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Lie algebras

Lie algebras

Definition

A Lie algebra g is a vector space together with a bilinear map
[·, ·] : g× g→ g, called the Lie bracket, satisfying:

alternativity : for all x ∈ g, [x , x ] = 0,

the Jacobi identity: for all x , y , z ∈ g,
[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0.

Example

The special linear Lie algebra of order n, denoted An−1 or sln(C), is the
Lie algebra of n × n matrices with trace zero and with the Lie bracket
[X ,Y ] = XY − YX .
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Lie algebras

Representations

Definition

A representation (or module) of g is a vector space V together with a
linear map ρ : g→ gl(V ), such that

ρ([X ,Y ]) = ρ(X )ρ(Y )− ρ(Y )ρ(X ).

By abuse of notation, V is often called a g-module and ρ(X )(v) is often
written X · v .

Examples

trivial representation ρ : g→ gl(V ) such that ρ(X ) = 0 for all X ∈ g,

adjoint representation ad : g→ gl(g) such that ad(X )(Y ) = [X ,Y ]
for all X ,Y ∈ g.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 3 / 40



Lie algebras

Representations

Definition

A representation (or module) of g is a vector space V together with a
linear map ρ : g→ gl(V ), such that

ρ([X ,Y ]) = ρ(X )ρ(Y )− ρ(Y )ρ(X ).

By abuse of notation, V is often called a g-module and ρ(X )(v) is often
written X · v .

Examples

trivial representation ρ : g→ gl(V ) such that ρ(X ) = 0 for all X ∈ g,

adjoint representation ad : g→ gl(g) such that ad(X )(Y ) = [X ,Y ]
for all X ,Y ∈ g.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 3 / 40



Lie algebras

Representations

Definition

A representation (or module) of g is a vector space V together with a
linear map ρ : g→ gl(V ), such that

ρ([X ,Y ]) = ρ(X )ρ(Y )− ρ(Y )ρ(X ).

By abuse of notation, V is often called a g-module and ρ(X )(v) is often
written X · v .

Examples

trivial representation ρ : g→ gl(V ) such that ρ(X ) = 0 for all X ∈ g,

adjoint representation ad : g→ gl(g) such that ad(X )(Y ) = [X ,Y ]
for all X ,Y ∈ g.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 3 / 40



Lie algebras

Infinite dimensional Lie algebras

Let g be a finite dimensional semi-simple Lie algebra.
It is possible to define an affine Kac-Moody Lie algebra ĝ corresponding to
g as

ĝ := g⊗ C[t, t−1]⊕ Cc ,

where C[t, t−1] is the complex vector space of Laurent polynomials in the
indeterminate t, and Cc is ĝ’s center (one-dimensional) which satisfies
[c, g ] = 0 for all g ∈ g.

The central element c acts on an irreducible representation V of ĝ as the
multiplication by a scalar k , which is called the level of V .

Kac-Moody Lie algebras can also be described in terms of generators and
relations.
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Lie algebras

Weights

Definition

Let V be a module and µ be a linear functional on h, the Cartan
subalgebra. The weight space of V with weight µ is
Vµ := {v ∈ V : ∀H ∈ h, H · v = µ(H)v}. A weight is a linear functional
µ such that Vµ is non-zero.
If V is a direct sum V =

⊕
µ Vµ of its weight spaces, then it is called a

weight module.

The roots are weights for the adjoint representation. They can be written
as a linear combination of simple roots.

A weight λ is higher than another weight µ if λ− µ can be written as a
sum of positive roots, and λ is a highest weight if it is higher than any
other weight in V .
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Character formulas

Characters

Definition

Let L(λ) =
⊕

µ Vµ be an irreducible highest weight module with highest
weight λ. The character chL(λ) of L(λ) is defined as

chL(λ) =
∑
µ

dim(Vµ)e
µ,

where eµ is a formal exponential satisfying eµeµ
′
= eµ+µ′

.

By definition of a highest weight,

e−λchL(λ) =
∑
µ

dim(Vµ)e
µ−λ

is a series with positive coefficients in Z[[e−α0 , . . . , e−αn ]], where
α0, . . . , αn are the simple roots.
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Character formulas

Character formulas

Theorem (Weyl–Kac character formula)

ch(L(λ)) =

∑
w∈W sgn(w)ew(λ+ρ)−ρ∏
α∈∆+(1− e−α)dimgα

,

where W is the Weyl group of g, ∆+ the set of positive roots of g, sgn(w)
the signature of w, ρ ∈ h∗ the Weyl vector, and gα the α root space of g.

Beautiful formula but does not exhibit the positivity of the coefficients.

The principal specialisation (e−αi 7→ q for all i) gives an infinite product.

Example: A
(1)
1 at level 3 (Lepowsky–Wilson)

e−(Λ0+2Λ1)chL(Λ0 + 2Λ1) =
(−q; q)∞

(q, q4; q5)∞
, e−3Λ1chL(3Λ1) =

(−q; q)∞
(q2, q3; q5)∞

,

where (a; q)n =
∏n−1

k=0(1− aqk) and (a, b; q)n = (a; q)n(b; q)n.
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Character formulas

The Rogers–Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of
positive integers (λ1, . . . , λm) such that λ1 + · · ·+ λm = n. The integers
λ1, . . . , λm are called the parts of the partition λ.

Example

There are 5 partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).
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Example

There are 5 partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

The generating function for partitions into distinct parts congruent to
k mod N is

(−zqk ; qN)∞.

The generating function for partitions into parts congruent to k
mod N is

1

(zqk ; qN)∞
.
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Character formulas

The Rogers–Ramanujan identities

Definition

A partition λ of a positive integer n is a finite non-increasing sequence of
positive integers (λ1, . . . , λm) such that λ1 + · · ·+ λm = n. The integers
λ1, . . . , λm are called the parts of the partition λ.

Example

There are 5 partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).

Theorem (Rogers 1894, Rogers–Ramanujan 1919)
∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
,

For every positive integer n, the number of partitions of n such that the
difference between two consecutive parts is at least 2 is equal to the
number of partitions of n into parts congruent to 1 or 4 modulo 5.
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Character formulas

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

(−q; q)∞
∞∑
n=0

qn
2

(q; q)n
= (−q; q)∞

1

(q; q5)∞(q4; q5)∞

Obtained by giving two different formulations for the principal
specialisation of e−(Λ0+2Λ1)chL(Λ0 + 2Λ1), where L(Λ0 + 2Λ1) is the

irreducible highest weight A
(1)
1 -module of level 3 with highest weight

Λ0 + 2Λ1.

RHS: principal specialisation of the Weyl–Kac character formula

LHS: comes from the construction of a basis of L(Λ0 + 2Λ1) using vertex
operators
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(−q; q)∞
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n=0

qn
2

(q; q)n
= (−q; q)∞

1

(q; q5)∞(q4; q5)∞

LHS: comes from the construction of a basis of L(Λ0 + 2Λ1) using vertex
operators.
Very rough idea:

Start with a spanning set of L(Λ0 + 2Λ1): here, monomials of the
form Z f1

1 . . .Z fs
s for s, f1, . . . , fs ∈ N≥0.

Using Lie theory, reduce this spanning set: here, one should remove
all monomials containing Z 2

j or ZjZj+1.

Show that the obtained set is a basis of the representation (difficult).
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Character formulas

Partition identities and characters

With Lepowsky and Wilson’s approach (vertex operators +
Weyl–Kac character formula): discovery of many new partition
identities yet unknown to combinatorialists

Meurman–Primc 1987: higher levels of A
(1)
1

Capparelli 1993: level 3 standard modules of A
(2)
2

Siladić 2002: twisted level 1 modules of A
(2)
2

Nandi 2014: level 4 standard modules of A
(2)
2

Primc and Šikić 2016: level k standard modules of C
(1)
n

Often the identities are only conjectured, not proved, through this method.
If a combinatorial proof is found, it also implies equality of characters.

Combinatorics can also be used to find explicitly positive formulas for
characters, for example with the theory of perfect crystals.
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Crystals and grounded partitions
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Crystals and grounded partitions

Crystals: “combinatorial representations” of Lie algebras

Crystal for the affine Lie algebra A
(1)
n−1 at level 1:

B : 0 1 n − 2 n − 1· · ·1 2 n − 21 n − 1

0

If b1
i−−→ b2, we write f̃ib1 = b2, or equivalently b1 = ẽib2.

Let φi (b) (resp. εi (b)) denote the length of the maximal chain of i-arrows
coming out of (resp. arriving in) b. Example: φ1(0) = 1, φ2(0) = 0 .

To each vertex b ∈ B is associated a weight wt(b).

A perfect crystal satisfies a few additional properties and one can
associate to it a so-called energy function.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 11 / 40



Crystals and grounded partitions

Crystals: “combinatorial representations” of Lie algebras
The dual of B is also a crystal:

B∨ : 0 1 n − 2 n − 1· · ·1 2 n − 21 n − 1

0

We have f̃ib1 = b2 in B if and only if ẽib
∨
1 = b∨2 , and wt(b∨) = −wt(b).

If B1 and B2 are crystals, then we can define a crystal B1 ⊗ B2 with the
following arrows:

ẽi (b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if φi (b1) ≥ εi (b2),

b1 ⊗ ẽib2 if φi (b1) < εi (b2),

f̃i (b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if φi (b1) > εi (b2),

b1 ⊗ f̃ib2 if φi (b1) ≤ εi (b2).

Then wt(b1 ⊗ b2) = wt(b1) + wt(b2).
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Crystals and grounded partitions

Example: A
(1)
1 at level 1

f̃i (b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if φi (b1) > εi (b2),

b1 ⊗ f̃ib2 if φi (b1) ≤ εi (b2),

B : 0 1

B ⊗ B∨ : 0 0

0 11 1

0 1⊗

⊗

⊗

⊗

1

0

1

10

0
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Crystals and grounded partitions

Energy functions

Let B be a perfect crystal.

Definition

An energy function on B ⊗ B is a map H : B ⊗ B → Z satisfying for all i ,

H (ẽi (b1 ⊗ b2)) =


H(b1 ⊗ b2) if i ̸= 0,

H(b1 ⊗ b2) + 1 if i = 0 and φ0(b1) ≥ ε0(b2)

H(b1 ⊗ b2)− 1 if i = 0 and φ0(b1) < ε0(b2).

By definition, the value of H(b1 ⊗ b2) determines the values H(b′1 ⊗ b′2) of
all the vertices b′1 ⊗ b′2 which are in the same connected component as
b1 ⊗ b2.
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Crystals and grounded partitions

The (KMN)2 crystal base character formula (1992)

To each dominant integral weight λ, one can associate a ground state
path

pλ =
(
gk)

∞
k=0 = · · · ⊗ gk+1 ⊗ gk ⊗ · · · ⊗ g1 ⊗ g0,

where gi ∈ B for all i .
A tensor product p = (pk)

∞
k=0 = · · · ⊗ pk+1 ⊗ pk ⊗ · · · ⊗ p1 ⊗ p0 of

elements pk ∈ B is said to be a λ-path if pk = gk for k large enough. Let
P(λ) denote the set of λ-paths .

Theorem (Kang–Kashiwara–Misra–Miwa–Nakashima–Nakayashiki)

Let L(λ) be an irreducible highest weight module of weight λ. We have

ch(L(λ)) =
∑

p∈P(λ)

ewtp,

where wtp is defined in terms of the energy function and the simple roots.
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From perfect crystals to partition identities

Outline
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From perfect crystals to partition identities

Example: Primc’s identity on A
(1)
1 at level 1

B : 0 1

B ⊗ B∨ : 0 0

0 11 1

0 1⊗

⊗

⊗

⊗

1

0

1

10

0

0⊗ 1←→ a,

0⊗ 0←→ b,

1⊗ 1←→ c ,

1⊗ 0←→ d .

For Λ0, the ground state path is pΛ0 = · · · ⊗ b ⊗ b.
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From perfect crystals to partition identities

Primc’s identity (conjectured using KMN2 and Weyl–Kac)
From Weyl–Kac, the principal specialisation of e−Λ0chL(Λ0) is equal to

1
(q;q)∞

.

Let P be the energy function in (B ⊗ B∨)⊗ (B ⊗ B∨) for A(1)
1 at level 1.

Consider partitions in four colours a, b, c, d , with difference conditions

P =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2

.

Primc (1998) conjectured that after performing the dilations

ka → 2k − 1, kb → 2k , kc → 2k , kd → 2k + 1,

equivalent to the principal specialisation, the generating function for
these partitions (not keeping track of the colours) also gives e−Λ0chL(Λ0).
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these partitions (not keeping track of the colours) also gives e−Λ0chL(Λ0).
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From perfect crystals to partition identities

Refinement of Primc’s identity

Theorem (D.–Lovejoy 2017)

Let P(n; k , ℓ,m) denote the number of partitions satisfying the difference
conditions of matrix P, with k parts coloured a, ℓ parts coloured c and m
parts coloured d. Then∑

n,k,ℓ,m≥0

P(n; k , ℓ,m)qnakcℓdm =
(−aq; q2)∞(−dq; q2)∞

(q; q)∞(cq; q2)∞
.

Proved via a variant of the method of weighted words (D. 2016) using
q-difference equations, not at all related to crystals.

We we perform the principal specialisation, the product side indeed
becomes 1

(q;q)∞
.
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From perfect crystals to partition identities

Connecting the KMN2 character formula to partitions

Reminder: (KMN)2 character formula

Let L(λ) be an irreducible highest weight module of weight λ. We have

ch(L(λ)) =
∑

p∈P(λ)

ewtp,

where P(λ) is the set of λ-paths.

In A
(1)
n−1, the fundamental weights are Λ0, . . . ,Λn−1. With respect to the

crystal B ⊗ B∨, they all have constant ground state paths.

Goal: relate λ-paths to coloured partitions to give a purely combinatorial
character formula in terms of partition generating functions.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 19 / 40



From perfect crystals to partition identities

Connecting the KMN2 character formula to partitions

Reminder: (KMN)2 character formula

Let L(λ) be an irreducible highest weight module of weight λ. We have

ch(L(λ)) =
∑

p∈P(λ)

ewtp,

where P(λ) is the set of λ-paths.

In A
(1)
n−1, the fundamental weights are Λ0, . . . ,Λn−1. With respect to the

crystal B ⊗ B∨, they all have constant ground state paths.

Goal: relate λ-paths to coloured partitions to give a purely combinatorial
character formula in terms of partition generating functions.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 19 / 40



From perfect crystals to partition identities

Connecting the KMN2 character formula to partitions

Reminder: (KMN)2 character formula

Let L(λ) be an irreducible highest weight module of weight λ. We have

ch(L(λ)) =
∑

p∈P(λ)

ewtp,

where P(λ) is the set of λ-paths.

In A
(1)
n−1, the fundamental weights are Λ0, . . . ,Λn−1. With respect to the

crystal B ⊗ B∨, they all have constant ground state paths.

Goal: relate λ-paths to coloured partitions to give a purely combinatorial
character formula in terms of partition generating functions.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 19 / 40



From perfect crystals to partition identities

Grounded partitions

Definition

Let C be a set of colours and cg ∈ C. Let ≻ be a binary relation defined
on the coloured integers ZC = {kc : k ∈ Z, c ∈ C}.
A grounded partition with ground cg and relation ≻ is a finite sequence
(π0, . . . , πs) of coloured integers, such that

for all i ∈ {0, . . . , s − 1}, πi ≻ πi+1,

πs = 0cg ,

πs−1 ̸= 0cg .

Let P≻
cg denote the set of such partitions.

Example

Let C = c1, c2, c3, and for all k ∈ Z, c , c ′ ∈ C, kc ≻ k ′c ′ ⇔ k = k ′ + 1.
The sequence (4c1 , 3c3 , 2c2 , 1c2 , 0c1) is a grounded partition with ground c1
and relation ≻.
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From perfect crystals to partition identities

Connection with ground state paths
Let B a perfect crystal and λ be a highest weight with constant ground
state path pλ = · · · ⊗ g ⊗ g ⊗ g .
Let H be an energy function on B ⊗ B such that H(g ⊗ g) = 0.
Let CB = {cb : b ∈ B} be the set of colours indexed by the vertices of B.
We define the binary relations ⋗ and ≫ on ZCB by

kcb ⋗ k ′cb′ if and only if k − k ′ = H(b′ ⊗ b),

kcb ≫ k ′cb′ if and only if k − k ′ ≥ H(b′ ⊗ b).

Theorem (D.–Konan 2019)

The set of λ-paths is in bijection with the set of grounded partitions P⋗
cg .

Theorem (D.–Konan 2019)

There is a bijection between P≫
cg and P⋗

cg × Pcg , where Pcg is the set of
coloured partitions where all parts have colour cg .
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From perfect crystals to partition identities

New combinatorial character formula

Theorem (D.–Konan 2019)

Let L(λ) be an irreducible highest weight module of weight λ with
constant ground state path. Denoting by C (π) the colour sequence of π
and setting q = e−δ/d0 and cb = ewtb for all b ∈ B, we have∑

π∈P⋗
cg

C (π)q|π| = e−λch(L(λ)),

∑
π∈P≫

cg

C (π)q|π| =
e−λch(L(λ))

(q; q)∞
.

Primc’s original conjecture can be deduced by using on one hand the
principal specialisation in this theorem, and on the other hand the principal
specialisation in the Weyl–Kac character formula.
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From perfect crystals to partition identities

Another example of application (from A
(1)
1 at level n)

Theorem (D.–Hardiman–Konan 2022)

Let n be a non-negative integer. Let Cn denote the set of (n + 1)-coloured
partitions (λ1, . . . , λs), where each part is a non-negative integer indexed
by a colour taken from {c0, c1, . . . , cn}, such that for all 1 ≤ i ≤ s − 1,

λi − λi+1 = |ui − ui+1|,

where for all i ∈ {1, . . . , s}, λi has colour cui . Let Ci ,n(m) be the number
of (n + 1)-coloured partitions of m in Cn such that the last part is 0ci and
the penultimate part has colour different from ci . We have

∑
m≥0

Ci ,n(m)qm =
(qi+1, qn−i+1, qn+2; qn+2)∞

(q; q2)∞(q; q)∞
.
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From partitions to character formulas

Outline

1 Basics on Lie algebras

2 Character formulas

3 Crystals and grounded partitions

4 From perfect crystals to partition identities

5 From partitions to character formulas

Generalisation of Primc’s identity and characters for A
(1)
n at level 1

The case of non-constant ground state paths
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From partitions to character formulas

The idea

We have seen how to combine the principal specialisation of the
Weyl–Kac character formula and of our combinatorial character
formula to obtain partition identities (losing information on the
colours because of the specialisation).

If we do not perform the principal specialisation, we can study the
grounded partitions combinatorially (keeping as many colours as
possible) and deduce non-specialised character formulas. They also
have the advantage of having manifestly positive coefficients in the
e−αi ’s.
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From partitions to character formulas Characters for A
(1)
n at level 1
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From partitions to character formulas Characters for A
(1)
n at level 1

Another identity of Primc
Studying the crystal of A

(1)
2 at level 1, Primc proved that, after performing

the principal specialisation, the generating function for coloured partitions
satisfying the difference conditions given by the energy



a2b0 a2b1 a1b0 a0b0 a2b2 a1b1 a0b1 a1b2 a0b2
a2b0 2 2 2 1 2 2 2 2 2
a2b1 1 2 1 1 2 1 2 2 2
a1b0 1 1 2 1 1 2 2 2 2
a0b0 1 1 1 0 1 1 1 1 1
a2b2 0 0 1 1 0 1 1 2 2
a1b1 0 1 0 1 1 0 2 1 2
a0b1 0 1 0 1 1 0 2 1 2
a1b2 0 0 1 1 0 1 1 2 2
a0b2 0 0 0 1 0 0 1 1 2


becomes

1

(q; q)∞
.
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From partitions to character formulas Characters for A
(1)
n at level 1

The energy function in a level 1 perfect crystal for A
(1)
n

Let (an)n∈N and (bn)n∈N be two sequences of symbols. Define the set of
colours: {aibk : i , k ∈ N}.

Definition

For all i , k , i ′, k ′ ∈ N, let

∆(aibk , ai ′bk ′) = χ(i ≥ i ′)− χ(i = k = i ′) + χ(k ≤ k ′)− χ(k = i ′ = k ′),

where χ(prop) equals 1 if prop is true and 0 otherwise.

Theorem (D.–Konan (2022))

The energy of the crystal B ⊗ B∨ of A
(1)
n at level 1 such that

H((0⊗ 0∨)⊗ (0⊗ 0∨)) = 0 satisfies for all k, ℓ, k ′, ℓ′ ∈ {0, . . . , n},

H((ℓ′ ⊗ k ′∨)⊗ (ℓ⊗ k∨)) = ∆(akbℓ; ak ′bℓ′).
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From partitions to character formulas Characters for A
(1)
n at level 1

Generalisation of Primc’s identity

For every positive integer n, let Pn denote the set of partitions with
colours {aibk : 0 ≤ i , k ≤ n − 1}, satisfying the difference conditions ∆.

Let Pn(m; u0, . . . , un−1; v0, . . . , vn−1) denote the number of n2-coloured
partitions of m which belong to Pn, where for i ∈ {0, . . . , n − 1}, the
symbol ai (resp. bi ) appears ui (resp. vi ) times in its colour sequence.

Theorem (D.–Konan (2022))

For every positive integer n, we have, after setting ai = b−1
i for all i ,∑

m,u0,...,un−1,v0,...,vn−1≥0

Pn(m; u0, . . . , un−1; v0, . . . , vn−1)q
mbv0−u0

0 · · · bvn−1−un−1

n−1

= [x0]
n−1∏
i=0

(−b−1
i xq; q)∞(−bix−1; q)∞.

Purely combinatorial proof by studying the coloured partitions.
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From partitions to character formulas Characters for A
(1)
n at level 1

Principal specialisation
In his paper, Primc used the principal specialisation, which corresponds to:{

q 7→ qn

bi 7→ qi for all i ∈ {0, . . . , n − 1}.

Corollary (D.–Konan (2022))

Let n be a positive integer. By performing the dilations above, the
generating function for the coloured partitions in Pn becomes:

[x0]
n−1∏
i=0

(−qn−ix ; qn)∞(−qix−1; qn)∞ = [x0](−qx ; q)∞(−x−1; q)∞

=
1

(q; q)∞
.

The cases n = 2 and n = 3 recover Primc’s original results.
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From partitions to character formulas Characters for A
(1)
n at level 1

Non-specialised character formula for A
(1)
n

Combining our new character formula with our generalisation of Primc’s
identity, we obtain:

Theorem (D.–Konan)

Let n be a positive integer, and let Λ0, . . . ,Λn be the fundamental weights

of A
(1)
n . By setting ewtvi = bi and e−δ = q, we have:

e−Λℓch(L(Λℓ))

(q; q)∞
= [x0]

(
ℓ−1∏
i=0

(−b−1
i x ; q)∞(−bix−1q; q)∞

×
n−1∏
i=ℓ

(−b−1
i xq; q)∞(−bix−1; q)∞

)
.

This recovers a character formula of Kac–Peterson (1984) and gives a new
expression as a sum of infinite products with positive coefficients.
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From partitions to character formulas The case of non-constant ground state paths

Outline

1 Basics on Lie algebras
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Generalisation of Primc’s identity and characters for A
(1)
n at level 1

The case of non-constant ground state paths
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From partitions to character formulas The case of non-constant ground state paths

Multi-grounded partitions
Goal: extend the idea of grounded partitions to treat the cases of crystals
where the ground state paths are not constant.

Definition

Let C be a set of colors and ≻ a binary relation defined on ZC . Suppose
that there exist some colors cg0 , . . . , cgt−1 in C and unique coloured

integers u
(0)
cg0

, . . . , u
(t−1)
cgt−1

such that

u(0) + · · ·+ u(t−1) = 0,

u
(0)
cg0
≻ u

(1)
cg1
≻ · · · ≻ u

(t−1)
cgt−1

≻ u
(0)
cg0

.

Then a multi-grounded partition with ground cg0 , . . . , cgt−1 and relation ≻
is a finite sequence π = (π0, · · · , πs−1, u

(0)
cg0

, . . . , u
(t−1)
cgt−1

) of coloured
integers such that πi ≻ πi+1 for all i , and

(πs−t , · · · , πs−1) ̸= (u
(0)
cg0

, . . . , u
(t−1)
cgt−1

) in terms of coloured integers.

The set of these multi-grounded partitions is denoted by P≻
cg0 ···cgt−1

.
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From partitions to character formulas The case of non-constant ground state paths

Example

Take C = {c1, c2, c3},

M =

 2 2 2
0 0 2
−2 0 2

 ,

and define the relation ≻ on ZC by kcb ≻ k ′cb′ if and only if k − k ′ ≥ Mb,b′ .

If we choose (g0, g1) = (1, 3), the pair (u(0), u(1)) = (1,−1) is the unique
pair satisfying the conditions

u(0) + u(1) = 0,

u
(0)
c1 ≻ u

(1)
c3 ≻ u

(0)
c1 .

The sequences (3c3 , 3c2 , 3c1 ,−1c3 , 1c1 ,−1c3) and
(1c3 , 3c1 , 1c3 , 3c1 ,−1c3 , 1c1 ,−1c3) are multi-grounded partitions with
ground c1, c3 and relation ≻,
(1c1 ,−1c3 , 1c1 ,−1c3) and (2c1 , 1c1 ,−1c3) are not.
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From partitions to character formulas The case of non-constant ground state paths

Non-constant ground state paths
Let B be a crystal of level ℓ, let λ be a dominant weight, and let

pλ =
(
gk)

∞
k=0 = · · · ⊗ gk+1 ⊗ gk ⊗ · · · ⊗ g1 ⊗ g0

be the corresponding ground state path. It is always periodic. Let t denote
the period of pλ, i.e. the smallest positive integer k such that gi+k = gi
for all i ≥ 0.

Let H be an energy function on B ⊗ B, and define

Hλ(b ⊗ b′) := H(b ⊗ b′)− 1

t

t−1∑
k=0

H(gk+1 ⊗ gk).

Thus we have
t−1∑
k=0

Hλ(gk+1 ⊗ gk) = 0.

Let D be a positive integer such that DHλ(B ⊗ B) ⊂ Z and
1
t

∑t−1
k=0(k + 1)DHλ(gk+1 ⊗ gk) ∈ Z.
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From partitions to character formulas The case of non-constant ground state paths

Non-constant ground state paths
Let us define the relations on ZCB :

kcb ⋗ k ′cb′ ⇐⇒ k − k ′ = DHλ(b
′ ⊗ b),

kcb ≫ k ′cb′ ⇐⇒ k − k ′ ≥ DHλ(b
′ ⊗ b).

Theorem (D.–Konan 2022)

There is a bijection between the set of λ-paths P(λ) and the set

tP⋗
cg0 ···cgt−1

of multi-grounded partitions of P⋗
cg0 ···cgt−1

whose number of

parts is divisible by t.

Theorem (D.–Konan 2022)

Let dP be the set of partitions where all parts are divisible by d. There is
a bijection between tP⋗

cg0 ···cgt−1
× dP and d

t P≫
cg0 ···cgt−1

, where d
t P≫

cg0 ···cgt−1

is the set of π ∈ tP≫
cg0 ···cgt−1

such that for all k,

πk − πk+1 − DHλ(pk+1 ⊗ pk) ∈ dZ≥0, where c(πk) = cpk and πs = u
(0)
cg0

.
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A general character formula

Theorem (D.–Konan 2022)

Let L(λ) be an irreducible highest weight module of weight λ with
constant ground state path. Setting q = e−δ/(d0D) and cb = ewtb for all
b ∈ B, we have cg0 · · · cgt−1 = 1, and the character of the irreducible
highest weight module L(λ) is given by the following expressions:∑

µ∈tP⋗
cg0 ···cgt−1

C (π)q|π| = e−λch(L(λ)),

∑
π∈ d

t P≫
cg0 ···cgt−1

C (π)q|π| =
e−λch(L(λ))

(qd ; qd)∞
.
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Example: character of Λ0 in A
(2)
2n−1(n ≥ 3)

B:

1 2 n − 1 n· · ·

1 2 n − 1 n· · ·
0 0

1

1

2

2

n − 2

n − 2

n − 1

n − 1

n

Ground state path: pΛ0 = · · · ⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1,

energy H =



1 2 · · · n n · · · 2 1

1 1 · · · · · · · · · · · · · · · · · · 1

2 0
. . .

...
...

...
. . .

. . . 1∗
...

n
...

. . .
. . .

...

n
...

. . .
. . .

...
...

... 0∗
. . .

. . .
...

2 0 0
. . .

. . .
...

1 −1 0 · · · · · · · · · · · · 0 1


.
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Example: character of Λ0 in A
(2)
2n−1(n ≥ 3)

We have H(1⊗ 1) + H(1⊗ 1) = 0, so HΛ0 = H.

We apply our character formula with d = 2 and D = 2 and obtain

∑
π∈ 2

2P
≫
c
1
c1

C (π)q|π| =
e−Λ0ch(L(Λ0))

(q2; q2)∞
,

where q = e−δ/2 and cb = ewtb for all b ∈ B.

Thus we must compute the generating function for 2
2P≫

c1c1
, the set of

multi-grounded partitions π = (π0, . . . , π2s−1,−1c1 , 1c1) with relation ≫
and ground c1, c1, having an even number of parts, such that for all
k ∈ {0, . . . , 2s − 1},

πk − πk+1 − 2H(pk+1 ⊗ pk) ∈ 2Z≥0,

where c(πk) = cpk and π2s = −1c1 .
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Example: character of Λ0 in A
(2)
2n−1(n ≥ 3)

H =



1 2 · · · n n · · · 2 1

1 1 · · · · · · · · · · · · · · · · · · 1

2 0
. . .

...
...

...
. . .

. . . 1∗
...

n
...

. . .
. . .

...

n
...

. . .
. . .

...
...

... 0∗
. . .

. . .
...

2 0 0
. . .

. . .
...

1 −1 0 · · · · · · · · · · · · 0 1


.

By the values of H, the condition
πk − πk+1 − 2H(pk+1 ⊗ pk) ∈ 2Z≥0,
and the fact that u(0) = −1, the
multi-grounded partitions of 2

2P≫
c1c1

have parts with odd sizes.

The relation ≫ corresponds to the following partial order on the set of
coloured odd integers:

(−1)c1
1c1

≪ 1c2 ≪ · · · ≪ 1cn ≪ 1cn ≪ · · · ≪ 1c2 ≪
1c1
3c1
≪ 3c2 ≪ · · · .

Only parts coloured c1 and c1 can appear several times, in sequences of
the form

· · · ≪ (2k − 1)c1 ≪ (2k + 1)c1 ≪ (2k − 1)c1 ≪ · · · ≪ (2k − 1)c1 ≪ · · · .
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Example: character of Λ0 in A
(2)
2n−1(n ≥ 3)

(−1)c1
1c1

≪ 1c2 ≪ · · · ≪ 1cn ≪ 1cn ≪ · · · ≪ 1c2 ≪
1c1
3c1
≪ 3c2 ≪ · · · ,

where parts coloured c1 and c1 can repeat in sequences

· · · ≪ (2k − 1)c1 ≪ (2k + 1)c1 ≪ (2k − 1)c1 ≪ · · · ≪ (2k − 1)c1 ≪ · · · .

For fixed k ≥ 1, sequences of parts coloured c1 and c1 are generated by

(1 + c1q
2k−1)(1 + c1q

2k+1)

(1− c1c1q
4k)

.

For k = 0, the sequence (1c1 , (−1)c1 , 1c1) can occur at the end of the
partitions grounded in c1, c1, but ((−1)c1 , 1c1 , (−1)c1 , 1c1) cannot.
So, if we temporarily forgot the condition on the even number of parts in
2
2P≫

c1c1
, the generation function would be

(1 + c1q) ·
(−c1q3,−c1q,−c2q,−c2q, . . . ,−cnq,−cnq; q2)∞

(c1c1q
4; q4)∞

.
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Example: character of Λ0 in A
(2)
2n−1(n ≥ 3)

Remark ∑
n,k≥0

an,kx
kqn +

∑
n,k≥0

an,k(−x)kqn = 2
∑
n,k≥0

an,2kx
2kqn

Thus, the generating function for multi-grounded partitions in 2
2P≫

c1c1
is

∑
π∈ 2

2P
≫
c
1
c1

C (π)q|π| =
1

2(c1c1q
4; q4)∞

(
(−c1q,−c1q, . . . ,−cnq,−cnq; q

2)∞

+ (c1q, c1q, . . . , cnq, cnq; q
2)∞

)

=
e−Λ0ch(L(Λ0))

(q2; q2)∞
,

where δ = α0 + α1 + 2α2 · · ·+ 2αn−1 + αn,
q = e−δ/2 and ci = eαi+···+αn−1+αn/2 for all i ∈ {1, . . . , n}.
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Conclusion

What we know:

Non-specialised character formulas for level 1 standard modules of

types A
(1)
n , C

(1)
n , A

(2)
2n , D

(2)
n+1, A

(2)
2n−1, B

(1)
n , and D

(1)
n .

Partition identities and specialised characters for higher levels of A
(1)
n .

Partition identities from level 1 standard modules of C
(1)
n , partially

proving the Capparelli–Meurman–Primc–Primc conjecture (D.–Konan
2023).

What we want to know:

Non-specialised character formulas for all types and all levels.

New partition identities arising from these crystals (Dombos 2024+ :

partition identity coming from G
(2)
2 at level 1).
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Thank you very much

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 40 / 40



From partitions to character formulas The case of non-constant ground state paths

(KMN)2

wtp = λ+
∞∑
k=0

(wtpk − wtgk
)
− δ

d0

∞∑
j=k

(H(pj+1 ⊗ pj)− H(gj+1 ⊗ gj))

 ,

ch(L(λ)) =
∑

p∈P(λ)

ewtp.

Jehanne Dousse (UniGE) Cristaux parfaits et partitions 30 septembre 2024 40 / 40


	Basics on Lie algebras
	Character formulas
	Crystals and grounded partitions
	From perfect crystals to partition identities
	From partitions to character formulas
	Generalisation of Primc's identity and characters for An(1) at level 1
	The case of non-constant ground state paths


