A quiver Hecke-like presentation for the Hecke algebra of G(r, p, n)

Salim ROSTAM

Laboratoire de mathématiques de Versailles (LMV) Université Paris–Saclay

University of Sydney Algebra Seminar 04/08/17

Graded isomorphism theorem

- Presentation of some fixed-point cyclotomic quiver Hecke subalgebras
- 3 Application to the case of the Hecke algebra of G(r, p, n)

Let $n, e, p \in \mathbb{N}^*$ with $e \ge 2$. Let q, ζ be some elements of a field F of respective order e, p. Let $\mathbf{\Lambda} = (\Lambda_i)_i$ be a $\mathbb{Z}/e\mathbb{Z}$ -tuple of non-negative integers and set $r := p \sum_i \Lambda_i$.

The Ariki–Koike algebra $\operatorname{H}_{n}^{\Lambda}(q)$ is a Hecke algebra of the complex reflection group G(r, 1, n). It is a *F*-algebra generated by $S, T_{1}, \ldots, T_{n-1}$, the "cyclotomic relation" being:

$$\prod_{i\in\mathbb{Z}/e\mathbb{Z}}\prod_{j\in\mathbb{Z}/p\mathbb{Z}}\left(S-\zeta^{j}q^{i}\right)^{\Lambda_{i}}=\prod_{i\in\mathbb{Z}/e\mathbb{Z}}\left(S^{p}-q^{pi}\right)^{\Lambda_{i}}=0.$$

Let $n, e, p \in \mathbb{N}^*$ with $e \ge 2$. Let q, ζ be some elements of a field F of respective order e, p. Let $\mathbf{\Lambda} = (\Lambda_i)_i$ be a $\mathbb{Z}/e\mathbb{Z}$ -tuple of non-negative integers and set $r := p \sum_i \Lambda_i$.

The Ariki–Koike algebra $\operatorname{H}_{n}^{\Lambda}(q)$ is a Hecke algebra of the complex reflection group G(r, 1, n). It is a *F*-algebra generated by $S, T_{1}, \ldots, T_{n-1}$, the "cyclotomic relation" being:

$$\prod_{i\in\mathbb{Z}/e\mathbb{Z}}\prod_{j\in\mathbb{Z}/p\mathbb{Z}}\left(S-\zeta^{j}q^{i}\right)^{\Lambda_{i}}=\prod_{i\in\mathbb{Z}/e\mathbb{Z}}\left(S^{p}-q^{pi}\right)^{\Lambda_{i}}=0.$$

Remarks

- $G(r,1,n) \simeq (\mathbb{Z}/r\mathbb{Z})^n \rtimes \mathfrak{S}_n$.
- The algebra $H_n^{\Lambda}(q)$ is a deformation of the group algebra F[G(r, 1, n)].

Definition

We set $X_1 \coloneqq S$ and for $a \in \{1, \ldots, n-1\}$ we define $X_{a+1} \in H_n^{\Lambda}(q)$ by:

$$qX_{a+1}\coloneqq T_aX_aT_a.$$

For $a \in \{1, \ldots, n-1\}$, we denote by s_a the transposition $(a, a+1) \in \mathfrak{S}_n$. Let $w \in \mathfrak{S}_n$ and let ℓ minimal such that there exist $a_1, \ldots, a_\ell \in \{1, \ldots, n-1\}$ with $w = s_{a_1} \cdots s_{a_\ell}$. We now define:

$$T_w \coloneqq T_{a_1} \cdots T_{a_\ell} \in \mathrm{H}^{\mathbf{\Lambda}}_n(q).$$

This element T_w depends only on w and not on a_1, \ldots, a_ℓ .

Definition

We set $X_1 \coloneqq S$ and for $a \in \{1, \ldots, n-1\}$ we define $X_{a+1} \in \operatorname{H}_n^{\Lambda}(q)$ by:

$$qX_{a+1}\coloneqq T_aX_aT_a.$$

For $a \in \{1, \ldots, n-1\}$, we denote by s_a the transposition $(a, a+1) \in \mathfrak{S}_n$. Let $w \in \mathfrak{S}_n$ and let ℓ minimal such that there exist $a_1, \ldots, a_\ell \in \{1, \ldots, n-1\}$ with $w = s_{a_1} \cdots s_{a_\ell}$. We now define:

$$T_w \coloneqq T_{a_1} \cdots T_{a_\ell} \in \mathrm{H}^{\mathbf{\Lambda}}_n(q).$$

This element T_w depends only on w and not on a_1, \ldots, a_ℓ .

Proposition

The elements $X_1^{m_1} \cdots X_n^{m_n} T_w$ for $m_a \in \{0, \ldots, r-1\}$ and $w \in \mathfrak{S}_n$ form an *F*-basis of $\mathrm{H}_n^{\mathbf{A}}(q)$.

Let Γ be a quiver (= oriented graph) with vertex set K. The quiver Hecke algebra $R_n(\Gamma)$ is generated over F by:

 $e(\mathbf{k})$ for $\mathbf{k} \in K^n$, y_1, \dots, y_n , $\psi_1, \dots, \psi_{n-1}$,

together with some relations. This algebra has a natural \mathbb{Z} -grading.

Exemple of relation

For $\mathbf{k} \in K^n$ such that $k_a \xrightarrow{\Gamma} k_{a+1}$ then $\psi_a^2 e(\mathbf{k}) = (y_{a+1} - y_a)e(\mathbf{k})$.

Let Γ be a quiver (= oriented graph) with vertex set K. The quiver Hecke algebra $R_n(\Gamma)$ is generated over F by:

 $e(\mathbf{k})$ for $\mathbf{k} \in K^n$, y_1, \dots, y_n , $\psi_1, \dots, \psi_{n-1}$,

together with some relations. This algebra has a natural \mathbb{Z} -grading.

Exemple of relation

For
$$\mathbf{k} \in K^n$$
 such that $k_a \xrightarrow{\Gamma} k_{a+1}$ then $\psi_a^2 e(\mathbf{k}) = (y_{a+1} - y_a)e(\mathbf{k})$.

For $\mathbf{\Lambda} = (\Lambda_k)_{k \in \mathcal{K}} \in \mathbb{N}^{\mathcal{K}}$, the *cyclotomic* quiver Hecke algebra $\mathrm{R}_n^{\mathbf{\Lambda}}(\Gamma)$ is the quotient of $\mathrm{R}_n(\Gamma)$ by the relations $y_1^{\Lambda_{k_1}} e(\mathbf{k}) = 0$ for $\mathbf{k} \in \mathcal{K}^n$.

Basis for the quiver Hecke algebra

Similarly to the definition of T_w , let $w \in \mathfrak{S}_n$ and let ℓ minimal such that $w = s_{a_1} \cdots s_{a_\ell}$ with $a_1, \ldots, a_\ell \in \{1, \ldots, n-1\}$. We can define:

$$\psi_{\mathbf{w}} \coloneqq \psi_{\mathbf{a}_1} \cdots \psi_{\mathbf{a}_\ell} \in \mathbf{R}_n(\Gamma).$$

Remark

Contrary to T_w , the element ψ_w may depend on the chosen a_1, \ldots, a_ℓ .

Basis for the quiver Hecke algebra

Similarly to the definition of T_w , let $w \in \mathfrak{S}_n$ and let ℓ minimal such that $w = s_{a_1} \cdots s_{a_\ell}$ with $a_1, \ldots, a_\ell \in \{1, \ldots, n-1\}$. We can define:

$$\psi_{\mathbf{w}} \coloneqq \psi_{\mathbf{a}_1} \cdots \psi_{\mathbf{a}_\ell} \in \mathbf{R}_n(\Gamma).$$

Remark

Contrary to T_w , the element ψ_w may depend on the chosen a_1, \ldots, a_ℓ .

Proposition

The elements $y_1^{a_1} \cdots y_n^{a_n} \psi_w e(\mathbf{k})$ for $a_i \in \mathbb{N}, w \in \mathfrak{S}_n$ and $\mathbf{k} \in K^n$ form an *F*-basis of $\mathbb{R}_n(\Gamma)$.

The image of this basis in the cyclotomic quotient $R_n(\Gamma)$ spans $R_n(\Gamma)$ over F, but it is not clear at all how to extract a basis.

Theorem (Brundan–Kleshchev, Rouquier, 08)

The Ariki–Koike algebra $\operatorname{H}_{n}^{\Lambda}(q)$ is isomorphic over F to the cyclotomic quiver Hecke algebra $\operatorname{R}_{n}^{\Lambda}(\Gamma_{e,p})$, where $\Gamma_{e,p}$ is given by:

Graded isomorphism theorem (II)

• The set of vertices of $\Gamma_{e,p}$ is :

$$\left\{\zeta^j q^i: i\in\mathbb{Z}/e\mathbb{Z}, j\in\mathbb{Z}/p\mathbb{Z}
ight\}.$$

In particular, the integer p' is the smallest $m \ge 1$ such that $\zeta^m \in \langle q \rangle$: hence, the vertex set of $\Gamma_{e,p}$ is in bijection with $\mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$.

• The set of vertices of $\Gamma_{e,p}$ is :

$$\left\{\zeta^j q^i: i\in\mathbb{Z}/e\mathbb{Z}, j\in\mathbb{Z}/p\mathbb{Z}
ight\}.$$

In particular, the integer p' is the smallest $m \ge 1$ such that $\zeta^m \in \langle q \rangle$: hence, the vertex set of $\Gamma_{e,p}$ is in bijection with $\mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$.

• The arrows are $v \rightarrow qv$ for $v = \zeta^j q^i$ a vertex.

• The set of vertices of $\Gamma_{e,p}$ is :

$$\left\{\zeta^j q^i: i\in\mathbb{Z}/e\mathbb{Z}, j\in\mathbb{Z}/p\mathbb{Z}
ight\}.$$

In particular, the integer p' is the smallest $m \ge 1$ such that $\zeta^m \in \langle q \rangle$: hence, the vertex set of $\Gamma_{e,p}$ is in bijection with $\mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$.

• The arrows are $v \to qv$ for $v = \zeta^j q^i$ a vertex.

Corollary 1

The Ariki–Koike algebra is (non-trivially) \mathbb{Z} -graded.

Corollary 2

If \tilde{q} is another primitive eth root of unity in F then $\mathrm{H}_n^{\Lambda}(q) \simeq \mathrm{H}_n^{\Lambda}(\tilde{q})$.

The isomorphism of Brundan and Kleshchev isomorphism is constructed using some elements $P_a(\mathbf{i}, \mathbf{j})$ and $Q_a(\mathbf{i}, \mathbf{j})$ of $F[[y_a, y_{a+1}]]$, for $a \in \{1, \ldots, n-1\}$, $\mathbf{i} \in (\mathbb{Z}/e\mathbb{Z})^n$ and $\mathbf{j} \in (\mathbb{Z}/p'\mathbb{Z})^n$. These elements have to satisfy some properties depending of $\Gamma_{e,p}$. The isomorphism of Brundan and Kleshchev isomorphism is constructed using some elements $P_a(i, j)$ and $Q_a(i, j)$ of $F[[y_a, y_{a+1}]]$, for $a \in \{1, ..., n-1\}$, $i \in (\mathbb{Z}/e\mathbb{Z})^n$ and $j \in (\mathbb{Z}/p'\mathbb{Z})^n$. These elements have to satisfy some properties depending of $\Gamma_{e,p}$. The images of the generators of $H_n^{\Lambda}(q)$ are given by:

$$X_{a} \mapsto \sum_{i,j} \zeta^{j_{a}} q^{i_{a}} (1 - y_{a}) e(i, j),$$

for $1 \leq a \leq n$ and:

$$T_a \mapsto \sum_{i,j} \left[\psi_a Q_a(i,j) - P_a(i,j) \right] e(i,j),$$

for $1 \leq a \leq n-1$.

Analogue for the Hecke algebra of G(r, p, n)

We define an automorphism σ of order p of $H_n^{\Lambda}(q)$ by setting:

$$\sigma(S) \coloneqq \zeta S, \qquad \forall a, \sigma(T_a) \coloneqq T_a.$$

The subalgebra $\operatorname{H}_{p,n}^{\Lambda}(q) := \operatorname{H}_{n}^{\Lambda}(q)^{\sigma}$ of fixed points is a Hecke algebra of the complex reflection group G(r, p, n).

Remark

The subalgebra $\operatorname{H}_{p,n}^{\Lambda}(q)$ does not depend on the choice of ζ .

Analogue for the Hecke algebra of G(r, p, n)

We define an automorphism σ of order p of $H_n^{\Lambda}(q)$ by setting:

$$\sigma(S) \coloneqq \zeta S, \qquad \forall a, \sigma(T_a) \coloneqq T_a.$$

The subalgebra $\operatorname{H}_{p,n}^{\Lambda}(q) := \operatorname{H}_{n}^{\Lambda}(q)^{\sigma}$ of fixed points is a Hecke algebra of the complex reflection group G(r, p, n).

Remark

The subalgebra $\operatorname{H}_{p,n}^{\Lambda}(q)$ does not depend on the choice of ζ .

Question

Can we transpose the previous results involving the Ariki–Koike algebra to the subalgebra $\operatorname{H}_{p,n}^{\Lambda}(q) \subseteq \operatorname{H}_{n}^{\Lambda}(q)$?

In particular:

- is it isomorphism to something like a cyclotomic quiver Hecke algebra;
- is it a graded subalgebra;
- does it depend on the choosen roots of unity.

1 Graded isomorphism theorem

Presentation of some fixed-point cyclotomic quiver Hecke subalgebras

3 Application to the case of the Hecke algebra of G(r, p, n)

Fixed-point quiver Hecke subalgebra

Let $\sigma: K \to K$ a bijection of finite order p such that:

$$\forall k, k' \in K, k \rightarrow k' \implies \sigma(k) \rightarrow \sigma(k').$$

Fixed-point quiver Hecke subalgebra

Let $\sigma: K \to K$ a bijection of finite order p such that:

$$orall k,k'\in K,k
ightarrow k'\implies \sigma(k)
ightarrow \sigma(k').$$

Proposition

The map σ induces a well-defined homogeneous automorphism of $R_n(\Gamma)$ by:

$$\forall \mathbf{k} \in \mathcal{K}^{n}, \quad \sigma(e(\mathbf{k})) \coloneqq e(\sigma(\mathbf{k})), \\ \forall \mathbf{a} \in \{1, \dots, n\}, \qquad \sigma(y_{\mathbf{a}}) \coloneqq y_{\mathbf{a}}, \\ \forall \mathbf{a} \in \{1, \dots, n-1\}, \qquad \sigma(\psi_{\mathbf{a}}) \coloneqq \psi_{\mathbf{a}}.$$

Definition

We set:

$$\mathbf{R}_n(\Gamma)^{\sigma} \coloneqq \{h \in \mathbf{R}_n(\Gamma) : \sigma(h) = h\}.$$

Theorem (R., 2016)

We can give a (nice) presentation of $R_n(\Gamma)^{\sigma}$ in terms of the following generators:

$$e(\gamma) := e(\mathbf{k}) + e(\sigma(\mathbf{k})) + \dots + e(\sigma^{p-1}(\mathbf{k})) \text{ for } \gamma = [\mathbf{k}] \in \mathcal{K}^n / \langle \sigma \rangle,$$

$$y_1, \dots, y_n,$$

$$\psi_1, \dots, \psi_{n-1}.$$

Exemple of relation

If $\gamma \in \mathcal{K}^n/\langle \sigma \rangle$ verifies " $\gamma_a \to \gamma_{a+1}$ " then $\psi_a^2 e(\gamma) = (y_{a+1} - y_a)e(\gamma)$.

Theorem (R., 2016)

We can give a (nice) presentation of $R_n(\Gamma)^{\sigma}$ in terms of the following generators:

$$e(\gamma) := e(\mathbf{k}) + e(\sigma(\mathbf{k})) + \dots + e(\sigma^{p-1}(\mathbf{k})) \text{ for } \gamma = [\mathbf{k}] \in K^n / \langle \sigma \rangle,$$

$$y_1, \dots, y_n,$$

$$\psi_1, \dots, \psi_{n-1}.$$

Exemple of relation

If $\gamma \in K^n/\langle \sigma \rangle$ verifies " $\gamma_a \to \gamma_{a+1}$ " then $\psi_a^2 e(\gamma) = (y_{a+1} - y_a)e(\gamma)$.

Remark

Let $\gamma, \gamma' \in K^n / \langle \sigma \rangle$. The quantities $\gamma_a \bowtie \gamma'_b$ for $\bowtie \in \{=, \neq, \rightarrow\}$ are well defined if and only if $\gamma = \gamma'$.

Fixed-point cyclotomic quiver Hecke subalgebra

We now assume that $\Lambda_k = \Lambda_{\sigma(k)}$ for all $k \in K$.

Theorem (R., 2016)

The automorphism σ induces an automorphism of $R_n^{\Lambda}(\Gamma)$. Moreover:

$$\mathrm{R}_{n}^{\boldsymbol{\Lambda}}(\Gamma)^{\sigma}\simeq\mathrm{R}_{n}(\Gamma)^{\sigma}\left/\left\langle y_{1}^{\boldsymbol{\Lambda}_{\gamma_{1}}}\boldsymbol{e}(\gamma)=\boldsymbol{0}:\gamma\in\mathcal{K}^{n}/\langle\sigma\rangle\right\rangle\right.$$

Idea of the proof.

We construct two maps inverse to each other.

Fixed-point cyclotomic quiver Hecke subalgebra

We now assume that $\Lambda_k = \Lambda_{\sigma(k)}$ for all $k \in K$.

Theorem (R., 2016)

The automorphism σ induces an automorphism of $\mathbb{R}^{\Lambda}_{n}(\Gamma)$. Moreover:

$$\mathrm{R}_{n}^{\boldsymbol{\Lambda}}(\Gamma)^{\sigma} \simeq \mathrm{R}_{n}(\Gamma)^{\sigma} \left/ \left\langle y_{1}^{\boldsymbol{\Lambda}_{\gamma_{1}}} \boldsymbol{e}(\gamma) = \boldsymbol{0} : \gamma \in \mathcal{K}^{n} / \langle \sigma \rangle \right\rangle.$$

Idea of the proof.

We construct two maps inverse to each other.

• We define $f : \operatorname{R}_n(\Gamma)^{\sigma} / \langle \cdot \rangle \to \operatorname{R}_n^{\Lambda}(\Gamma)^{\sigma}$ using the presentation of the algebra.

Fixed-point cyclotomic quiver Hecke subalgebra

We now assume that $\Lambda_k = \Lambda_{\sigma(k)}$ for all $k \in K$.

Theorem (R., 2016)

The automorphism σ induces an automorphism of $\mathbb{R}^{\Lambda}_{n}(\Gamma)$. Moreover:

$$\mathrm{R}_{n}^{\boldsymbol{\Lambda}}(\Gamma)^{\sigma} \simeq \mathrm{R}_{n}(\Gamma)^{\sigma} \left/ \left\langle y_{1}^{\boldsymbol{\Lambda}_{\gamma_{1}}} \boldsymbol{e}(\gamma) = \boldsymbol{0} : \gamma \in \mathcal{K}^{n} / \langle \sigma \rangle \right\rangle.$$

Idea of the proof.

We construct two maps inverse to each other.

- We define $f : \operatorname{R}_n(\Gamma)^{\sigma} / \langle \cdot \rangle \to \operatorname{R}_n^{\Lambda}(\Gamma)^{\sigma}$ using the presentation of the algebra.
- We define $g : \mathbf{R}_n^{\Lambda}(\Gamma)^{\sigma} \to \mathbf{R}_n(\Gamma)^{\sigma} / \langle \cdot \rangle$ using the map $\mu : \mathbf{R}_n^{\Lambda}(\Gamma) \to \mathbf{R}_n^{\Lambda}(\Gamma)^{\sigma}$ defined by: $\mu := \frac{1}{p} \sum_{j=0}^{p-1} \sigma^j.$

- Graded isomorphism theorem
- Presentation of some fixed-point cyclotomic quiver Hecke subalgebras
- 3 Application to the case of the Hecke algebra of G(r, p, n)

Analogue of σ in $\mathbf{R}_n^{\mathbf{A}}$

We have the following situation :

where $\Gamma_{e,p}$ is defined by:

- its vertex set $\mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z} \simeq \{\zeta^j q^i : i \in \mathbb{Z}/e\mathbb{Z}, j \in \mathbb{Z}/p\mathbb{Z}\}$;
- its arrows $v \rightarrow qv$ where $v = \zeta^j q^i$.

Analogue of σ in $\mathbf{R}_n^{\mathbf{A}}$

We have the following situation :

where $\Gamma_{e,p}$ is defined by:

- its vertex set $\mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z} \simeq \{\zeta^j q^i : i \in \mathbb{Z}/e\mathbb{Z}, j \in \mathbb{Z}/p\mathbb{Z}\}$;
- its arrows $v \to qv$ where $v = \zeta^j q^i$.

Definition

We define the map σ on $\mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$ by $\sigma(v) \coloneqq \zeta v$.

Note that this map respects the arrows $v \rightarrow qv$.

We consider the case e := 6, p := 9 and $p' = \frac{9}{\text{gcd}(9,6)} = 3$. The map σ defined on $\mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$ is given by:

where $\eta \in \mathbb{Z}/e\mathbb{Z}$ is determined by the equality $\zeta^{p'} = q^{\eta}$.

This is a good analogue

Recall that from the map $\sigma : \mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z} \to \mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$ we can deduce an automorphism σ of $\mathrm{R}^{\Lambda}_{p}(\Gamma_{e,p})$, defined by:

$$egin{aligned} \sigma(m{e}(m{i},m{j})) &\coloneqq m{e}(\sigma(m{i},m{j})), \ \sigma(y_{a}) &\coloneqq y_{a}, \ \sigma(\psi_{a}) &\coloneqq \psi_{a}. \end{aligned}$$

This is a good analogue

Recall that from the map $\sigma : \mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z} \to \mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$ we can deduce an automorphism σ of $\mathrm{R}^{\Lambda}_{p}(\Gamma_{e,p})$, defined by:

$$\sigma(e(i,j)) \coloneqq e(\sigma(i,j)),$$

$$\sigma(y_a) \coloneqq y_a,$$

$$\sigma(\psi_a) \coloneqq \psi_a.$$

Theorem (R., 2016)

We can choose the elements $P_a(i, j)$ and $Q_a(i, j)$ such that the two maps σ coincide under the isomorphism $H_n^{\Lambda}(q) \simeq R_n^{\Lambda}(\Gamma_{e,p})$.

This is a good analogue

Recall that from the map $\sigma : \mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z} \to \mathbb{Z}/e\mathbb{Z} \times \mathbb{Z}/p'\mathbb{Z}$ we can deduce an automorphism σ of $\mathrm{R}^{\Lambda}_{p}(\Gamma_{e,p})$, defined by:

$$\sigma(e(i,j)) \coloneqq e(\sigma(i,j)),$$

$$\sigma(y_a) \coloneqq y_a,$$

$$\sigma(\psi_a) \coloneqq \psi_a.$$

Theorem (R., 2016)

We can choose the elements $P_a(\mathbf{i}, \mathbf{j})$ and $Q_a(\mathbf{i}, \mathbf{j})$ such that the two maps σ coincide under the isomorphism $\mathrm{H}_n^{\Lambda}(q) \simeq \mathrm{R}_n^{\Lambda}(\Gamma_{e,p})$.

Corollary

$$\mathrm{H}^{\boldsymbol{\Lambda}}_{p,n}(q)\simeq \mathrm{R}^{\boldsymbol{\Lambda}}_{n}(\Gamma_{e,p})^{\sigma}.$$

Consequences

Remark

- This choice of elements $P_a(i, j)$ and $Q_a(i, j)$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do *not* coincide if we make the choice of $P_a(i, j)$ and $Q_a(i, j)$ proposed by Brundan and Kleshchev.

- This choice of elements $P_a(i, j)$ and $Q_a(i, j)$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do *not* coincide if we make the choice of $P_a(i, j)$ and $Q_a(i, j)$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is H^A_{p,n}(q) isomorphic to something like a cyclotomic quiver Hecke algebra;
- is it a graded subalgebra;
- is it independent on the choosen roots of unity.

- This choice of elements $P_a(i, j)$ and $Q_a(i, j)$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do *not* coincide if we make the choice of $P_a(i, j)$ and $Q_a(i, j)$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is H[∧]_{p,n}(q) isomorphic to something like a cyclotomic quiver Hecke algebra; √
- is it a graded subalgebra; \checkmark
- is it independent on the choosen roots of unity.

- This choice of elements $P_a(i, j)$ and $Q_a(i, j)$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do *not* coincide if we make the choice of $P_a(i, j)$ and $Q_a(i, j)$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is H[∧]_{p,n}(q) isomorphic to something like a cyclotomic quiver Hecke algebra; √
- $\bullet\,$ is it a graded subalgebra; $\checkmark\,$
- is it independent on the choosen roots of unity.

Recall that $\eta \in \mathbb{Z}/e\mathbb{Z}$ is defined by $q^{\eta} = \zeta^{p'}$, where p' is the smallest integer $m \ge 1$ such that $\zeta^m \in \langle q \rangle$.

Lemma

If \tilde{q} is another primitive eth root of unity, there exists a primitive pth root of unity $\tilde{\zeta}$ such that $\tilde{q}^{\eta} = \tilde{\zeta}^{p'}$.

- This choice of elements $P_a(i, j)$ and $Q_a(i, j)$ was used by Stroppel and Webster while studying cyclotomic quiver Schur algebras.
- The two maps σ do *not* coincide if we make the choice of $P_a(i, j)$ and $Q_a(i, j)$ proposed by Brundan and Kleshchev.

Recall that we wanted to answer the following questions:

- is H[∧]_{p,n}(q) isomorphic to something like a cyclotomic quiver Hecke algebra; √
- $\bullet\,$ is it a graded subalgebra; $\checkmark\,$
- \bullet is it independent on the choosen roots of unity. \checkmark

Recall that $\eta \in \mathbb{Z}/e\mathbb{Z}$ is defined by $q^{\eta} = \zeta^{p'}$, where p' is the smallest integer $m \ge 1$ such that $\zeta^m \in \langle q \rangle$.

Lemma

If \tilde{q} is another primitive eth root of unity, there exists a primitive pth root of unity $\tilde{\zeta}$ such that $\tilde{q}^{\eta} = \tilde{\zeta}^{p'}$.