Anneaux et arithmétique (ANAR) TD 4 : Quotient

Salim Rostam

2021-2022 (S6)

1 De nouvelles démonstrations

Exercice 1. Soit k un corps. On considère l'anneau $A := k[X]/(X^2 + 1)$.

- 1) L'anneau A est-il unitaire?
- 2) À quel anneau usuel est isomorphe A lorsque $k = \mathbb{R}$?
- 3) Montrer que A est un corps si et seulement si $X^2 + 1$ est irréductible sur k.
- 4) On suppose que X^2+1 possède une racine dans k et que k est de caractéristique impaire. Montrer que A est isomorphe à l'anneau k^2 .

Exercice 2 (Théorème de Krull). On rappelle la version suivante du théorème de Krull : tout anneau commutatif unitaire possède un idéal maximal. En déduire que si A est un anneau commutatif unitaire et si I est un idéal de A alors A possède un idéal maximal qui contient I.

Exercice 3 (Radical). Soit A un anneau commutatif. On rappelle que si I est un idéal de A alors $\sqrt{I} = \{a \in A : \text{il existe } n \in \mathbb{N} \text{ tel que } a^n \in I\} \supseteq I$ est un idéal. On a vu que :

- l'ensemble des éléments nilpotents de A (incluant 0) est Nil $A := \sqrt{(0)} = \bigcap_{\mathfrak{p} \in \operatorname{Sp} A} \mathfrak{p}$;
- si $\mathfrak{p} \in \operatorname{Sp} A$ est un idéal premier de A contenant I alors $\mathfrak{p} \supseteq \sqrt{I}$.
- 1) Montrer que Nil(A/Nil(A)) = (0).
- 2) Montrer que Nil A = (0) si et seulement si A s'injecte dans un produit d'anneaux intègres.
- 3) Soit I un idéal de A.
 - a) Montrer que $\pi(\sqrt{I}) = \text{Nil}(A/I)$ où $\pi : A \to A/I$ est la surjection canonique. En déduire que Nil(A/I) = (0) si et seulement si $I = \sqrt{I}$.

b) En déduire que $\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Sp} A \\ \mathfrak{p} \supset I}} \mathfrak{p}.$

Exercice 4. Pour $x \in \mathbb{R}$, montrer que $I_x := \{f : \mathbb{R} \to \mathbb{R} : f(x) = 0\}$ est un idéal maximal de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 5. Soient k un corps, $n \ge 1$ et $x_1, \ldots, x_n \in k$. Montrer que $(X_1 - x_1, \ldots, X_n - x_n)$ est un idéal maximal de $k[X_1, \ldots, X_n]$.

Exercice 6. Soit k un corps et soit $d \mid n \ge 1$. Montrer que $X^d - 1$ divise $X^n - 1$ dans k[X].

Exercice 7. Soit A commutatif intègre unitaire. Montrer que (X) est un idéal premier de A[X,Y].

2 Quotients

Exercice 8 (Radical de Jacobson). Le radical de Jacobson J(A) d'un anneau commutatif unitaire A est l'intersection de ses idéaux maximaux.

- 1) Montrer que J(A/J(A)) = (0).
- 2) Plus généralement, si I est un idéal contenu dans J(A), montrer que J(A/I) = J(A)/I.
- 3) Montrer que Nil $A \subseteq J(A)$ (notation Nil de l'Exercice 3).

Exercice 9. Soit $n \in \mathbb{N}$. Quels sont les idéaux de $\mathbb{Z}/n\mathbb{Z}$? Lesquels sont premiers, maximaux?

Exercice 10 (Entiers de Gauss). Soit $A := \mathbb{Z}[i]/(1+3i)$.

- 1) Rappeler pourquoi $A \neq \{0\}$.
- 2) Montrer que i = 3 dans A.
- 3) Montrer que 10 = 0 dans A.
- 4) Montrer que $A \simeq \mathbb{Z}/10\mathbb{Z}$.

Exercice 11. 1) Déterminer le noyau du morphisme d'anneau unitaire $\mathbb{C}[X,Y] \to \mathbb{C}[X]$ donné par $P \mapsto P(X,0)$.

2) Montrer que $\mathbb{C}[X,Y]/(XY)$ est naturellement isomorphe au sous-anneau de $\mathbb{C}[X] \times \mathbb{C}[Y]$ formé des couples (P,Q) tels que P(0) = Q(0).

Exercice 12. 1) Monter que $\mathbb{F}_2[X]/(X^3+X+1)$ est un corps. Combien a-t-il d'éléments?

2) L'anneau $\mathbb{F}_3[X]/(X^3+X+1)$ est-il un corps?

3) Montrer que $\mathbb{Q}[X]/(X^2+X+1)$ est un corps et déterminer l'inverse de x^3-x+1 , où x est l'image de X.

Exercice 13. Soit A un anneau commutatif, soit I un idéal de A et soit $n \ge 1$.

- 1) Montrer que $M_n(A)/M_n(I) \simeq M_n(A/I)$.
- 2) a) Montrer que $I[X_1, \ldots, X_n]$ est un idéal de $A[X_1, \ldots, X_n]$.
 - b) Montrer que $A[X_1, ..., X_n]/I[X_1, ..., X_n] \simeq (A/I)[X_1, ..., X_n]$.

Exercice 14. Soient A, B des anneaux commutatifs et soit $f: A \to B$ un morphisme surjectif. Soit J un idéal de B et $I := f^{-1}(J)$.

- 1) Rappeler pourquoi I est un idéal de A.
- 2) Montrer que $A/I \simeq B/J$.

Exercice 15. Soit k un corps. Décrire les idéaux de $k[X]/(X^4 + 3X^3 + 2X^2)$.

Exercice 16. Résoudre les systèmes suivants, d'inconnue $x \in \mathbb{Z}$.

1)
$$\begin{cases} x = 1 \pmod{4} \\ x = 2 \pmod{5} \end{cases}$$

$$2) \begin{cases} x = 1 \pmod{10} \\ x = 5 \pmod{15} \end{cases}$$

3)
$$\begin{cases} 2x = 1 \pmod{25} \\ x = 5 \pmod{13} \end{cases}$$

Exercice 17. 1) Soit $n \in \mathbb{Z}$.

- a) L'idéal (n, X) est il un idéal premier de $\mathbb{Z}[X]$? Maximal?
- b) Même question avec l'idéal (n) de $\mathbb{Z}[X]$.
- 2) On considère les idéaux suivants de $\mathbb{Z}[X,Y]$:

$$(X,Y),$$
 $(2X),$ $(X,Y,2),$ $(2X,Y,2).$

Sont-ils premiers, maximaux?

3 Théorie des corps

Exercice 18 (Extensions de corps). Soit k un corps et soit $P \in k[X]$ non constant.

- 1) On suppose que P est irréductible.
 - a) Montrer que (P) est un idéal maximal de k[X].

- b) En déduire un morphisme injectif de corps $k \hookrightarrow K := k[X]/(P)$ (on parle d'extension de corps et on note K/k).
- c) Montrer que le polynôme P admet une racine dans K. Le corps K est un corps de rupture de P sur k.
- 2) Montrer que tout polynôme non constant de k[X] peut s'écrire comme un produit de polynômes irréductibles.
- 3) En déduire qu'il existe une extension de corps K/k telle que P possède une racine dans K.
- 4) En déduire qu'il existe une extension de corps K/k telle que P est scindé sur K. Un tel corps « minimal » est appelé corps de décomposition de P sur k.

Exercice 19 (Théorème de Steinitz). Soit k un corps. On veut montrer que k possède une extension Ω algébriquement close, c'est-à-dire, un sur-corps tel que tout polynôme non constant à coefficient dans Ω est scindé.

- 1) Montrer qu'il suffit de trouver Ω tel que tout polynôme non constant à coefficient dans Ω admet une racine.
- 2) Soit K un corps. On veut montrer qu'il existe une extension de corps L/K telle que tout polynôme non constant à coefficients dans K possède une racine dans L. Pour cela, soit \mathcal{P} l'ensemble des polynômes non constants à coefficients dans K. On considère l'anneau de polynômes $A := K[X_f : f \in \mathcal{P}]$ en une infinité d'indéterminées, indexées par \mathcal{P} , c'est-à-dire, la réunion des $K[X_{f_1}, \ldots, X_{f_n}]$ pour $n \geq 1$ et $f_i \in \mathcal{P}$ (autrement dit, chaque élément de $K[X_{f_1}, \ldots, X_{f_n}]$ pour nombre fini d'indéterminées).
 - a) Montrer que l'idéal $(f(X_f): f \in \mathcal{P})$ est un idéal strict de A. Indication : On pourra utiliser la question 4) de l'Exercice 18.
 - b) En déduire l'existence d'une extension de corps L/K comme recherchée.
- 3) En déduire que l'on peut construire une tour de corps $\Omega_0 := k \subseteq \Omega_1 \subseteq \Omega_2 \subseteq \dots$ telle que tout polynôme non constant à coefficient dans Ω_i possède une racine dans Ω_{i+1} .
- 4) Déterminer un corps algébriquement clos Ω comme recherché.

On peut alors (facilement) montrer que l'ensemble $\overline{k} := \{x \in \Omega : il \ existe \ P \in k[X] \ tel que \ P(x) = 0\}$ est un corps algébriquement clos : c'est la clôture algébrique de k dans Ω .