}$.

Let $\mathcal{P}_0 := \{\lambda \in \mathcal{P} : D^\lambda \neq \{0\}\}$. The same results as for the cellular case still hold, namely:

- the family {D^λ : λ ∈ P₀} is a complete collection of non-isomorphic simple A-modules;
- the decomposition matrix is upper unitriangular.

Proposition (Hu-Mathas-R. 21)

For any $\lambda \in \mathcal{P}$ we have $D^{\iota\lambda} \simeq (D^{\lambda})^*$. In particular:

•
$$\lambda \in \mathcal{P}_0 \iff \iota \lambda \in \mathcal{P}_0$$

• if $\lambda = \iota \lambda$ then D^{λ} is self-dual.

Shift automorphisms

Definition (Hu-Mathas-R. 21)

Let (A, \mathcal{P}, \rhd) be a cellular algebra. A shift automorphism of A is a triple $(\sigma_A, \sigma_{\mathcal{P}}, \sigma_{\mathcal{T}})$ where:

- σ_A is an algebra automorphism of A
- $\sigma_{\mathcal{P}}$ is a poset automorphism of $\mathcal P$

• $\sigma_{\mathcal{T}}$ is an automorphism of the set $\mathcal{T} = \amalg_{\lambda \in \mathcal{P}} \mathcal{T}(\lambda)$

such that:

Shift automorphisms

Definition (Hu-Mathas-R. 21)

Let (A, \mathcal{P}, \rhd) be a cellular algebra. A shift automorphism of A is a triple $(\sigma_A, \sigma_{\mathcal{P}}, \sigma_{\mathcal{T}})$ where:

- σ_A is an algebra automorphism of A
- $\sigma_{\mathcal{P}}$ is a poset automorphism of $\mathcal P$
- $\sigma_{\mathcal{T}}$ is an automorphism of the set $\mathcal{T} = \amalg_{\lambda \in \mathcal{P}} \mathcal{T}(\lambda)$

such that:

- if $\mathfrak{s} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{T}}(\mathfrak{s}) \in \mathcal{T}(\sigma_{\mathcal{P}}(\lambda))$
- if $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{A}}(c_{\mathfrak{s},\mathfrak{t}}) = c_{\sigma_{\mathcal{T}}(\mathfrak{s}),\sigma_{\mathcal{T}}(\mathfrak{t})}$

Definition (Hu-Mathas-R. 21)

Let (A, \mathcal{P}, \rhd) be a cellular algebra. A shift automorphism of A is a triple $(\sigma_A, \sigma_{\mathcal{P}}, \sigma_{\mathcal{T}})$ where:

- σ_A is an algebra automorphism of A
- $\sigma_{\mathcal{P}}$ is a poset automorphism of $\mathcal P$

• $\sigma_{\mathcal{T}}$ is an automorphism of the set $\mathcal{T} = \amalg_{\lambda \in \mathcal{P}} \mathcal{T}(\lambda)$

such that:

- if $\mathfrak{s} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{T}}(\mathfrak{s}) \in \mathcal{T}(\sigma_{\mathcal{P}}(\lambda))$
- if $\mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda)$ then $\sigma_{\mathcal{A}}(c_{\mathfrak{s},\mathfrak{t}}) = c_{\sigma_{\mathcal{T}}(\mathfrak{s}),\sigma_{\mathcal{T}}(\mathfrak{t})}$

Let \mathcal{P}_{σ} be the set of orbits of \mathcal{P} under the action of $\langle \sigma_{\mathcal{P}} \rangle$.

Lemma

Let
$$\lambda, \mu \in \mathcal{P}$$
. The relation \triangleright_{σ} on \mathcal{P}_{σ} defined by
 $[\lambda] \triangleright_{\sigma} [\mu] \iff \lambda \triangleright \sigma^{k} \mu$, for some $k \in \mathbb{Z}$,
is (well-defined and) a partial order of \mathcal{P}_{σ} .

Proposition (Hu-Mathas-R. 21)

Let A be a cellular algebra with a shift automorphism $(\sigma_A, \sigma_P, \sigma_T)$. Assume that F contains a primitive p-th root of unity ϵ , where p is the order of σ_A . Then the subalgebra A^{σ} of fixed points is a skew cellular algebra.

Proposition (Hu-Mathas-R. 21)

Let A be a cellular algebra with a shift automorphism $(\sigma_A, \sigma_P, \sigma_T)$. Assume that F contains a primitive p-th root of unity ϵ , where p is the order of σ_A . Then the subalgebra A^{σ} of fixed points is a skew cellular algebra.

In more details:

- the poset is $\{([\lambda], k) : [\lambda] \in \mathcal{P}_{\sigma}, k \in \mathbb{Z}/o_{\lambda}\mathbb{Z}\}$, where the order is induced by \rhd_{σ}
- the involution is $([\lambda], k) \longmapsto ([\lambda], -k)$
- the basis consists in elements of the form, with $\overline{\sigma}_A := \sum_{l=0}^{p-1} \sigma_A^l$,

$$c_{\mathfrak{s},\mathfrak{t}}^{(k)}\coloneqq \sum_{j}\epsilon^{kj}\overline{\sigma}_{\mathcal{A}}(c_{\mathfrak{s},\sigma_{\mathcal{T}}^{j_{\mathfrak{o}_{\lambda}}}\mathfrak{t}})\in \mathcal{A}^{\sigma}$$

Proposition (Hu-Mathas-R. 21)

Let A be a cellular algebra with a shift automorphism $(\sigma_A, \sigma_P, \sigma_T)$. Assume that F contains a primitive p-th root of unity ϵ , where p is the order of σ_A . Then the subalgebra A^{σ} of fixed points is a skew cellular algebra.

In more details:

- the poset is $\{([\lambda], k) : [\lambda] \in \mathcal{P}_{\sigma}, k \in \mathbb{Z}/o_{\lambda}\mathbb{Z}\}$, where the order is induced by \rhd_{σ}
- the involution is $([\lambda], k) \longmapsto ([\lambda], -k)$
- the basis consists in elements of the form, with $\overline{\sigma}_A := \sum_{l=0}^{p-1} \sigma_A^l$,

$$c_{\mathfrak{s},\mathfrak{t}}^{(k)}\coloneqq\sum_{j}\epsilon^{kj}\overline{\sigma}_{\mathcal{A}}ig(c_{\mathfrak{s},\sigma_{\mathcal{T}}^{j\circ_{\lambda}}\mathfrak{t}}ig)\in\mathcal{A}^{\sigma}$$

Corollary

If σ_A has order p = 2 then A^{σ} is cellular.

Cellular algebras

2 Skew cellular algebras

Complex reflection groups

Definition

- A complex reflection is a linear automorphism of \mathbb{C}^n of finite order, different from identity, that fixes a hyperplane.
- A complex reflection group is a finite subgroup of $\operatorname{GL}(\mathbb{C}^n)$ spanned by complex reflections.

Theorem (Shephard–Todd 54)

Irreducible complex reflection groups are divided into two families:

- an infinite family $\{G(r, p, n)\}$ with $p \mid r$;
- 34 exceptions.

Complex reflection groups

Definition

- A complex reflection is a linear automorphism of \mathbb{C}^n of finite order, different from identity, that fixes a hyperplane.
- A complex reflection group is a finite subgroup of $\operatorname{GL}(\mathbb{C}^n)$ spanned by complex reflections.

Theorem (Shephard–Todd 54)

Irreducible complex reflection groups are divided into two families:

- an infinite family $\{G(r, p, n)\}$ with $p \mid r$;
- 34 exceptions.

The group G(r, p, n) is isomorphic to the group of $n \times n$ monomial matrices with entries in $\mu_r(\mathbb{C})$, where the product of all the non-zero entries lies in $\mu_{r/p}(\mathbb{C})$. It is a subgroup of index p of G(r, 1, n).

Definition (Broué-Malle 93, Ariki-Koike 94)

The Ariki–Koike $\mathcal{H}_{r,n}$ is the Hecke algebra of the complex reflection group G(r, 1, n).

• Under some assumptions on the parameters, the algebra $\mathcal{H}_{r,n}$ is naturally equipped with an automorphism σ of order p.

Definition (Broué-Malle 93, Ariki-Koike 94)

The Ariki–Koike $\mathcal{H}_{r,n}$ is the Hecke algebra of the complex reflection group G(r, 1, n).

- Under some assumptions on the parameters, the algebra $\mathcal{H}_{r,n}$ is naturally equipped with an automorphism σ of order p.
- Following [Broué–Malle 93, Ariki 95, Broué-Malle-Rouquier 98], we can also define a Hecke algebra for G(r, p, n), denoted by H_{r,p,n}.

Definition (Broué-Malle 93, Ariki-Koike 94)

The Ariki–Koike $\mathcal{H}_{r,n}$ is the Hecke algebra of the complex reflection group G(r, 1, n).

- Under some assumptions on the parameters, the algebra $\mathcal{H}_{r,n}$ is naturally equipped with an automorphism σ of order p.
- Following [Broué–Malle 93, Ariki 95, Broué-Malle-Rouquier 98], we can also define a Hecke algebra for G(r, p, n), denoted by H_{r,p,n}.

Proposition (Ariki 95)

The algebra $\mathcal{H}_{r,p,n}$ is the subalgebra of fixed points of $\mathcal{H}_{r,n}$ for the automorphism σ .

Theorem (Geck 07)

If $(r, p, n) \in \{(2, 2, n), (p, p, 2)\}$ then $\mathcal{H}_{r,p,n}$ is cellular.

Geck's result concerns in fact all Hecke algebras of finite Coxeter groups. His proof relies on Kazhdan–Lusztig theory.

Theorem (Geck 07)

If $(r, p, n) \in \{(2, 2, n), (p, p, 2)\}$ then $\mathcal{H}_{r, p, n}$ is cellular.

Geck's result concerns in fact all Hecke algebras of finite Coxeter groups. His proof relies on Kazhdan–Lusztig theory.

Theorem (Hu-Mathas-R. 21)

For a particular cellular structure on $\mathcal{H}_{r,n}$, the automorphism σ is a shift automorphism. In particular:

- the Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is skew cellular
- if p = 2 then $\mathcal{H}_{2d,2,n}$ is in fact cellular.

Theorem (Geck 07)

If $(r, p, n) \in \{(2, 2, n), (p, p, 2)\}$ then $\mathcal{H}_{r, p, n}$ is cellular.

Geck's result concerns in fact all Hecke algebras of finite Coxeter groups. His proof relies on Kazhdan–Lusztig theory.

Theorem (Hu-Mathas-R. 21)

For a particular cellular structure on $\mathcal{H}_{r,n}$, the automorphism σ is a shift automorphism. In particular:

- the Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is skew cellular
- if p = 2 then $\mathcal{H}_{2d,2,n}$ is in fact cellular.
- An important point of the proof is to construct a very particular diagram inside the Cherednik algebra of Webster-Bowman.

Theorem (Geck 07)

If $(r, p, n) \in \{(2, 2, n), (p, p, 2)\}$ then $\mathcal{H}_{r, p, n}$ is cellular.

Geck's result concerns in fact all Hecke algebras of finite Coxeter groups. His proof relies on Kazhdan–Lusztig theory.

Theorem (Hu-Mathas-R. 21)

For a particular cellular structure on $\mathcal{H}_{r,n}$, the automorphism σ is a shift automorphism. In particular:

- the Hecke algebra $\mathcal{H}_{r,p,n}$ of G(r, p, n) is skew cellular
- if p = 2 then $\mathcal{H}_{2d,2,n}$ is in fact cellular.
- An important point of the proof is to construct a very particular diagram inside the Cherednik algebra of Webster-Bowman.
- Our result is stronger that Geck's in the case r = p = 2 since we prove in general the graded skew cellularity.

A glimpse of the diagrammatic Cherednik algebra

Here is an example of a diagram inside the diagrammatic Cherednik algebra of Webster–Bowman:

Classification of the simple modules: Clifford theory

Let A be a cellular algebra with a shift automorphism $(\sigma_A, \sigma_P, \sigma_T)$ so that A^{σ} is skew cellular. Let D^{λ} (resp. $D^{\lambda,k}$) be the irreducible A-module (resp. A^{σ} -module) corresponding to λ .

Proposition (Hu-Mathas-R. 21)

As A-modules we have

$${}^{\sigma}D_{\lambda} \simeq D_{\sigma_{\mathcal{P}}\lambda}$$
 $D^{\lambda,k} \Big|_{A^{\sigma}}^{A} \simeq \bigoplus_{j} D^{\sigma_{\mathcal{P}}^{j}\lambda}$

and as A^{σ} -modules we have

$$\bigoplus_{k} D^{\lambda,k} \simeq D^{\lambda} \Big|_{A^{\sigma}}^{A}$$
$$D^{\lambda,k} \simeq {}^{\tau} D^{\lambda,k+1}$$

where τ is the conjugation by an invertible element of ker $(\sigma_A - \epsilon)$.

- The same statement holds for the cell modules C^{λ} and $C^{\lambda,k}$.
- We recover the existing classification of $\mathcal{H}_{r,p,n}$ -modules.

Thank you!