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Cellular algebras

Let F be a field and A a finite dimensional F -algebra.

Definition (Graham–Lehrer 96)
The algebra A is cellular if there exists a poset (P,B) with, for each
λ ∈ P,

an indexing set T (λ)
elements cs,t ∈ A for s, t ∈ T (λ)

such that:

the set {cs,t : λ ∈ P, s, t ∈ T (λ)} is an F -basis of A
the linear map ∗ : A→ A defined by c∗s,t := ct,s is an algebra
antiautomorphism
for all a ∈ A, the product cs,ta ∈ A decomposes in the basis
{cu,v} in a (particular) triangular fashion
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Toy examples

Example
The algebra F [x ]/(xn) is cellular with the following data:

P := {0, . . . , n − 1}
T (i) := {i}
ci ,i := x i

Example
The algebra Matn×n(F ) is cellular with the following data:

P := {n} a singleton
T (n) := {1, . . . , n}
ci ,j := Ei ,j the elementary matrix with a 1 at position (i , j) and
a zero elsewhere.

Proposition
Any semisimple algebra is cellular.



Toy examples

Example
The algebra F [x ]/(xn) is cellular with the following data:

P := {0, . . . , n − 1}
T (i) := {i}
ci ,i := x i

Example
The algebra Matn×n(F ) is cellular with the following data:

P := {n} a singleton
T (n) := {1, . . . , n}
ci ,j := Ei ,j the elementary matrix with a 1 at position (i , j) and
a zero elsewhere.

Proposition
Any semisimple algebra is cellular.



Ariki–Koike algebra

The Ariki–Koike algebra Hr ,n is a cyclotomic quotient of the affine
Hecke algebra of type A.

Theorem (Murphy 95, Graham–Lehrer 96, Dipper-James-Mathas 98,
Hu–Mathas 10, Webster 13, Bowman 17)
The Ariki–Koike algebra Hr ,n is cellular, the poset being the set of
r -partitions of n.

From Murphy to Hu–Mathas, the order is always the
dominance order on r -partitions.
Webster and Bowman gave in fact many different cellular
bases, associated with many different orders (generalising the
dominance order). They intensively use a diagrammatic
Cherednik algebra.
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Representation theory
Let (A,P,B) be a cellular algebra. For all λ ∈ P, we can construct
a particular A-module Cλ, called cell module, together with a
symmetric bilinear form φλ.

Definition (Graham–Lehrer 96)
For any λ ∈ P, define the A-module Dλ := Cλ/radφλ.

Let P0 :=
{
λ ∈ P : Dλ 6= {0}

}
, and define the decomposition

matrix DA = (dλ,µ)λ∈P,µ∈P0 by dλ,µ := [Cλ,Dµ].

Theorem (Graham–Lehrer 96)
The family {Dλ : λ ∈ P0} is a complete collection of
non-isomorphic simple A-modules.
For any λ ∈ P and µ ∈ P0 we have dµ,µ = 1 and
dλ,µ 6= 0 ⇐⇒ λD µ, in other words the decomposition matrix
DA is upper unitriangular.
The A-module Dλ is self-dual.
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Aim

Let (A,P,B) be a cellular algebra and let σA be an algebra
automorphism of A.

Question
What can we say about the subalgebra

Aσ = {a ∈ A : σA(a) = a} ?

We will introduce the notion of skew cellular algebra.
If σA satisfies some conditions then Aσ will be skew cellular.
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Skew cellular algebras
Let A be a finite dimensional F -algebra

and ι a poset involution
of P.

Definition (Graham–Lehrer 96)
The algebra A is

skew-

cellular if there exists a poset (P,B) with, for
each λ ∈ P,

an indexing set T (λ)
elements cs,t ∈ A for s, t ∈ T (λ)

a bijection ιλ : T (λ)→ T (ιλ) such that ιιλ ◦ ιλ = idT (λ)

such that:
the set {cs,t : λ ∈ P, s, t ∈ T (λ)} is an F -basis of A
the linear map ∗ : A→ A defined by c∗s,t := c

ιλ

t,

ιλ

s is an
algebra antiautomorphism
for all a ∈ A, the product cs,ta ∈ A decomposes in the basis
{cu,v} in a (particular) triangular fashion

If ι = idP and ιλ = idT (λ) then we recover Graham–Lehrer’s
definition of a cellular algebra.
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Representation theory
Let (A,P,B, ι) be a skew cellular algebra. For all λ ∈ P, again we
can construct a particular A-module Cλ, called cell module,
together with a bilinear form φλ (not necessarily symmetric).

Definition (Graham–Lehrer 96, Hu-Mathas-R. 21)
For any λ ∈ P, define the A-module Dλ := Cλ/radφλ.

Let P0 :=
{
λ ∈ P : Dλ 6= {0}

}
. The same results as for the cellular

case still hold, namely:
the family {Dλ : λ ∈ P0} is a complete collection of
non-isomorphic simple A-modules;
the decomposition matrix is upper unitriangular.

Proposition (Hu-Mathas-R. 21)
For any λ ∈ P we have Dιλ '

(
Dλ)∗. In particular:

λ ∈ P0 ⇐⇒ ιλ ∈ P0

if λ = ιλ then Dλ is self-dual.
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Shift automorphisms
Definition (Hu-Mathas-R. 21)
Let (A,P,B) be a cellular algebra. A shift automorphism of A is a
triple (σA, σP , σT ) where:

σA is an algebra automorphism of A
σP is a poset automorphism of P
σT is an automorphism of the set T = qλ∈PT (λ)

such that:

if s ∈ T (λ) then σT (s) ∈ T
(
σP(λ)

)
if s, t ∈ T (λ) then σA(cs,t) = cσT (s),σT (t)

Let Pσ be the set of orbits of P under the action of 〈σP〉.

Lemma
Let λ, µ ∈ P. The relation Bσ on Pσ defined by

[λ] Bσ [µ] ⇐⇒ λB σkµ, for some k ∈ Z,
is (well-defined and) a partial order of Pσ.
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Subalgebra of fixed points
Proposition (Hu-Mathas-R. 21)
Let A be a cellular algebra with a shift automorphism (σA, σP , σT ).
Assume that F contains a primitive p-th root of unity ε, where p is
the order of σA. Then the subalgebra Aσ of fixed points is a skew
cellular algebra.

In more details:
the poset is

{
([λ], k) : [λ] ∈ Pσ, k ∈ Z/oλZ

}
, where the order

is induced by Bσ

the involution is ([λ], k) 7−→ ([λ],−k)
the basis consists in elements of the form, with σA :=

∑p−1
l=0 σ

l
A,

c(k)
s,t :=

∑
j
εkjσA

(
c
s,σ

joλ
T t

)
∈ Aσ

Corollary
If σA has order p = 2 then Aσ is cellular.
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Complex reflection groups

Definition
A complex reflection is a linear automorphism of Cn of finite
order, different from identity, that fixes a hyperplane.
A complex reflection group is a finite subgroup of GL

(
Cn)

spanned by complex reflections.

Theorem (Shephard–Todd 54)
Irreducible complex reflection groups are divided into two families:

an infinite family {G(r , p, n)} with p | r ;
34 exceptions.

The group G(r , p, n) is isomorphic to the group of n × n monomial
matrices with entries in µr (C), where the product of all the non-zero
entries lies in µr/p(C). It is a subgroup of index p of G(r , 1, n).
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Ariki–Koike algebras again

Definition (Broué–Malle 93, Ariki–Koike 94)
The Ariki–Koike Hr ,n is the Hecke algebra of the complex reflection
group G(r , 1, n).

Under some assumptions on the parameters, the algebra Hr ,n is
naturally equipped with an automorphism σ of order p.

Following [Broué–Malle 93, Ariki 95, Broué-Malle-Rouquier 98],
we can also define a Hecke algebra for G(r , p, n), denoted
by Hr ,p,n.

Proposition (Ariki 95)
The algebra Hr ,p,n is the subalgebra of fixed points of Hr ,n for the
automorphism σ.
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Skew cellularity of the Hecke algebra of G(r , p, n)

Theorem (Geck 07)
If (r , p, n) ∈

{
(2, 2, n), (p, p, 2)} then Hr ,p,n is cellular.

Geck’s result concerns in fact all Hecke algebras of finite Coxeter
groups. His proof relies on Kazhdan–Lusztig theory.

Theorem (Hu-Mathas-R. 21)
For a particular cellular structure on Hr ,n, the automorphism σ is a
shift automorphism. In particular:

the Hecke algebra Hr ,p,n of G(r , p, n) is skew cellular
if p = 2 then H2d ,2,n is in fact cellular.

An important point of the proof is to construct a very particular
diagram inside the Cherednik algebra of Webster–Bowman.
Our result is stronger that Geck’s in the case r = p = 2 since
we prove in general the graded skew cellularity.
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A glimpse of the diagrammatic Cherednik algebra

Here is an example of a diagram inside the diagrammatic Cherednik
algebra of Webster–Bowman:



Classification of the simple modules: Clifford theory
Let A be a cellular algebra with a shift automorphism (σA, σP , σT )
so that Aσ is skew cellular. Let Dλ (resp. Dλ,k) be the irreducible
A-module (resp. Aσ-module) corresponding to λ.

Proposition (Hu-Mathas-R. 21)
As A-modules we have

σDλ ' DσPλ

Dλ,k
xA

Aσ
'
⊕

j
Dσj

Pλ

and as Aσ-modules we have⊕
k

Dλ,k ' Dλ
yA

Aσ

Dλ,k ' τDλ,k+1

where τ is the conjugation by an invertible element of ker(σA − ε).

The same statement holds for the cell modules Cλ and Cλ,k .
We recover the existing classification of Hr ,p,n-modules.



The end

Thank you!
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