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Definition of Coxeter groups

Definition

A Coxeter group is a pair (W, S) where W is a group and S C W is a set of
generators, with the presentation

W= (S| (si5)™ =e)

where mj; = 1 and mj; = mj; € N>» U {oo}. The cardinality of S is called the rank of
(W, S).
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Definition

A Coxeter group is a pair (W, S) where W is a group and S C W is a set of
generators, with the presentation

W= (S| (si5)™ =e)

where mj; = 1 and mj; = mj; € N>» U {oo}. The cardinality of S is called the rank of
(W, S).

.

If we take the symmetric group W = &, then the adjacent transpositions
S:={(,i+1)|i=1...,n— 1} generate W. The pair (&,,S) is a Coxeter group of
rank n— 1.

v
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Where does this definition come from ?
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Where does this definition come from ?

- In the 19th, 20th centuries, real reflexions groups were a central subjet of study.
They were used to understand the symmetries of polytopes (i.e., the
automorphism group of the polytope).
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Where does this definition come from ?

- In the 19th, 20th centuries, real reflexions groups were a central subjet of study.
They were used to understand the symmetries of polytopes (i.e., the
automorphism group of the polytope).

- Coxeter groups (non necessarily finite) were then introduced in 1934 by H. S. M.
Coxeter as abstractions of real reflections groups.
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Figure — Here is a 6-gone. If we take the collection of the reflections associated to the
hyperplanes on the figure then we get a subgroup of O(]Rz) that is Coxeter group, namely the
dihedral group De.
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Tetrahedron

Dodecahedron

Figure — The symmetry group of each Platonic solid is a Coxeter group.
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Words in Coxeter groups

Let (W, S) be a Coxeter group with S = {s1,s2,...,s,}. Each element w € W
decomposes as a word on the alphabet S, that is

W =iy Sip * i

The minimal number of letters needed to express w is called the length of w and is
denoted £(w). The coefficients mj; give the relations inside the words. For example
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o If mjj = 3 then we have the relation s;s;s; = s;s;s; (braid relation).

e If mj; = oo there is no relation between s; and s;.

Let (W, S) be a Coxeter group with S = {s1, s, 53, 54}. Assume that mi> = 3,
mi3 =2, mg =2, ma3 = 3, mag = 2 and m3gs = 4. Let w = 51535051545251 be an

element of W. Then

W = 51535251545251
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Coxeter length via inversion set

Definition

Let (W, S) be a Coxeter group with length function ¢. Let ® be a root system of W
with ® = ®* L &~ its usual decomposition into positive roots and negative roots. To
any root o € ® one can associate a reflexion s, € W.

Let w € W. The inversion set of w is

N(w) = {ac ot | wl(a) c d™}
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Coxeter length via inversion set

Definition

Let (W, S) be a Coxeter group with length function ¢. Let ® be a root system of W
with ® = ®* L &~ its usual decomposition into positive roots and negative roots. To
any root o € ® one can associate a reflexion s, € W.

Let w € W. The inversion set of w is

N(w) = {r € 0* | w=a) € 07
={a e dt | Lsaw) < (w)}.

Proposition

One has £(w) = |N(w)|.
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Goal : We want to represent Coxeter groups by means of graphs.

Example (Two Coxeter g

5
>
S1
The Coxeter graph of (W, S) is the
labelled graph I\ defined as follows i
e The set of vertices is S.

e The edges are given by the
relations between the elements of
S : {si,s;} is an edge labelled by
mj;. 2) S5 ED
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All other Coxeter groups
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Eg

Er

Eg

Fy

G

S

Weyl groups Affine Weyl groups All other Coxeter groups
Ap(n>1) —o— :: —0—o
B,=Ch(n>2) o—o— w —otso
Dy, (n>4)
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Quick classification of (irreducible) Coxeter groups

Eg

Er

Eg

Fy

G

Cp(n29)

ote o oty
>— —< D, (>4
el &
.—.—I—.—.—.—.—. By

o—o "o —o——o Fy
6 .
——o—0 G2

Weyl groups Affine Weyl groups All other Coxeter groups
Au(n>1) —— e ——s A Ann>1)
B,=Ch(n>2) o—o  —ots ot B, =C,
D, (n>1) ——o— < > - —t Bon>3)
4 4
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o—o "o —o——o Fy
6 .
——o—0 G2

Weyl groups Affine Weyl groups All other Coxeter groups
Au(n>1) —— e ——s A Ann>1)
B,=Cpn(n>2) o—o— i —ote et B,=0C,
D, (n>4) —o— ot < > - —ty Ban>3)
B oo o ot G (n>3)
6
>_ _ “This part is actually very big”
—< Dy (n>4)
PO I
P I 1
Er
Fy —_—t _
Es
G, 6

10/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Geometrical construction of (non-twisted) affine Weyl groups
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crystallographic root system with simple system A.
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Geometrical construction of (non-twisted) affine Weyl groups

- Let V be a Euclidean space with inner product (—|—) and ® C V be an irreducible
crystallographic root system with simple system A.

- Let o € ®, k € Z. We can define a hyperplane as follows
Hox={x€ V| (x| a)=k}
The collection of these hyperplanes is known as the affine Coxeter arrangement.

- The affine Coxeter arrangement cuts out V' into simplices which are called alcoves.
The set of alcoves is denoted by A.

- Let s, x be the reflection associated to the hyperplane H, . We define the affine
Weyl group W corresponding to ® by

W:=(sqk|acd kecl)

T(M) x W,

1R

where M is the coroot lattice.

11/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

Hao

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

Hao /Hay

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

/77777777
7777777 7
7777777777 4

Al /4

7777
77777777777
777777777777

/




Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

Hpo

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves of Agl)

Example : Let &7 = {«, 8,7 = o + B} be a positive root system of As.

Hpo

12/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves

Question : What do we know about the set of alcoves A?

13 /37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Alcoves

Question : What do we know about the set of alcoves A?

Theorem (J. Tits, 60's)
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corresponding alcove.
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Alcoves

Question : What do we know about the set of alcoves A?

Theorem (J. Tits, 60's)

The affine Weyl group W acts regularly on A. In particular the set of alcoves of W is
in bijection with the elements of W. If w € W, we commonly denote by Ay, its
corresponding alcove.

Moral : Each alcove can be thought of as an element of W and vice versa.

Question : Since W is a Coxeter group, is there a way to see the combinatorial
relations in V' 7

13 /37
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From the two previous elements we can get another one, denoted w, as follows :

S$250825180 51505280

8280825 505182 515082

30 @1 8 S051825150
828082 2

80518251

505182

S051
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08280

8280825 505182 515082

) 5051825150
823”82 0515251

8280 50518251

S0 5182

8081
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The Granville-Ono theorem

Who are Andrew Granville and Ken Ono ?
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ns t-cores

Figure — A.Granville, (1962 - ), British mathematician. Professor at Université de Montréal
since 2002, specialist in number theory.

Known for :
e Infinitude of Carmichael numbers.
e Results on the abc-conjecture, Goldback conjecture, twins conjecture.
e Postdoc advisor of James Maynard (last Fields medallist).
e Postdoc advisor of Lucile Devin (my new officemate in Calais).

e he proved the t-core conjecture.
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Figure — K.Ono, (1968 - ), American mathematician. Professor at the University of Virginia
since 2019, specialist in number theory. Former postdoc student of A. Granville.

Known for :
e He derived a new theory of Ramanujan congruences.
e Closed formula for the number of partitions on an integer.
e He proved the umbral moonshine conjecture.

e Made an important breakthrough on the Riemann hypothesis.

he proved the t-core conjecture.
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Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

[ ]

20/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

20/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

20/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

20/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

20/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

20/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

[ ]

20/37



Motivations and historical context Coxeter groups
Affine Weyl groups
Partitions t-cores

Definition of t-cores

Definition

Let A\ be a partition n. We say that \ is a t-core of size n if A does not have any
rim-hook of length t.

[ ]

Conclusion : The partition (4,2,2,1) is a 6-core of size 9.
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The peeling algorithm (Example for t = 4)

From any partition A\, we can peel it off by removing all the rim-hooks of length t.
What we are left with is a t-core.

[ ]
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The peeling algorithm (Example for t = 3)
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The peeling algorithm (Example for t = 3)

We cannot continue. The white part is then a 3-core of size 14.
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The (former) t-core conjecture

Theorem (Granville-Ono,1996)

Denote by c:(n) the number of t-cores of size n. If t > 4 then

ct(n) > 0.
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The (former) t-core conjecture

Theorem (Granville-Ono,1996)

Denote by c:(n) the number of t-cores of size n. If t > 4 then

ct(n) > 0.

\,

It is actually a difficult question in general, for t > 4 and n € N, to find the t-cores of
size n. By G-O we know that we always have at least one but we don't have a general
way of building them.

.
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Connection with analytic number theory

Definition

Let n € NU {oo}. The g-Pochhammer symbol is

n—1

(a:9)n = H(l - aqk)'

k=0
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Definition

Let n € NU {oo}. The g-Pochhammer symbol is

n—1

(a:9)n = H(l - aqk)'

k=0

A

Theorem (Euler)

Let n € N and let p(n) be the number of partitions of size n. Then

= 1 = 1
> b = —— =[] -
= (@9 ;51-q

.
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Connection with analytic number theory

Definition

Let n € NU {oo}. The g-Pochhammer symbol is

n—1

(a:9)n = H(l - aqk)'

k=0

Theorem (Euler)

Let n € N and let p(n) be the number of partitions of size n. Then

= 1 = 1
> b = —— =[] -
= (@9 ;51-q

Theorem (Garvan-Kim-Stanton, 90")
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Why do we care about t-cores ?

(1) It is well known that Ir(CS&,) ~ {X | A € P(n)}.

(2) The story is much more complicated for modular representations, that is when
the field C is replaced by a field of characteristic p > 0. In this situation, the
notion of t-core plays a crucial role. The t-cores are in bijection with the blocks,
and the notion of block is important in the theory of finite groups.

e In 1902 Dickson showed that, if p does not divide |G|, then the representation
theory is similar to that of characteristic 0.

e The study of modular representations for p dividing |G| was started essentially in
1935 with the work of Brauer. )
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The atomic length

Main definition

Let g be an affine Kac-Moody algebra, h a Cartan subalgebra, (—, —) the pairing
between h and h* and W the Weyl group of g. Let {Ay,AY,...,AY} be the set of

n
affine fundamental coweigts and pV := %/\iv. Finally let P be the weight lattice and
iz

L the finite-coweight lattice.
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Definition (CL-Gerber, 2022)

Let A € P. The N-atomic length is

4 . GLh) — R
w — (A= wA,pY).
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The atomic length

Main definition

Let g be an affine Kac-Moody algebra, h a Cartan subalgebra, (—, —) the pairing
between h and h* and W the Weyl group of g. Let {Ay,AY,...,AY} be the set of
n
affine fundamental coweigts and p¥ := 3> AY. Finally let P be the weight lattice and
i=0

L the finite-coweight lattice.

Definition (CL-Gerber, 2022)

Let A € P. The N-atomic length is

We have two degrees to play with the definition :
(1) The weight A.
(2) The restriction of Z) to the subgroups of GL(H*).
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The atomic length

A few results on the atomic length

By specialising A = p := > w; on the finite Weyl group Wy we have
i=1
Ls(w)= > ht(a).
aeN(w)

This can be seen as a refinement of the usual length since

Uw) = Z 1.

aeN(w)

Theorem (CL-Gerber, 2022)
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n
By specialising A = p := > w; on the finite Weyl group Wy we have
i=1
Ls(w)= > ht(a).
aeN(w)
This can be seen as a refinement of the usual length since

Uw) = Z 1.

aeN(w)

Theorem (CL-Gerber, 2022)

Theorem (Granville-Ono/CL-Gerber, 1996/2022)

Lo - Ag,l) — N /s surjective for n > 3.
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The atomic length

A few results on the atomic length

Theorem (CL-Gerber, 2022)

n
By specialising \ Z wj on the finite Weyl group Wo we have

Ls(w)= > ht(a).

aeN(w)

This can be seen as a refinement of the usual length since

do1

aeN(w)

Theorem (Granville-Ono/CL-Gerber, 1996/2022)

Lo - Ag,l) — N /s surjective for n > 3.

Theorem (CL-Gerber, 2022)

Let wo be the longest element of Wo. The map %5 : Wo — [0, %5(wo)] is surjective.
(This is the finite version of the theorem of Granville-Ono).
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Ao-atomic length and t-cores

Atomic length on the extended affine Weyl group

Let ¥ = Stab(Ae) be the fundamental group associated fo W. The extended affine
Weyl group is defined by W = X x W. The Coxeter length ¢ extends naturally on W

by
low) =4(w) forany ceX,we W.

Theorem (Brunat-CL-Gerber, 24")

For any o € ¥, w € W one has

Lho(ow) = Lpg(w).
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Ao-atomic length and t-cores

Lascoux's bijection

Proposition (Lascoux, 01")

Let M be the coroot lattice of type A,. We have the following bijections

{(n + 1)-cores} «—— M «—— {alcoves in the fundamental chamber}.
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Ao-atomic length and t-cores

Lascoux's bijection

Proposition (Lascoux, 01")

Let M be the coroot lattice of type A,. We have the following bijections

{(n + 1)-cores} «—— M «—— {alcoves in the fundamental chamber}.

Theorem (CL-Gerber, 22')

Let W be the affine Weyl group of type Agl), let g € M and let tg € W be the
corresponding translation. One has

Lo (tq) = size of the (n + 1)-core associated to q
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Ao-atomic length and t-cores

Example of Lascoux's bijection in type Agl)

/
012012
01201
0120 012101
/
// 012 01210
/
// 01 0121 021020
0 021 02102
e 02 0210 021021
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Example of Lascoux's bijection in type Agl)

/ t—a1—2a2
toaytaz2
t2a,21
t20r+az 12 2e2
toanl toa+2a,121
ta,21 t oy —ar to0, 12
ta1+a2121 t7012 tal—azl
e ta, 12
ta1+2a221 t—Zal—az
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Example of Lascoux's bijection in type Agl)
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Ao-atomic length and t-cores

Link with diophantine equations

Theorem (CL-Gerber, 2022)

Let w = t,w € W with t, the translation associated to v and w the finite part of w.
Let ht(q) be the height of q. We have

Zrg(w) = 2lall?  hi(a).
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Ao-atomic length and t-cores

Example in type Agl)

Let w = tqw € W with g = (q1, g2, g3) € Z3. By the above theorem we have

Drno(w) =4(a2 + a3+ ¢2 + q192 + q193 + 9293) — (391 + 2G2 + g3).
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Example in type Agl)

Let w = tqw € W with g = (q1, g2, g3) € Z3. By the above theorem we have
Zno(w) = 4(g? + a3 + 63 + q1G2 + q1G3 + G243) — (391 + 22 + q3).

By doing a specific quadratic Gauss reduction on Zp,(w) we get

| o

1 1 1
Lho(w) = E(12q2 +4q3—1)° + Q(qu +1)*+ E(Sql +4q2 +4g3 —3)° —
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Ao-atomic length and t-cores

Example in type Agl)

Let w = tqw € W with g = (q1, g2, g3) € Z3. By the above theorem we have
Zno(w) = 4(g? + a3 + 63 + q1G2 + q1G3 + G243) — (391 + 22 + q3).

By doing a specific quadratic Gauss reduction on Zp,(w) we get

1 1 1 5
R = (12 4q3 —1)2+ —(8 12+ —(8 4 4q3 —3)% — =,
o (W) 48( g2 +4q3 — 1) +24( g3 + 1) +16( q1+4g2 +4q3 — 3) 8
that is
4820, (w) + 30 = (12q2 + 4q3 — 1)> +2(8g3 + 1)2 + 3 2,
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Example in type Agl)

Let w = tqw € W with g = (q1, g2, g3) € Z3. By the above theorem we have
Zno(w) = 4(g? + a3 + 63 + q1G2 + q1G3 + G243) — (391 + 22 + q3).

By doing a specific quadratic Gauss reduction on Zp,(w) we get

)

| o

Dno(w) = %(12% +4q3—1)° + 2*14(8613 +1)°+ %(Sql +4q2 4+ 4q3 —3)* —
that is

48.%p, (W) +30 = (12q2 +4g3 — 1)* +2(8gs + 1)* +3
We want then to consider the following equation

x? 4+ 2y? + 322 = 48N + 30.
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The PIG theorem

Let G be the group defined by

and let ¢ be the map defined by

e R3 — R3
(q1,92,93) +— (12g2+ 493 —1,8q3 + 1,8q1 + 4q2 + 4g3 — 3).
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The PIG theorem

Let G be the group defined by

and let ¢ be the map defined by

e R3 — R3
(91,92,93) —— (1292 + 493 — 1,8q3 + 1,8q1 + 4q2 + 4q3 — 3).

Theorem (Brunat-CL-Gerber, 24")

Let X be an integral solution of x*> + 2y? 4 3z = 48N + 30. There exists q € L and
g € G such that
go(q) = X.
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Figure — Integral solutions of x® + 2y? 4 3z% = 48 - 2 4 30, that is for N = 2.
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Construction of 4-cores of any size

Corollary (Brunat-CL-Gerber,24")

From any integral solution of the equation x? 4 2y? + 3z% = 48N + 30, one can
construct a 4-core of size N.

35 /37



Ao-atomic length and t-cores

Perspectives

(1) Develop a constructive proof of the Granville-Ono theorem (maybe using the
local-global principle on .Zp,).

(2) Study for any weight A the map % : GL(h*) — R and in any type.

(3) Study the generating function Ta(t,q) = > tn(w) gb(w),
weWp
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MERCI
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