Partitions d'entiers : cœurs et régularisation

Salim Rostam*

Vendredi 18 octobre 2024

1 Asymptotique des partitions

Partition: diagramme de Young (en convention russe).

Théorème 1.1 (Kerov-Veshik, Logan-Shepp, 1977). Sous la mesure de Plancherel : convergence uniforme en probabilité sur \mathbb{R} du diagramme de Young vers une forme limite Ω (cf. Figure 1).

On a aussi la convergence en support.

Remarque 1.2. Via la correspondance de Robinson–Schensted, cela répond au **problème d'Ulam** et montre que la longueur d'un plus grand sous-mot croissant d'un élément de \mathfrak{S}_n tiré uniformément est de l'ordre de $2\sqrt{n}$. L'asymptotique à l'ordre supérieur est en $n^{1/6}$, et fait apparaître les distributions de Tracy–Widom (et met en évidence une analogie avec la répartition des valeurs propres de certaines matrices aléatoires), voir Baik-Deift-Johansson, Borodin-Okounkov-Olshanski, Johansson, Okounkov.

Une idée globale est de voir l'asymptotique de certaines quantités classiques en combinatoire algébrique, ici : cœurs et régularisations.

2 Régularisation de partitions

Définition 2.1 (Régularisation). On « pousse » les boîtes d'une partition vers la gauche selon une certaine direction fixée.

^{*}Institut Denis Poisson, Université de Tours

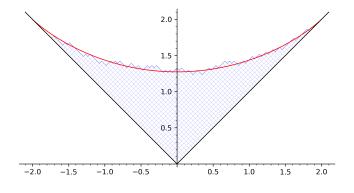


FIGURE 1 – Forme limite d'un diagramme de Young tiré selon la mesure de Plancherel Pl₁₀₀₀

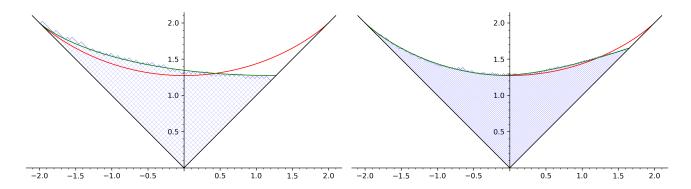


FIGURE 2 – Forme limite (en vert) pour la 2- (resp. 3-)régularisation d'une partition tirée selon Pl_{1000} (resp. Pl_{5000}); en rouge la forme limite Ω .

Exemple 2.2. — Les partitions 2-régulières (les résultats de la 2-régulariations sont celles à part distinctes : ainsi (4, 3, 1) est 2-régulière mais pas (4, 4, 4, 1).

— Une partition est 3-régulière si chaque part se répète au plus 2 fois.

Théorème 2.3 (R. 23). Sous la mesure de Plancherel : convergence uniforme en probabilité sur \mathbb{R} de la e-régularisation vers le « poussé » (le **secoué**, **shaking** en anglais) de la forme Ω (cf. Figure 2).

On obtient également les asymptotiques des longueurs de la première ligne et de la première colonne.

Problème 2.4. Quid des asyptotiques supérieures?

Les e-régularisations sont particulièrement simples à étudier car c'est simplement une question de pousser les boites le plus possible vers la gauche. Les (\mathbf{e}, \mathbf{i}) -régularisations (introduites par D. Millan Berdasco) sont plus délicates car ce procédé ne donne pas toujours une partition; on peut cependant définir de façon canonique une opération de (e, i)-régularisation sur les partitions.

Problème 2.5. Pour ces (e, i)-régularisations, la forme limite semble être aléatoire.

3 Cœurs

Frontière d'une partition $\lambda \to \text{suite } \mathcal{A}(\lambda)$ de 0 et de 1 et ensemble des descentes.

Théorème 3.1 (Borodin-Okounkov-Olshanski 2000). Sous la mesure de Plancherel poissonisée, le processus donné par l'ensemble des descentes est déterminantal.

Si on fixe $e \geq 2$, faire une opération $(0, *, ..., *, 1) \rightarrow (1, *, ..., *, 0)$ où les indices sont distants de e dans la suite $\mathcal{A}(\lambda)$ correspond à enlever des « rubans » dans le diagramme de Young de λ . Enlever tous les rubans possibles donne le e-cœur de la partition λ .

Théorème 3.2 (R. 22). La taille du e-cœur converge vers une somme de lois Γ indépendantes.

La taille des premières lignes et colonnes est donnée par un max d'un vecteur gaussien corrélé.