A quiver Hecke-like presentation for the Hecke algebra of $G(r, p, n)$

Salim Rostam

Laboratoire de mathématiques de Versailles (LMV) Université Paris-Saclay

University of Sydney Algebra Seminar 04/08/17

You are here
(1) Graded isomorphism theorem
(2) Presentation of some fixed-point cyclotomic quiver Hecke subalgebras
(3) Application to the case of the Hecke algebra of $G(r, p, n)$

Ariki-Koike algebra

Let $n, e, p \in \mathbb{N}^{*}$ with $e \geq 2$. Let q, ζ be some elements of a field F of respective order e, p. Let $\boldsymbol{\Lambda}=\left(\Lambda_{i}\right)_{i}$ be a $\mathbb{Z} / e \mathbb{Z}$-tuple of non-negative integers and set $r:=p \sum_{i} \Lambda_{i}$.

The Ariki-Koike algebra $\mathrm{H}_{n}^{\Lambda}(q)$ is a Hecke algebra of the complex reflection group $G(r, 1, n)$. It is a F-algebra generated by $S, T_{1}, \ldots, T_{n-1}$, the "cyclotomic relation" being:

$$
\prod_{i \in \mathbb{Z} / e \mathbb{Z}} \prod_{j \in \mathbb{Z} / p \mathbb{Z}}\left(S-\zeta^{j} q^{i}\right)^{\Lambda_{i}}=\prod_{i \in \mathbb{Z} / e \mathbb{Z}}\left(S^{p}-q^{p i}\right)^{\Lambda_{i}}=0
$$

Ariki-Koike algebra

Let $n, e, p \in \mathbb{N}^{*}$ with $e \geq 2$. Let q, ζ be some elements of a field F of respective order e, p. Let $\boldsymbol{\Lambda}=\left(\Lambda_{i}\right)_{i}$ be a $\mathbb{Z} / e \mathbb{Z}$-tuple of non-negative integers and set $r:=p \sum_{i} \Lambda_{i}$.

The Ariki-Koike algebra $\mathrm{H}_{n}^{\wedge}(q)$ is a Hecke algebra of the complex reflection group $G(r, 1, n)$. It is a F-algebra generated by $S, T_{1}, \ldots, T_{n-1}$, the "cyclotomic relation" being:

$$
\prod_{i \in \mathbb{Z} / e \mathbb{Z}} \prod_{j \in \mathbb{Z} / p \mathbb{Z}}\left(S-\zeta^{j} q^{i}\right)^{\Lambda_{i}}=\prod_{i \in \mathbb{Z} / e \mathbb{Z}}\left(S^{p}-q^{p i}\right)^{\Lambda_{i}}=0
$$

Remarks

- $G(r, 1, n) \simeq(\mathbb{Z} / r \mathbb{Z})^{n} \rtimes \mathfrak{S}_{n}$.
- The algebra $\mathrm{H}_{n}^{\Lambda}(q)$ is a deformation of the group algebra $F[G(r, 1, n)]$.

Basis for the Ariki-Koike algebra

Definition

We set $X_{1}:=S$ and for $a \in\{1, \ldots, n-1\}$ we define $X_{a+1} \in H_{n}^{\wedge}(q)$ by:

$$
q X_{a+1}:=T_{a} X_{a} T_{a}
$$

For $a \in\{1, \ldots, n-1\}$, we denote by s_{a} the transposition $(a, a+1) \in \mathfrak{S}_{n}$. Let $w \in \mathfrak{S}_{n}$ and let ℓ minimal such that there exist $a_{1}, \ldots, a_{\ell} \in\{1, \ldots, n-1\}$ with $w=s_{a_{1}} \cdots s_{a_{\ell}}$. We now define:

$$
T_{w}:=T_{a_{1}} \cdots T_{a_{\ell}} \in \mathrm{H}_{n}^{\wedge}(q)
$$

This element T_{w} depends only on w and not on a_{1}, \ldots, a_{ℓ}.

Basis for the Ariki-Koike algebra

Definition

We set $X_{1}:=S$ and for $a \in\{1, \ldots, n-1\}$ we define $X_{a+1} \in H_{n}^{\Lambda}(q)$ by:

$$
q X_{a+1}:=T_{a} X_{a} T_{a}
$$

For $a \in\{1, \ldots, n-1\}$, we denote by s_{a} the transposition $(a, a+1) \in \mathfrak{S}_{n}$. Let $w \in \mathfrak{S}_{n}$ and let ℓ minimal such that there exist $a_{1}, \ldots, a_{\ell} \in\{1, \ldots, n-1\}$ with $w=s_{a_{1}} \cdots s_{a_{\ell}}$. We now define:

$$
T_{w}:=T_{a_{1}} \cdots T_{a_{\ell}} \in \mathrm{H}_{n}^{\wedge}(q)
$$

This element T_{w} depends only on w and not on a_{1}, \ldots, a_{ℓ}.

Proposition

The elements $X_{1}^{m_{1}} \cdots X_{n}^{m_{n}} T_{w}$ for $m_{a} \in\{0, \ldots, r-1\}$ and $w \in \mathfrak{S}_{n}$ form an F-basis of $\mathrm{H}_{n}^{\Lambda}(q)$.

Cyclotomic quiver Hecke algebra

Let Γ be a quiver (= oriented graph) with vertex set K. The quiver Hecke algebra $\mathrm{R}_{n}(\Gamma)$ is generated over F by:

$$
\begin{gathered}
e(\boldsymbol{k}) \text { for } \boldsymbol{k} \in K^{n}, \\
y_{1}, \ldots, y_{n} \\
\psi_{1}, \ldots, \psi_{n-1},
\end{gathered}
$$

together with some relations. This algebra has a natural \mathbb{Z}-grading.

Exemple of relation

For $\boldsymbol{k} \in K^{n}$ such that $k_{a} \xrightarrow{\Gamma} k_{a+1}$ then $\psi_{a}^{2} e(\boldsymbol{k})=\left(y_{a+1}-y_{a}\right) e(\boldsymbol{k})$.

Cyclotomic quiver Hecke algebra

Let Γ be a quiver (= oriented graph) with vertex set K. The quiver Hecke algebra $\mathrm{R}_{n}(\Gamma)$ is generated over F by:

$$
\begin{gathered}
e(\boldsymbol{k}) \text { for } \boldsymbol{k} \in K^{n} \\
y_{1}, \ldots, y_{n} \\
\psi_{1}, \ldots, \psi_{n-1}
\end{gathered}
$$

together with some relations. This algebra has a natural \mathbb{Z}-grading.

Exemple of relation

For $\boldsymbol{k} \in K^{n}$ such that $k_{a}{ }^{\Gamma} k_{a+1}$ then $\psi_{a}^{2} e(\boldsymbol{k})=\left(y_{a+1}-y_{a}\right) e(\boldsymbol{k})$.
For $\boldsymbol{\Lambda}=\left(\Lambda_{k}\right)_{k \in K} \in \mathbb{N}^{K}$, the cyclotomic quiver Hecke algebra $\mathrm{R}_{n}^{\boldsymbol{\Lambda}}(\Gamma)$ is the quotient of $\mathrm{R}_{n}(\Gamma)$ by the relations $y_{1}^{\Lambda_{k_{1}}} e(\boldsymbol{k})=0$ for $\boldsymbol{k} \in K^{n}$.

Basis for the quiver Hecke algebra

Similarly to the definition of T_{w}, let $w \in \mathfrak{S}_{n}$ and let ℓ minimal such that $w=s_{a_{1}} \cdots s_{a_{\ell}}$ with $a_{1}, \ldots, a_{\ell} \in\{1, \ldots, n-1\}$. We can define:

$$
\psi_{w}:=\psi_{a_{1}} \cdots \psi_{a_{\ell}} \in \mathrm{R}_{n}(\Gamma)
$$

Remark

Contrary to T_{w}, the element ψ_{w} may depend on the chosen a_{1}, \ldots, a_{ℓ}.

Basis for the quiver Hecke algebra

Similarly to the definition of T_{w}, let $w \in \mathfrak{S}_{n}$ and let ℓ minimal such that $w=s_{a_{1}} \cdots s_{a_{\ell}}$ with $a_{1}, \ldots, a_{\ell} \in\{1, \ldots, n-1\}$. We can define:

$$
\psi_{w}:=\psi_{a_{1}} \cdots \psi_{a_{\ell}} \in \mathrm{R}_{n}(\Gamma)
$$

Remark

Contrary to T_{w}, the element ψ_{w} may depend on the chosen a_{1}, \ldots, a_{ℓ}.

Proposition

The elements $y_{1}^{a_{1}} \cdots y_{n}^{a_{n}} \psi_{w} e(\boldsymbol{k})$ for $a_{i} \in \mathbb{N}, w \in \mathfrak{S}_{n}$ and $\boldsymbol{k} \in K^{n}$ form an F-basis of $\mathrm{R}_{n}(\Gamma)$.

The image of this basis in the cyclotomic quotient $\mathrm{R}_{n}(\Gamma)$ spans $\mathrm{R}_{n}(\Gamma)$ over F, but it is not clear at all how to extract a basis.

Graded isomorphism theorem (I)

Theorem (Brundan-Kleshchev, Rouquier, 08)

The Ariki-Koike algebra $\mathrm{H}_{n}^{\wedge}(q)$ is isomorphic over F to the cyclotomic quiver Hecke algebra $\mathrm{R}_{n}^{\Lambda}\left(\Gamma_{e, p}\right)$, where $\Gamma_{e, p}$ is given by:

Graded isomorphism theorem (II)

- The set of vertices of $\Gamma_{e, p}$ is :

$$
\left\{\zeta^{j} q^{i}: i \in \mathbb{Z} / e \mathbb{Z}, j \in \mathbb{Z} / p \mathbb{Z}\right\} .
$$

In particular, the integer p^{\prime} is the smallest $m \geq 1$ such that $\zeta^{m} \in\langle q\rangle$: hence, the vertex set of $\Gamma_{e, p}$ is in bijection with $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$.

Graded isomorphism theorem (II)

- The set of vertices of $\Gamma_{e, p}$ is :

$$
\left\{\zeta^{j} q^{i}: i \in \mathbb{Z} / e \mathbb{Z}, j \in \mathbb{Z} / p \mathbb{Z}\right\} .
$$

In particular, the integer p^{\prime} is the smallest $m \geq 1$ such that $\zeta^{m} \in\langle q\rangle$: hence, the vertex set of $\Gamma_{e, p}$ is in bijection with $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$.

- The arrows are $v \rightarrow q v$ for $v=\zeta^{j} q^{i}$ a vertex.

Graded isomorphism theorem (II)

- The set of vertices of $\Gamma_{e, p}$ is :

$$
\left\{\zeta^{j} q^{i}: i \in \mathbb{Z} / e \mathbb{Z}, j \in \mathbb{Z} / p \mathbb{Z}\right\} .
$$

In particular, the integer p^{\prime} is the smallest $m \geq 1$ such that $\zeta^{m} \in\langle q\rangle$: hence, the vertex set of $\Gamma_{e, p}$ is in bijection with $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$.

- The arrows are $v \rightarrow q v$ for $v=\zeta^{j} q^{i}$ a vertex.

Corollary 1

The Ariki-Koike algebra is (non-trivially) \mathbb{Z}-graded.

Corollary 2

If \widetilde{q} is another primitive eth root of unity in F then $H_{n}^{\wedge}(q) \simeq H_{n}^{\Lambda}(\widetilde{q})$.

Graded isomorphism theorem (III)

The isomorphism of Brundan and Kleshchev isomorphism is constructed using some elements $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ of $F\left[\left[y_{a}, y_{a+1}\right]\right]$, for $a \in\{1, \ldots, n-1\}, \boldsymbol{i} \in(\mathbb{Z} / e \mathbb{Z})^{n}$ and $\boldsymbol{j} \in\left(\mathbb{Z} / p^{\prime} \mathbb{Z}\right)^{n}$. These elements have to satisfy some properties depending of $\Gamma_{e, p}$.

Graded isomorphism theorem (III)

The isomorphism of Brundan and Kleshchev isomorphism is constructed using some elements $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ of $F\left[\left[y_{a}, y_{a+1}\right]\right]$, for $a \in\{1, \ldots, n-1\}, \boldsymbol{i} \in(\mathbb{Z} / e \mathbb{Z})^{n}$ and $\boldsymbol{j} \in\left(\mathbb{Z} / p^{\prime} \mathbb{Z}\right)^{n}$. These elements have to satisfy some properties depending of $\Gamma_{e, p}$. The images of the generators of $\mathrm{H}_{n}^{\Lambda}(q)$ are given by:

$$
X_{a} \mapsto \sum_{i, j} \zeta^{j_{a}} q^{i_{a}}\left(1-y_{a}\right) e(\boldsymbol{i}, \boldsymbol{j}),
$$

for $1 \leq a \leq n$ and:

$$
T_{a} \mapsto \sum_{i, j}\left[\psi_{a} Q_{a}(\boldsymbol{i}, \boldsymbol{j})-P_{a}(\boldsymbol{i}, \boldsymbol{j})\right] e(\boldsymbol{i}, \boldsymbol{j}),
$$

for $1 \leq a \leq n-1$.

Analogue for the Hecke algebra of $G(r, p, n)$

We define an automorphism σ of order p of $\mathrm{H}_{n}^{\Lambda}(q)$ by setting:

$$
\sigma(S):=\zeta S, \quad \forall a, \sigma\left(T_{a}\right):=T_{a}
$$

The subalgebra $\mathrm{H}_{p, n}^{\wedge}(q):=\mathrm{H}_{n}^{\wedge}(q)^{\sigma}$ of fixed points is a Hecke algebra of the complex reflection group $G(r, p, n)$.

Remark

The subalgebra $\mathrm{H}_{p, n}^{\wedge}(q)$ does not depend on the choice of ζ.

Analogue for the Hecke algebra of $G(r, p, n)$

We define an automorphism σ of order p of $\mathrm{H}_{n}^{\Lambda}(q)$ by setting:

$$
\sigma(S):=\zeta S, \quad \forall a, \sigma\left(T_{a}\right):=T_{a}
$$

The subalgebra $\mathrm{H}_{p, n}^{\wedge}(q):=\mathrm{H}_{n}^{\wedge}(q)^{\sigma}$ of fixed points is a Hecke algebra of the complex reflection group $G(r, p, n)$.

Remark

The subalgebra $\mathrm{H}_{p, n}^{\wedge}(q)$ does not depend on the choice of ζ.

Question

Can we transpose the previous results involving the Ariki-Koike algebra to the subalgebra $H_{p, n}^{\Lambda}(q) \subseteq H_{n}^{\Lambda}(q)$?

In particular:

- is it isomorphism to something like a cyclotomic quiver Hecke algebra;
- is it a graded subalgebra;
- does it depend on the choosen roots of unity.

(1) Graded isomorphism theorem

(2) Presentation of some fixed-point cyclotomic quiver Hecke subalgebras
(3) Application to the case of the Hecke algebra of $G(r, p, n)$

Fixed-point quiver Hecke subalgebra

Let $\sigma: K \rightarrow K$ a bijection of finite order p such that:

$$
\forall k, k^{\prime} \in K, k \rightarrow k^{\prime} \Longrightarrow \sigma(k) \rightarrow \sigma\left(k^{\prime}\right)
$$

Fixed-point quiver Hecke subalgebra

Let $\sigma: K \rightarrow K$ a bijection of finite order p such that:

$$
\forall k, k^{\prime} \in K, k \rightarrow k^{\prime} \Longrightarrow \sigma(k) \rightarrow \sigma\left(k^{\prime}\right)
$$

Proposition

The map σ induces a well-defined homogeneous automorphism of $\mathrm{R}_{n}(\Gamma)$ by:

$$
\begin{aligned}
\forall \boldsymbol{k} \in K^{n}, & \sigma(e(\boldsymbol{k})) & :=e(\sigma(\boldsymbol{k})), \\
\forall a \in\{1, \ldots, n\}, & \sigma\left(y_{a}\right) & :=y_{a}, \\
\forall a \in\{1, \ldots, n-1\}, & \sigma\left(\psi_{a}\right) & :=\psi_{a} .
\end{aligned}
$$

Definition

We set:

$$
\mathrm{R}_{n}(\Gamma)^{\sigma}:=\left\{h \in \mathrm{R}_{n}(\Gamma): \sigma(h)=h\right\}
$$

Fixed-point quiver Hecke subalgebra

Theorem (R., 2016)

We can give a (nice) presentation of $\mathrm{R}_{n}(\Gamma)^{\sigma}$ in terms of the following generators:

$$
\begin{gathered}
e(\gamma):=e(\boldsymbol{k})+e(\sigma(\boldsymbol{k}))+\cdots+e\left(\sigma^{p-1}(\boldsymbol{k})\right) \text { for } \gamma=[\boldsymbol{k}] \in K^{n} /\langle\sigma\rangle \\
y_{1}, \ldots, y_{n} \\
\psi_{1}, \ldots, \psi_{n-1} .
\end{gathered}
$$

Exemple of relation

If $\gamma \in K^{n} /\langle\sigma\rangle$ verifies " $\gamma_{a} \rightarrow \gamma_{a+1}$ " then $\psi_{a}^{2} e(\gamma)=\left(y_{a+1}-y_{a}\right) e(\gamma)$.

Fixed-point quiver Hecke subalgebra

Theorem (R., 2016)

We can give a (nice) presentation of $\mathrm{R}_{n}(\Gamma)^{\sigma}$ in terms of the following generators:

$$
\begin{gathered}
e(\gamma):=e(\boldsymbol{k})+e(\sigma(\boldsymbol{k}))+\cdots+e\left(\sigma^{p-1}(\boldsymbol{k})\right) \text { for } \gamma=[\boldsymbol{k}] \in K^{n} /\langle\sigma\rangle \\
y_{1}, \ldots, y_{n} \\
\psi_{1}, \ldots, \psi_{n-1} .
\end{gathered}
$$

Exemple of relation

If $\gamma \in K^{n} /\langle\sigma\rangle$ verifies " $\gamma_{a} \rightarrow \gamma_{a+1}$ " then $\psi_{a}^{2} e(\gamma)=\left(y_{a+1}-y_{a}\right) e(\gamma)$.

Remark

Let $\gamma, \gamma^{\prime} \in K^{n} /\langle\sigma\rangle$. The quantities $\gamma_{a} \bowtie \gamma_{b}^{\prime}$ for $\bowtie \in\{=, \neq, \rightarrow\}$ are well defined if and only if $\gamma=\gamma^{\prime}$.

Fixed-point cyclotomic quiver Hecke subalgebra

We now assume that $\Lambda_{k}=\Lambda_{\sigma(k)}$ for all $k \in K$.

Theorem (R., 2016)

The automorphism σ induces an automorphism of $\mathrm{R}_{n}^{\wedge}(\Gamma)$. Moreover:

$$
\mathrm{R}_{n}^{\wedge}(\Gamma)^{\sigma} \simeq \mathrm{R}_{n}(\Gamma)^{\sigma} /\left\langle y_{1}^{\wedge} \gamma_{1} e(\gamma)=0: \gamma \in K^{n} /\langle\sigma\rangle\right\rangle
$$

Idea of the proof.

We construct two maps inverse to each other.

Fixed-point cyclotomic quiver Hecke subalgebra

We now assume that $\Lambda_{k}=\Lambda_{\sigma(k)}$ for all $k \in K$.

Theorem (R., 2016)

The automorphism σ induces an automorphism of $\mathrm{R}_{n}^{\wedge}(\Gamma)$. Moreover:

$$
\mathrm{R}_{n}^{\wedge}(\Gamma)^{\sigma} \simeq \mathrm{R}_{n}(\Gamma)^{\sigma} /\left\langle y_{1}^{\wedge \gamma_{1}} e(\gamma)=0: \gamma \in K^{n} /\langle\sigma\rangle\right\rangle
$$

Idea of the proof.

We construct two maps inverse to each other.

- We define $f: \mathrm{R}_{n}(\Gamma)^{\sigma} /\langle\cdot\rangle \rightarrow \mathrm{R}_{n}^{\Lambda}(\Gamma)^{\sigma}$ using the presentation of the algebra.

Fixed-point cyclotomic quiver Hecke subalgebra

We now assume that $\Lambda_{k}=\Lambda_{\sigma(k)}$ for all $k \in K$.

Theorem (R., 2016)

The automorphism σ induces an automorphism of $\mathrm{R}_{n}^{\wedge}(\Gamma)$. Moreover:

$$
\mathrm{R}_{n}^{\wedge}(\Gamma)^{\sigma} \simeq \mathrm{R}_{n}(\Gamma)^{\sigma} /\left\langle y_{1}^{\wedge_{\gamma_{1}}} e(\gamma)=0: \gamma \in K^{n} /\langle\sigma\rangle\right\rangle
$$

Idea of the proof.

We construct two maps inverse to each other.

- We define $f: \mathrm{R}_{n}(\Gamma)^{\sigma} /\langle\cdot\rangle \rightarrow \mathrm{R}_{n}^{\Lambda}(\Gamma)^{\sigma}$ using the presentation of the algebra.
- We define $g: \mathrm{R}_{n}^{\Lambda}(\Gamma)^{\sigma} \rightarrow \mathrm{R}_{n}(\Gamma)^{\sigma} /\langle\cdot\rangle$ using the map $\mu: \mathrm{R}_{n}^{\Lambda}(\Gamma) \rightarrow \mathrm{R}_{n}^{\Lambda}(\Gamma)^{\sigma}$ defined by:

$$
\mu:=\frac{1}{p} \sum_{j=0}^{p-1} \sigma^{j}
$$

You are here
(1) Graded isomorphism theorem
(2) Presentation of some fixed-point cyclotomic quiver Hecke subalgebras
(3) Application to the case of the Hecke algebra of $G(r, p, n)$

Analogue of σ in R_{n}^{Λ}

We have the following situation :

where $\Gamma_{e, p}$ is defined by:

- its vertex set $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z} \simeq\left\{\zeta^{j} q^{i}: i \in \mathbb{Z} / e \mathbb{Z}, j \in \mathbb{Z} / p \mathbb{Z}\right\}$;
- its arrows $v \rightarrow q v$ where $v=\zeta^{j} q^{i}$.

Analogue of σ in R_{n}^{Λ}

We have the following situation :

where $\Gamma_{e, p}$ is defined by:

- its vertex set $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z} \simeq\left\{\zeta^{j} q^{i}: i \in \mathbb{Z} / e \mathbb{Z}, j \in \mathbb{Z} / p \mathbb{Z}\right\} ;$
- its arrows $v \rightarrow q v$ where $v=\zeta^{j} q^{i}$.

Definition

We define the map σ on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ by $\sigma(v):=\zeta v$.
Note that this map respects the arrows $v \rightarrow q v$.

Illustration

We consider the case $e:=6, p:=9$ and $p^{\prime}=\frac{9}{\operatorname{gcd}(9,6)}=3$. The map σ defined on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ is given by:

Illustration

We consider the case $e:=6, p:=9$ and $p^{\prime}=\frac{9}{\operatorname{gcd}(9,6)}=3$. The map σ defined on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ is given by:

translation

Illustration

We consider the case $e:=6, p:=9$ and $p^{\prime}=\frac{9}{\operatorname{gcd}(9,6)}=3$. The map σ defined on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ is given by:

We consider the case $e:=6, p:=9$ and $p^{\prime}=\frac{9}{\operatorname{gcd}(9,6)}=3$. The map σ defined on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ is given by:

We consider the case $e:=6, p:=9$ and $p^{\prime}=\frac{9}{\operatorname{gcd}(9,6)}=3$. The map σ defined on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ is given by:

We consider the case $e:=6, p:=9$ and $p^{\prime}=\frac{9}{\operatorname{gcd}(9,6)}=3$. The map σ defined on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ is given by:

We consider the case $e:=6, p:=9$ and $p^{\prime}=\frac{9}{\operatorname{gcd}(9,6)}=3$. The map σ defined on $\mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ is given by:

translation
translation
translation + rotation by η
where $\eta \in \mathbb{Z} / \mathrm{e} \mathbb{Z}$ is determined by the equality $\zeta^{p^{\prime}}=q^{\eta}$.

Recall that from the map $\sigma: \mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z} \rightarrow \mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ we can deduce an automorphism σ of $\mathrm{R}_{n}^{\Lambda}\left(\Gamma_{e, p}\right)$, defined by:

$$
\begin{aligned}
\sigma(e(\boldsymbol{i}, \boldsymbol{j})) & :=e(\sigma(\boldsymbol{i}, \boldsymbol{j})), \\
\sigma\left(y_{a}\right) & :=y_{a}, \\
\sigma\left(\psi_{a}\right) & :=\psi_{a} .
\end{aligned}
$$

Recall that from the map $\sigma: \mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z} \rightarrow \mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ we can deduce an automorphism σ of $\mathrm{R}_{n}^{\Lambda}\left(\Gamma_{e, p}\right)$, defined by:

$$
\begin{aligned}
\sigma(e(\boldsymbol{i}, \boldsymbol{j})) & :=e(\sigma(\boldsymbol{i}, \boldsymbol{j})), \\
\sigma\left(y_{a}\right) & :=y_{a}, \\
\sigma\left(\psi_{a}\right) & :=\psi_{a} .
\end{aligned}
$$

Theorem (R., 2016)

We can choose the elements $P_{a}(\mathbf{i}, \boldsymbol{j})$ and $Q_{a}(\mathbf{i}, \boldsymbol{j})$ such that the two maps σ coincide under the isomorphism $\mathrm{H}_{n}^{\wedge}(q) \simeq \mathrm{R}_{n}^{\wedge}\left(\Gamma_{e, p}\right)$.

Recall that from the map $\sigma: \mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z} \rightarrow \mathbb{Z} / e \mathbb{Z} \times \mathbb{Z} / p^{\prime} \mathbb{Z}$ we can deduce an automorphism σ of $\mathrm{R}_{n}^{\wedge}\left(\Gamma_{e, p}\right)$, defined by:

$$
\begin{aligned}
\sigma(e(\boldsymbol{i}, \boldsymbol{j})) & :=e(\sigma(\boldsymbol{i}, \boldsymbol{j})), \\
\sigma\left(y_{a}\right) & :=y_{a}, \\
\sigma\left(\psi_{a}\right) & :=\psi_{a} .
\end{aligned}
$$

Theorem (R., 2016)

We can choose the elements $P_{a}(\mathbf{i}, \boldsymbol{j})$ and $Q_{a}(\mathbf{i}, \boldsymbol{j})$ such that the two maps σ coincide under the isomorphism $\mathrm{H}_{n}^{\wedge}(q) \simeq \mathrm{R}_{n}^{\wedge}\left(\Gamma_{e, p}\right)$.

Corollary

$$
\mathrm{H}_{p, n}^{\wedge}(q) \simeq \mathrm{R}_{n}^{\wedge}\left(\Gamma_{e, p}\right)^{\sigma} .
$$

Consequences

Remark

- This choice of elements $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do not coincide if we make the choice of $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ proposed by Brundan and Kleshchev.

Consequences

Remark

- This choice of elements $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do not coincide if we make the choice of $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is $\mathrm{H}_{p, n}^{\Lambda}(q)$ isomorphic to something like a cyclotomic quiver Hecke algebra;
- is it a graded subalgebra;
- is it independent on the choosen roots of unity.

Consequences

Remark

- This choice of elements $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do not coincide if we make the choice of $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is $\mathrm{H}_{p, n}^{\Lambda}(q)$ isomorphic to something like a cyclotomic quiver Hecke algebra; \checkmark
- is it a graded subalgebra; \checkmark
- is it independent on the choosen roots of unity.

Consequences

Remark

- This choice of elements $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do not coincide if we make the choice of $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is $\mathrm{H}_{p, n}^{\Lambda}(q)$ isomorphic to something like a cyclotomic quiver Hecke algebra; \checkmark
- is it a graded subalgebra; \checkmark
- is it independent on the choosen roots of unity.

Recall that $\eta \in \mathbb{Z} / e \mathbb{Z}$ is defined by $q^{\eta}=\zeta^{p^{\prime}}$, where p^{\prime} is the smallest integer $m \geq 1$ such that $\zeta^{m} \in\langle q\rangle$.

Lemma

If \tilde{q} is another primitive eth root of unity, there exists a primitive p th root of unity $\widetilde{\zeta}$ such that $\widetilde{q}^{\eta}=\widetilde{\zeta}^{p^{\prime}}$.

Consequences

Remark

- This choice of elements $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do not coincide if we make the choice of $P_{a}(\boldsymbol{i}, \boldsymbol{j})$ and $Q_{a}(\boldsymbol{i}, \boldsymbol{j})$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is $\mathrm{H}_{p, n}^{\Lambda}(q)$ isomorphic to something like a cyclotomic quiver Hecke algebra; \checkmark
- is it a graded subalgebra; \checkmark
- is it independent on the choosen roots of unity. \checkmark Recall that $\eta \in \mathbb{Z} / e \mathbb{Z}$ is defined by $q^{\eta}=\zeta^{p^{\prime}}$, where p^{\prime} is the smallest integer $m \geq 1$ such that $\zeta^{m} \in\langle q\rangle$.

Lemma

If \tilde{q} is another primitive eth root of unity, there exists a primitive p th root of unity $\widetilde{\zeta}$ such that $\widetilde{q}^{\eta}=\widetilde{\zeta}^{p^{\prime}}$.

