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Schubert polynomials

The Schubert polynomials &, form a basis in Z[x1, X2, ...], indexed by permutations.
Ex (w € S3)

_ w2
GSo13 = X1 G321 = X{X2
Sio3 =1 G231 = X1X2

2
G132 = X1 + X2 G312 = X7

= Positive coefficients, and rich combinatorics.

= Contain the Schur polynomials sy(x1, - - - , X,) as special cases.



Schubert polynomials

The Schubert polynomials &, form a basis in Z[x1, X2, ...], indexed by permutations.
Ex (w € S3)

_ w2
GSo13 = X1 G321 = X{X2
Sio3 =1 G231 = X1X2

2
G132 = X1 + X2 G312 = X7
= Positive coefficients, and rich combinatorics.

= Contain the Schur polynomials sy(x1, - - - , X,) as special cases.

Origin: &,, encodes the (Chow/cohomology) class of the Schubert subvariety X,,
(inside the full flag variety). (Lascoux-Schiitzenberger)

Consequence: write
S,6, = E CvOw
w

c,v = triple intersection number of Schubert varieties.

= c‘f,fv > 0, but no known combinatorial proof.



Quasisymmetric polynomials

Fixn > 1,and let f € Pol, == Q[xq, ..., X,].
fis symmetric & f(Xg (1), -+ » Xo(n)) = f(X1, ..., Xp) forallo € S,

« Forallay,...,a > 0, Coeff of x{* - - - x* = Coeff of xi* - - - x;* in f
whenever iy, ..., i, are pairwise distinct.
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Quasisymmetric polynomials

Fixn > 1,and let f € Pol, == Q[xq, ..., X,].
fis symmetric & f(Xg (1), -+ » Xo(n)) = f(X1, ..., Xp) forallo € S,

« Forallay,...,a > 0, Coeff of x{* - - - x* = Coeff of xi* - - - x;* in f
whenever iy, ..., i, are pairwise distinct.

Definition. Let f € Pol,,. Then f is quasisymmetric if
For all ay, ..., ax > 0, Coeff of x7* - - - x;* = Coeff of x,f’ll . -xik inf
whenever iy, ..., i, satisfy i; < ... < ig.

Forn =2, f = x2x.
Forn = 3,f = x{xa + x2X3 + X5X3.

Motivation(s)
e Introduced in Stanley’s thesis (1970), explicitly identified by Gessel (1984)
They are the natural setting for certain generating functions for posets.

e Terminal object in a certain category of Hopf algebras.

e Active topic of research: create bases that refine symmetric bases, and expand
(quasi)symmetric functions in these bases,...



Outline of the talk

1. Classical case (symmetric)
Space Sym,, of symmetric polynomials in xq, ..., X,
— Defined by the vanishing of divided difference operators 0;
= Which in turn characterize by "duality" the family of Schubert polynomials &,,.

Symn —® 0§, Gw

Combinatorics: Permutations



Outline of the talk

1. Classical case (symmetric)
Space Sym,, of symmetric polynomials in xq, ..., X,
— Defined by the vanishing of divided difference operators 0;
= Which in turn characterize by "duality" the family of Schubert polynomials &,,.

Symn I ai GW
Combinatorics: Permutations
2. New case (quasisymmetric)
Space QSym,, of quasisymmetric polynomials in xq, ..., Xp.

= Defined by the vanishing of trimming operators T;.
= Which in turn characterize by "duality" the family of Forest polynomials *J3¢.

QSym, —» T, —» %

Combinatorics: Plane binary forests



Further reading: arXiv:2406.01510

Table 1: Comparing the symmetric and m-quasisymmetric stories

8 "Q5ym Sym,
2 | Divided differences T d;
3 | Indexing combinatorics F € For™ we S,
Fully supported forests For}/ Sn
Forest code c(F) Lehmer code lecode(w)
Left terminal set LTer(F) Descent set Des(w)
F/ifori € LTer(F) ws; for i € Des(w)
Trimming sequences Trim(F) Reduced words Red (w)
Zigzag forests Z € ZigZag)! Grassmannian permutations A
4 Monoid m-Thompson monoid nilCoxeter monoid
5 Pol-basis Forest polynomials P Schuberts &,
Composites TF = T Tﬁ fori € Trim(F) | dy =dj, ---9; fori € Red(w)
6 Pol,-basis {"B; | LTer(F) C [n]} {Gw | Des(w) C [n]}
Duality evp TI;_"]J'G = drG evg 0,6, = 6y
7 Positive expansions PPy = Ec?’ 1P CE g =0 6,6, =L 6y, = 0
8 Invariant basis Fundamental m-gsyms P, Schur polynomials s
9 Coinvariant basis {B; | F € Fory {6y | w € Sy}
Coinvariant action T;’—’ : "MQSCoinv,, — "QSCoinv,,_,, d; : Coinv,, — Coinvy,
10 Harmonic basis Forest volume polynomials Degree polynomials




1. Classical case (symmetric)



Divided differences 0O;

e Let Pol, = Q[xq,...,Xx,] and let f € Pol,,.
Recall f € Sym, & o - f = f(X5(1), -+ s Xo(n)) = f(X1, ..., Xn) forallo € S,.
Picko =s; = (i,i + 1)

1
id — s, n
Letting 0, = | : Sym, = ﬂ ker O

Xi — Xi+1 i1
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e Endomorphisms generated by the 0; ?
Relations 6,2 S O, 6,-6,-+16,- = ,-+18,-0,-+1 and 6,(’9, = (9]5, for ‘i —j’ Z 2.
“NilCoxeter monoid” ~ Permutations w in S,, with product

w-w =ww if £{(w) + £(w') = £(ww'), and 0 otherwise.



Divided differences 0O;

e Let Pol, = Q[xq,...,Xx,] and let f € Pol,,.
Recall f € Sym, & o - f = f(X5(1), -+ s Xo(n)) = f(X1, ..., Xn) forallo € S,.
Picko =s; = (i,i + 1)

id — i n—1
Letting 0, = | > : Sym, = ﬂ ker O

Xi — Xi+1 i1

e Endomorphisms generated by the 0; ?
Relations 87 = 0, 8,0, 16, = 0;,10:0;,1 and 8,6, = 8,0 for |i — j| > 2.
“NilCoxeter monoid” ~ Permutations w in S,, with product
w-w =ww if £{(w) + £(w') = £(ww'), and 0 otherwise.
e This gives
w = w -s;forsomew’ < i€ Des(w)={i:w(i) >w(i+1)}
W =S5 -Sj, -Sj < Sj,Si, - S IS areduced expression for w.

= Define 9,, as the composite 8,0, - - - §;,.
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Pol = Iimn POln = Q[Xl,Xz, ]

Soo = lim, S, = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.
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Pol = Iimn POln = Q[Xl,Xz, ]
Soo = lim, S, = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.

Definition-Theorem. The Schubert polynomials G,, for w € S, are the unique family
of homogenous polynomials in Pol such that G;4 = 1 and

566G, — Ouws, ifi € D.es(w),
0 otherwise.

Proof Sketch: Pick n such that w € Sy, define &, = 8,1, (X}~ Ix57% .- xt_,), and
check that this does not depend on n. This proves existence, uniqueness is easier. -



Schubert polynomials &,

Pol = Iimn POln = Q[Xl,Xz, ]
Soo = lim, S, = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.

Definition-Theorem. The Schubert polynomials G,, for w € S, are the unique family
of homogenous polynomials in Pol such that G;4 = 1 and

566G, — Ouws, ifi € D.es(w),
0 otherwise.

Proof Sketch: Pick n such that w € Sy, define &, = 8,1, (X}~ Ix57% .- xt_,), and

check that this does not depend on n. This proves existence, uniqueness is easier. -

Iterating the equations above gives the following:

Corollary (Duality). Foranyw,w’ € S,
1 ifw=w

Constant term of 8,,(Gy/) = .
0 otherwise.



Back to example

W2
G3o1 = X1 X2

N

Ga31 = X1X0 Ss1p = X2
| !
So13 = X1 G132 = X1 + X2
1\ %
Gz =1

Divisibility for the nilCoxeter monoid = Weak order



What do we get ?

Nice bases of various spaces:
e S, is symmetricin xy, ..., X, if and only w has a unique descent at i = n.

Proposition. Inthat case G,, = s,(x1, ..., x,) (@ Schur polynomial).
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Pol, if we restrict to w with all descents < n.
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What do we get ?

Nice bases of various spaces:
e S, is symmetricin xy, ..., X, if and only w has a unique descent at i = n.

Proposition. Inthat case G,, = s,(x1, ..., x,) (@ Schur polynomial).

e Schubert polynomials &,,, w € S5, form an integral basis of Pol. We get a basis of
Pol, if we restrict to w with all descents < n.

e Let Sym  C Pol, be the ideal generated by the f € Sym,, with f(0) = 0.

Proposition. The G,, for w € S, project to a basis of the coinvariant space Poln/Sym,T.

Positivity questions

e From their definition, not clear that they have positive coefficients. This requires
some work = Combinatorial interpretation as pipe dreams.

e This approach says very little about the positivity of the general structure
coefficients ¢},



2. New case (quasisymmetric)



Where are we ?

What we have just seen

Sym, — (8)i —  (8) = (Bu)wes, —> W

Combinatorics of permutations

Where we're going

QSym, —® (T;) —» (Ti) = (Te)reFor ——® Fr

Combinatorics of plane binary forests



Trimming operators

e Original approach: (Hivert, 2000)

-~ ifa,b >0
Define §; on Pol, by 5(- - - x7x?, ; - )_{ (X:X:+1 ira,p >
Si

b
Xl XI—I—].

- ) otherwise.
Proposition. Let f € Pol,. Then f € QSym,, < S5i(f) = f for alli < n.
The 8; = id — 5; vanish for i < non QSym,..

Problem. The action of the 5; & the relations satisfied by the 8: are not very pleasant.
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e Original approach: (Hivert, 2000)

-~ ifa,b >0
Define §; on Pol, by 5(- - - x7x?, ; - )_{ (X:X:+1 ira,p >
Si

b
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- ) otherwise.
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Trimming operators

e Original approach: (Hivert, 2000)

-~ ifa,b >0
Define §; on Pol, by 5(- - - x7x?, ; - )_{ (X:X:+1 ira,p >
Si

b
Xl XI—|—1

- ) otherwise.
Proposition. Let f € Pol,. Then f € QSym,, < S5i(f) = f for alli < n.
The 8; = id — 5; vanish for i < non QSym,..

Problem. The action of the 5; & the relations satisfied by the 8: are not very pleasant.

e New approach: (N.-Spink-Tewari, '24+)
Definition. For f € Pol, and i < n, define

Ri(f(X].’ oo ,Xn)) = f(X1’ 7Xi—1’ O’Xi7 Xi—l—].’ oo ,Xn—l)

Lemma. R;(f) = Ri11(f) if and only if 5;(f) = f.
Definition. Forf € Pol,andi<n T, = R"%TR" Trimming operators

= QSym, = ﬂ?;ll ker T;



Trimming operators

Explicitly,

Ti(f) =

f(Xl, eee s Xj—1, X, O, Xit1y ... ’Xn—l) — f(Xl, eee s Xj—1, O, Xis Xit1y ..

’Xn—l)

T (X1X2)

\

Xi

(0 ifab> 0ora=b =0
x{7t  ifa>0andb=0

| —x; ' ifb>0anda=0.



Trimming operators

Explicitly,
F(X15 eee s Xie1s Xis 0, Xise 1y oo s Xne1 ) — F(XT5 ee s Xie15 0, X, Xict 15 oo s Xp—
Ti(f) = L L 1 1) — flx 1 +1 1)
Xi
(0 ifab > 0ora=b=0
T1(6x5) =<{x¢™1  ifa>0andb=0
\—x’{ ' ifb>0anda=0.

e We now let n — oo and thus consider T; : Pol — Pol.

The T; satisfy the relations of the Thompson monoid

TiTj=T;Tipqgifi > j.

1 2 i

e/ [ e/ AN

1 2 i i+1



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

2

F 7
1 3
_i( g/.\(gx e

2 3 4 5 7 8 10 11 12 13 14 15 16

e
.
~

"® |nduced labeling of all leaves.



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

7

4
3,/.56;/{\(8910
g/.\gx. VIV

7.8 1011 12 13 14 15 16

4 A
L L + L
1 1 1 1
1:2,3:4.,5
- 4
e® ] . 1 //
N N

L d

"® |nduced labeling of all leaves.

For= set of indexed forests.

e LTer(F) =theisuch thatiis the left leaf of a terminal node of F.
Example LTer(F) = {2,4,7,11} above

e F -iisgiven by adding a terminal node with left leaf |.

e F/iisthe reverse of the above, only defined if i € LTer(F).



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

7

4
3,/.56;/{\(8910
g/.\gx. VIV

7.8 1011 12 13 14 15 16

4 A
L L + L
1 1 1 1
"' |\ /’ l\ /’
P - -

"® |nduced labeling of all leaves.

For= set of indexed forests.

e LTer(F) =theisuch thatiis the left leaf of a terminal node of F.
Example LTer(F) = {2,4,7,11} above

e F -iisgiven by adding a terminal node with left leaf |.

e F/iisthe reverse of the above, only defined if i € LTer(F).

Proposition. Define F - G = the forest H obtained by identifying the leaves of F with
the roots of G. Then For ~ Thompson monoid.

= We can define T¢ = T;, - - - T;, by taking any decomposition F = iy - - - .



3

1.2:1=1-1-3.
2

F

\\1

Example

1 2 3 4

1 2 3 4

XmM

XA




Forest polynomials

Definition-Theorem The forest polynomials ‘33, F € For, are the unique family of
homogeneous polynomials such that Y3y = 1 and

‘BF/,- ifi € LTer(F)
0 otherwise.

Ti(Br) = {



Forest polynomials

Definition-Theorem The forest polynomials ‘33, F € For, are the unique family of
homogeneous polynomials such that Y3y = 1 and

() = {pr/,- if i € LTer(F)

0 otherwise.

Proof. The uniqueness follows as for Schubert polynomials.
For existence however, we cannot reason similarly, as there is no natural family of

“large forests”. Instead, we give a direct combinatorial definition in terms of certain

colorings of F (omitted here), and check that it works... -



Forest polynomials

Definition-Theorem The forest polynomials ‘33, F € For, are the unique family of
homogeneous polynomials such that Y3y = 1 and

() = {pr/,- if i € LTer(F)

0 otherwise.

Proof. The uniqueness follows as for Schubert polynomials.
For existence however, we cannot reason similarly, as there is no natural family of
“large forests”. Instead, we give a direct combinatorial definition in terms of certain

colorings of F (omitted here), and check that it works... -

By iteration one gets:
Corollary. (Duality) For F, G € For, we have

1 fG=F

Constant term of T¢(RBg) = :
0 otherwise.



Pr

Back to Example

X$Xo + X3X3

1 2 3 4

\\1

y
AA X% A 2
k

1 2 3 4
N 7
AN &

1 2

W3

|

%
1

N X
w X
=



What do we get ?

Nice bases of various spaces:
e ‘I3 is quasisymmetric in x4, ..., X, if and only F has a unique terminal node ati = n.

Proposition. If so, 3¢ is a fundamental quasisymmetric polynomial Fo,(x1, ..., X,).
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What do we get ?

Nice bases of various spaces:

e ‘I3 is quasisymmetric in x4, ..., X, if and only F has a unique terminal node ati = n.

Proposition. If so, 3¢ is a fundamental quasisymmetric polynomial Fo,(x1, ..., X,).

e (Pr)F is an integral basis of Pol.
More precisely, they form a basis of Pol,, if F € For has all terminal nodes < n.

e Let QSym, " C Pol, be the ideal generated by the f € QSym,, with f(0) = 0.

Proposition. The *J3; for F € For, project to a basis of the coinvariant space

Poln/QSymn+. \

All nontrivial leaves are in {1, ..., n}.

Positivity questions
e By their combinatorial definition, the *J3r have positive coefficients.

e The structure constants PePs = >_,, di-Ph are positive.
This can be proved combinatorially.

(Key: Leibniz rule T;(fg) = Ti(f)Rix1(8) + Ri(f) Ti(g).)



Bonus: Positivity of Schubert polynomials

A direct check shows:

Now for f € Pol with f(0)

f (Rix1(f) — Ri(f)) + Ra(f)

||'|\”/]8

|

3

Ti(f) + Ru(f) = ZX,RG + Ry (f

1
1

1=



Bonus: Positivity of Schubert polynomials

A direct check shows:

Now for f € Pol with f(0)

= Z i+1(f) — Ri(f)) + Ru(f)

8”

:le f)‘|‘R1(f ZXIRG ‘|‘R1
i=1

Choose f = G,, withw # id



Bonus: Positivity of Schubert polynomials

A direct check shows:

Now for f € Pol with f(0)

f (Rix1(f) — Ri(f)) + Ra(f)

i=1

=> xTi(f) + Ru(f) = Zx,Ra ) + Ra(f
i=1
Choose f = G,, withw # id

8H'|\”/]8

e This is a new recurrence.
e Proves that G&,, has positive coefficients.

e Can be interpreted combinatorially on pipe dreams.



	Symmetric case

