Expression de $SL_2(K)$ comme produit amalgamé de deux sous-groupes

Salim Rostam

Premier semestre 2014–2015

Le but de ce séminaire, qui a pour origine le livre Arbres, amalgames, SL_2 de Jean-Pierre $SERRE^1$ est de démontrer le théorème 1.8. Avant d'énoncer ce théorème, on aura besoin de quelques notions.

Table des matières

Mise en place		
		Cadre et rappels
	1.2	Produit amalgamé de deux groupes
	1.3	Le théorème principal
	1.4	Longueur d'un module
	1.5	Réseaux, classes de réseaux
2	Le	théorème principal
3	Démonstration du théorème 2.1	
	3.1	Quelques éléments de théorie des graphes
	3.2	Clé du théorème 2.1

1 Mise en place

1.1 Cadre et rappels

Soit K un corps (commutatif) muni d'une valuation discrète v, c'est-à-dire que :

- l'application v est un isomorphisme de K^* sur \mathbb{Z} ;
- on a la relation $\forall x, y \in K, v(x+y) \ge \min(v(x), v(y))$ avec la convention $v(0) := +\infty$.

On note \mathcal{O} l'anneau de valuation de K, c'est-à-dire $\mathcal{O}:=\{x\in K:v(x)\geq 0\}$; en particulier, $K=\operatorname{Frac}(\mathcal{O})$.

Exemple 1.1. En définissant, pour un entier $n \in \mathbb{Z}^*$, la quantité $v_p(n)$ par $n = p^{v_p(n)}m$ où p est un nombre premier et $p \nmid m$, l'application v_p définit une valuation discrète sur \mathbb{Q} (avec $v_p(\frac{a}{b}) := v_p(a) - v_p(b)$), d'anneau de valuation $\mathbb{Z}_{\langle p \rangle}$.

^{1.} J.-P. Serre, Arbres, amalgames, SL₂ (3e édition). Astérisque No 46, 1983.

Exemple 1.2. On définit de la même façon une valuation v sur K[[X]] (l'anneau des séries formelles) par $F = X^{v(F)}G$ où le terme constant de $G \in K[[X]]$ est non nul, que l'on étend au corps des fractions K((X)); l'anneau de valuation est exactement K[[X]].

On vérifie que $\mathcal{O}^{\times} = \{x \in \mathcal{O} : v(x) = 0\}$; ainsi, \mathcal{O} est un anneau local d'unique idéal maximal $\{x \in \mathcal{O} : v(x) > 0\}$. De plus, si $\pi \in \mathcal{O}$ est un élément de valuation 1, on montre que tout idéal de \mathcal{O} est de la forme $\langle \pi^n \rangle$ pour $n \in \mathbb{N}$, ainsi \mathcal{O} est un anneau principal. En fait, on a même le résultat suivant.

Lemme 1.3.
$$\forall x \in K^*, x\mathcal{O} = \pi^{v(x)}\mathcal{O}$$

Finalement, on note $k := \mathcal{O}/\pi\mathcal{O}$ le corps résiduel.

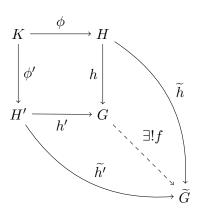
1.2 Produit amalgamé de deux groupes

(Dans cette section, la notation K ne désigne pas le corps précédent.) Soient H, H', K trois groupes et soient $\phi: K \to H$, $\phi': K \to H'$ deux morphismes.

Théorème 1.4. Il existe un unique groupe G et des uniques morphismes $h: H \to G$, $h': H' \to G$ tels que :

- on a $h \circ \phi = h' \circ \phi'$;
- (PU) si \widetilde{G} est un groupe et si $\widetilde{h}: H \to \widetilde{G}$, $\widetilde{h}': H' \to \widetilde{G}$ sont deux morphismes qui vérifient $\widetilde{h} \circ \phi = \widetilde{h}' \circ \phi'$ alors il existe un unique morphisme $f: G \to \widetilde{G}$ tel que $\widetilde{h} = f \circ h$ et $\widetilde{h}' = f \circ h'$.

Autrement dit, tout commute dans le diagramme suivant.



 $D\'{e}monstration$. Existence. C'est en fait assez simple : on peut définir un tel groupe G par générateurs et relations par :

$$G := \langle H \coprod H' : \text{relations dans } H, H' \text{ et } \phi(y)\phi'(y)^{-1} \ \forall y \in K \rangle$$

(note 2), les morphismes h et h' étant ceux induits par les inclusions (attention, h et h' ne sont pas nécessairement injectifs); en outre, on a bien $h \circ \phi = h' \circ \phi'$.

^{2.} Un amalgame est (en métallurgie) un alliage : ici, c'est un peu comme si l'on faisait des chaînes de maillons les éléments de H ou H', en soudant sur K.

La propriété universelle découle directement de celle d'un groupe défini par générateurs et relations, que l'on peut utiliser car $h(\phi(y))h'(\phi'(y))^{-1} = 1 \ \forall y \in K$.

Unicité. Si \widehat{G} est un groupe qui vérifie la propriété universelle avec les morphismes \widehat{h} et $\widehat{h'}$, en considérant les morphismes $f:G\to \widehat{G}$ et $\widehat{f}:\widehat{G}\to G$ induits par les PU on trouve par unicité que f est un isomorphisme, d'inverse \widehat{f} .

Définition 1.5. On dit que le groupe obtenu est le produit amalgamé de H et H' suivant K au moyen de ϕ, ϕ' ; on le note $H *_K H'$.

Énonçons finalement deux lemmes.

Lemme 1.6. Si $\alpha: H \to \alpha(H), \ \alpha': H' \to \alpha'(H') \ et \ \beta: K \to \beta(K) \ sont \ des \ isomorphismes de groupes alors <math>H *_K H' \simeq \alpha(H) *_{\beta(K)} \alpha'(H')$ où le dernier amalgame se fait au moyen de $\psi := \alpha \circ \phi \circ \beta^{-1}, \ \psi' := \alpha' \circ \phi' \circ \beta^{-1}$.

Démonstration. Il suffit de vérifier la propriété universelle de $\alpha(H) *_{\beta(K)} \alpha'(H')$.

Soit G l'amalgame de H, H' suivant K au moyen de ϕ, ϕ' ; pour $s \in H \coprod H'$, on note $h^*(s) := \begin{cases} h(s) \text{ si } s \in H \\ h'(s) \text{ si } s \in H' \end{cases}$ (où h, h' sont les fonctions données par le théorème).

Lemme 1.7. Pour tout $g \in G = H *_K H'$, il existe un unique $n \in \mathbb{N}$ et une unique suite (s, s_1, \ldots, s_n) avec $s \in K$ et $s_i \in H \coprod H'$ qui vérifie :

- $-si \ s_i \in H \ (resp. \ H') \ alors \ s_{i+1} \in H' \ (resp. \ H);$
- $-s_i \notin K$;
- $-g = h^*(s)h^*(s_1)\cdots h^*(s_n).$

Démonstration. C'est le théorème 1 ch. 1 du livre de SERRE.

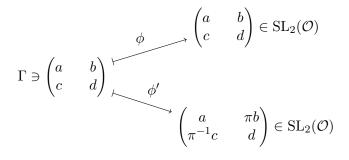
1.3 Le théorème principal

On peut maintenant énoncer le théorème qui est l'objet de ce séminaire.

Théorème 1.8 (Ihara). On a l'isomorphisme suivant :

$$\mathrm{SL}_2(K) \simeq \mathrm{SL}_2(\mathcal{O}) *_{\Gamma} \mathrm{SL}_2(\mathcal{O})$$

où $\Gamma := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathcal{O}) : c \in \langle \pi \rangle \}$, l'amalgame se faisant suivant les morphismes suivants :



3

Remarque 1.9. Le morphisme ϕ' est bien à valeurs dans $SL_2(\mathcal{O})$ car comme $c \in \langle \pi \rangle$ on a $\pi^{-1}c \in \mathcal{O}$.

Tout d'abord, on peut se demander à quoi sert ce théorème. On peut donner une application aux représentations linéaires de $\mathrm{SL}_2(\mathbb{Q}_p)$ (note 3): l'anneau de valuation de (\mathbb{Q}_p, v_p) étant \mathbb{Z}_p qui est compact, le groupe $\mathrm{SL}_2(\mathbb{Z}_p)$ est également compact. On peut alors appliquer la théorie des représentations des groupes compacts via l'amalgame précédent pour étudier les représentations de $\mathrm{SL}_2(\mathbb{Q}_p)$.

Le théorème va en fait être un cas particulier du théorème 2.1; avant d'énoncer ce dernier théorème, on a besoin de quelques notions supplémentaires.

1.4 Longueur d'un module

Dans cette courte partie, on va présenter la notion de longueur d'un module.

Définition 1.10. Soit M un \mathcal{O} -module; la longueur de M, notée $\ell(M)$, est définie comme étant le plus grand entier n tel qu'il existe une chaîne $\{0\} \subseteq M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_n \subseteq M$ de sous- \mathcal{O} -modules de M.

Remarque 1.11. Si k est un corps, la longueur d'un k-module est sa dimension en tant que k-espace vectoriel.

Propriété 1.12. Pour $n \in \mathbb{N}$ on a $\ell(\mathcal{O}/\pi^n\mathcal{O}) = n$.

On retrouve en outre la propriété fondamentale vérifiée par la dimension pour les espaces vectoriels.

Proposition 1.13. Si M est un \mathcal{O} -module de longueur finie et si N est un sous- \mathcal{O} -module de M, alors N et M/N sont de longueur finie et on a:

$$\ell(M/N) = \ell(M) - \ell(N)$$

Démonstration. Voir Bourbaki, Algèbre I, ch. II, §1, n° 10, Proposition 16. □

1.5 Réseaux, classes de réseaux

Soit V un K-espace vectoriel de dimension 2.

Définition 1.14. Un réseau de V est un sous- \mathcal{O} -module L de V de type fini qui engendre V en tant que K-espace vectoriel.

Proposition 1.15. Tout réseau de V est libre de rang 2.

Démonstration. Soit L un réseau de V: comme le \mathcal{O} -module L est de type fini et que \mathcal{O} est principal, on sait par le théorème de structure qu'il existe $r \in \mathbb{N}$ et $d_1, \ldots, d_s \in \mathcal{O}$ tels que $L \simeq \mathcal{O}^r \oplus \mathcal{O}/d_1\mathcal{O} \oplus \cdots \oplus \mathcal{O}/d_s\mathcal{O}$. Comme L est un sous- \mathcal{O} -module de V et comme V est un K-espace vectoriel (rappelons que $K = \operatorname{Frac}(\mathcal{O})$), on en déduit que V est sans torsion, et donc L également. Ainsi, s = 0 et $L \simeq \mathcal{O}^r$. On conclut que r = 2 i.e. L est libre de rang 2 car le K-espace vectoriel engendré par L est de dimension 2 (c'est V).

^{3.} Le corps \mathbb{Q}_p des nombres p-adiques est défini comme étant la complétion de l'espace métrique $(\mathbb{Q}, |\cdot|_p)$ où $|r|_p := p^{-v_p(r)}$; en particulier, v_p s'étend à \mathbb{Q}_p .

Lemme 1.16. Soient L et L' deux réseaux de V. Alors il existe $a \in \mathcal{O} \setminus \{0\}$ tel que $aL' \subseteq L$.

 $D\acute{e}monstration$. Il suffit de multiplier une base de L' par un dénominateur commun. \square

Corollaire 1.17. Soient L, L' deux réseaux de V. Alors il existe (e_1, e_2) une \mathcal{O} -base de L et $a, b \in \mathbb{Z}$ tels que $(\pi^a e_1, \pi^b e_2)$ soit une \mathcal{O} -base de L'. De plus, $L' \subseteq L$ <u>ssi</u> $a, b \geq 0$.

Démonstration. Immédiat par le lemme précédent et le théorème de la base adapté (que l'on peut appliquer car l'anneau \mathcal{O} est principal).

On a déjà utilisé le fait que si L est un réseau de V et si $x \in K^*$ alors xL reste un réseau de V; on dit que L et xL sont des réseaux équivalents. Ainsi, le groupe K^* agit sur l'ensemble des réseaux de V et l'on définit l'ensemble des orbites :

$$X := \{\text{réseaux de V}\}/\text{réseaux équivalents}$$

Proposition 1.18. Avec les notations du corollaire 1.17, l'entier |a-b| ne dépend que des classes de L et L' dans X.

Démonstration. En effet, pour $x,y \in K^*$ alors $(\pi^{v(x)}e_1,\pi^{v(x)}e_2)$ est une base de xL et $(\pi^{a+v(y)}e_1,\pi^{b+v(y)}e_2)$ est une base de yL' et on a bien |(a+v(y)-v(x))-(b+v(y)-v(x))|=|a-b|. La dépendance vis-à-vis de la base découle de l'invariance des coefficients dans le théorème de la base adaptée du corollaire 1.17.

Cette proposition rend alors possible la définition suivante.

Définition 1.19. Pour $\Lambda, \Lambda' \in X$, on note $d(\Lambda, \Lambda')$ l'entier |a-b| précédent.

Lemme 1.20. Soient $\Lambda, \Lambda' \in X$ et soit $L \in \Lambda$. Alors il existe $L' \in \Lambda'$ tel que $L' \subseteq L$, et de plus les trois conditions suivantes sont équivalentes :

- (i) L' est maximale (parmi les éléments de Λ' inclus dans L);
- (ii) $L' \nsubseteq \pi L$;
- (iii) L/L' est monogène.

Dans ce cas, on a $L/L' \simeq \mathcal{O}/\pi^n \mathcal{O}$ où $n := \ell(L/L') = d(L, L')$.

Remarque 1.21. En particulier :

- $-d(\Lambda, \Lambda') = 0 \iff \Lambda = \Lambda';$
- $-d(\Lambda, \Lambda') = 1 \iff \text{il existe } L \in \Lambda, L' \in \Lambda', L' \subseteq L \text{ tels que } L/L' \simeq k \ (= \mathcal{O}/\pi\mathcal{O}).$

Remarque 1.22. Si L est un réseau de V alors L est un \mathcal{O} -module de longueur infinie. On peut quand même utiliser la proposition 1.13 sous la forme suivante : si $L'' \subseteq L' \subseteq L$ sont trois réseaux de V alors $\ell(L/L'') = \ell(L/L') + \ell(L'/L'')$ (car $L/L' \simeq (L/L'')/(L'/L'')$).

Démonstration. Tout d'abord, l'existence de $L' \in \Lambda'$ qui vérifie $L' \subseteq L$ est garantie par le lemme 1.16.

(i) \Longrightarrow (ii) Comme L' est maximale dans Λ' parmi les éléments inclus dans L, comme $L' \subsetneq \pi^{-1}L'$ on en déduit que $\pi^{-1}L' \nsubseteq L$ i.e. $L' \nsubseteq \pi L$.

- (ii) \Longrightarrow (iii) Par le corollaire 1.17 il existe une base (e_1, e_2) de L et des entiers $a, b \ge 0$ tels que $(\pi^a e_1, \pi^b e_2)$ est une base de $L' \subseteq L$. Ainsi, comme $L' \nsubseteq \pi L = \mathcal{O}\pi e_1 \oplus \mathcal{O}\pi e_2$ on en déduit que a ou b est nul. Comme $L/L' \simeq \mathcal{O}/\pi^a \mathcal{O} \oplus \mathcal{O}/\pi^b \mathcal{O}$ on en déduit donc que L/L' est monogène.
- (iii) \Longrightarrow (i) Le quotient L/L' est monogène donc par ce qui précède on en déduit qu'il existe une base (e_1,e_2) de L et un entier $n\in\mathbb{N}$ tel que (π^ne_1,e_2) est une base de L'. Soit maintenant $\widetilde{L'}\in\Lambda'$ qui vérifie $L'\subseteq\widetilde{L'}\subseteq L$. On sait que $\exists x\in K^*$ tel que $\widetilde{L'}=xL'$. Comme $L'\subseteq\widetilde{L'}$ on en déduit que $m:=v(x)\le 0$. De plus, $(\pi^{n+m}e_1,\pi^me_2)$ est alors une base de $xL'\subseteq L$ donc nécessairement que $m\ge 0$. Ainsi, m=0 et donc $x\in\mathcal{O}^{\times}$ d'où $\widetilde{L'}=L'$ qui est donc maximal.

Finalement, si l'une de ces conditions équivalentes est vérifiée, alors on a $L/L' \simeq \mathcal{O}/\pi^n \mathcal{O}$ et donc $\ell(L/L') = n$, et par définition de d on a également n = d(L, L').

Remarque 1.23. On peut choisir L' vérifiant les trois conditions équivalentes précédentes.

2 Le théorème principal

On va dans cette section déduire le théorème 1.8 du théorème suivant, que l'on démontrera dans la section suivante.

Notons $G := \operatorname{SL}(V)$; pour $s \in G$ et L un réseau, l'ensemble sL reste un réseau et le groupe G agit ainsi sur l'ensemble des réseaux de V. De plus, comme pour $x \in K^*$ on $x \cdot sL = s \cdot xL$, le groupe G agit également sur X.

Théorème 2.1. Si $\Lambda, \Lambda' \in X$ vérifient $d(\Lambda, \Lambda') = 1$, le groupe G est la somme de ses sous-groupes G_{Λ} et $G_{\Lambda'}$ amalgamée suivant $G_{(\Lambda, \Lambda')}$ (au moyen des inclusions).

Remarque 2.2. La notation G_{Λ} désigne le stabilisateur de Λ pour l'action de G sur X. De plus, on a $G_{(\Lambda,\Lambda')}$ (stabilisateur de (Λ,Λ') pour l'action de G sur $X\times X)=G_{\Lambda}\cap G_{\Lambda'}$.

Lemme 2.3. Soit $s \in G$ et soit L un réseau de V. On suppose que (e_1, e_2) est une base de L telle qu'il existe $a, b \in \mathbb{Z}$ tels que $(\pi^a e_1, \pi^b e_2)$ soit une base de sL. Alors a + b = 0.

Démonstration. On peut écrire :

$$S := \operatorname{mat}_{(e_1, e_2)} s = \begin{pmatrix} \alpha \pi^a & \beta \pi^a \\ \gamma \pi^b & \delta \pi^b \end{pmatrix} \text{ avec } \alpha, \beta, \gamma, \delta \in \mathcal{O}$$

donc en notant $D:=\begin{pmatrix} \pi^a & 0 \\ 0 & \pi^b \end{pmatrix}$ et $S':=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ on a S=DS'. La matrice S' est à coefficients dans $\mathcal O$ et par la relation précédente elle est inversible. Avec $S'=\max_{(e_1,e_2)}s'$ et $D'=\max_{(e_1,e_2)}d'$, on a d'une part s=ds' et d'autre part $sL=\mathcal O\pi^ae_1\oplus\mathcal O\pi^be_2=dL$ d'où s'L=L. Ainsi, $s'^{-1}L=L$ donc $S'^{-1}=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est à coefficients dans $\mathcal O$, d'où $S'\in\mathrm{GL}_2(\mathcal O)$ et donc det $S'\in\mathcal O^\times$. Finalement, en passant au déterminant dans l'égalité S=DS' on trouve $1=\pi^{a+b}\det S'$ donc $\pi^{a+b}\in\mathcal O^\times$ i.e. a+b=0.

Lemme 2.4. Si $L \in \Lambda \in X$ alors $G_L = G_{\Lambda}$.

Démonstration. Si s est un élément de G_L alors on a sL = L. Ainsi, on a également $s \cdot xL = x \cdot sL = xL$ pour tout $x \in K^*$ donc on a $s \in G_\Lambda$ Ainsi, $G_L \subseteq G_\Lambda$.

Prouvons maintenant l'inclusion réciproque; soit $s \in G_{\Lambda}$. Ainsi, il existe $x \in K^*$ tel que sL = xL et on veut prouver que sL = L. D'après le corollaire 1.17, il existe une base (e_1, e_2) de L et $a, b \in \mathbb{Z}$ tels que $(\pi^a e_1, \pi^b e_2)$ soit une base de sL. Ainsi, par le lemme précédent on a a + b = 0. Or, avec c := v(x) la famille $(\pi^c e_1, \pi^c e_2)$ est une base de xL; comme xL = sL on en déduit que a et b sont égaux à c, et donc par la relation précédente on obtient 2c = 0 i.e. c = 0 i.e. c

Ainsi, par le lemme précédent on déduit du théorème 2.1 que si L et L' sont deux réseaux de V qui vérifient d(L, L') = 1 alors le groupe G est la somme de ses sous-groupes G_L et $G_{L'}$ amalgamée suivant leur intersection (qui n'est rien d'autre que $G_{(L,L')}$). Il reste encore un peu de travail à faire pour aboutir au théorème 1.8.

Lemme 2.5. Soit L un réseau de V et soit \mathcal{B} une base de L. Alors $G_L \simeq \mathrm{SL}_2(\mathcal{O})$ via l'isomorphisme $\mathrm{mat}_{\mathcal{B}}$.

 $D\acute{e}monstration$. Soit $\mathcal{B}:=(e_1,e_2)$ une base de L. Considérons l'application $\operatorname{mat}_{\mathcal{B}}:G_L \to \operatorname{SL}_2(K)$; c'est un isomorphisme sur son image. Cette image est bien constituée uniquement de matrices à coefficients dans \mathcal{O} ; il reste donc à montrer qu'elle est $\operatorname{SL}_2(\mathcal{O})$ tout entier. Pour cela, soit $M=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{SL}_2(\mathcal{O})$; on sait déjà qu'il existe $s\in\operatorname{SL}(V)$ tel que $\operatorname{mat}_{\mathcal{B}} s=M$. Ainsi, $sL\subseteq L$ et comme $M^{-1}\in\operatorname{SL}_2(\mathcal{O})$ on conclut que $s\in G_L$. \square

Soit L un réseau de V et soit $\mathcal{B}=(e_1,e_2)$ une base de L. Soit $L'\subseteq L$ un réseau qui vérifie $L/L'\simeq k$: c'est possible, il suffit par exemple de poser $L':=\mathcal{O}e_1\oplus\mathcal{O}\pi e_2$. Avec Λ (resp. Λ') la classe de L (resp. L') dans X, d'après la remarque 1.21 on est ainsi dans les hypothèses du théorème 2.1; il reste à comprendre ce qu'est l'image de $G_{L'}$ et de $G_L\cap G_{L'}$ par le morphisme mat \mathcal{B} (qui est bien sûr défini sur GL(V) tout entier).

Remarque 2.6. On vient de montrer que (si X est non vide, cf. partie 3.2.2) X n'est pas réduit à un point, et même qu'il existe $\Lambda, \Lambda' \in X$ tels que $d(\Lambda, \Lambda') = 1$.

Lemme 2.7. Avec les notations précédentes, pour $s \in SL(V)$ en notant $mat_{\mathcal{B}} s = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a:

$$s \in G_{L'} \underline{ssi} \begin{cases} a, d \in \mathcal{O} \\ c \in \mathcal{O}\pi \\ b \in \mathcal{O}\pi^{-1} \end{cases}$$

Démonstration. Supposons que $s \in G_{L'}$. Ainsi, sL' = L' donc en particulier $se_1 = ae_1 + ce_2 \in L' = \mathcal{O}e_1 \oplus \mathcal{O}\pi e_2$ donc $a \in \mathcal{O}$ et $c \in \mathcal{O}\pi$. De même on trouve $b\pi \in \mathcal{O}$ et $d \in \mathcal{O}$; on vérifie que ces conditions sont suffisantes.

On peut maintenant démontrer le théorème 1.8; on garde les notations précédentes. Considérons l'application suivante :

$$f: \left| \begin{array}{ccc} \operatorname{mat}_{\mathcal{B}}(G_{L'}) & \longrightarrow & \operatorname{SL}_{2}(\mathcal{O}) \\ \left(\begin{array}{ccc} a & b \\ c & d \end{array} \right) & \longmapsto & \left(\begin{array}{ccc} a & \pi b \\ \pi^{-1}c & d \end{array} \right)$$

Tout d'abord, f arrive bien dans SL_2 , et bien dans les matrices à coefficients dans \mathcal{O} par le lemme précédent. On vérifie que f est un morphisme, injectif et surjectif. Ainsi, on sait par le théorème 2.1 que $G \simeq G_L *_{G_L \cap G_{L'}} G_{L'}$ (au moyen des inclusions) donc par le lemme 1.6 on a, avec $\Gamma := \operatorname{mat}_{\mathcal{B}}(G_L \cap G_{L'})$:

$$G \simeq \operatorname{mat}_{\mathcal{B}}(G_L) * f(\operatorname{mat}_{\mathcal{B}}(G_{L'})) = \operatorname{SL}_2(\mathcal{O}) * \operatorname{SL}_2(\mathcal{O})$$

au moyen de $\psi = \operatorname{mat}_{\mathcal{B}} \circ \iota \circ \operatorname{mat}_{\mathcal{B}}^{-1} = \iota$ et $\psi' = f \circ \operatorname{mat}_{\mathcal{B}} \circ \iota \circ \operatorname{mat}_{\mathcal{B}}^{-1} = f|_{\Gamma}$ où ι désigne à chaque fois l'inclusion adéquate.

Finalement, il reste à expliciter le groupe Γ . Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathcal{O})$; on peut écrire de manière unique $M = \operatorname{mat}_{\mathcal{B}} s$ avec $s \in G_L$. Ainsi, $M \in \Gamma$ ssi $s \in G_L \cap G_{L'}$ ssi $c \in \mathcal{O}\pi$ par le lemme précédent (car $b \in \mathcal{O} \subseteq \mathcal{O}\pi^{-1}$). On a bien démontré le théorème 1.8.

3 Démonstration du théorème 2.1

3.1 Quelques éléments de théorie des graphes

On peut oublier dans cette section les notations X, G que l'on a attribuées.

3.1.1 Graphes

Définition 3.1. Un graphe Γ est la donnée d'un ensemble de sommet S, d'un ensemble d'arêtes A et de deux applications

$$\begin{vmatrix} A & \to & S \times S \\ a & \mapsto & (o(a), t(a)) \end{vmatrix} et \quad \begin{vmatrix} A & \to & A \\ a & \mapsto & \bar{a} \end{vmatrix}$$

qui vérifient pour tout $a \in A$ les conditions suivantes :

- $-\bar{\bar{a}}=a$;
- $-\bar{a} \neq a$;
- $-o(a) = t(\bar{a}).$

Remarque 3.2. — La définition implique que $o(\bar{a}) = t(\bar{a}) = t(a)$.

— L'ensemble A n'est pas forcément un sous-ensemble de $S \times S$. On gardera surtout à l'esprit les conditions sur l'application $a \mapsto \bar{a}$; en particulier, on peut avoir o(a) = t(a) (voir exemple 3.4).

Exemple 3.3. L'ensemble de sommets $S := \{0, 1, 2\}$ et l'ensemble d'arêtes $A := \{(0, 1), (1, 0)\}$ avec (o, t)(0, 1) := (0, 1) (et nécessairement $\overline{(0, 1)} = (1, 0)$) est un graphe, représenté sur la figure suivante (où a := (1, 0)).

$$0$$
 1 0

Exemple 3.4. Le graphe suivant :

$$r$$
 s

peut être considéré comme étant constitué de l'ensemble de sommets $S := \{r, s\}$ et de l'ensemble d'arêtes $A := \{(r, r, 0), (r, r, 1), (r, s, 0), (s, r, 0)\}$ avec $\forall (u, v, \epsilon) \in A$:

$$(o,t)((u,v,\epsilon)) := (u,v)$$

$$\overline{(u,v,0)} := (v,u,0) \text{ si } u \neq v$$

$$\overline{(u,u,\epsilon)} := (u,u,1-\epsilon)$$

Définition 3.5. Soit $\Gamma = (S, A, o, t, \overline{\cdot})$ un graphe; on dit qu'un groupe G opère sur Γ si G opère sur S ainsi que sur A et si ces deux actions sont compatibles avec la structure de graphe, i.e. $\forall g \in G, \forall a \in A, (g \cdot o(a), g \cdot t(a)) = (o(g \cdot a), t(g \cdot a))$ et $\overline{g \cdot a} = g\overline{a}$.

Définition 3.6. On dit que G agit sans inversion sur un graphe $(S, A, \bar{\cdot})$ si $\forall g \in G, \forall a \in A, ga \neq \bar{a}$.

Théorème 3.7. Si G agit sans inversion sur un graphe (S, A), on peut munir (S/G, A/G) d'une structure de graphe (on parle de graphe quotient).

Remarque 3.8. Si G agit sur un ensemble X, on a noté X/G l'ensemble des orbites de X pour l'action de G.

Démonstration. On vérifie simplement les axiomes de la définition d'un graphe.

- L'application $A/G \to X/G \times X/G$ est donnée par $Ga \mapsto (Go(a), Gt(a))$ et l'application $A/G \to A/G$ est donnée par $Ga \mapsto G\bar{a}$. Ces définitions sont bien cohérentes d'après la définition de l'action sur un graphe.
- On a $\overline{\overline{Ga}} = \overline{Ga} = G\overline{a} = Ga$ et $o(Ga) = Go(a) = Gt(\overline{a}) = t(G\overline{a}) = t(\overline{Ga})$.
- On a $\overline{Ga} = G\overline{a} \neq Ga$ car si $G\overline{a} = Ga$ alors il existerait $g, h \in G$ tels que $g\overline{a} = ha$ i.e. $\overline{a} = g^{-1}ha$ ce qui est impossible puisque G opère sans inversion.

Définition 3.9. Soient $\Gamma = (S, A, o, t, \bar{\cdot})$ et $\widehat{\Gamma} = (\widehat{S}, \widehat{A}, \hat{o}, \hat{t}, \hat{\cdot})$ deux graphes. On dit que $(\sigma, \alpha) : (S, A) \to (\widehat{S}, \widehat{A})$ est un morphisme de graphes de Γ vers $\widehat{\Gamma}$ si :

- $-(\hat{o}\circ\alpha,\hat{t}\circ\alpha)=(\sigma\circ o,\sigma\circ \underline{t})\ i.e.\ \forall a\in A, \hat{o}(\alpha(a))=\sigma(o(a))\ et\ \hat{t}(\alpha(a))=\sigma(t(a))\ ;$
- $-\hat{\cdot} \circ \alpha = \alpha \circ \bar{\cdot} i.e. \ \forall a \in A, \alpha(a) = \alpha(\bar{a}).$

Un morphisme est dit injectif (resp. surjectif) si ses deux composantes sont injectives (resp. surjectives).

Définition 3.10. Soit G un groupe agissant sans inversion sur un graphe Γ . On dit qu'un sous-graphe T de Γ est un domaine fondamental pour l'action de G si la projection canonique $T \to \Gamma/G$ est un isomorphisme de graphes.

3.1.2 Arbres

Définition 3.11. Soit $\Gamma = (S, A, o, t, \overline{\cdot})$ un graphe.

- Un chemin de longueur $n \geq 1$ est une suite d'arêtes (a_1, \ldots, a_n) qui vérifie $\forall i \in [1, n-1], t(a_i) = o(a_{i+1}).$
- On dit que $s, s' \in S$ sont reliés par un chemin s'il existe un chemin (a_1, \ldots, a_n) qui vérifie $o(a_1) = s$ et $t(a_n) = s'$.
- $Si(a_1,\ldots,a_n)$ est un chemin, on dit que (a_i,a_{i+1}) est un aller-retour $si(a_{i+1})=\bar{a}_i$.

Remarque 3.12. S'il existe un chemin de s à s' alors il en existe un sans aller-retour.

Définition 3.13. Un circuit dans Γ est un chemin (a_1, \ldots, a_n) (avec $n \geq 1$) sans aller-retour qui vérifie les deux conditions suivantes :

- $-t(a_n) = o(a_1)$;
- les $t(a_i)$, $1 \le i \le n$ sont distincts.

Lemme 3.14. Si $\gamma = (a_1, \ldots, a_n)$ (avec $n \ge 1$) est un chemin dans Γ sans aller-retour qui vérifie la condition $t(a_n) = o(a_1)$, alors il existe $1 \le i < j \le n$ tels que $(a_{i+1}, a_{i+2}, \ldots, a_j)$ soit un circuit dans Γ .

Démonstration. Il suffit de considérer la première collision des $t(a_i)$.

Définition 3.15. On dit qu'un graphe non vide est un arbre s'il est connexe (i.e. deux sommets distincts sont toujours reliés par un chemin) et sans circuit.

3.2 Clé du théorème 2.1

On reprend ici les notations $X = \{\text{r\'eseaux de }V\}/\text{r\'eseaux \'equivalents et }G = \operatorname{SL}(V)$. Remarquons que l'application d définie lors de la définition 1.19 sur $X \times X$ munit notre ensemble de classes de r\'eseaux X d'une structure de graphe, deux sommets $\Lambda, \Lambda' \in X$ étant reliés par une arête si $d(\Lambda, \Lambda') = 1$ (on peut donc supposer que l'ensemble des arêtes est un sous-ensemble de $X \times X$).

Propriété 3.16. L'action du groupe G sur l'ensemble X est une action sur le graphe X, l'action sur les arêtes étant donnée par $g \cdot (\Lambda, \Lambda') := (g\Lambda, g\Lambda')$.

Démonstration. Tout d'abord, il faut vérifier que l'action donnée sur les arêtes envoie bien une arête sur une arête, i.e. si $d(\Lambda, \Lambda') = 1$ alors $d(g\Lambda, g\Lambda') = 1$; c'est immédiat car si L, L' sont des bons représentants (cf. lemme 1.20) alors $\ell(gL, gL') = 1$. On vérifie immédiatement le reste de la définition de l'action d'un groupe sur un graphe.

Voici maintenant la clé du théorème 2.1 (où l'on oublie la notation G).

Théorème 3.17. Soit y une arête d'un graphe Γ avec (o,t)(y) = (P,Q); soit G un groupe qui agit sans inversion sur Γ et tel que $T := P \xrightarrow{y} Q$ soit un domaine fondamental pour cette action. Si Γ est un arbre alors le morphisme $G_P *_{G_y} G_Q \to G$ induit par les inclusions est un isomorphisme.

Remarque 3.18. Rappelons que $G_y = G_P \cap G_Q$; l'amalgame se fait au moyen des deux inclusions.

Pour pouvoir appliquer ce théorème, il suffit donc de :

- montrer que l'action de G sur le graphe X est sans inversion;
- trouver une arête qui est un domaine fondamental pour X (on va en fait montrer ce point en dernier pour une raison qui apparaitra dans la preuve);
- montrer que notre graphe X est un arbre.

Le théorème s'appliquera alors de suite au théorème 2.1, en utilisant le lemme 2.4.

Lemme 3.19. Soient $\Lambda \in X$ et $s \in G$. Alors $d(\Lambda, s\Lambda)$ est pair.

Démonstration. Soit $L \in \Lambda$; par le corollaire 1.17 il existe une base (e_1, e_2) de L et des entiers $a, b \in \mathbb{Z}$ tels que $(\pi^a e_1, \pi^b e_2)$ soit une base de sL. D'après le lemme 2.3, on a a + b = 0; ainsi, par définition de d on a d(L, sL) = |a - b| = 2|a| qui est pair. Par la proposition 1.18 on a donc $d(\Lambda, s\Lambda) = d(L, sL)$ pair.

3.2.1 L'action de G sur le graphe X est sans inversion

Soit (Λ, Λ') une arête de X; on a par définition $d(\Lambda, \Lambda') = 1$. Supposons qu'un élément $s \in G$ inverse cette arête; en particulier, on a $s\Lambda = \Lambda'$. On a $1 = d(\Lambda, \Lambda') \stackrel{\text{prop. } 1.18}{=} d(L, sL)$ qui est pair par le lemme 3.19, ce qui est absurde.

3.2.2 Le graphe X est un arbre

Tout d'abord, remarquons que X est non vide car il existe des réseaux de V: il existe une base (e_1, e_2) de V en tant que K-espace vectoriel et $\mathcal{O}e_1 \oplus \mathcal{O}e_2$ est alors un réseau.

Le graphe X est connexe Soit $\Lambda \neq \Lambda'$ deux sommets de X; d'après le lemme 1.16, on peut trouver des représentants $L \in \Lambda$, $L' \in \Lambda'$ qui vérifient $L' \subseteq L$. Avec n := d(L, L'), on sait que $L/L' \simeq \mathcal{O}/\pi^n \mathcal{O}$; ainsi, les seuls sous- \mathcal{O} -modules de L/L' sont en bijection avec les $\pi^m \mathcal{O}/\pi^n \mathcal{O}$ pour $0 \le m \le n$. Ainsi, la suite $L' = L_n \subseteq \cdots \subseteq L_0 = L$ des sous- \mathcal{O} -modules obtenus par image réciproque vérifie $L_m/L_{m+1} \simeq \pi^m \mathcal{O}/\pi^{m+1} \mathcal{O} \simeq k$ d'où $d(L_{m+1}, L_m) = 1$ et $(\Lambda_0, \ldots, \Lambda_n)$ est un chemin reliant Λ à Λ' . (On a en fait donné les sommets du chemin, les arêtes sont les $(\Lambda_i, \Lambda_{i+1})$.)

Le graphe X est sans circuit Soit $\Lambda_0, \ldots, \Lambda_N$ la suite des sommets d'un chemin sans aller-retour; on veut montrer que $\Lambda_0 \neq \Lambda_N$. D'après le lemme 1.20, on peut trouver des représentants $L_n \in \Lambda_n$ tels que $L_{n-1} \supseteq L_n$ et $L_{n-1}/L_n \simeq k$ (pour n allant de 0 à N).

Montrons par récurrence sur n que $L_n \nsubseteq \pi L_0$ et $d(L_0, L_n) = n$; comme $d(\Lambda_0, \Lambda_n) = d(L_0, L_n)$ on aura bien $d(\Lambda_0, \Lambda_n) = n$ et donc $\Lambda_0 \neq \Lambda_n$.

L'initialisation est claire car $d(L_0, L_1) = 1$ par définition d'une arête et par le lemme 1.20 on a $L_1 \nsubseteq \pi L_0$. Reste à vérifier l'hérédité; on suppose donc la propriété vraie pour $n-1 \ge 1$ et montrons-la au rang n.

Tout d'abord, par la remarque 1.22 on a la relation $\ell(L_0/L_n) = \sum_{i=0}^{n-1} \ell(L_i/L_{i+1})$ et comme $L_i/L_{i+1} \simeq k$ on a $\ell(L_i/L_{i+1}) = 1$ et donc $\ell(L_0/L_n) = n$. D'après le lemme 1.20, il suffit donc de montrer que $L_n \nsubseteq \pi L_0$ pour obtenir $d(L_0, L_n) = n$.

- Montrons que $\pi L_{n-1} \subseteq L_n$, $\pi L_{n-2} \subseteq L_{n-1}$. Comme $L_n \subseteq L_{n-1} \subseteq \cdots \subseteq L_0$, les inclusions $\pi L_{n-1} \subseteq \pi L_{n-1}$ et $L_n \subseteq L_{n-1}$ sont claires. De plus, comme $L_{i-1}/L_i \simeq k = \mathcal{O}/\pi\mathcal{O}$ on a $\pi L_{i-1} \subseteq L_i$ ce qui montre les deux dernières inclusions.
- Ainsi, $L_n/\pi L_{n-1}$ et $\pi L_{n-2}/\pi L_{n-1}$ sont deux sous-k-espaces vectoriels de $L_{n-1}/\pi L_{n-1} \simeq \mathcal{O}/\pi\mathcal{O} \oplus \mathcal{O}/\pi\mathcal{O} \simeq k^2$; montrons que ce sont des droites distinctes.
 - Comme $L_n \neq \pi L_{n-1}$ (conséquence du lemme 1.20) et que $L_n \neq L_{n-1}$ on a nécessairement $\dim_k L_n/\pi L_{n-1} = 1$.
 - On a $\pi L_{n-2}/\pi L_{n-1} \simeq L_{n-2}/L_{n-1} \simeq k$ donc c'est bien une droite.
 - Comme le chemin de sommets $\Lambda_{n-2}, \Lambda_{n-1}, \Lambda_n$ est sans aller-retour, on a $\Lambda_{n-2} \neq \Lambda_n$ donc en particulier $\pi L_{n-2} \neq L_n$ donc $\pi L_{n-2}/\pi L_{n-1} \neq L_n/\pi L_{n-1}$.
- Ainsi, comme $L_{n-1}/\pi L_{n-1}$ est un k-plan on a $L_n/\pi L_{n-1} + \pi L_{n-2}/\pi L_{n-1} = L_{n-1}/\pi L_{n-1}$ donc $L_n + \pi L_{n-2} = L_{n-1}$. Par hypothèse de récurrence on a $L_{n-1} \nsubseteq \pi L_0$; ainsi, comme $\pi L_{n-2} \subseteq \pi L_0$ on a bien $L_n \nsubseteq \pi L_0$.

Finalement, on a bien montré que le graphe X est un arbre.

Remarque 3.20. Le graphe X étant un arbre, si Λ , Λ' sont deux sommets de X il existe un unique chemin sans aller-retour reliant Λ à Λ' . La longueur de ce chemin est, par la preuve précédente, exactement $d(\Lambda, \Lambda')$. De plus, si $d(\Lambda, \Lambda') = 1$, par unicité du chemin on obtient (si Λ'' est un troisième sommet) :

$$d(\Lambda, \Lambda'')$$
 et $d(\Lambda', \Lambda'')$ n'ont pas la même parité.

En effet, si le chemin γ reliant Λ à Λ'' passe par Λ' on a $d(\Lambda, \Lambda'') = d(\Lambda', \Lambda'') + 1$ et sinon le chemin qui relie Λ' à Λ'' est (Λ', γ) d'où $d(\Lambda, \Lambda'') = d(\Lambda', \Lambda'') - 1$.

3.2.3 Il existe une arête de X qui est un domaine fondamental

Tout d'abord, remarquons que d'après la remarque 2.6 il existe au moins une arête dans le graphe X. Ainsi, soit (Λ_0, Λ'_0) une arête du graphe X; on va montrer que le graphe T donné par $\Lambda_0 \circ \longrightarrow \Lambda'_0$ est un domaine fondamental de X pour l'action de G.

Pour ce faire, considérons la projection canonique $f: T \to X/G$ et montrons que c'est un isomorphisme. Tout d'abord, l'injectivité de f sur les arêtes est garantie par le fait que l'action de G est sans inversion; l'injectivité sur les sommets découle du lemme 3.19.

L'application induite sur les sommets est surjective Soit $\Lambda_1 \in X$; on veut montrer qu'il existe $s \in G$ tel que $s\Lambda_1 = \Lambda_0$ ou $s\Lambda_1 = \Lambda_0'$. Compte-tenu du lemme 3.19, on va montrer que l'on est dans le premier cas si $d(\Lambda_0, \Lambda_1)$ est pair, et dans le second sinon $(i.e. \text{ si } d(\Lambda_0', \Lambda_1) \text{ est pair, cf. remarque 3.20}).$

Supposons donc que $d(\Lambda_0, \Lambda_1)$ soit pair; appelons 2n cette distance. Par le corollaire 1.17, il existe $L_0 \in \Lambda_0$ et $L_1 \in \Lambda_1$, il existe (e_1, e_2) base de L_0 et $a \geq b \geq 0$ tels que $L_1 = \mathcal{O}\pi^a e_1 \oplus \mathcal{O}\pi^b e_2$. Par la proposition 1.18, on a 2n = |a - b| = a - b; ainsi, on a $\Lambda_1 \ni \pi^{n-a}L_1 = \mathcal{O}\pi^n e_1 \oplus \mathcal{O}\pi^{-n}e_2$. Si $s \in G$ vérifie $\max_{(e_1, e_2)} s = \begin{pmatrix} \pi^n & 0 \\ 0 & \pi^{-n} \end{pmatrix}$ alors on a $\pi^{n-a}L_1 = sL_0$ et donc $\Lambda_1 = s\Lambda_0$: c'est bien ce que l'on voulait. On conclut par la remarque initiale dans le cas où $d(\Lambda_1, \Lambda_0)$ est impair.

L'application induite sur les arêtes est surjective Soit $\Lambda_1 \circ - - \circ \Lambda'_1$ une arête du graphe X; par ce qui précède, quitte à permuter Λ_1 et Λ'_1 , on peut supposer que $\Lambda_0 \in G\Lambda_1$, i.e. $\exists s \in G, s\Lambda_1 = \Lambda_0$. On veut en plus prouver que l'on peut choisir un tel s qui vérifie $s\Lambda'_1 = \Lambda'_0$: comme $s\Lambda'_1$ est de toutes façons relié à Λ_0 , il suffit de montrer que l'action de G_{Λ_0} sur les sommets reliés à Λ_0 est transitive.

Soit $L_0 \in \Lambda_0$ et soit Λ_1 un sommet relié à Λ_0 . Par le lemme 1.20, on sait qu'il existe $L_1 \in \Lambda_1$ tel que $L_1 \subseteq L_0$, $L_0/L_1 \simeq k$ et $L_1 \nsubseteq \pi L_0$. Comme avant, on en déduit que $L_1/\pi L_0$ est une droite vectorielle du k-plan $L_0/\pi L_0$.

Il suffit donc de prouver que G_{L_0} (= G_{Λ_0} par le lemme 2.4) agit transitivement sur les droites de $L_0/\pi L_0$, l'action étant donnée par celle de $G_{L_0} \subseteq \operatorname{Aut}(L_0/\pi L_0)$ (bien définie car si $s \in G_{L_0}$ alors $sL_0 = L_0$ et $s(\pi L_0) = \pi L_0$). Comme $\dim_k L_0/\pi L_0 = 2$ et que l'action de $\operatorname{SL}_2(k)$ sur $\mathbb{P}^1(k)$ est transitive, il suffit de montrer que l'image de l'application composée $G_{L_0} \xrightarrow[\operatorname{mat}_{\mathcal{B}}]{} \operatorname{SL}_2(\mathcal{O}) \to \operatorname{SL}_2(k)$ est surjective, où \mathcal{B} désigne une base de L_0 .

Par le lemme 2.5, l'application $\operatorname{mat}_{\mathcal{B}}$ induit un isomorphisme de G_{L_0} sur $\operatorname{SL}_2(\mathcal{O})$ donc il reste à montrer que la flèche $\operatorname{SL}_2(\mathcal{O}) \to \operatorname{SL}_2(k)$ est surjective. Soit $\overline{M} = \left(\frac{\bar{a}}{\bar{c}}\frac{\bar{b}}{\bar{d}}\right) \in \operatorname{SL}_2(k)$ avec $a,b,c,d \in \mathcal{O}$. Comme det $\overline{M} = 1$, l'un des coefficients de \overline{M} est non nul, disons \bar{d} (les autres cas se traitant de la même façon). Ainsi, $d \notin \langle \pi \rangle$ donc comme $\langle \pi \rangle$ est l'unique idéal maximal de l'anneau \mathcal{O} on en déduit que $d \in \mathcal{O}^{\times}$. Avec $u \in \mathcal{O}$ vérifiant $ad - bc = 1 + \pi u$, la matrice $M := \begin{pmatrix} a - \pi u d^{-1} & b \\ c & d \end{pmatrix} \in \operatorname{M}_2(\mathcal{O})$ a pour image \overline{M} dans $\operatorname{SL}_2(k)$ et son déterminant est $ad - bc - \pi u = 1$.

3.2.4 Démonstration du théorème 3.17

Précisons encore une fois que dans le théorème 3.17, l'amalgame $G_P *_{G_y} G_Q$ se fait par rapport aux inclusions $G_y \hookrightarrow G_P$, G_Q et le morphisme $G_P *_{G_y} G_Q$ et celui qui est induit par les inclusions $G_P, G_Q \hookrightarrow G$ (cf. propriété universelle).

Lemme 3.21. Si le graphe Γ est connexe alors $G = \langle G_P \cup G_Q \rangle$.

Démonstration. Supposons Γ connexe et définissons $G' := \langle G_P \cup G_Q \rangle \subseteq G$; on va montrer que $G'T \sqcup (G \setminus G')T = \Gamma$. Comme T est un domaine fondamental, la réunion fait bien Γ tout entier et il reste donc à montrer que cette réunion est disjointe.

Soit R un sommet du graphe $G'T \cap (G \setminus G')T$; il existe $s' \in G'$ et $s \in G \setminus G'$ tels que $R \in \{s'P, s'Q\}$ et $R \in \{sP, sQ\}$. Si R = s'P = sP alors $s^{-1}s' \in G_P$ donc $s \in G_P \subseteq G'$ ce qui est impossible; le cas R = s'Q = sQ étant analogue, on a nécessairement R = s'P = sQ ou R = s'Q = sP. Dans les deux cas, on obtient un élément de G qui envoie P sur G c'est absurde car G et donc G est un domaine fondamental de G pour l'action de G et donc G et donc G is a point G by G in the G in G is a point G in G in

Le graphe Γ étant connexe et ayant $G'T \neq \emptyset$ (car $G' \neq \emptyset$), par la décomposition précédente on a ($\Gamma = G'T$ et en particulier) $G \setminus G' = \emptyset$, d'où G = G'.

Lemme 3.22. Si le graphe Γ est sans circuit alors $G_P *_{G_Q} G_Q \to G$ est injectif.

 $D\acute{e}monstration$. On va en fait montrer que la contraposée : supposons que $\mathcal{G} := G_P *_{G_y} G_Q \to G$ ne soit pas injectif est montrons que Γ possède un circuit. Par hypothèse, il existe un élément $g \in \mathcal{G}, g \neq 1$, tel que l'image de g dans G soit triviale. Appliquant le lemme 1.7, on sait qu'il existe $n \in \mathbb{N}, s \in G_y$ et $s_1, \ldots, s_n \in G_P \coprod G_Q$ qui vérifient :

- si $s_i \in G_P$ (resp. G_Q) alors $s_{i+1} \in G_Q$ (resp. G_P);
- $-s_i \notin G_y$;
- $-- g = h^*(s)h^*(s_1)\cdots h^*(s_n)$ (notation h^* du lemme 1.7).

Comme l'image de $g \neq 1_{\mathcal{G}}$ dans G est 1_G on a nécessairement $n \geq 1$. En notant $g_1 := ss_1$ et $g_i := s_i \ \forall i \in [\![2,n]\!]$, on a $g_i \in G_P \coprod G_Q$ ainsi que les conditions suivantes :

- si $g_i \in G_P$ (resp. $g_i \in G_Q$) alors $g_{i+1} \in G_Q$ (resp. $g_{i+1} \in G_P$);
- $-g_i \notin G_y;$
- $g_1 \cdots g_n = 1_G;$

remarquons que en particulier $n \geq 2$ (sinon $g_1 = 1_G \in G_y$).

Notons $R_i \in \{P,Q\}$ les points qui vérifient $g_i \in G_{R_i}$ et $z_i \in \{y, \overline{y}\}$ les arêtes qui vérifient $o(z_i) = R_i$; on a en particulier $R_i \neq R_{i+1}$ et $z_{i+1} = \overline{z_i}$. On considère alors le chemin suivant :

$$\gamma := (g_1 z_1, g_1 g_2 z_2, \dots, g_1 \cdots g_{n-1} z_{n-1}, g_1 \cdots g_n z_n)$$

- C'est bien un chemin car $t(g_1 \cdots g_i z_i) = g_1 \cdots g_i t(z_i) = g_1 \cdots g_i o(z_{i+1}) = g_1 \cdots g_i R_{i+1} = g_1 \cdots g_i g_{i+1} R_{i+1} = o(g_1 \cdots g_{i+1} z_{i+1}).$
- Ce chemin est sans aller-retour car si $g_1 \cdots g_{i-1} z_{i-1} = \overline{g_1 \cdots g_i z_i}$ alors $z_{i-1} = g_i \overline{z_i}$ donc $g_i \in G_{z_{i-1}} = G_y$ ce qui est impossible.

Construisons maintenant un circuit à partir de γ .

- Si $z_{n-1} = z_1$, comme alors $z_n = \overline{z_1}$, on a $t(g_1 \cdots g_n z_n) = t(z_n) = o(z_1) = o(g_1 z_1)$ donc on peut appliquer le lemme 3.14 à γ pour en déduire que Γ possède un circuit.
- Supposons au contraire $z_{n-1} \neq z_1$; considérons le chemin sans aller-retour suivant :

$$\check{\gamma} := (g_1 z_1, g_1 g_2 z_2, \dots, g_1 \cdots g_{n-1} z_{n-1})$$

On a $z_{n-1} = \overline{z_1}$, $R_{n-1} \neq R_1 = R_n$ et $z_n = z_1$. Ainsi, $t(g_1 \cdots g_{n-1} z_{n-1}) = o(g_1 \cdots g_n z_n) = o(z_n) = o(z_1) = o(g_1 z_1)$. On peut donc appliquer le lemme 3.14 à $\check{\gamma}$ pour en déduire que Γ possède un circuit.

Démonstration du théorème 3.17. On suppose que Γ est un arbre; soit $f: G_P*_{G_y}G_Q \to G$ le morphisme induit par les deux inclusions $G_P, G_Q \hookrightarrow G$. D'une part, comme Γ est sans circuit le lemme 3.22 nous garantit que le morphisme f est injectif. D'autre part, par définition de f on a $\forall g \in G_P \coprod G_Q, f(h^*(g)) = g$ donc l'image de f contient $G_P \cup G_Q$: comme le graphe Γ est connexe, on en déduit par le lemme 3.21 que le morphisme f est surjectif. Finalement, f et un isomorphisme.