Schubert polynomials and quasisymmetric operators

Philippe Nadeau (CNRS & ICJ, Univ Lyon 1)

Joint work with Hunter Spink & Vasu Tewari (Toronto)

Journées ANR CORTIPOM, Tours, 1er octobre 2024

Schubert polynomials

The Schubert polynomials \mathfrak{S}_w form a basis in $\mathbb{Z}[x_1, x_2, ...]$, indexed by permutations. **Ex** ($w \in S_3$)

$$\begin{split} \mathfrak{S}_{213} &= x_1 & \mathfrak{S}_{321} &= x_1^2 x_2 \\ \mathfrak{S}_{123} &= 1 & \mathfrak{S}_{312} &= x_1 x_2 \\ \mathfrak{S}_{132} &= x_1 + x_2 & \mathfrak{S}_{312} &= x_1^2 \end{split}$$

 \Rightarrow Positive coefficients, and rich combinatorics.

 \Rightarrow Contain the Schur polynomials $s_{\lambda}(x_1, \dots, x_n)$ as special cases.

Schubert polynomials

The Schubert polynomials \mathfrak{S}_w form a basis in $\mathbb{Z}[x_1, x_2, ...]$, indexed by permutations. **Ex** ($w \in S_3$)

$$\begin{split} \mathfrak{S}_{213} &= x_1 & \mathfrak{S}_{321} &= x_1^2 x_2 \\ \mathfrak{S}_{123} &= 1 & \mathfrak{S}_{132} &= x_1 + x_2 & \mathfrak{S}_{312} &= x_1^2 \\ \mathfrak{S}_{132} &= x_1 + x_2 & \mathfrak{S}_{312} &= x_1^2 \end{split}$$

 \Rightarrow Positive coefficients, and rich combinatorics.

 \Rightarrow Contain the Schur polynomials $s_{\lambda}(x_1, \cdots, x_n)$ as special cases.

Origin: \mathfrak{S}_w encodes the (Chow/cohomology) class of the Schubert subvariety X_w (inside the full flag variety). (Lascoux-Schützenberger)

Consequence: write

$$\mathfrak{S}_{\mathsf{u}}\mathfrak{S}_{\mathsf{v}} = \sum_{\mathsf{w}} \mathbf{c}_{\mathsf{u},\mathsf{v}}^{\mathsf{w}}\mathfrak{S}_{\mathsf{w}}$$

 $c_{u,v}^{w}$ = triple intersection number of Schubert varieties.

 $\Rightarrow c_{u,v}^{w} \geq 0$, but no known combinatorial proof.

Quasisymmetric polynomials

Fix $n \ge 1$, and let $f \in Pol_n := \mathbb{Q}[x_1, \dots, x_n]$.

f is symmetric $\Leftrightarrow f(x_{\sigma(1)}, ..., x_{\sigma(n)}) = f(x_1, ..., x_n)$ for all $\sigma \in S_n$

 $\Leftrightarrow \text{ For all } a_1, \dots, a_k > 0, \text{ Coeff of } x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k} \text{ in } f$ whenever i_1, \dots, i_k are pairwise distinct.

Quasisymmetric polynomials

Fix $n \ge 1$, and let $f \in \text{Pol}_n := \mathbb{Q}[x_1, \dots, x_n]$. f is symmetric $\Leftrightarrow f(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = f(x_1, \dots, x_n)$ for all $\sigma \in S_n$ \Leftrightarrow For all $a_1, \dots, a_k > 0$, Coeff of $x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$ in fwhenever i_1, \dots, i_k are pairwise distinct.

Definition. Let $f \in Pol_n$. Then f is quasisymmetric if

For all $a_1, \ldots, a_k > 0$, Coeff of $x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$ in f whenever i_1, \ldots, i_k satisfy $i_1 < \ldots < i_k$.

For n = 2, $f = x_1^2 x_2$. For n = 3, $f = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3$.

Quasisymmetric polynomials

Fix $n \ge 1$, and let $f \in \text{Pol}_n := \mathbb{Q}[x_1, \dots, x_n]$. f is symmetric $\Leftrightarrow f(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = f(x_1, \dots, x_n)$ for all $\sigma \in S_n$

 $\Leftrightarrow \text{ For all } a_1, \dots, a_k > 0, \text{ Coeff of } x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k} \text{ in } f$ whenever i_1, \dots, i_k are pairwise distinct.

Definition. Let $f \in Pol_n$. Then f is quasisymmetric if

For all $a_1, \ldots, a_k > 0$, Coeff of $x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$ in f whenever i_1, \ldots, i_k satisfy $i_1 < \ldots < i_k$.

For n = 2, $f = x_1^2 x_2$. For n = 3, $f = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3$.

Motivation(s)

- Introduced in Stanley's thesis (1970), explicitly identified by Gessel (1984) They are the natural setting for certain generating functions for posets.
- Terminal object in a certain category of Hopf algebras.
- Active topic of research: create bases that refine symmetric bases, and expand (quasi)symmetric functions in these bases,...

Outline of the talk

1. Classical case (symmetric)

Space Sym_n of symmetric polynomials in $x_1, ..., x_n$

- \Rightarrow Defined by the vanishing of divided difference operators ∂_i
 - \Rightarrow Which in turn characterize by "duality" the family of Schubert polynomials \mathfrak{S}_w .

Outline of the talk

1. Classical case (symmetric)

Space Sym_n of symmetric polynomials in $x_1, ..., x_n$

- \Rightarrow Defined by the vanishing of divided difference operators ∂_i
 - \Rightarrow Which in turn characterize by "duality" the family of Schubert polynomials \mathfrak{S}_w .

2. New case (quasisymmetric)

Space $QSym_n$ of quasisymmetric polynomials in $x_1, ..., x_n$.

- \Rightarrow Defined by the vanishing of trimming operators T_i .
 - \Rightarrow Which in turn characterize by "duality" the family of Forest polynomials \mathfrak{P}_{F} .

Further reading: arXiv:2406.01510

§			^m QSym _n	Sym _n	
2	Divided differences		$T^{\underline{m}}_{i}$	∂_i	
3	Indexing combinatorics		$F \in \mathbf{For}^m$	$w \in S_\infty$	
		Fully supported forests For_n^m		S_n	
		Forest code $c(F)$		Lehmer code $lcode(w)$	
		Left terminal set $LTer(F)$		Descent set $Des(w)$	
		F/i for $i \in LTer(F)$		ws_i for $i \in Des(w)$	
		Trimming sequences $Trim(F)$		Reduced words $\operatorname{Red}(w)$	
		Zigzag forests $Z \in ZigZag_n^m$		Grassmannian permutations λ	
4	Monoid	<i>m</i> -Thompson monoid		nilCoxeter monoid	
5	Pol -basis	Forest polynomials \mathfrak{P}_F		Schuberts \mathfrak{S}_w	
	Composites	$T_{\overline{F}}^{\underline{m}} = T_{\overline{i_1}}^{\underline{m}} \cdots T_{\overline{i_k}}^{\underline{m}} \text{ for } \mathbf{i} \in \mathrm{Trim}(F)$		$\partial_w = \partial_{i_1} \cdots \partial_{i_k}$ for $\mathbf{i} \in \operatorname{Red}(w)$	
6	Pol _n -basis	$\{\mathfrak{P}_F \mid \operatorname{LTer}(F) \subset [n]\}$		$\{\mathfrak{S}_w \mid \operatorname{Des}(w) \subset [n]\}$	
	Duality	$\operatorname{ev}_0 T_F^{\underline{m}} \mathfrak{P}_G = \delta_{F,G}$		$\operatorname{ev}_0\partial_w\mathfrak{S}_{w'}=\delta_{w,w'}$	
7	Positive expansions	$\mathfrak{P}_{F}\mathfrak{P}_{H}=\sum c_{F,H}^{G}\mathfrak{P}_{G}, c_{F,H}^{G}\geq 0$		$\mathfrak{S}_{u}\mathfrak{S}_{w}=\sum c_{u,w}^{v}\mathfrak{S}_{v},c_{u,w}^{v}\geq 0$	
8	Invariant basis	Fundamental <i>m</i> -qsyms \mathfrak{P}_Z		Schur polynomials s_{λ}	
9	Coinvariant basis	$\{\mathfrak{P}_F \mid F \in For_n^m\}$		$\{\mathfrak{S}_w \mid w \in S_n\}$	
	Coinvariant action	$T_{i}^{\underline{m}}: {}^{\underline{m}}QSCoinv_{n} \rightarrow {}^{\underline{m}}QSCoinv_{n-\underline{m}}$		$\partial_i: \operatorname{Coinv}_n \to \operatorname{Coinv}_n$	
10	Harmonic basis	Forest volume polynomials		Degree polynomials	

Table 1: Comparing the symmetric and *m*-quasisymmetric stories

1. Classical case (symmetric)

Divided differences ∂_i

• Let $\operatorname{Pol}_n = \mathbb{Q}[x_1, \dots, x_n]$ and let $f \in \operatorname{Pol}_n$. Recall $f \in \operatorname{Sym}_n \Leftrightarrow \sigma \cdot f \coloneqq f(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = f(x_1, \dots, x_n)$ for all $\sigma \in S_n$. Pick $\sigma = s_i = (i, i + 1)$

Letting
$$\partial_i = \frac{id - s_i}{x_i - x_{i+1}}$$
, $\operatorname{Sym}_n = \bigcap_{i=1}^{n-1} \ker \partial_i$

Divided differences ∂_i

• Let $\operatorname{Pol}_n = \mathbb{Q}[x_1, \dots, x_n]$ and let $f \in \operatorname{Pol}_n$. Recall $f \in \operatorname{Sym}_n \Leftrightarrow \sigma \cdot f \coloneqq f(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = f(x_1, \dots, x_n)$ for all $\sigma \in S_n$. Pick $\sigma = s_i = (i, i + 1)$

Letting
$$\partial_i = \frac{id - s_i}{x_i - x_{i+1}}$$
, $Sym_n = \bigcap_{i=1}^{n-1} \ker \partial_i$

• Endomorphisms generated by the ∂_i ?

Relations $\partial_i^2 = 0$, $\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$ and $\partial_i \partial_j = \partial_j \partial_i$ for $|i - j| \ge 2$.

"NilCoxeter monoid" \simeq Permutations w in S_n with product

 $w \cdot w' = ww'$ if $\ell(w) + \ell(w') = \ell(ww')$, and 0 otherwise.

Divided differences ∂_i

• Let $\operatorname{Pol}_n = \mathbb{Q}[x_1, \dots, x_n]$ and let $f \in \operatorname{Pol}_n$. Recall $f \in \operatorname{Sym}_n \Leftrightarrow \sigma \cdot f \coloneqq f(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = f(x_1, \dots, x_n)$ for all $\sigma \in S_n$. Pick $\sigma = s_i = (i, i + 1)$

Letting
$$\partial_i = \frac{id - s_i}{x_i - x_{i+1}}$$
, $Sym_n = \bigcap_{i=1}^{n-1} \ker \partial_i$

• Endomorphisms generated by the ∂_i ?

Relations $\partial_i^2 = 0$, $\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$ and $\partial_i \partial_j = \partial_j \partial_i$ for $|i - j| \ge 2$.

"NilCoxeter monoid" \simeq Permutations w in S_n with product

 $w \cdot w' = ww'$ if $\ell(w) + \ell(w') = \ell(ww')$, and 0 otherwise.

• This gives

$$w = w' \cdot s_i \text{ for some } w' \Leftrightarrow i \in \text{Des}(w) = \{i : w(i) > w(i+1)\}$$
$$w = s_{i_1} \cdot s_{i_2} \cdots s_{i_k} \Leftrightarrow s_{i_1} s_{i_2} \cdots s_{i_k} \text{ is a reduced expression for } w.$$
$$\Rightarrow \text{Define } \partial_w \text{ as the composite } \partial_{i_1} \partial_{i_2} \cdots \partial_{i_k}.$$

Schubert polynomials \mathfrak{S}_w

Pol = $\lim_{n} \operatorname{Pol}_{n} = \mathbb{Q}[x_{1}, x_{2}, ...]$. $S_{\infty} = \lim_{n} S_{n} = \{ \text{Permutations } w \text{ of } \{1, 2, ...\} \text{ such that } w(i) = i \text{ for } i \text{ large enough} \}.$

Schubert polynomials \mathfrak{S}_w

 $\operatorname{Pol} = \operatorname{lim}_n \operatorname{Pol}_n = \mathbb{Q}[x_1, x_2, \ldots].$

 $S_{\infty} = \lim_{n} S_{n} = \{ \text{ Permutations w of } \{1, 2, ... \} \text{ such that } w(i) = i \text{ for } i \text{ large enough} \}.$

Definition-Theorem. The Schubert polynomials \mathfrak{S}_w for $w \in S_\infty$, are the unique family of homogenous polynomials in Pol such that $\mathfrak{S}_{id} = 1$ and

$$\partial_i \mathfrak{S}_w = egin{cases} \mathfrak{S}_{ws_i} & ext{if } i \in ext{Des}(w), \ 0 & ext{otherwise}. \end{cases}$$

Proof Sketch: Pick *n* such that $w \in S_n$, define $\mathfrak{S}_w = \partial_{w^{-1}w_o^n}(x_1^{n-1}x_2^{n-2}\cdots x_{n-1}^1)$, and check that this does not depend on *n*. This proves existence, uniqueness is easier.

П

Schubert polynomials \mathfrak{S}_w

 $\operatorname{Pol} = \operatorname{lim}_n \operatorname{Pol}_n = \mathbb{Q}[x_1, x_2, \ldots].$

 $S_{\infty} = \lim_{n} S_{n} = \{ \text{ Permutations w of } \{1, 2, ... \} \text{ such that } w(i) = i \text{ for } i \text{ large enough} \}.$

Definition-Theorem. The Schubert polynomials \mathfrak{S}_w for $w \in S_\infty$, are the unique family of homogenous polynomials in Pol such that $\mathfrak{S}_{id} = 1$ and

$$\partial_i \mathfrak{S}_w = egin{cases} \mathfrak{S}_{\mathsf{w}\mathsf{s}_i} & ext{if } i \in \mathsf{Des}(w), \ 0 & ext{otherwise}. \end{cases}$$

Proof Sketch: Pick *n* such that $w \in S_n$, define $\mathfrak{S}_w = \partial_{w^{-1}w_o^n}(x_1^{n-1}x_2^{n-2}\cdots x_{n-1}^1)$, and check that this does not depend on *n*. This proves existence, uniqueness is easier.

П

Iterating the equations above gives the following:

Corollary (Duality). For any $w, w' \in S_{\infty}$, Constant term of $\partial_w(\mathfrak{S}_{w'}) = \begin{cases} 1 & \text{if } w = w' \\ 0 & \text{otherwise.} \end{cases}$

Back to example

Divisibility for the nilCoxeter monoid = Weak order

Nice bases of various spaces:

• \mathfrak{S}_w is symmetric in x_1, \ldots, x_n if and only w has a unique descent at i = n.

Proposition. In that case $\mathfrak{S}_w = s_\lambda(x_1, \dots, x_n)$ (a Schur polynomial).

Nice bases of various spaces:

• \mathfrak{S}_w is symmetric in x_1, \ldots, x_n if and only w has a unique descent at i = n.

Proposition. In that case $\mathfrak{S}_w = s_\lambda(x_1, \dots, x_n)$ (a Schur polynomial).

• Schubert polynomials \mathfrak{S}_w , $w \in S_\infty$ form an integral basis of Pol. We get a basis of Pol_n if we restrict to w with all descents $\leq n$.

Nice bases of various spaces:

• \mathfrak{S}_w is symmetric in x_1, \ldots, x_n if and only w has a unique descent at i = n.

Proposition. In that case $\mathfrak{S}_w = s_\lambda(x_1, \dots, x_n)$ (a Schur polynomial).

- Schubert polynomials \mathfrak{S}_w , $w \in S_\infty$ form an integral basis of Pol. We get a basis of Pol_n if we restrict to w with all descents $\leq n$.
- Let $\operatorname{Sym}_n^+ \subset \operatorname{Pol}_n$ be the ideal generated by the $f \in \operatorname{Sym}_n$ with f(0) = 0.

Proposition. The \mathfrak{S}_w for $w \in S_n$ project to a basis of the coinvariant space $\operatorname{Pol}_n/\operatorname{Sym}_n^+$.

Nice bases of various spaces:

• \mathfrak{S}_w is symmetric in x_1, \ldots, x_n if and only w has a unique descent at i = n.

Proposition. In that case $\mathfrak{S}_w = s_\lambda(x_1, \dots, x_n)$ (a Schur polynomial).

- Schubert polynomials \mathfrak{S}_w , $w \in S_\infty$ form an integral basis of Pol. We get a basis of Pol_n if we restrict to w with all descents $\leq n$.
- Let $\operatorname{Sym}_n^+ \subset \operatorname{Pol}_n$ be the ideal generated by the $f \in \operatorname{Sym}_n$ with f(0) = 0.

Proposition. The \mathfrak{S}_w for $w \in S_n$ project to a basis of the coinvariant space $\operatorname{Pol}_n/\operatorname{Sym}_n^+$.

Positivity questions

- From their definition, not clear that they have positive coefficients. This requires some work ⇒ Combinatorial interpretation as pipe dreams.
- This approach says very little about the positivity of the general structure coefficients c_{uv}^w .

2. New case (quasisymmetric)

Where are we?

What we have just seen

Where we're going

• Original approach: (Hivert, 2000)

Define
$$\overline{s_i}$$
 on Pol_n by $\overline{s_i}(\cdots x_i^a x_{i+1}^b \cdots) = \begin{cases} \cdots x_i^a x_{i+1}^b \cdots \text{ if } a, b > 0\\ s_i(\cdots x_i^a x_{i+1}^b \cdots) \text{ otherwise.} \end{cases}$

Proposition. Let $f \in Pol_n$. Then $f \in QSym_n \Leftrightarrow \overline{s}_i(f) = f$ for all i < n.

The $\overline{\partial}_i = id - \overline{s_i}$ vanish for i < n on $QSym_n$.

<u>Problem.</u> The action of the \bar{s}_i & the relations satisfied by the $\bar{\partial}_i$ are not very pleasant.

• Original approach: (Hivert, 2000)

Define
$$\bar{s_i}$$
 on Pol_n by $\bar{s_i}(\cdots x_i^a x_{i+1}^b \cdots) = \begin{cases} \cdots x_i^a x_{i+1}^b \cdots & \text{if } a, b > 0 \\ s_i(\cdots x_i^a x_{i+1}^b \cdots) & \text{otherwise.} \end{cases}$

Proposition. Let $f \in Pol_n$. Then $f \in QSym_n \Leftrightarrow \overline{s_i}(f) = f$ for all i < n.

The $\bar{\partial}_i = id - \bar{s}_i$ vanish for i < n on QSym_n.

<u>Problem.</u> The action of the \bar{s}_i & the relations satisfied by the $\bar{\partial}_i$ are not very pleasant.

• New approach: (N.-Spink-Tewari, '24+)

Definition. For $f \in Pol_n$ and i < n, define

$$\mathsf{R}_{i}(f(x_{1},...,x_{n})) := f(x_{1},...,x_{i-1},0,x_{i},x_{i+1},...,x_{n-1})$$

Lemma. $R_i(f) = R_{i+1}(f)$ if and only if $\overline{s}_i(f) = f$.

• Original approach: (Hivert, 2000)

Define
$$\overline{s_i}$$
 on Pol_n by $\overline{s_i}(\cdots x_i^a x_{i+1}^b \cdots) = \begin{cases} \cdots x_i^a x_{i+1}^b \cdots & \text{if } a, b > 0 \\ s_i(\cdots x_i^a x_{i+1}^b \cdots) & \text{otherwise.} \end{cases}$

Proposition. Let $f \in Pol_n$. Then $f \in QSym_n \Leftrightarrow \overline{s_i}(f) = f$ for all i < n.

The $\bar{\partial}_i = id - \bar{s}_i$ vanish for i < n on QSym_n.

<u>Problem.</u> The action of the \bar{s}_i & the relations satisfied by the $\bar{\partial}_i$ are not very pleasant.

• New approach: (N.-Spink-Tewari, '24+)

Definition. For $f \in Pol_n$ and i < n, define

$$\mathsf{R}_{i}(f(x_{1},...,x_{n})) := f(x_{1},...,x_{i-1},0,x_{i},x_{i+1},...,x_{n-1})$$

Lemma. $R_i(f) = R_{i+1}(f)$ if and only if $\bar{s}_i(f) = f$.

Definition. For $f \in Pol_n$ and i < n $T_i = \frac{R_{i+1} - R_i}{x_i}$ Trimming operators

• Original approach: (Hivert, 2000)

Define
$$\bar{s_i}$$
 on Pol_n by $\bar{s_i}(\cdots x_i^a x_{i+1}^b \cdots) = \begin{cases} \cdots x_i^a x_{i+1}^b \cdots & \text{if } a, b > 0 \\ s_i(\cdots x_i^a x_{i+1}^b \cdots) & \text{otherwise.} \end{cases}$

Proposition. Let $f \in Pol_n$. Then $f \in QSym_n \Leftrightarrow \overline{s_i}(f) = f$ for all i < n.

The $\overline{\partial}_i = id - \overline{s}_i$ vanish for i < n on QSym_n.

<u>Problem.</u> The action of the \bar{s}_i & the relations satisfied by the $\bar{\partial}_i$ are not very pleasant.

• New approach: (N.-Spink-Tewari, '24+)

Definition. For $f \in Pol_n$ and i < n, define

$$\mathsf{R}_{i}(f(x_{1},...,x_{n})) := f(x_{1},...,x_{i-1},0,x_{i},x_{i+1},...,x_{n-1})$$

Lemma. $R_i(f) = R_{i+1}(f)$ if and only if $\overline{s}_i(f) = f$.

Definition. For $f \in \text{Pol}_n$ and i < n $\mathsf{T}_i = \frac{\mathsf{R}_{i+1} - \mathsf{R}_i}{x_i}$ Trimming operators $\Rightarrow \mathsf{QSym}_n = \bigcap_{i=1}^{n-1} \ker \mathsf{T}_i$

Explicitly,

$$\mathsf{T}_{i}(f) = \frac{f(x_{1}, \dots, x_{i-1}, \mathbf{x}_{i}, 0, x_{i+1}, \dots, x_{n-1}) - f(x_{1}, \dots, x_{i-1}, 0, \mathbf{x}_{i}, x_{i+1}, \dots, x_{n-1})}{x_{i}}$$

$$T_{1}(x_{1}^{a}x_{2}^{b}) = \begin{cases} 0 & \text{if } ab > 0 \text{ or } a = b = 0\\ x_{1}^{a-1} & \text{if } a > 0 \text{ and } b = 0\\ -x_{1}^{b-1} & \text{if } b > 0 \text{ and } a = 0. \end{cases}$$

Explicitly,

$$\mathsf{T}_{i}(f) = \frac{f(x_{1}, \dots, x_{i-1}, x_{i}, 0, x_{i+1}, \dots, x_{n-1}) - f(x_{1}, \dots, x_{i-1}, 0, x_{i}, x_{i+1}, \dots, x_{n-1})}{x_{i}}$$

$$T_{1}(x_{1}^{a}x_{2}^{b}) = \begin{cases} 0 & \text{if } ab > 0 \text{ or } a = b = 0\\ x_{1}^{a-1} & \text{if } a > 0 \text{ and } b = 0\\ -x_{1}^{b-1} & \text{if } b > 0 \text{ and } a = 0. \end{cases}$$

• We now let $n \to \infty$ and thus consider $T_i : Pol \to Pol$.

The T_i satisfy the relations of the Thompson monoid

$$\mathsf{T}_{i}\mathsf{T}_{j}=\mathsf{T}_{j}\mathsf{T}_{i+1} \text{ if } i>j.$$

$$T_i \Leftrightarrow \frac{\begin{array}{cccc} 1 & 2 & i \\ \hline / & / & \ddots & \\ 1 & 2 & i & i+1 \end{array}}{i & i+1}$$

Combinatorics

Definition. An indexed forest *F* is a sequence of plane binary trees, eventually trivial.

Combinatorics

Definition. An indexed forest *F* is a sequence of plane binary trees, eventually trivial.

For= set of indexed forests.

- LTer(F) = the *i* such that *i* is the left leaf of a terminal node of F.
 Example LTer(F) = {2, 4, 7, 11} above
- $F \cdot i$ is given by adding a terminal node with left leaf *i*.
- F/i is the reverse of the above, only defined if $i \in LTer(F)$.

Combinatorics

Definition. An indexed forest *F* is a sequence of plane binary trees, eventually trivial.

For= set of indexed forests.

- LTer(F) = the *i* such that *i* is the left leaf of a terminal node of F.
 Example LTer(F) = {2, 4, 7, 11} above
- $F \cdot i$ is given by adding a terminal node with left leaf *i*.
- F/i is the reverse of the above, only defined if $i \in LTer(F)$.

Proposition. Define $F \cdot G =$ the forest *H* obtained by identifying the leaves of *F* with the roots of *G*. Then For \simeq Thompson monoid.

 \Rightarrow We can define $T_F = T_{i_1} \cdots T_{i_k}$ by taking any decomposition $F = i_1 \cdots i_k$.

Example

Forest polynomials

Definition-Theorem The forest polynomials \mathfrak{P}_F , $F \in For$, are the unique family of homogeneous polynomials such that $\mathfrak{P}_\emptyset = 1$ and

$$\mathsf{T}_i(\mathfrak{P}_{\mathsf{F}}) = egin{cases} \mathfrak{P}_{\mathsf{F}/i} & ext{if } i \in \mathsf{LTer}(\mathsf{F}) \ 0 & ext{otherwise.} \end{cases}$$

Forest polynomials

Definition-Theorem The forest polynomials \mathfrak{P}_F , $F \in$ For, are the unique family of homogeneous polynomials such that $\mathfrak{P}_{\emptyset} = 1$ and

$$\mathsf{T}_i(\mathfrak{P}_{\mathsf{F}}) = egin{cases} \mathfrak{P}_{\mathsf{F}/i} & ext{if } i \in \mathsf{LTer}({\mathsf{F}}) \ 0 & ext{otherwise}. \end{cases}$$

Proof. The uniqueness follows as for Schubert polynomials.

For existence however, we cannot reason similarly, as there is no natural family of "large forests". Instead, we give a direct combinatorial definition in terms of certain colorings of *F* (omitted here), and check that it works...

Forest polynomials

Definition-Theorem The forest polynomials \mathfrak{P}_F , $F \in$ For, are the unique family of homogeneous polynomials such that $\mathfrak{P}_{\emptyset} = 1$ and

$$\mathsf{T}_i(\mathfrak{P}_{\mathsf{F}}) = egin{cases} \mathfrak{P}_{\mathsf{F}/i} & ext{if } i \in \mathsf{LTer}({\mathsf{F}}) \ 0 & ext{otherwise.} \end{cases}$$

Proof. The uniqueness follows as for Schubert polynomials.

For existence however, we cannot reason similarly, as there is no natural family of "large forests". Instead, we give a direct combinatorial definition in terms of certain colorings of *F* (omitted here), and check that it works...

By iteration one gets:

Corollary. (Duality) For $F, G \in$ For, we have

Constant term of
$$\mathsf{T}_{\mathsf{F}}(\mathfrak{P}_{\mathsf{G}}) = egin{cases} 1 & ext{if } \mathsf{G} = \mathsf{F} \ 0 & ext{otherwise}. \end{cases}$$

Back to Example

Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

• $(\mathfrak{P}_F)_F$ is an integral basis of Pol. More precisely, they form a basis of Pol_n if $F \in \operatorname{For}$ has all terminal nodes $\leq n$.

Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

- $(\mathfrak{P}_F)_F$ is an integral basis of Pol. More precisely, they form a basis of Pol_n if $F \in \operatorname{For}$ has all terminal nodes $\leq n$.
- Let $\operatorname{QSym}_n^+ \subset \operatorname{Pol}_n^-$ be the ideal generated by the $f \in \operatorname{QSym}_n^-$ with f(0) = 0.

Proposition. The \mathfrak{P}_f for $F \in \operatorname{For}_n$ project to a basis of the coinvariant space $\operatorname{Pol}_n/\operatorname{QSym}_n^+$.

All nontrivial leaves are in $\{1, ..., n\}$.

Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

- $(\mathfrak{P}_F)_F$ is an integral basis of Pol. More precisely, they form a basis of Pol_n if $F \in \operatorname{For}$ has all terminal nodes $\leq n$.
- Let $\operatorname{QSym}_n^+ \subset \operatorname{Pol}_n^-$ be the ideal generated by the $f \in \operatorname{QSym}_n^-$ with f(0) = 0.

Proposition. The \mathfrak{P}_f for $F \in \operatorname{For}_n$ project to a basis of the coinvariant space $\operatorname{Pol}_n/\operatorname{QSym}_n^+$. All nontrivial leaves are in $\{1, ..., n\}$.

Positivity questions

- By their combinatorial definition, the \mathfrak{P}_F have positive coefficients.
- The structure constants $\mathfrak{P}_F \mathfrak{P}_G = \sum_H d_{FG}^H \mathfrak{P}_H$ are positive. This can be proved combinatorially.

(**Key**: Leibniz rule $T_i(fg) = T_i(f)R_{i+1}(g) + R_i(f)T_i(g)$.)

Bonus: Positivity of Schubert polynomials

A direct check shows:

$$\mathsf{T}_i=\mathsf{R}_i\partial_i$$

Now for $f \in \text{Pol with } f(0) = 0$,

$$f = \sum_{i=1}^{\infty} (R_{i+1}(f) - R_i(f)) + R_1(f)$$

= $\sum_{i=1}^{\infty} x_i T_i(f) + R_1(f) = \sum_{i=1}^{\infty} x_i R_i \partial_i(f) + R_1(f)$

Bonus: Positivity of Schubert polynomials

A direct check shows:

$$\mathsf{T}_i=\mathsf{R}_i\partial_i$$

Now for $f \in \text{Pol with } f(0) = 0$,

$$f = \sum_{i=1}^{\infty} (R_{i+1}(f) - R_i(f)) + R_1(f)$$

= $\sum_{i=1}^{\infty} x_i T_i(f) + R_1(f) = \sum_{i=1}^{\infty} x_i R_i \partial_i(f) + R_1(f)$

Choose $f = \mathfrak{S}_w$ with $w \neq id$

$$\mathfrak{S}_w = \sum_{i \in \mathsf{Des}(w)} x_i \mathsf{R}_i(\mathfrak{S}_{ws_i}) + \mathsf{R}_1(\mathfrak{S}_w).$$

Bonus: Positivity of Schubert polynomials

A direct check shows:

$$\mathsf{T}_i=\mathsf{R}_i\partial_i$$

Now for $f \in \text{Pol with } f(0) = 0$,

$$f = \sum_{i=1}^{\infty} (R_{i+1}(f) - R_i(f)) + R_1(f)$$

= $\sum_{i=1}^{\infty} x_i T_i(f) + R_1(f) = \sum_{i=1}^{\infty} x_i R_i \partial_i(f) + R_1(f)$

Choose $f = \mathfrak{S}_w$ with $w \neq id$

$$\mathfrak{S}_w = \sum_{i \in \mathsf{Des}(w)} x_i \mathsf{R}_i(\mathfrak{S}_{ws_i}) + \mathsf{R}_1(\mathfrak{S}_w).$$

- This is a **new recurrence**.
- Proves that \mathfrak{S}_w has positive coefficients.
- Can be interpreted combinatorially on pipe dreams.