Sous-algèbres réduites de $\mathcal{M}_n(\mathbb{C})$

Leçons 108, 153, 154, 155 Salim Rostam

15 juin 2014

Définition. On dit qu'une algèbre (pas forcément unitaire) est *réduite* quand il n'y a pas d'élément non nul nilpotent.

Soit \mathcal{A} une sous-algèbre réduite de $\mathcal{M}_n(\mathbb{C})$. On va montrer successivement que :

- on peut supposer que $I_n \in \mathcal{A}$;
- tous les éléments de \mathcal{A} sont diagonalisables;
- l'ensemble des projecteurs de $\mathcal{M}_n(\mathbb{C})$ qui sont dans \mathcal{A} engendre \mathcal{A} (en tant qu'algèbre);
- l'algèbre \mathcal{A} est commutative.

On peut supposer \mathcal{A} unitaire. Soit $\mathcal{B} := \mathcal{A} + \mathbb{C}I_n$; c'est bien une algèbre (remarquons que pour $A \in \mathcal{A}$ on a $AI_n = I_nA = A \in \mathcal{A}$ que I_n soit dans \mathcal{A} ou non). Pour $P \in \mathrm{GL}_n(\mathbb{C})$ on a $P\mathcal{B}P^{-1} = P(\mathcal{A} + \mathbb{C}I_n)P^{-1} = P\mathcal{A}P^{-1} + \mathbb{C}I_n$ donc \mathcal{A} est codiagonalisable <u>ssi</u> \mathcal{B} est codiagonalisable. Reste donc à montrer que l'algèbre \mathcal{B} est réduite; pour cela, soit $B \in \mathcal{B}$ nilpotente. On peut écrire $B = A + \lambda I_n$ avec $A \in \mathcal{A}$ et $\lambda \in \mathbb{C}$; si $\lambda = 0$ alors $B \in \mathcal{A}$ donc B = 0: on suppose donc $\lambda \neq 0$.

Pour se ramener à un élément de \mathcal{A} , on considère $AB = A^2 + \lambda A \in \mathcal{A}$. Cette matrice est nilpotente car B est nilpotente et commute avec A, donc comme \mathcal{A} est réduite on a AB = 0. Pour conclure que B = 0, il reste à dire que A est inversible : c'est le cas car $A = B - \lambda I_n$, la matrice B étant nilpotente et $\lambda \neq 0$.

On peut donc supposer que $I_n \in \mathcal{A}$, *i.e.* que l'algèbre \mathcal{A} est unitaire. On obtient alors le résultat de stabilité suivant.

Lemme. Si $P \in \mathbb{C}[X]$ et $A \in \mathcal{A}$ alors $P(A) \in \mathcal{A}$.

Démonstration. Tout d'abord, le résultat est clair si P=0 puisque P(A) est alors égal à $0 \in \mathcal{A}$ (puisque \mathcal{A} est une algèbre). On suppose donc maintenant

que $P \neq 0$ et on écrit $P = \sum_{i=0}^{d} p_i X^i$ avec $d \geqslant 0$. On a donc $P(A) = p_0 I_n + \sum_{i=1}^{d} p_i A^i$; le résultat en découle puisque comme $A \in \mathcal{A}$, chaque A^i pour $i \geqslant 1$ est dans \mathcal{A} et comme \mathcal{A} est unitaire on a également $I_n \in \mathcal{A}$. \square

Les éléments de \mathcal{A} sont diagonalisables. Soit $A \in \mathcal{A}$ et soit χ_A son polynôme caractéristique; d'après le théorème de Cayley-Hamilton, on a $\chi_A(A) = 0$. De plus, $\chi_A \in \mathbb{C}[X]$ donc χ_A est scindé : on peut donc écrire $\chi_A = \prod_{i=1}^r (\lambda_i - X)^{m_i}$ avec $r \in \mathbb{N}^*$, $\lambda_i \in \mathbb{C}$ deux à deux distincts et $m_i \in \mathbb{N}^*$. Ainsi, en posant $\mu := \prod_{i=1}^r (X - \lambda_i)$, le polynôme μ est un élément de $\mathbb{C}[X]$ scindé à racines simples. De plus, avec $m := \max_{1 \le i \le r} m_i \in \mathbb{N}^*$ on a $\chi_A | \mu^m$. Ainsi, comme $\chi_A(A) = 0$ on récupère $\mu^m(A) = 0$ i.e. $\mu(A)^m = 0$. Or, par le lemme on sait que $\mu(A)$ est un élément de \mathcal{A} : on vient de montrer que c'est un élément nilpotent donc comme \mathcal{A} est réduite on a $\mu(A) = 0$. Le polynôme μ étant scindé à racines simples, on en déduit que A est diagonalisable.

Les projecteurs de \mathcal{A} forment une famille génératrice. Soit $A \in \mathcal{A}$. On vient de voir que A est diagonalisable donc on a $\mathbb{C}^n = \bigoplus_{\lambda \in \operatorname{Sp}(A)} E_{\lambda}(A)$. En notant P_{λ} la matrice dans la base canonique du projecteur sur $E_{\lambda}(A)$ parallèlement à $\bigoplus_{\mu \neq \lambda} E_{\mu}(A)$, on a la relation $x = \sum_{\lambda \in \operatorname{Sp}(A)} P_{\lambda} x$ pour tout vecteur $x \in \mathbb{C}^n$. Ainsi, $Ax = \sum_{\lambda} A(P_{\lambda}x)$ et comme $P_{\lambda}x \in E_{\lambda}(A)$ on a $Ax = \sum_{\lambda} \lambda P_{\lambda}x$. Ainsi, on a l'égalité suivante :

$$A = \sum_{\lambda \in \text{Sp}(A)} \lambda P_{\lambda} \tag{1}$$

On ne peut pas encore conclure car on ne sait pas que les P_{λ} sont dans \mathcal{A} ! En fait, on va montrer dans ce cas particulier que les P_{λ} sont des polynômes en A et donc que ce sont des éléments de \mathcal{A} (par le lemme).

On vient de voir que pour $\lambda \in \operatorname{Sp}(A)$ on a $AP_{\lambda} = \lambda P_{\lambda}$ donc de l'égalité précédente on obtient $\forall k \in \mathbb{N}, A^k = \sum_{\lambda} \lambda^k P_{\lambda}$ d'où :

$$\forall Q \in \mathbb{C}[X], Q(A) = \sum_{\lambda \in \operatorname{Sp}(A)} Q(\lambda) P_{\lambda}. \tag{2}$$

Ainsi, pour $\lambda \in \operatorname{Sp}(A)$, en considérant un polynôme d'interpolation $Q_{\lambda} \in \mathbb{C}[X]$ qui envoie les éléments de $\operatorname{Sp}(A) \setminus \{\lambda\}$ (s'il en existe) sur 0 et λ sur 1, on obtient directement par l'équation (2) que $Q_{\lambda}(A) = P_{\lambda}$. Ainsi, les P_{λ} sont des polynômes en A, ce sont donc des éléments de A et l'égalité (1) permet de conclure.

Remarque. On a en fait montré que les projecteurs engendrent \mathcal{A} en tant que \mathbb{C} -espace vectoriel (c'est encore mieux!).

 \mathcal{A} est commutative. D'après ce qui précède, il suffit de montrer que chaque élément de \mathcal{A} commute avec tous les projecteurs de \mathcal{A} . Soit donc $A \in \mathcal{A}$ et soit $P \in \mathcal{A}$ un projecteur de \mathcal{A} ; on veut montrer que AP = PA, i.e. AP - PA = 0. Pour montrer cette égalité, on va utiliser le fait que l'on dispose d'un projecteur en composant à la source puis au but par P.

Montrons tout d'abord que (AP - PA)P = 0. On a $(AP - PA)P = AP^2 - PAP = AP - PAP$ (on a $P^2 = P$ car P est un projecteur) qui n'a pas de raison particulière d'être nul. On exploite alors le fait que A est réduite : $[(AP - PA)P]^2 = (AP - PAP)^2 = (AP)(AP) + (PAP)(PAP) - (AP)(PAP) - (PAP)(AP) = APAP + PAPAP - APAP - PAPAP = 0$ donc on a bien $A \ni (AP - PA)P = 0$, i.e. AP = PAP. On montre de même que P(AP - PA) = 0 (note 1), i.e. PA = PAP. Ainsi on a AP = PAP = PA, en particulier AP = PA.

Conclusion. Finalement, on a montré que tous les éléments de \mathcal{A} sont diagonalisables et commutent donc la famille \mathcal{A} est codiagonalisable.

Remarque. On déduit immédiatement de ce résultat que pour $A \in \mathcal{M}_n(\mathbb{C})$, A est diagonalisable <u>ssi</u> $\mathbb{C}[A]$ est réduite. Remarquons que pour démontrer ce résultat on peut simplement reprendre la démonstration précédente en montrant uniquement que tous les éléments de $\mathbb{C}[A]$ sont diagonalisables car on sait déjà que cette algèbre est commutative.

Références

[1] MNEIMNÉ Rached, Réduction des endomorphismes.

^{1.} En réalité, on peut même se dispenser de refaire des calculs : on sait que $\chi_{(AP-PA)P} = (-X)^n$ donc on a $\chi_{P(AP-PA)} = (-X)^n$ donc $P(AP-PA) \in \mathcal{A}$ est nilpotent donc est nul car \mathcal{A} est réduite.