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Abstract

Partitions, or Young diagrams, index the representation of symmetric groups. There
are plenty of combinatorial objects, constructed from partitions, that allow a better un-
derstanding of these representations. For instance: hooks, with the “hook formula” giving
the dimensions of the representations in characteristic zero, and the notion of core, used in
the theory of modular representations. The Plancherel measure on partitions has a natural
meaning in representation theory, and since a theorem of Kerov–Vershik and Logan–Shepp
we know that large partitions, chosen under the Plancherel measure, have a prescribed limit
shape. One can then study the following problem: given a (combinatorial) quantity defined
on partitions, study its behaviour as the size of the partition goes to infinity. For instance,
Kerov–Vershik have studied the largest dimension of the representations, and recently we
have studied the size of the cores. We will give other examples of quantities, defined on
partitions, which should be interesting to study.

1 Partitions combinatorics
Definition. A partition is a finite sequence of decreasing integers λ = (λ1 ≥ · · · ≥ λh > 0).
We write |λ| := λ1 + · · · + λh.

We denote by Pn the set of partitions of n, that is, partitions λ with |λ| = n. The Young
diagram of λ = (λ1 ≥ . . . λh > 0) is the following subset of Z2

≥1:

Y(λ) :=
{

(a, b) ∈ Z2 : 1 ≤ a ≤ h and 1 ≤ b ≤ λa

}
.

For instance, the Young diagram of the partition (4, 4, 2, 1) is . Titling the Young

diagram by 3π
4 gives the Russian convention (the former being the English one):

x

y
y = ωλ(x)

The set Pn of partitions of n parametrises the conjugacy classes of the symmetric group
Sn on n letters (via the cycle decomposition). In particular, it parametrises the set {Sλ}λ⊢n

of irreducible complex representations. This parametrisation can be made such that Sλ has
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a basis indexed by the set Std(λ) of standard Young tableaux of shape λ, that is, bijective
maps t : {1, . . . , n} → Y(λ) that increase along the rows and down the columns of Y(λ).
Then by standard representation theory we obtain that:

n! =
∑
λ⊢n

#Std(λ)2.

Remark. • This equality can also be proved via a direct computation on the Young
graph, or via the Robinson–Schensted correspondence, which is a bijection between
Sn and pairs of standard tableaux of same shape .

• The quantity #Std(λ)2 is not the number of partition with conjugacy class λ.

Definition. The Plancherel measure Pln on Pn is defined by Pln(λ) := #Std(λ)2

n! .
Example. The measure Pl4 on P4 is given by the following table.

λ Pl4
(4) 1

24 ≈ 0.04
(3, 1) 9

24 = 0.375
(2, 2) 4

24 ≈ 0.17
(2, 1, 1) 9

24 = 0.375
(1, 1, 1, 1) 1

24 ≈ 0.04

In comparison, the uniform measure on P4 has value 1
5 = 0.2 on each partition.

2 Asymptotics related to the partition itself
We rescale on the two axes the upper border in the Russian convention ωλ into ω̃λ such that
each box has area 2

|λ| .

Definition. Let Ω : R → R be defined by Ω(s) := |s| if |s| ≥ 2 and by:

Ω(s) := 2
π

(
s arcsin

(
s
2
)

+
√

4 − s2
)

,

otherwise.
Note that if s ∈ (−2, 2) then Ω′(s) = 1 − 2

π arccos s
2 .

Theorem (Kerov–Vershik [KV77], Logan–Shepp [LoSh], 1977). Under Pln, the function
ω̃λ converges uniformly in probability to Ω as n → +∞, that is, for all ϵ > 0 we have:

Pln
(

sup
R

∣∣ω̃λ − Ω
∣∣ > ϵ

)
n→+∞−−−−−→ 0.
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Remark. Kerov–Vershik [KV85] in fact also studied Mn := maxλ∈Pn
Pln(λ), proving that

Mn decreases to 0 faster than any polynomial, more precisely: there exist positive constants
c0, c1 > 0 such that e−c0

√
n ≤ Mn ≤ e−c1

√
n. They have also proved a similar result for

the asymptotics of the typical dimension: there exist positive constants c′
0, c′

1 > 0 such
that the set T Pn of partitions λ ∈ Pn that satisfy e−c′

0
√

n ≤ Pln(λ) ≤ e−c′
1
√

n satisfy
Pln(T Pn) n→+∞−−−−−→ 1. Finally, these typical diagrams also converge to the limit shape Ω,
more precisely, max

{
∥ω̃λ − Ω∥∞ : λ ∈ T Pn

}
= o

(
n−1/6)

.
We also have convergence of the supports, in particular:

Pln
(∣∣∣∣ λ1

2
√

n
− 1

∣∣∣∣ > ϵ

)
n→+∞−−−−−→ 0,

which answers the Ulam’s problem about the length of a longest increasing subsequence of a
uniformly random chosen permutation in Sn (by the Robinson–Schensted correspondence).
The proofs of the above results mainly consists in optimising an integral functional (the
“hook integral”), obtained from an explicit formula for #Std(λ) (the “hook length formula”).

The story for higher order asymptotics is a bit more involved. Baik-Deift-Johansson [BDJ99]
proved that the random variable n−1/6(

λ1 − 2
√

n) converges in probability in distribution
to the Tracy–Widom distribution, that is:

Pln
(

n−1/6(
λ1 − 2

√
n

)
≤ t

)
n→+∞−−−−−→ F (t),

for all t ∈ R, where F is the Tracy–Widom c.d.f.. A key point in the proof is the resolution
of a Riemann–Hilbert problem. Note also that the Tracy–Widom distribution first arose in
the random matrix theory, as the limiting distribution of the rescaled largest eigenvalue of a
random GUE matrix. In fact the same hold for λi and the i-th largest eigenvalue: Baik-Deift-
Johansson [BDJ00] proved the case i = 2 and the general case was proved independently
by Borodin–Okounkov-Olshanski [BOO] (via a determinantal point processus — we will go
back on this later), Johansson [Joh] (via discrete orthogonal polynomial ensembles) and
Okounkov [Ok] (via ramified covering of the sphere).

3 Cores of partitions
3.1 Descent set
The proof of [BOO] that we mentioned uses the notion of descent set for partitions.

Definition. The descent set of the partition λ = (λi)i≥1 is:

D(λ) := {λi − i : i ≥ 1} ⊆ Z.

In other words, we have h ∈ D(λ) if and only if there is a descent in the Young diagram of
λ in the Russian convention between the x-coordinates h and h + 1.

For instance, for λ = (4, 4, 2, 1) we have D(λ) = {3, 2, −1, −3, −5, −6, −7, . . . }:

3



x

y

y = ωλ(x)

We will now state the result of BOO; we first need two more definitions. Let t ∈ R>0.
• The discrete Bessel kernel J t is:

J t(x, y) :=
√

t
JxJy+1 − Jx+1Jy

x − y
(2

√
t),

for x, y ∈ R, where Jz is the Bessel function of the first kind of order z ∈ R.
• The Poissonised Plancherel measure plt on the set of all partitions P := ⊔n≥0Pn is

given by first choosing n by a Poisson random variable with parameter t and then
choosing a partition inside Pn via Pln, in other words:

plt(λ) = e−t
∑
n≥0

tn

n!Pln(λ) = e−tt|λ|
(

#Std(λ)
|λ|!

)2
.

Theorem (Borodin-Okounkov-Olshanski 2000). Let x1, . . . , xs ∈ Z be distinct. The asso-
ciated correlation function for the descent set are a determinantal point process with kernel
J t, that is:

plt
(
x1, . . . , xs ∈ D(λ)

)
= det

[
J t(xa, xb)

]
1≤a,b≤s

.

3.2 Core
The notion of core for a partition, more precisely, of e-core for e ≥ 2, has a natural in-
terpretation in terms of representation theory. For instance, if e = p is prime, then the
two representations Sλ and Sµ are in the same block of FpSn (indecomposable two-sided
ideals; they are interesting to study since irreducible modules no longer suffice to study the
representations) if and only if they share the same p-core.

We first define the notion of h-hook for a partition λ. In the Russian convention, a
h-hook is just a the data of a box γ and all the boxes of the Young diagram that are on the
“V”-shape where γ is the bottom of the “V”, such that the corresponding V has exactly h
boxes. For instance, here is the (6−)hook corresponding with the box standing on (−1, 1):
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x

y

y = ωλ(x)

Now we can remove this hook and let gravity acting by moving down the remaining boxes
that are above the hook. It should be clear that the descent set remains almost the same,
the only difference being that the direction of the red segments changes. More precisely, we
have the following result.

Proposition. The partition λ has an h-hook if and only if there exists b ∈ D(λ) with
b − e /∈ D(λ). Moreover, the partition µ that we obtain by removing the h-hook satisfies
D(µ) =

(
D(λ) \ {b}

)
⊔ {b − e}.

Thus, decreasing by e each possible element of D(λ) gives a uniquely defined descent set,
which corresponds to a partition λ. By the above proposition, this partition λ is obtained
by successively removing all the e-hooks from λ.

Definition. We say that λ is the e-core of λ.

Example. We our previous example λ = (4, 4, 2, 1), the 6-core of λ is λ = (4, 1) (obtained
after removing only one 6-hook).

It should thus be possible to study λ from the knowledge of D(λ). Indeed, by this
approach we can obtain the following result.

Theorem ([Ro]). Let e ≥ 2. Under the Poissonised Plancherel measure plt, the size of
the e-core of λ converges in distribution as t → +∞ to a sum of independent Gamma
distributions Γ

( 1
2 , sin kπ

e

)
for k ∈ {1, . . . , e − 1}.

Remark. Here Γ
( 1

2 , sin kπ
e

)
is obtained as the square of a centred Gaussian distribution of

variance 1
2 sin kπ

e .
Here is an illustration for e = 7 and n = 3000:
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4 What next?
There exist many other representation theoretic quantities defined for partitions. They
should also be interesting to study when the size of the partition goes to infinity.

4.1 Regularisation map
For e ≥ 2, consider the following labelling of Z2

≥1:

1 e 2e − 1 3e − 2 . . .

2 e + 1 2e
... . . .

3 e + 2 2e + 1
... . . .

.

In other words, we place the elements of Z≥1 in the first column, and then we add e − 1
when we go right. For instance, for e = 3 we have the following (partial) labelling:

1 3 5 7
2 4 6 8
3 5 7 9

.

Definition. • A box labelled by i belong to the i-th ladder.
• If λ is a partition, its e-regularisation is the partition rege(λ) obtained from the the

Young diagram of λ by moving each box as high as possible in its ladder.

If λ is a partition then the partition rege(λ) is e-regular, that is, no e-parts of λ are
equal. For instance, the partition (2, 2, 2, 2, 1) is not 3-regular but (2, 2, 1, 1) is. If e = p is
prime, then p-regular partitions of n parametrise the irreducible representations of FpSn (i.e.
irreducible representations of Sn over Fp) (with a similar statement for the Iwahori–Hecke
algebra when e is not prime.
Remark. Where does regularisation come from? In characteristic p, one can still construct
a set {Sλ}λ⊢n of representations of Sn over Fp, but now some of these representations are
not irreducible. However, one can construct from this set a complete set of irreducible
representations {Dλ}λ⊢pn, pairwise non isomorphic, where ⊢p means “p-regular partitions”.
Looking at the Jordan–Hölder decomposition for Sλ (a sort of “decomposing into irreducible
parts” that is valid whatever is the characteristic), James [Ja] proved that we will find the
irreducible FpSn-module Drege(λ) (and only once). And this is interesting since we don’t
know that much about the irreducible modules of Sn is positive characteristic!
Example. We compute the 3-regularisation of λ = (4, 3, 3, 3, 2, 1, 1, 1, 1). We first compute
the ladders (in red, the ladder numbers corresponding to the partition):

1 3 5 7 9
2 4 6 8
3 5 7 9
4 6 8
5 7 9
6 8
7 9
8
9

6



Only the ladders 8 and 9 are not upper-justified. We only have to move a box in the 8-th
ladder and one in the 9-th to obtain reg3(λ) = (5, 4, 3, 3, 2, 1, 1), which is 3-regular indeed
(in blue the new boxes):

1 3 5 7 9
2 4 6 8
3 5 7 9
4 6 8
5 7 9
6 8
7 9

(8)
(9)

Now recall that we are interested in large partitions. Under the Plancherel measure, here
is what the e-regularisation look like (in red the arcsin shape, in blue the regularisation of
a large partition), for e = 2:

for e = 3:

and for e = 4:
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4.2 Mullineux involution
If p ≥ 3 and {Dλ}λ⊢pn is the set of irreducible representations of Sn over Fp, indexed by
p-regular partitions, we define the Mullineux image of λ ⊢p n to be the partition mp(λ) ⊢p n
such that Dmp(λ) ≃ Dλ ⊗ sgn. Similarly, such an operation is defined for any e ≥ 3.
The Mullineux map has a combinatorial description, first conjectured by Mullineux [Mu]
in 1979. It looks like removing p-hooks and putting them back. The Mullineux conjec-
ture was first proved by Ford–Kleshchev in 1997. There are also many other descriptions
of the Mullineux map, for instance by Kleshchev (crystal combinatorics), Fayers (idem),
Bessenrodt–Olsson (crystal combinatorics and residue symbol), Brundan–Kujawa (repre-
sentation theory of GL(m|n)), Losev (wall-crossing functors in category O).

Since by the last part we should have an asymptotic shape for e-regular partitions, it
makes sense to look for an asymptotic shape for their Mullineux image (the Mullineux image
of the regularisation of a large partition for the Plancherel measure). For partitions of 106

(!), we have (in red the arcsin shape, in blue its regularisation, in green its Mullineux image),
for e = 3:

and for e = 4:
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But now the limit shape looks a bit elaborated!
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