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Schubert polynomials

The Schubert polynomialsSw form a basis in Z[x1, x2, ...], indexed by permutations.

S123 = 1
S213 = x1

S132 = x1 + x2

S231 = x1x2
S312 = x21

S321 = x21x2

Ex (w ∈ S3)

⇒ Contain the Schur polynomials s–(x1, · · · , xn) as special cases.
⇒ Positive coefficients, and rich combinatorics.
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The Schubert polynomialsSw form a basis in Z[x1, x2, ...], indexed by permutations.

S123 = 1
S213 = x1

S132 = x1 + x2

S231 = x1x2
S312 = x21

S321 = x21x2

Origin: Sw encodes the (Chow/cohomology) class of the Schubert subvariety Xw
(inside the full flag variety).

Consequence: write
SuSv =

X
w

cwu,vSw

cwu,v = triple intersection number of Schubert varieties.

⇒ cwu,v ≥ 0, but no known combinatorial proof.

Ex (w ∈ S3)

⇒ Contain the Schur polynomials s–(x1, · · · , xn) as special cases.
⇒ Positive coefficients, and rich combinatorics.

(Lascoux-Schützenberger)



Quasisymmetric polynomials

Fix n ≥ 1, and let f ∈ Poln := Q[x1, ... , xn].

f is symmetric⇔ f(xff(1), ... , xff(n)) = f(x1, ... , xn) for all ff ∈ Sn
For all a1, ... , ak > 0, Coeff of xa11 · · · xakk = Coeff of xa1i1 · · · xakik in f
whenever i1, ... , ik are pairwise distinct.
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Quasisymmetric polynomials

Fix n ≥ 1, and let f ∈ Poln := Q[x1, ... , xn].

f is symmetric⇔ f(xff(1), ... , xff(n)) = f(x1, ... , xn) for all ff ∈ Sn

Definition. Let f ∈ Poln. Then f is quasisymmetric if

• Introduced in Stanley’s thesis (1970), explicitly identified by Gessel (1984)
They are the natural setting for certain generating functions for posets.

• Terminal object in a certain category of Hopf algebras.

• Active topic of research: create bases that refine symmetric bases, and expand
(quasi)symmetric functions in these bases,...

For n = 2, f = x21x2.
For n = 3, f = x21x2 + x21x3 + x22x3.

Motivation(s)

For all a1, ... , ak > 0, Coeff of xa11 · · · xakk = Coeff of xa1i1 · · · xakik in f
whenever i1, ... , ik are pairwise distinct.

For all a1, ... , ak > 0, Coeff of xa11 · · · xakk = Coeff of xa1i1 · · · xakik in f
whenever i1, ... , ik satisfy i1 < ... < ik.

⇔



Outline of the talk

1. Classical case (symmetric)
Space Symn of symmetric polynomials in x1, ... , xn
⇒ Defined by the vanishing of divided difference operators @i

⇒Which in turn characterize by "duality" the family of Schubert polynomialsSw.

Symn @i Sw

Combinatorics: Permutations



Outline of the talk

1. Classical case (symmetric)
Space Symn of symmetric polynomials in x1, ... , xn
⇒ Defined by the vanishing of divided difference operators @i

⇒Which in turn characterize by "duality" the family of Schubert polynomialsSw.

2. New case (quasisymmetric)
Space QSymn of quasisymmetric polynomials in x1, ... , xn.
⇒ Defined by the vanishing of trimming operators Ti.
⇒Which in turn characterize by "duality" the family of Forest polynomialsPF.

QSymn Ti PF

Combinatorics: Plane binary forests

Symn @i Sw

Combinatorics: Permutations



Further reading: arXiv:2406.01510



1. Classical case (symmetric)



Divided differences @i

• Let Poln = Q[x1, ... , xn] and let f ∈ Poln.

Recall f ∈ Symn ⇔ ff · f := f(xff(1), ... , xff(n)) = f(x1, ... , xn) for all ff ∈ Sn.

Pick ff = si = (i, i+ 1)

Symn =
n−1\
i=1

ker @iLetting @i =
id− si
xi − xi+1

,
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Divided differences @i

• Let Poln = Q[x1, ... , xn] and let f ∈ Poln.

Recall f ∈ Symn ⇔ ff · f := f(xff(1), ... , xff(n)) = f(x1, ... , xn) for all ff ∈ Sn.

Pick ff = si = (i, i+ 1)

Symn =
n−1\
i=1

ker @i

• Endomorphisms generated by the @i ?

“NilCoxeter monoid”≃ Permutations w in Sn with product

Relations @2i = 0, @i@i+1@i = @i+1@i@i+1 and @i@j = @j@i for |i− j| ≥ 2.

w · w′ = ww′ if ‘(w) + ‘(w′) = ‘(ww′), and 0 otherwise.

⇒ Define @w as the composite @i1@i2 · · · @ik .

w = w′ · si for some w′ ⇔ i ∈ Des(w) = {i : w(i) > w(i+ 1)}
w = si1 · si2 · · · sik ⇔ si1si2 · · · sik is a reduced expression for w.

• This gives

Letting @i =
id− si
xi − xi+1

,
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Pol = limn Poln = Q[x1, x2, ...].
S∞ = limn Sn = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.
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Pol = limn Poln = Q[x1, x2, ...].
S∞ = limn Sn = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.

Definition-Theorem. The Schubert polynomialsSw for w ∈ S∞, are the unique family
of homogenous polynomials in Pol such thatSid = 1 and

Proof Sketch: Pick n such that w ∈ Sn, defineSw = @w−1wn
o
(xn−1

1 xn−2
2 · · · x1n−1), and

check that this does not depend on n. This proves existence, uniqueness is easier.

@iSw =

(
Swsi if i ∈ Des(w),
0 otherwise.



Schubert polynomialsSw

Pol = limn Poln = Q[x1, x2, ...].
S∞ = limn Sn = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.

Definition-Theorem. The Schubert polynomialsSw for w ∈ S∞, are the unique family
of homogenous polynomials in Pol such thatSid = 1 and

Corollary (Duality). For any w,w′ ∈ S∞,

Constant term of @w(Sw′) =

(
1 if w = w′

0 otherwise.

Proof Sketch: Pick n such that w ∈ Sn, defineSw = @w−1wn
o
(xn−1

1 xn−2
2 · · · x1n−1), and

check that this does not depend on n. This proves existence, uniqueness is easier.

Iterating the equations above gives the following:

@iSw =

(
Swsi if i ∈ Des(w),
0 otherwise.



Back to example

S123 = 1

S213 = x1 S132 = x1 + x2

S231 = x1x2 S312 = x21

S321 = x21x2
2

2

21

1

1

Divisibility for the nilCoxeter monoid=Weak order



What do we get ?

• Sw is symmetric in x1, ... , xn if and only w has a unique descent at i = n.
Nice bases of various spaces:

Proposition. In that caseSw = s–(x1, ... , xn) (a Schur polynomial).
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What do we get ?

• Schubert polynomialsSw, w ∈ S∞ form an integral basis of Pol. We get a basis of
Poln if we restrict to w with all descents≤ n.

• Sw is symmetric in x1, ... , xn if and only w has a unique descent at i = n.

• Let Sym+
n ⊂ Poln be the ideal generated by the f ∈ Symn with f(0) = 0.

Positivity questions

Nice bases of various spaces:

• From their definition, not clear that they have positive coefficients. This requires
some work⇒ Combinatorial interpretation as pipe dreams.

• This approach says very little about the positivity of the general structure
coefficients cwuv.

Proposition. In that caseSw = s–(x1, ... , xn) (a Schur polynomial).

Proposition. TheSw forw ∈ Sn project to a basis of the coinvariant space Poln=Sym+
n .



2. New case (quasisymmetric)



Where are we ?

QSymn (Ti)i
PF

Symn (@i)i
Sw

Combinatorics of permutations

Combinatorics of plane binary forests

⟨@i⟩ = (@w)w∈S∞

⟨Ti⟩ = (TF)F∈For

What we have just seen

Where we’re going



Trimming operators

• Original approach: (Hivert, 2000)

Proposition. Let f ∈ Poln. Then f ∈ QSymn ⇔ s̄i(f) = f for all i < n.

The @̄i = id− s̄i vanish for i < n on QSymn.

Problem. The action of the s̄i & the relations satisfied by the @̄i are not very pleasant.

Define s̄i on Poln by s̄i(· · · xai xbi+1 · · · ) =
(
· · · xai xbi+1 · · · if a, b > 0

si(· · · xai xbi+1 · · · ) otherwise.
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Proposition. Let f ∈ Poln. Then f ∈ QSymn ⇔ s̄i(f) = f for all i < n.

The @̄i = id− s̄i vanish for i < n on QSymn.
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Trimming operators

• Original approach: (Hivert, 2000)

Proposition. Let f ∈ Poln. Then f ∈ QSymn ⇔ s̄i(f) = f for all i < n.

The @̄i = id− s̄i vanish for i < n on QSymn.

Problem. The action of the s̄i & the relations satisfied by the @̄i are not very pleasant.

Definition. For f ∈ Poln and i < n, define

Lemma. Ri(f) = Ri+1(f) if and only if s̄i(f) = f.

Define s̄i on Poln by s̄i(· · · xai xbi+1 · · · ) =
(
· · · xai xbi+1 · · · if a, b > 0

si(· · · xai xbi+1 · · · ) otherwise.

• New approach: (N.-Spink-Tewari, ’24+)

Definition. For f ∈ Poln and i < n , Ti =
Ri+1−Ri

xi

QSymn = ∩n−1
i=1 ker Ti

Ri(f(x1, ... , xn)) := f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

Trimming operators

⇒



Trimming operators

Ti(f) =
f(x1, ... , xi−1, xi, 0, xi+1, ... , xn−1)− f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

xi

T1(xa1x
b
2) =

8><>:
0 if ab > 0 or a = b = 0

xa−1
1 if a > 0 and b = 0

−xb−1
1 if b > 0 and a = 0.

Explicitly,



Trimming operators

Ti(f) =
f(x1, ... , xi−1, xi, 0, xi+1, ... , xn−1)− f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

xi

T1(xa1x
b
2) =

8><>:
0 if ab > 0 or a = b = 0

xa−1
1 if a > 0 and b = 0

−xb−1
1 if b > 0 and a = 0.

• We now let n → ∞ and thus consider Ti : Pol → Pol.
The Ti satisfy the relations of the Thompson monoid

TiTj = TjTi+1 if i > j.

Ti ⇔

Explicitly,

1 2

1 2

i

i i+ 1



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
44

5 6

77

8 9 10

Induced labeling of all leaves.

F



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

For= set of indexed forests.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
44

5 6

77

8 9 10

Induced labeling of all leaves.

• LTer(F) = the i such that i is the left leaf of a terminal node of F.
Example LTer(F) = {2, 4, 7, 11} above

• F · i is given by adding a terminal node with left leaf i.
• F=i is the reverse of the above, only defined if i ∈ LTer(F).

F



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

For= set of indexed forests.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3
44

5 6

77

8 9 10

Induced labeling of all leaves.

Proposition. Define F · G = the forest H obtained by identifying the leaves of F with
the roots of G. Then For ≃ Thompson monoid.

• LTer(F) = the i such that i is the left leaf of a terminal node of F.
Example LTer(F) = {2, 4, 7, 11} above

• F · i is given by adding a terminal node with left leaf i.
• F=i is the reverse of the above, only defined if i ∈ LTer(F).

F

⇒We can define TF = Ti1 · · · Tik by taking any decomposition F = i1 · · · ik.



Example

1

1

3

2

1

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

F = 1 · 2 · 1 = 1 · 1 · 3.



Forest polynomials

Definition-Theorem The forest polynomialsPF, F ∈ For, are the unique family of
homogeneous polynomials such thatP∅ = 1 and

Ti(PF) =

(
PF=i if i ∈ LTer(F)
0 otherwise.
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(
PF=i if i ∈ LTer(F)
0 otherwise.

Proof. The uniqueness follows as for Schubert polynomials.
For existence however, we cannot reason similarly, as there is no natural family of
“large forests”. Instead, we give a direct combinatorial definition in terms of certain
colorings of F (omitted here), and check that it works...



Forest polynomials

Definition-Theorem The forest polynomialsPF, F ∈ For, are the unique family of
homogeneous polynomials such thatP∅ = 1 and

Ti(PF) =

(
PF=i if i ∈ LTer(F)
0 otherwise.

Proof. The uniqueness follows as for Schubert polynomials.
For existence however, we cannot reason similarly, as there is no natural family of
“large forests”. Instead, we give a direct combinatorial definition in terms of certain
colorings of F (omitted here), and check that it works...

By iteration one gets:

Constant term of TF(PG) =

(
1 if G = F
0 otherwise.

Corollary. (Duality) For F,G ∈ For, we have



Back to Example

x21x2 + x21x3

x21 x1x2

x1

1

1

1

3

2

1

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

PF



What do we get ?

• PF is quasisymmetric in x1, ... , xn if and only F has a unique terminal node at i = n.

Proposition. If so,PF is a fundamental quasisymmetric polynomial F¸(x1, ... , xn).

Nice bases of various spaces:
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What do we get ?

• (PF)F is an integral basis of Pol.
More precisely, they form a basis of Poln if F ∈ For has all terminal nodes≤ n.

• PF is quasisymmetric in x1, ... , xn if and only F has a unique terminal node at i = n.

• Let QSymn
+ ⊂ Poln be the ideal generated by the f ∈ QSymn with f(0) = 0.

Positivity questions
• By their combinatorial definition, thePF have positive coefficients.

• The structure constantsPFPG =
P

H d
H
FGPH are positive.

This can be proved combinatorially.

Proposition. If so,PF is a fundamental quasisymmetric polynomial F¸(x1, ... , xn).

(Key: Leibniz rule Ti(fg) = Ti(f)Ri+1(g) + Ri(f)Ti(g).)

Proposition. ThePf for F ∈ Forn project to a basis of the coinvariant space
Poln=QSymn

+.
All nontrivial leaves are in {1, ... , n}.

Nice bases of various spaces:



Bonus: Positivity of Schubert polynomials

A direct check shows:

Ti = Ri@i

Now for f ∈ Pol with f(0) = 0,

f =
∞X
i=1

(Ri+1(f)− Ri(f)) + R1(f)

=
∞X
i=1

xiTi(f) + R1(f) =
∞X
i=1

xiRi@i(f) + R1(f)



Bonus: Positivity of Schubert polynomials

A direct check shows:

Ti = Ri@i

Now for f ∈ Pol with f(0) = 0,

Choose f = Sw with w ̸= id

f =
∞X
i=1

(Ri+1(f)− Ri(f)) + R1(f)

=
∞X
i=1

xiTi(f) + R1(f) =
∞X
i=1

xiRi@i(f) + R1(f)

Sw =
X

i∈Des(w)

xiRi(Swsi) + R1(Sw).



Bonus: Positivity of Schubert polynomials

A direct check shows:

Ti = Ri@i

Now for f ∈ Pol with f(0) = 0,

Choose f = Sw with w ̸= id

f =
∞X
i=1

(Ri+1(f)− Ri(f)) + R1(f)

=
∞X
i=1

xiTi(f) + R1(f) =
∞X
i=1

xiRi@i(f) + R1(f)

Sw =
X

i∈Des(w)

xiRi(Swsi) + R1(Sw).

• This is a new recurrence.

• Proves thatSw has positive coefficients.

• Can be interpreted combinatorially on pipe dreams.


	Symmetric case

