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Abstract
Biological data show that the size distribution of adipose cells follows a bimodal distri-
bution. In this work, we introduce a Lifshitz–Slyozov type model, based on a transport
partial differential equation, for the dynamics of the size distribution of adipose cells.
We prove a new convergence result from the related Becker–Döring model, a sys-
tem composed of several ordinary differential equations, toward mild solutions of the
Lifshitz–Slyozovmodel using distribution tail techniques. Then, this result allows us to
propose a new advective–diffusivemodel, the second-order diffusive Lifshitz–Slyozov
model, which is expected to better fit the experimental data. Numerical simulations
of the solutions to the diffusive Lifshitz–Slyozov model are performed using a well-
balanced scheme and compared to solutions to the transport model. Those simulations
show that both bimodal and unimodal profiles can be reached asymptotically depend-
ing on several parameters. We put in evidence that the asymptotic profile for the
second-order system does not depend on initial conditions, unlike for the transport
Lifshitz–Slyozov model.
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1 Introduction

White adipose tissue is mainly composed of cells, called adipocytes, which store lipids
in the body under the form of triglyceride droplets. Experiments in most animals (Jo
et al. 2009, 2012; Soula et al. 2013) show that the size distribution of adipocytes fol-
lows a striking bimodal distributionwith a peak of large amplitude for small adipocytes
around the minimal radius, see Fig. 1. The changes in volume of an adipocyte are
governed by two opposite phenomena: lipogenesis, that is to say size increase by
triglyceride intake, and lipolysis, that is to say size decrease through the hydroliza-
tion of triglycerides and the excretion of fatty acids. Modeling the dynamics of size
evolution of adipocytes is of great interest in order to study metabolic disorders, such
as obesity or type 2 diabetes. Correlation between such diseases and the size and
metabolism of adipose cells has been well established in the biological literature.
Indeed, in Varlamov et al. (2010), authors show that the size of an adipose cell has
a strong correlation with its insulin sensitivity. As such, large cells are less sensi-
tive, therefore a higher body weight leads to greater risks of type 2 diabetes. This
study also shows that adipose tissue are very heterogeneous in terms of size of cells.
Those findings have also been described in Lee et al. (2019), where the authors show
that the adipose tissue is composed of cells that are different both molecularly and
phenotypically.

Some computationalmodels have also been used to provide insights into the adipose
tissue physiology. InKim et al. (2008), the authors use anODEmodel to investigate the
role of lipases in the biochemistry of lipids. They are able to show that determining the
active metabolic subdomain in the tissue is the key for accurate simulations, as well as
the different activation rates of lipases for diglyceride and triglyceride breakdown. The
rate of lipid turnover has also been studied in Arner et al. (2019), where a decrease of
the lipid release rate is correlatedwith the age of the individual. Finally, there are strong
links between the adipose tissue and its extracellular matrix, and in case of obesity,
one may observe tissue fibrosis such as described in Divoux and Clement (2011).
In Peurichard et al. (2017, 2019), adipose tissue is modeled by a 2D agent-based
model which takes into account the mechanical interactions between adipose cells
and fibers forming the extra-cellular matrix. The authors study the spatial distribution
of adipocytes under the form of lobules or in the case of tissue regeneration.

However, only a few mathematical models have been proposed in order to describe
the size dynamics of adipose cells and no previous work has tackled a mechanistic
understanding of the bimodal feature of adipocyte size distribution.

A first model has been derived by Jo, Periwal et al. Jo et al. (2015, 2012) using
a PDE for the adipose cell growth with a phenomenological cell growth rate. They
are able to recover the bimodal feature of distributions as well as to perform some
curve fitting on biological data. In Soula et al. (2013) and later in Soula et al. (2015),
the authors describe the velocity of size change of adipocytes by biological consid-
erations for lipogenesis and lipolysis, leading thus to some transport PDE models.
They obtain bimodal distributions by using stochastic variations of the parameters. In
Gilleron et al. (2020), the authors perform the analysis and numerical simulations for
a size-structured model describing the evolution of a set of adipocytes, including the
creation of new adipocytes through differentiation processes from mesenchymal cells
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Fig. 1 Example of the
distribution of adipocytes in a rat
biopsy. Credits: H. Soula

and preadipocytes, and accounting for a size velocity inversely proportional to the
total surface of adipocytes. Finally, in Prana et al. (2019), authors use an ODE model
to investigate interplay and feedback loop between inflammatory response of bigger
adipose cells and the immune system, which may lead to type 2 diabetes. The size of
adipocytes is updated at each time step according to some probability of swelling and
by a factor depending on the surplus of calories intake. However they do not concern
themselves with the size distribution but with the whole tissue inflammation and the
body weight dynamic.

1.1 Transport equation for adipocyte size evolution

Following the work in Soula et al. (2013), we first describe intake and release of lipids
trough the cellular membrane, thus describing how the size of an adipose cell evolves.
This will in turn allow us to build a model based on continuity equations.

Our first assumption will be the correlation between the amount of storage in an
adipose cell and its radius. Cells shall be considered as spheres of a certain radius r ,
and the amount of lipids in the cell is denoted by x . Let us denote by r(x) the radius of
a cell containing x amount of lipids, by V0 the volume of an empty cell and by Vlipids
the molar volume of triglycerides.

We express the total volume of the cell in two different ways and we obtain the
following relation:

Vlipidsx + V0 = 4

3
πr(x)3,

which leads to:

r(x) =
(

3

4π
(Vlipidsx + V0)

) 1
3

. (1)

We also denote by L the amount of external lipids in the medium.
Henceforth, x will be considered as the size of our cell. Its variation dx

dt depends on
two flows: the intake of lipids by the cell from the medium and the release of lipids
in the medium. As those two flows go through the membrane of the cell, they should

123



16 Page 4 of 50 L. Meyer et al.

be surface limited. We will also consider fast diffusion of the lipids in the medium so
that the amount of lipids available for each cell is the same.

The intake term is a product of three factors:

• a term for a surface limited flow αr(x)2, where the constant α is the rate of this
flow;

• a Hill-like term with a radius cutoff ρ to describe resistance toward indefinite

intake of lipids
ρn

r(x)n + ρn
;

• a term that accounts for the available amount of lipids in the medium, in the form

of a Michaelis-Menten term
L

L + κ
with a saturation effect when the amount of

external lipids L is large, with κ giving the order of magnitude of the threshold.

The release is a product of two terms:

• a term with a basal level of release β and a surface limited flow γ r(x)2, where the
constant γ is the release equivalent of the constant α;

• a Michaelis-Menten term for the available amount of lipids in the cell
x

x + χ
,

where χ is the equivalent of κ for the release.

The variation
dx

dt
can therefore be expressed as the difference between intake and

release as:

dx

dt
= αr(x)2

ρn

r(x)n + ρn

L

L + κ︸ ︷︷ ︸
intake

− (β + γ r(x)2)
x

x + χ︸ ︷︷ ︸
release

. (2)

We can now build a transport equation for the distribution f (t, x) of adipose cells
by amount of lipids x ≥ 0 at time t . According to Eq. (2), the transport velocity will
be given by:

v(x, L) = a(x)
L

L + κ
− b(x), (3)

where

a(x) = αr(x)2
ρn

r(x)n + ρn
(4)

and

b(x) = (β + γ r(x)2)
x

x + χ
. (5)

Consequently, the function f satisfies the following transport equation:

∂t f (t, x) + ∂x (v(x, L) f (t, x)) = 0, x ≥ 0, t > 0. (6)
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We now need to describe the behaviour of the available amount of lipids in the
medium L . As per our assumption, the total quantity of lipids in our system, denoted
by λ, should be constant. There are two types of lipids in the system: the ones contained
in the cells, and the lipids in the medium and we therefore have the following equality:

L(t) +
∫
R+

x f (t, x)dx = λ. (7)

Another hypothesis is that the number of adipocytes does not change in time. Thus,
in regards to boundary conditions, we want to preserve the total population number
and therefore we impose that:

∫
R+

f (t, x)dx =
∫
R+

f 0(x)dx = m for all t > 0. (8)

This leads for Eq. (6) to boundary condition

(v(x, L(t)) f (t, x))
∣∣
x=0 = 0, for all t > 0. (9)

Notice that by Eqs. (4)–(5), we have b(0) = 0 and a(0) > 0. Hence, the boundary
conditions (9) is equivalent to the Dirichlet boundary condition:

f (t, x)
∣∣
x=0 = 0 for all t > 0. (10)

To sum up, the transport model for adipose cells with initial conditions ( f 0, L0), that
will be called first-order Lifshitz–Slyozov model in the following, reads as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t f (t, x) + ∂x (v(x, L(t)) f (t, x)) = 0, (11a)

L(t) +
∫
R+

x f (t, x)dx = λ, (11b)

(v(x, L(t)) f (t, x))
∣∣
x=0 = 0, (11c)

f (0, x) = f 0(x) and L(0) = L0. (11d)

Regarding the value of the parameters of the model, a biological estimation of both
β the basal release rate and γ the surface release rate were made from biological
experiments in Soula et al. (2015). The value for other parameters are estimated in
Giacobbi et al. (2023) thanks to experimental data.

1.2 Newmodels for adipose tissue dynamics

In this subsection, we present the various models under consideration in this article.
Starting from the description of lipogenesis and lipolysis as done in Eqs. (4) and
(5) following (Soula et al. 2013), we build size-structured PDE model following the
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framework of Becker–Döring system (Becker and Döring 1935) and Lifshitz–Slyozov
equations (Lifshitz and Slyozov 1961) initially derived for polymerization.

The aim of this model is to reproduce the adipocyte size distributions observed
experimentally and their bimodal structure. However, the transport equation (6) pos-
sesses asymptotic solutions as a linear combination of Dirac masses centered on the
zeros of the asymptotic speed. This was proved in Collet et al. (2002); Calvo et al.
(2018) for simpler choices of the rates a and b and in the case of convergence toward a
single Diracmass, but these results are currently not applicable to ourmodel. Solutions
with growing and unbounded support, with self-similar long-time behavior, have been
detailed for the Lifshitz–Slyozov and Lifshitz–Slyozov–Wagner models, notably in
Niethammer and Pego (1999). However this situation has been described for coeffi-
cients such that limx→∞ b(x)

a(x)
= 0 (the most common choice being a(x) = x1/3 and

b(x) = 1, shown to be physically relevant Niethammer 2004). This choice together
with monotonicity ensures a crucial assumption on the velocity (Calvo et al. 2021),
which is the existence of some critical size xcrit (t) such that for all x ≤ xcrit (t)
the velocity v(x, L(t)) is negative, and positive for all x ≥ xcrit (t). For the case of
adipose cell modeling, the choice of a and b is rather complex and in most cases the
velocity changes sign multiple times, but from numerical simulations, see Figs. 10, 11
and 12, we believe the asymptotic solution to be a linear combination of Dirac masses.
Actually, due to the boundedness of a and strict monotonicity of b, starting from a
compactly supported solution, it is for instance easy to show that the support of the
solution stays in a compact set, uniformly in time (see lemma 6.1 in Annex). Addi-
tionnally from numerical simulations, see Fig. 10, and from the fact that we are in
the sub-critical case, we do not believe such behaviours to be likely to happen here.
Moreover, due to the boundedness of a, starting from a compactly supported solution,
it is for instance easy to show that the support of the solution stays in a compact,
uniformly in time.

Hence even if the stationary solutions of system (11) are able to recover the position
of the two peaks, we are interested in a model that is able to recover the whole range
of possible sizes. A natural extension is therefore to include a diffusion term to the
transport equation (11) which is expected to smooth the stationary solutions. We can
either add a diffusion term with a constant rate with no real biological meaning, or
we can compute a time and space dependent diffusion term coming from the discrete
nature behind the Lifshitz–Slyozov formalism (Hariz and Collet 1999; Vasseur et al.
2002). For that purpose, we come back to a Becker–Döring system of ODEs giving
the evolution with respect to time of the number of adipocytes with discrete sizes and
from this, we derive a second order Lifshitz–Slyozov equation with a diffusion term.

Note that our final goal, which is out of the scope of the present article, is to per-
form parameter estimation thanks to experimental data. For that purpose, asymptotic
solutions to Lifshitz–Slyozov equation with diffusion, which are smooth functions,
are more adapted than the discontinuous asymptotic solutions to Lifshitz–Slyozov
equation or than the discrete solutions to the Becker–Döring equation.

Therefore, in the following, we will consider three different models for the size
distribution of an adipocyte population, namely

• the ODE system (14) with discrete sizes, a variant of the Becker–Döring model.
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• the previously published transport equation (11), also called first order Lifshitz–
Slyozov equation,

• the transport-diffusion equation (18), the second order Lifshitz–Slyozov equation.

In all three models, the lipogenesis and lipolysis rate will be given by Eq. (4) and (5),
respectively.

Note that we impose in all three models two conservation laws: (i) the conservation
of the total amount of lipids and (ii) the conservation of the total number of adipocytes.
Therefore, all these models have a constant population number and are coupled with
a lipid conservation equation which ensures that the sum of the lipids in the external
medium and the lipids inside the cells is constant.

1.2.1 A brief insight into the Becker–Döring equations

Becker–Döring equations have been introduced in Becker and Döring (1935) to model
polymers undergoing aggregation and fragmentation. The Lifshitz–Slyozov model
was introduced in Lifshitz and Slyozov (1961) and first used for nucleation in super-
saturated solid solutions and polymerisation processes. A rigourous treatment of the
mathematical properties of the Becker–Döring equations was given by Ball et al.
(1986). The relation between Becker–Döring equations and Lifshitz–Slyozov model
goes back to Penrose et al. (1978). For a detailed review of both models, see Hingant
and Yvinec (2017) and references therein.

Let us explain briefly the idea of these models for polymers. We denote by ci , the
amount of polymers containing i monomers for i ∈ N

∗ and hence c1 stands for the
amount of monomers. A polymer of size i denoted pi can gain one monomer and
grow to pi+1 with rate ai or lose one monomer and shrink to pi−1 with rate bi . We
may write as a system of ODEs for the time evolution of the number of polymers ci ,
one for each size i . Furthermore, the total amount of monomers, i.e free monomers
and monomers within polymers, is assumed constant, which leads to a conservation
equation. Stationary solutions of theBecker–Döring equations can be easily computed,
and long time behaviour has been characterized by Ball et al. (1986).

1.2.2 A brief insight into the Lifshitz–Slyozov equations

Another possibility for the modeling of polymerisation-fragmentation processes is to
describe continuously the size of polymers through a variable x ∈ R. The distribution
of polymers of size x at time t is therefore denoted by f (t, x) and the quantity of
monomers at time t is denoted by L(t). The distribution is classically transported as in
Eq. (6) with speed v(x, L) = a(x)L(t)−b(x)where a(x) is the rate of polymerisation
for size x and b(x) is the rate of depolymerisation for size x . As previously, the total
amount ofmonomers is conserved.Dependingon the signofa(0)L(t)−b(0), boundary
conditions should be provided for the system, seeDeschamps et al. (2017) for example.

After an adapted rescaling, it has been shown in various papers (Conlon and
Schlichting 2019; Deschamps et al. 2017; Laurençot and Mischler 2002; Nietham-
mer 2004; Schlichting 2019; Vasseur et al. 2002) that the solutions to Becker–Döring
system tend to the solutions to Lifshitz–Slyozov model. Formally, the limit up to
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second order can be considered and gives rise to an advection–diffusion equation
as computed in Hariz and Collet (1999); Vasseur et al. (2002). Existence of solu-
tions is widely known for both models, see the seminal paper (Ball et al. 1986) for
the Becker–Döring model and (Calvo et al. 2021; Collet and Goudon 2000) for the
Lifshitz–Slyozov model..

Remark that Becker–Döring and Lifshitz–Slyozov equations have already been
used in various contexts, for example modeling of biological phenomena, such as
prions (Doumic et al. 2009; Laurençot and Walker 2007; Simonett and Walker 2006;
Prigent et al. 2012; Greer et al. 2006) or modeling in oceanography, see (Wurl et al.
2011; Jackson and Burd 1998).

1.2.3 A Becker–Döring model for adipose cells

Now, let us explain how we adapt this formalism to derive new models for adipocyte
size dynamics. The purpose of this construction is to investigate the classical conver-
gence theorems from Becker–Döring to Lifshitz–Slyozov and deduce the form of a
diffusion term to add in our model.

We mention the main differences with the classical Becker–Döring and Lifshitz–
Slyozov systems for polymerisation. First, velocity (2), arising from biological
considerations, possesses three zeros for a well-chosen range of parameters which
leads to bimodal asymptotic distributions, whereas classical choices for a and b are
constant or power laws of x , which yields the existence of a single positive root. See
also Calvez et al. (2010) for a polymerisation-fragmentation model without diffusion
giving rise to bimodal asymptotics. Second, in our model, external lipids L cannot be
assimilated to monomers c1 and the conservation law (7) is therefore not the same as

in the usual polymerisation models. Moreover, the saturation term
L

L + κ
is not com-

mon in polymerisation modeling. Finally, our model conserves the total population
number due to the boundary condition (11c), which adds an additional conservation
law compared to the classical Becker–Döring model.

We shall now consider that an adipose cell is a bundle of smaller vesicles of typical
size �. Hence the size of a cell can be defined by the number of vesicles it contains.
We denote by ci the number of cells of size i and by l the number of vesicles in the
medium. A cell will aggregate a new vesicle with speed ai M(l),where M(l) = l�

l�+κ
following Eq. (2), and loose a vesicle at speed bi , following this reaction:

� + i�
ai M(l)−−−−⇀↽−−−−

bi+1

(i + 1)�.

We define c = (ci )i≥0 and Ji (c, l) the flow of the previous reaction given by:

Ji (c, l) = ai M(l)ci − bi+1ci+1, i ≥ 0, (12)

where ai (resp. bi ) is a discrete counterpart of the continuous function a defined at Eq.
(4) (resp. b defined at Eq. (5)).

Therefore, the Becker–Döring system may be written as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dci

dt
= Ji−1(c, l) − Ji (c, l), ∀i ≥ 1, (13a)

dc0
dt

= −J0(c, l), (13b)

l(t)� +
∞∑

i=0

i�ci (t) = λ, ∀t ≥ 0, (13c)

l(0) = l0, ci (0) = c0i , ∀i ≥ 1. (13d)

The rescaling procedure we use is akin to the one in Deschamps et al. (2017);
Vasseur et al. (2002). We introduce the following scaling constants:

• Ā rescaling value of (ai )i≥0,
• B̄ rescaling value of (bi )i≥1,
• C̄ rescaling value of (ci )i≥0,
• T̄ rescaling value of the time scale,

We previously denoted by � the typical size of a vesicle. Hence it plays the role of
a rescaling value and should be treated as so.

Now, we introduce the rescaled variables:

āi = ai

Ā
, ∀i ≥ 0,

b̄i = bi

B̄
, ∀i ≥ 0,

t̄ = t

T̄
,

c̄i (t̄) = ci (t̄ T̄ )

C̄
, ∀i ≥ 0,

L̄(t̄) = l(t̄ T̄ )�.

The quantity L̄ therefore describes the total amount of lipids in the medium instead
of the number of lipid vesicles.

We compute from equation (13) the derivative of c̄i for i ≥ 1:

dc̄i

dt
(t̄) = T̄

C̄

dci

dt
(t̄ T̄ )

= T̄

C̄

(
ai−1

l(t̄ T̄ )�

l(t̄ T̄ )� + κ
ci−1(t̄ T̄ ) − (ai

l(t̄ T̄ )�

l(t̄ T̄ )� + κ
+ bi )ci (t̄ T̄ ) + bi+1ci+1(t̄ T̄ )

)

= ĀT̄
(

āi−1
L̄(t̄)

L̄(t̄) + κ
c̄i−1(t̄) − āi

L̄(t̄)

L̄(t̄) + κ
c̄i (t̄)

)
− B̄T̄

(
b̄i c̄i (t̄) − b̄i+1c̄i+1(t̄)

)
.

The derivative of c̄0 writes as:

dc̄0
dt

(t̄) = − ĀT̄ ā0
L̄(t̄)

L̄(t̄) + κ
c̄0(t̄) + B̄T̄ b̄1c̄1(t̄)
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and the conservation equation for lipids as:

L̄(t̄) + C̄�
∑
i≥1

i c̄i (t̄) = λ.

We now relate all the rescaling constants to a single variable ε > 0, such that:

ĀT̄ = B̄T̄ = 1

ε
, C̄� = ε2 and δ = ε.

At last, we drop the bar above the variables and replace it with ε as superscript to
show the dependency of the solution on ε.

Remark Depending on the process we are trying to model, the interpretation of the
rescalingmay vary. Some rescaling procedures intend to capture the large time asymp-
totic of the Becker–Döring model (Niethammer 2004; Conlon and Schlichting 2019)
while others are more in the spirit of hydrodynamic limits (Laurençot and Mischler
2002; Vasseur et al. 2002), using assumptions on initial conditions and coefficients.
For adipose cells we fall into the latter case: this rescaling can be seen as if the rate of
reactions is of order 1

ε
, but each reaction size is of order ε and the size of the individual

vesicles is also of order ε.

We finally get the following ODE system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dcε
i

dt
= 1

ε
(J ε

i−1(c
ε, Lε) − J ε

i (cε, Lε)), ∀i ≥ 1, (14a)

dcε
0

dt
= −1

ε
J ε
0 (cε, Lε), (14b)

Lε(t) +
∞∑

i=0

iε2cε
i (t) = λ, ∀t ≥ 0, (14c)

Lε(0) = Lε,0, cε
i (0) = cε,0

i , ∀i ≥ 1, ∀i ≥ 0, (14d)

which is similar to Becker–Döring equations except for the definition of the flux J ε
i

(saturating fluxes of monomers)

J ε
i (cε, Lε) = aε

i
Lε

Lε + κ
cε

i − bε
i+1cε

i+1

and the minimal size is 0 and not 1. Proper assumptions on the discrete rates are given
at the beginning of Sect. 2. Observe also that there is no ’boundary’ flux, thus the
quantity

m = ε
∑
i≥0

cε
i (t) is constant in time. (15)
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This is the discrete analogue to the previous conservation (8) of the zeroth order
moment of f .

A solution to the previous system exists according to Theorem 2.1 recalled in Sec. 2.
Now let us define the following step functions depending on both time and space:

f ε(t, x) =
∑
i≥0

1�ε
i
(x)cε

i (t),

where �ε
i = [(i − 1

2 )ε, (i + 1
2 )ε[, and (cε

i )i≥0 is a solution to (14).
Convergence of function f ε when ε → 0 towards a solution f of the Lifshitz–

Slyozov equation (11) is a classical result, see Theorem 2.3 recalled in Sec. 2. In the
present work, we prove that a similar convergence result hold in a stronger topology,
and with a control of the speed of convergence, of order at least ε.

To that, we introduce the tail distributions:

F(t, x) =
∫ ∞

x
f (t, y)dy, Fε(t, x) =

∫ ∞

x
f ε(t, y)dy.

The main analytical result of this article is the following theorem, whose more
rigorous statement will be specified later in Theorem 3.1:

Theorem 1.1 (Convergence of tails of distributions) Let T > 0. Suppose that there

exists some constant Cinit > 0 such that for all ε > 0,
∫
R+

|Fε(0, x) − F(0, x)|dx ≤
εCinit. Also assume that hypotheses (H1)–(H9) hold true. Then there exists some
constants C(T ) > 0 (independent of ε) and ε∗ (independent of T ) and such that for
all 0 < ε ≤ ε∗ and for all t ∈ (0, T ]:

|Lε(t) − L(t)| +
∫
R+

|Fε(t, x) − F(t, x)|dx ≤ εC(T ).

This result provides a new approach for looking into convergence from Becker–
Döring to Lifshitz–Slyozov. Contrary to more classical results where convergence
towards a weak solution is achieved using Ascoli-Arzela’s Theorem, this theorem
yields convergence towards mild solutions and gives a bound of order ε on the speed
of this convergence.

Stationary solutions of the Becker–Döring equations have an explicit formulation,
see Ball et al. (1986). However since the model we introduced has no biological rele-
vance, we are not interested in studying them.Moreover we are ultimately interested in
doing parameter estimation on biological data and a continuous model is more suited
to themethods wewant to use. Also, establishing a theoretical connection between the
stationary states of the Becker–Döring and Lifshitz–Slyozov equations is not a triv-
ial matter. In Hariz and Collet (1999), the authors introduced a diffusive term to the
Lifshitz–Slyozov model, whith the intend that this modified Lifshitz–Slyozov model
will have stationary states which are more easily linked to the stationary states of the
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Becker–Döring model. There are able to establish a connection when the rates are
constants and where λ is close to the critical value lim

x→∞
b(x)
a(x)

. We shall see in the next

section a slightly different version of this diffusive Lifshitz–Slyozov model which we
call the second-order Lifshitz–Slyozov model, the difference being in the boundary
condition. Nonetheless, for a general choice of rates a and b, we are unaware of results
establishing a theoretical connection between the stationary states of both models.

1.2.4 A second order Lifshitz–Slyozov model

Another goal in this article is to derive a newmodel with a diffusive term fromBecker–
Döring system (14). One can see this diffusive term as a second order term emerging
from the convergence theorem 3.1. There are various ways to yield this term, see for
example (Vasseur et al. 2002; Schlichting 2019;Deschamps et al. 2017). The derivation
of the diffusive term will be detailed in Sect. 4, but we present the model here for the
sake of completeness.

The so-called second order Lifshitz–Slyozov model therefore takes the form of a
transport-diffusion equation, with a diffusive term which depends both on x and L(t),
i.e.:

∂t g + ∂x (vg) = ε

2
∂2x (dg), ∀x ≥ 0,

where

d : (x, L) ∈ R+ × R+ → d(x, L) = a(x)
L

L + κ
+ b(x). (16)

We need to complement this PDEwith adapted boundary conditions. Sincewewant

the conservation of the zeroth order moment denoted by
∫
R+

g(t, x)dx = m, we need

to impose the following null-flux boundary condition:

(−vg + ε

2
∂x (dg))

∣∣∣
x=0

= 0. (17)

Therefore, we consider the following system, which consists of the previous PDE
and boundary conditions, complemented by previous constraint (7) and initial condi-
tions for g and L:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t g + ∂x (vg) = ε

2
∂2x (dg), (18a)

L(t) +
∫
R+

xg(t, x)dx = λ, (18b)

(
− vg + ε

2
∂x (dg)

)∣∣∣
x=0

= 0, (18c)

g(0, x) = g0(x) and L(0) = L0. (18d)
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We provide interesting numerical evidence of stationary solutions of the advection–
diffusion model (18) following a bimodal distribution. The numerical simulations are
performed using a well-balanced scheme developped in Goudon andMonasse (2020).
We also demonstrate that to observe a bimodal asymptotics, parameters should be
taken into an adapted parameter range.

1.3 Outline of the article

In Sect. 2, we will give some preliminary results on the existence of solutions to
systems (14) and (11). In Sect. 3, we will show the convergence theorem thanks to the
tail of distributions technique. Then, in Sect. 4, we derive formally the second-order
Lifshitz–Slyozov model, that is to say system (18) and we give the expression for its
stationary solutions. In Sect. 5, we display some numerical results and we show that
bimodality of the stationary solution can be observed in well-chosen parameter range.
Finally, we discuss our results in Sect. 6.

2 Preliminary results

In this section, we give the main already-known results of existence of solutions to
systems (14) and (11) and convergence of solutions to system (14) towards (11). Proofs
have been easily adapted to our framework.

2.1 Existence results on Becker–Döring system

We consider first the Becker–Döring system (14) for fixed ε. From the modeling
we introduced for adipose cells, we have an explicit expression for the functions a
and b, from which we deduce consistent discrete approximations, in the spirit of
numerical analysis (see for instance Laurençot and Mischler 2002). In turn, we will
introduce assumption (H4) that relates aε

i to a and bε
i to b when we describe the

convergence result. However when studying the existence of solutions to the Becker–
Döring system, we can take weaker assumptions on the rates aε

i and bε
i . Nonetheless

assumptions (H1)–(H4) imply both assumptions (H’1) and (H’2).
We assume that there exist some strictly positive constants A, B, Ca , Cb, Ka , Kb

and δ, all independent of ε, such that for all i ≥ 0:

aε
i ≤ Ca and bε

i ≤ Cbiε, (H’1)

|aε
i − aε

i+1| ≤ Kaε and |bε
i − bε

i+1| ≤ Kbε. (H’2)

The classical result of existence in Ball et al. (1986) assumes ai , bi = O(i), with
typical coefficients being of the form ai = iμ, bi = iν , 0 ≤ ν, μ < 1 as well as
additional assumptions on the initial conditions. These assumptions were relaxed in
Laurençot and Mischler (2002), by considering ‘smooth’ coefficients in the sense of
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assumption (H’2). Assumption (H’1) ensures that for large i we fall into the case
ai , bi = O(i). Note that our model with assumptions (H’1) and (H’2) falls into the
classical choices for the rates ai and bi because we already know the target rate
functions a and b, which are smooth, bounded for a, and sub-linear for b.

We define the state space for Eq. (14) by

X :=
{

x = (xi )i≥0 ∈ R
N+ :

+∞∑
i=0

i xi < ∞
}

,

endorsed with the norm ‖x‖X =∑+∞
i=0 i |xi |. We denote x ≥ 0 if xi ≥ 0 for all i ≥ 0,

and X+ := {x ∈ X : x ≥ 0}. We give the following definition of solution to Eq. (14):

Definition 2.1 Let T > 0 and ε > 0. A solution (cε, Lε) of (14) in [0, T ) is a
pair of a function Lε : [0, T ) → R and a sequence of functions cε = (cε

i )i≥0,
cε

i : [0, T ) → Xsuch that:

(i) For all t ∈ [0, T ), Lε(t) ≥ 0 and cε(t) ∈ X+,
(ii) For all i ≥ 1, cε

i : [0, T ) → R is continuous and supt∈[0,T ) ‖cε(t)‖X < +∞,
(iii) Lε : [0, T ) → R is continuous and supt∈[0,T [ |Lε(t)| < +∞,

(iv) For all t ∈ [0, T ),
∫ t

0

∑+∞
i=0

aε
i cε

i (s)ds < ∞ and
∫ t

0

∑+∞
i=0

bε
i cε

i (s)ds < ∞,

(v) For all t ∈ [0, T ), for all i ≥ 1:

cε
i (t) = cε,0

i + 1

ε

∫ t

0
[J ε

i−1(c
ε(s), Lε(s)) − J ε

i (cε(s), Lε(s))]ds,

cε
0(t) = cε,0

0 − 1

ε

∫ t

0
J ε
0 (cε(s), Lε(s))ds,

Lε(t) = Lε,0 − ε

∫ t

0

∑+∞
i=0

J ε
i (cε(s), Lε(s))ds

Well-posedness of solutions to (14) as defined at Def.2.1 can be shown by finite
dimensional approximation, using the method developped in Ball et al. (1986):

Theorem 2.1 Let T > 0 and ε > 0. Let Lε,0 ∈ R+ et cε,0 ∈ X+ such that Lε,0 +∑+∞
i=0 iε2cε,0

i = λ < ∞. Assume that (H’1), (H’2) hold true. Then there exists a
unique solution (cε, Lε) to Becker–Döring system (14) in the sense of Def. 2.1 which
satisfies initial conditions cε(0) = cε,0 and Lε(0) = Lε,0.

The uniqueness and conservation properties of the solution are obtained using the
following proposition that will be needed later on, see Sec. 4. In particular, the follow-
ing proposition states that any solution of the Becker–Döring system (14) preserves the
first twomoments for all times, and provides the starting point to compute any admissi-
blemoments for the solution of theBecker–Döring system. InBall et al. (1986), we can
find the following Theorem 2.5 that we reproduce here for the reader’s convenience:

Proposition 2.1 Let (φi )i≥0 be a given sequence. Let (cε, Lε) be the solution of (14)
on [0, T ), 0 < T ≤ +∞.

Assume that for all 0 ≤ t1 < t2 < T ,
∫ t2

t1

∞∑
i=0

|φi+1 − φi |aε
i cε

i (t)dt < ∞ and that

either of the following holds:
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(a) φi = O(i) and
∫ t2

t1

∑∞
i=0

|φi+1 − φi |bε
i+1cε

i+1(t)dt < ∞ or

(b)
∑∞

i=0
φi c

ε
i (tk) < ∞, for k = 1, 2 and φi+1 ≥ φi ≥ 0 for i large enough.

Then:

∞∑
i=0

φi c
ε
i (t2) −

∞∑
i=0

φi c
ε
i (t1)+

∫ t2

t1

∞∑
i=0

φi+1 − φi

ε
bε

i+1cε
i+1(t)dt

=
∫ t2

t1

∞∑
i=0

φi+1 − φi

ε
aε

i
Lε(t)

Lε(t) + κ
cε

i (t)dt .

2.2 Lifshitz–Slyozov system and classical convergence result

Even though we have precise forms for the intake and release functions, for the sake
of generality we make the following assumptions on functions a and b occurring in
Eq. (46):

a, b ∈ C1(R+,R+), (H1)

a(0) > 0 and sup
x∈R+

|a(x)| = Ca , (H2a)

|b(x)| ≤ Cbx for all x ∈ R+ and lim
R→∞ sup

x≥R

b(x)

x
= 0, (H2b)

sup
x∈R+

|a′(x)| = Ka and sup
x∈R+

|b′(x)| = Kb, (H3)

with Ca, Cb, Ka, Kb > 0. We first define measured-valued solutions to the Lifshitz–
Slyozov system (11), following (Collet and Goudon 2000)

Definition 2.2 Given an initial condition ( f 0, L0) ∈ C0(R+)∩ L1(R+, (1+ x)dx)×
R+, a measured-valued solution to system (11) is composed of two functions f ∈
C(0, T ;M1(0,∞) − weak − ∗) and L ∈ C(0, T ) such that for all 0 < t < T and
for all ϕ ∈ C1([0, T ] × R+) the following relations hold:

∫ T
0

∫
R+(∂tϕ(t, x) + v(x, L(t))∂xϕ(t, x)) f (t, x)dx + ∫

R+ ϕ(0, x) f 0(x)dx = 0,

L(t) + ∫
R+ x f (t, x)dx = λ.

Now, let us state the convergence of solutions to Becker–Döring system towards
solutions to Lifshitz–Slyozov system. In order to compare solutions to Becker–Döring
system to solutions to Lifshitz–Slyozov system, we need to define the following piece-
wise constant functions. Let �ε

i = [(i − 1
2 )ε, (i + 1

2 )ε) and cε
i be solutions to (14),
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then we define

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f ε(t, x) =
∑
i≥0

1�ε
i
(x)cε

i (t) , (19a)

aε(x) =
∑
i≥0

1�ε
i
(x)aε

i , (19b)

bε(x) =
∑
i≥1

1�ε
i
(x)bε

i , (19c)

where we assume that:

aε
i = a(iε) and bε

i = b(iε), for all i ≥ 0 and ε > 0. (H4)

Given our definitions in Eq. (19), from Proposition 2.1 and with φi = ∫
�ε

i
φ(x)dx ,

we deduce the following proposition, that is the starting point to study the convergence
of the solution of the Becker–Döring system (14) towards solution of the Lifshitz–
Slyozov equation (11).

Proposition 2.2 Let φ ∈ L∞(R+). Then for every t ≥ 0, we have the following
equality:

∫ ∞

0
φ(x)( f ε(t, x) − f ε(0, x))dx

=
∫ t

0

∫ ∞

0
(�εφ(x)aε(x)

Lε(t)

Lε(t) + κ
− �−εφ(x)bε(x)) f ε(t, x)dxdt,

where

�εφ(x) = φ(x + ε) − φ(x)

ε
. (20)

Finally, we obtain the following convergence theorem from the Becker–Döring equa-
tions to the Lifshitz–Slyozov equations, as in Vasseur et al. (2002):

Theorem 2.2 Consider an initial condition (Lε,0, (cε,0
i )i≥0) and the corresponding

solution (Lε, (cε
i )i≥0) in the sense of Definition 2.1. We assume that there exists a

constant K > 0 and 0 < s ≤ 1 both independent of ε such that:

• Lε,0 + ε2
∑

i≥0 icε,0
i = λ,

• ε
∑

i≥0 cε,0
i < K ,

• ε
∑

i≥0(iε)
1+scε,0

i < K .

We also assume hypotheses (H1)–(H4) to hold. Then there exists a sequence εn and
a solution ( f , L) to (11) in the sense of Definition 2.2 such that:

{
f εn → f , x f εn → x f in C0([0,+∞[;M1(0,+∞) − weak − ∗),

Lεn → L uniformly in C0([0, T ]).
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Now, let us consider the existence of mild solutions to (11). For that purpose, we
first define the characteristic curves.

Assume L ∈ C0(R+) to be given. The characteristic curves associated to (11) are
solutions to:

{
∂s X(s; t, x) = v(X(s; t, x), L(s)),

X(t; t, x) = x .

Since v is C1 in both x and L , the characteristics are uniquely defined and form an
ordered family. We denote It,x their maximal time interval and by Xc(t) = X(t; 0, 0)
the characteristic curve that is equal to 0 at time 0. Then, a mild solution to system
(11) is given by the following definition:

Definition 2.3 Given a smooth initial condition f 0 and L ∈ C0(R+), a mild solution
of

⎧⎪⎨
⎪⎩

∂t f + ∂x (v(x, L(t)) f ) = 0,

(v(x, L(t)) f (t, x))
∣∣
x=0 = 0,

f (0, x) = f 0(x),

is given by:

f (t, x) = f 0(X(0; t, x)) exp

(
−
∫ t

0
∂xv(X(s; t, x), L(s))ds

)
1(Xc(t),∞)(x).

A pair ( f , L) is said to be a solution of (11) if f is a mild solution associated to
L and L : R+ → R+ solves L(t) + ∫

R+ x f (t, x)dx = λ for all t ≥ 0.

Remark Sincewe imposenull-fluxboundary conditions on this system:v(x, L(t)) f (t,
x)|x=0 = 0, there is no term involving "incoming characteristics" 1(0,Xc(t))(x).

We follow the proofs in Collet and Goudon (2000) and Calvo et al. (2021) and we
obtain in a straightforward way the expected existence and uniqueness result:

Theorem 2.3 Given an initial condition ( f 0, L0) ∈ C0(R+) ∩ L1(R+, (1+ x)dx) ×
R+ and assuming hypotheses (H1)–(H3), Lifshitz–Slyozov system (11) has a unique
solution on the interval [0, T ] in the sense of Def. 2.3.

Note that the mild solution given by Theorem 2.3 is also a weak solution in the
sense of Definition 2.2, see Calvo et al. (2021), and under hypotheses (H1)–(H3) both
definitions coincide.

3 A new convergence result from Becker–Döring to Lifshitz–Slyozov
equations

In this part of our work we introduce a different way to see the convergence from the
Becker–Döring equations to the Lifshitz–Slyozov equations. Using tail distributions

123



16 Page 18 of 50 L. Meyer et al.

allows to reduce the non linearity of our system by pulling the speed of advection
outside of the space derivative. Tail distributions were also found to be useful to
obtain a quasi comparison principle in Cañizo et al. (Aug. 2019) and to obtain refined
uniqueness properties in Laurençot (2001); Calvo et al. (2021). The main idea is to use
results on the tail of the distributions to show convergence. Finally, we note that our
result uses the fact that a solution to system (11) exists while the previous result also
shows existence of solution of (11), by showing a convergence to a measure valued
function which turns out to be a solution of (11).

Let ( f ε, Lε) be the solution of the Becker–Döring ODE system (14) and Eq. (19),
and let ( f , L) the mild solution of Lifshitz–Slyozov equations (11). We recall the tail
distribution definition,

F(t, x) =
∫ ∞

x
f (t, y)dy, Fε(t, x) =

∫ ∞

x
f ε(t, y)dy, (21)

and introduce their difference

E(t, x) = Fε(t, x) − F(t, x). (22)

We introduce the following additional hypotheses to use in our main theorem:

sup
x∈R+

|a′′(x)| < +∞ and sup
x∈R+

|b′′(x)| < +∞, (H5)

∑
i≥0

|cε,0
i+1 − cε,0

i | < +∞, uniformly in ε, (H6)

ε
∑
i≥0

i |cε,0
i+1 − cε,0

i | < +∞, uniformly in ε. (H7)

There exists some constant L̄ > 0 independent of ε, such that infε>0 Lε,0 ≥ L̄.

(H8)

There exists some constant K > 0 independent of ε, such that supε>0 cε,0
0 < K .

(H9)

We now state our main theorem.

Theorem 3.1 Let T > 0 and denote E(t, x) = Fε(t, x) − F(t, x), see Eq. (22).
Suppose that there exists some constant Cinit > 0 such that for all ε > 0,∫
R+

|E(0, x)|dx ≤ εCinit. Also assume that hypotheses (H1)–(H9) hold true. Then

there exists some constants C(T ) > 0 (independent of ε) and ε∗ (independent of T )
and such that for all 0 < ε ≤ ε∗ and for all t ∈ (0, T ]:

|Lε(t) − L(t)| +
∫
R+

|E(t, x)|dx ≤ εC(T ).
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The proof proceeds as follows. Taking inspiration from Laurençot (2001); Calvo et al.
(2021), we first note that owing to the total population number conservation, the lipid
terms can be controlled by the tail, |Lε(t) − L(t)| ≤ ∫

R+|E(t, x)|dx . The control
on the tail relies on a Grönwall’s lemma argument. For that purpose, we derive the
equation followed by Fε(t, x) (Lemma 3.5). We point out that the case x < ε/2 has
to be treated separately due to remaining boundary terms. This allows us to give a
first estimate on the integral

∫
R+|E(t, x)|dx . We then make use of the mild solution

formulation to derive the partial differential equation followed by F and in turn the
one followed by E (Lemma 3.6). The proof follows by bounding the terms in the
estimate on

∫
R+|E(t, x)|dx , and in particular we show that Fε(t, x) satisfies the same

equation as F up to an order ε (Lemma 3.7). To this end, the key argument relies
on refined estimates of the difference between the first order derivative of Fε(t, x)

and its discrete analog. This estimate needs uniform control on the solutions cε
i of the

Becker–Döring system and their increments cε
i+1 − cε

i (Sect. 3.1, Lemmas 3.1 to 3.4),
which is new, up to our knowledge.

Hypotheses (H1)–(H4) are classical in the study of our model. However, other
assumptions are less common but arise naturally from the result. Contrary to the
classical convergence result, we work with mild solutions of the Lifshitz–Slyozov
system. Hence, we need proper bounds on second order terms. We shall see in Sect. 4
that those terms lead us to the second order Lifshitz–Syozovmodel. Nonetheless, those
terms involve second order derivatives of both a and b which leads us to hypothesis
(H5). Hypotheses (H6) and (H7) simply tell us that the initial condition for the Becker–
Döring system must have finite zeroth order moment and first moment increments
independently of ε. Lemma 3.4 shows that this property propagates in time. Additional
assumptions have to be made to obtain our main theorem. The assumption (H8) on
the initial condition Lε,0 is necessary since it leads to strict positivity of Lε in finite
time, uniformly in ε. The assumption (H9) on the initial condition cε,0

0 is technical
and ensures that the proper boundary condition (11c) is satisfied for all times. Finally

the assumption on
∫
R+

|E(0, x)|dx is made to conclude after using Grönwall’s lemma

at the very end of the proof. This assumption relates both initial conditions (cε,0
i )i≥0

and f 0. A fair choice for the initial condition (cε,0
i )i≥0 is cε,0

i = f 0(iε) for all i ≥ 0.
Then the assumption is verified as long as ( f 0)′ ∈ L1(R+, xdx).

In all this section, we assume that hypotheses (H1)–(H9) hold true.

3.1 Preliminary results on Becker–Döring system

We start with a lemma that allows to control the lipid term away from 0, in the lines
of previous results from Calvo et al. (2021).

Lemma 3.1 A solution (Lε, cε) of (14) with λ > 0 independent of ε verifies that there
exists C > 0 independent of ε, such that for all t > 0,

inf
ε>0

Lε(t) ≥ L̄ exp(−Ct), (23)
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where L̄ is defined at (H8).

Proof For all t > 0, we have, using the three first equations of system (14):

dLε(t)

dt
= −ε

∑
i≥0

J ε
i (cε(t), Lε(t)) = −ε

∑
i≥0

(
aε

i
Lε(t)

Lε(t) + κ
cε

i (t) − bε
i+1ci+1ε(t)

)

≥ − Lε(t)

Lε(t) + κ
ε
∑
i≥0

aε
i cε

i (t),

and thus, because sup
x∈R+

|a(x)| = Ca , and Lε

Lε+κ
≤ 1

κ
Lε:

dLε(t)

dt
≥ −Ca

κ
Lε

∫ +∞

−ε/2
f ε(t, x)dx

and by conservation of the moment (15),
∫ +∞

−ε/2
f ε(t, x)dx = ε

∑
i≥0

cε
i (t) = m,

dLε(t)

dt
≥ −Cam

κ
Lε.

We conclude by Grönwall’s lemma and using Hypothesis (H8). �

We next state a lemma adapted from Deschamps et al. (2017) that allows to obtain

pointwise estimates of the density f ε near the boundary, through the uniform propa-
gation of exponential moments. For x ∈ R+ and t > 0, let

H ε(t, x) =
∑
i≥0

cε
i (t)e

−i x .

Lemma 3.2 Let x ∈ R
∗+. Then there exist some constants ε∗ > 0 and K̃ > 0 indepen-

dent of ε∗, such that for all 0 < ε < ε∗:

H ε(t, x) ≤ H ε(0, x) + K̃ for all t > 0,

and in particular:

for all i ≥ 0, sup
0<ε<ε∗

sup
t∈[0,T ]

cε
i (t) ≤ c̄i < +∞. (24)

Proof UsingLemma3.1, and the assumption (H8) on Lε(0),wehave that inf
ε>0

inf
t∈(0,T ] Lε(t)

≥ L̄ exp(−CT ). Thus we can find a constant c > 0 such that:

inf
ε>0

inf
t∈(0,T ]

Lε(t)

Lε(t) + κ
≥ c.
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Now we choose δ > 0 such that c > 2δ. Using Taylor’s expansion, we have
a(iε) = a(0) + iεa′(0) + O((iε)2). Then with hypotheses (H2b) and (H3) and for ε

small enough, we find that a(iε) ≥ 3
4 (a(0) − iεKa) > 0. Therefore we have that for

ε small enough:

∀i ≤ 1√
ε
, a(iε) ≥ a(0)

2
. (25)

In turn, by hypotheses (H2a), (H2b) and (H4), we have that for ε small enough and

for all i ≤ 1√
ε
:

bε
i

aε
i

= b(iε)

a(iε)
≤ 2Cb

√
ε

a(0)
−−→
ε→0

0.

Let x ∈ R
∗+. Hence, one can find ε∗ > 0 such that:

sup
ε<ε∗

sup
i≤ 1√

ε

|bε
i

aε
i
| ≤ δ e−x .

This gives us that for ε∗ small enough, ε < ε∗ and i ≤ 1√
ε
:

Lε(t)

Lε(t) + κ
− bε

i

aε
i
ex ≥ 2δ − δ = δ. (26)

Now we proceed with the bound on H ε using Eqs. (14) and (12):

ε∂t H ε(t, x) = (e−x −1)
∑
i≥0

J ε
i (c) e−i x

= (e−x −1)

⎡
⎣ Lε(t)

Lε(t) + κ
aε
0cε

0(t) +
∑
i≥1

aε
i (

Lε(t)

Lε(t) + κ
− bε

i

aε
i
ex )cε

i (t) e
−i x

⎤
⎦ .

Now we split the sum on the right depending on 1√
ε
with ε small enough as before.

Note that since x > 0, we have that (e−x −1) < 0. The first sum is treated using (26)
and the bound (25):

ε∂t H ε(t, x) ≤ (e−x −1)

⎡
⎢⎣2δaε

0cε
0(t) + a(0)

2
δ

� 1√
ε
�∑

i=1

cε
i (t) e

−i x − ex
∑

i≥� 1√
ε
�+1

bε
i cε

i (t) e
−i x

⎤
⎥⎦ .
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The term in cε
0 and the first sum are combined and using our choice of δ, it yields:

2δaε
0cε

0(t) + a(0)

2
δ

� 1√
ε
�∑

i=1

cε
i (t) e

−i x ≥ a(0)

2
δ

⎛
⎜⎝H ε(t, x) −

∑
i≥� 1√

ε
�+1

cε
i (t) e

−i x

⎞
⎟⎠ .

Hence:

ε∂t H ε(t, x)

≤ (1 − e−x )

⎡
⎢⎣a(0)

2
δ

⎛
⎜⎝−H ε(t, x) +

∑
i≥� 1√

ε
�+1

cε
i (t) e

−i x

⎞
⎟⎠+ ex

∑
i≥� 1√

ε
�+1

bε
i cε

i (t) e
−i x

⎤
⎥⎦ .

Observe that for ε small enough depending on x , for all i ≥ � 1√
ε
�, we have:

(δ
a(0)

2
+ ex bε

i ) e
−i x ≤ K (Ca + Cb)(1 + iε) e−i x ≤ K ε,

which leads to:

ε∂t H ε(t, x) ≤ a(0)

2
δ(e−x −1)H ε(t, x) + (1 − e−x )K m.

We conclude by using Grönwall’s lemma and K̃ = 2K m
δa(0) and (24) follows imme-

diately. �

A direct consequence of Lemma 3.2 is the following refined estimate on cε

0 which
shows that at the limit ε → 0, the density f ε vanishes at the boundary, in agreement
with the limiting boundary condition (11c):

Lemma 3.3 There exist constants C1, C2 > 0 independent of ε such that for ε small
enough and for all t ∈ (0, T ]:

cε
0(t) ≤ e− C1

ε
t cε,0

0 + εC2. (27)

Proof As in the proof of Lemma 3.2, there exists ε small enough such that:

dcε
0(t)

dt
= 1

ε
(bε

1cε
1(t) − aε

0
Lε(t)

Lε(t) + κ
cε
0(t)) ≤ Cbc̄1 − a(0)

ε
δcε

0(t),

thanks to hypothesis (H’1). Now applying Grönwall’s lemma, we obtain:

cε
0(t) ≤ e− a(0)δt

ε cε
0(0) + Cbc̄1

ε

δa(0)
(1 − e− a(0)

ε
δt ),

which gives the desired result. �


123



A Lifshitz–Slyozov type model for adipocyte... Page 23 of 50 16

We end this section by a last lemma that will be useful to control the first spatial
derivative of Fε.

Lemma 3.4 For all T > 0, there exist constants C3 and C4 independent of ε such that
for ε small enough,

sup
t≤T

∑
i≥0

|cε
i+1 − cε

i |(t) < C3, (28)

sup
t≤T

ε
∑
i≥0

i |cε
i+1 − cε

i |(t) < C4. (29)

Proof Let ui = cε
i+1 − cε

i and let’s estimate its time derivative. Then, for all i ≥ 1,
we have from Eqs. (14) and (12):

dui

dt
= Lε(t)

Lε(t) + κ

(
aε

i−1

ε
ui−1 − aε

i−1 − aε
i

ε
cε

i − aε
i

ε
ui − aε

i+1 − aε
i

ε
cε

i+1

)

−
(

bε
i

ε
ui − bε

i+1 + bε
i

ε
cε

i+1 − bε
i+1

ε
ui+1 + bε

i+1 − bε
i+2

ε
cε

i+2

)

= J ε
i−1(u, Lε) − J ε

i (u, Lε)

ε

+ Lε(t)

Lε(t) + κ

(
aε

i−1 − aε
i

ε
ui −

(
aε

i−1 − aε
i

ε
+ aε

i+1 − aε
i

ε

)
cε

i+1

)

+ bε
i+1 − bε

i

ε
ui+1 +

(
bε

i+1 − bε
i

ε
+ bε

i+1 − bε
i+2

ε

)
cε

i+2.

Wemultiply the previous expression for i ≥ 1 by sign(ui ) on both sides, which gives:

d|ui |
dt

≤ J ε
i−1(|u|, Lε) − J ε

i (|u|, Lε)

ε
+ |aε

i−1 − aε
i |

ε
|ui | + |aε

i−1 − 2aε
i + aε

i+1|
ε

cε
i+1

+ |bε
i+1 − bε

i |
ε

|ui+1| + |bε
i+2 − 2bε

i+1 + bε
i |

ε
cε

i+2.

Hence, thanks to hypotheses (H3) and (H5) andLemma3.2, there exists ε small enough
such that for i ≥ 1:

d|ui |
dt

≤ J ε
i−1(|u|, Lε) − J ε

i (|u|, Lε)

ε
+ ‖a′‖∞|ui | + ε‖a′′‖∞cε

i+1

+‖b′‖∞|ui+1| + ε‖b′′‖∞cε
i+2. (30)

Now, for i = 0, we obtain:

du0

dt
= −1

ε
J ε
0 (u, Lε) − aε

1 − aε
0

ε

Lε(t)

Lε(t) + κ
cε
1 + aε

0

ε

Lε(t)

Lε(t) + κ
cε
0

+ bε
2 − bε

1

ε
cε
2 − bε

1

ε
cε
1.
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Since bε
0 = b(0) = 0, we can treat the remaining terms in b as before by adding

and removing the right terms for free. The terms with cε
1 are bounded using Lemma

3.2 and the one with cε
0 using Lemma 3.3. Hence, there exists ε small enough such

that:
d|u0|
dt

≤ −1

ε
J ε
0 (|u|, Lε) + ‖a′‖∞c̄1 + a(0)

ε
e− C1

ε
t cε,0

0 + a(0)C2 + ‖b′‖∞|u1| + ε‖b′′‖∞cε
2.

We sum the previous estimates for all i ≥ 0 and we get:

d

dt

∑
i≥0

|ui | ≤ (‖a′‖∞ + ‖b′‖∞)
∑
i≥0

|ui |

+(‖a′′‖∞ + ‖b′′‖∞)ε
∑
i≥0

cε
i + ‖a′‖∞c̄1 + a(0)

ε
e− C1

ε
t cε,0

0 + a(0)C2.

We integrate the previous inequality over [0, t], for 0 < t < T :
∑
i≥0

|ui |(t) ≤
∑
i≥0

|ui |(0) + (‖a′‖∞ + ‖b′‖∞)

∫ t

0

∑
i≥0

|ui |(s)ds

+ (‖a′′‖∞ + ‖b′′‖∞)mT + a(0)

C1
cε,0
0 + (a(0)C2 + ‖a′‖∞c̄1)T .

And finally Grönwall’s lemma yields:

∑
i≥0

|ui |(t) ≤ Cu(T )

with

Cu(T ) =
⎛
⎝∑

i≥0

|ui |(0) + (‖a′′‖∞ + ‖b′′‖∞)mT + a(0)

C1
cε,0
0 + (a(0)C2 + ‖a′‖∞c̄1)T

⎞
⎠

× exp((‖a′‖∞ + ‖b′‖∞)T ),

which gives Eq. (28).
Using the definition (14c) of λ, estimate (30) and hypothesis (H’1), we obtain the

following inequalities:

ε
d

dt

∑
i≥1

i |ui | ≤ ε
∑
i≥1

i
J ε

i−1(|u|) − J ε
i (|u|)

ε
+ ε(‖a′‖∞ + ‖b′‖∞)

∑
i≥1

i |ui |

+ (‖a′′‖∞ + ‖b′′‖∞)ε2
∑
i≥0

icε
i

≤
∑
i≥0

J ε
i (|u|) + (‖a′‖∞ + ‖b′‖∞)ε

∑
i≥1

i |ui | + (‖a′′‖∞ + ‖b′′‖∞)λ

≤ Ca

∑
i≥0

|ui | + (‖a′‖∞ + ‖b′‖∞)ε
∑
i≥1

i |ui | + (‖a′′‖∞ + ‖b′′‖∞)λ.
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Integrating over [0, t] and using the previous bound on ∑
i≥0

|ui |, we conclude using
Grönwall’s lemma:

ε
∑
i≥1

i |ui |(t) ≤
⎛
⎝ε
∑
i≥1

i |ui |(0) + CaCu(T )T + (‖a′′‖∞ + ‖b′′‖∞)λT

⎞
⎠

exp((‖a′‖∞ + ‖b′‖∞)T ),

which yields Eq. (29). �


3.2 Proof of theorem 3.1

In this section, we make use of the lemmas from the previous section. As such, from
then on, ε is taken small enough to apply those lemmas. We first derive the equation
satisfied by the tail distribution Fε defined at Eq. (21). Recall that operator �ε is
defined at Eq. (20).

Lemma 3.5 For all x ≥ ε
2 and t ≥ 0:

∂t Fε(t, x) = 1

ε

∫ x

x−ε

(aε(y)
Lε(t)

Lε(t) + κ
− a(x)

L(t)

L(t) + κ
) f ε(t, y)dy − a(x)

L(t)

L(t) + κ
�−ε Fε(t, x)

−1

ε

∫ x+ε

x
(bε(y) − b(x)) f ε(t, y)dy + b(x)�ε Fε(t, x) (31)

and for all x < ε
2 and t ≥ 0:

∂t Fε(t, x) = 1

ε

∫ x

− ε
2

aε(y)
Lε(t)

Lε(t) + κ
f ε(t, y)dy − 1

ε

∫ x+ε

ε
2

bε(y) f ε(t, y)dy. (32)

Remark The function f ε is defined on [− ε
2 ,+∞[ whereas f is defined on R+. How-

ever we will only concern ourselves with x ∈ R+ in the following subsections. Hence
we will treat the case x < ε/2 independently to accommodate for boundary terms that
might be left off from f ε. We also point out that:

∫ +∞

0
f ε(t, x)dx = m − ε

2
cε
0(t) (33)

Owing to Lemma 3.2, the right hand side is bounded and tends to m as ε → 0.And
for the first order we have an exact computation:

Lε(t) +
∫ +∞

0
x f ε(t, x)dx = λ (34)
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Proof For all x ∈ R+ and t ∈ [0, T ], it comes directly from the definitions (20) and
(21) that the following equations hold true:

for all x ≥ 0 and t ≥ 0,

�ε Fε(t, x) = −1

ε

x+ε∫
x

f ε(t, y)dy, (35)

and for all x ≥ ε
2 and t ≥ 0,

�−ε Fε(t, x) = −1

ε

x∫
x−ε

f ε(t, y)dy. (36)

Denote Hx = 1[x,+∞). First observe that:

�ε Hx (y) = 1

ε

(
1[x,+∞)(y + ε) − 1[x,+∞)(y)

) = 1

ε
1[x−ε,x)(y),

�−ε Hx (y) = 1

ε
1[x,x+ε)(y).

Then we use Proposition 2.2 for the Heaviside function. It yields that for all x ≥ ε
2 :

∂t Fε(t, x) =
∫
R+

Hx (y)∂t f ε(t, y)dy

=
∫
R+

(
�ε Hx (y)aε(y)

Lε(t)

Lε(t) + κ
− �−ε Hx (y)bε(y)

)
f ε(t, y)dy

=
∫ x

x−ε

1

ε
aε(y)

Lε(t)

Lε(t) + κ
f ε(t, y)dy −

∫ x+ε

x

1

ε
bε(y) f ε(t, y)dy

= 1

ε

∫ x

x−ε

(aε(y)
Lε(t)

Lε(t) + κ

− a(x)
L(t)

L(t) + κ
) f ε(t, y)dy − a(x)

L(t)

L(t) + κ
�−ε Fε(t, x)

− 1

ε

∫ x+ε

x
(bε(y) − b(x)) f ε(t, y)dy + b(x)�ε Fε(t, x)

Thecase for x < ε
2 follows fromsimple computation, using that

∫ +∞

−ε/2
f ε(t, x)dx =

m by conservation of the moment (15):

∂t Fε(t, x) = d

dt

∫ +∞
−ε
2

f ε(t, y)dy − d

dt

∫ x

−ε
2

f ε(t, y)dy = −(x + ε

2
)
d

dt
cε
0(t)

= 1

ε

∫ x

−ε
2

aε(y)
Lε(t)

Lε(t) + κ
f ε(t, y)dy − 1

ε

∫ x+ε

ε
2

bε(y) f ε(t, y)dy.
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�

We then derive an upper bound for the time derivative of

∫
R+|E(t, x)|dx , where E

is defined at Eq. (22).

Lemma 3.6 For all t ≥ 0, we have:

d

dt

∫
R+

|E(t, x)|dx ≤ (‖a′‖∞ + ‖b′‖∞)

∫
R+

|E(t, x)|dx

+
∫
R+

|∂t Fε(t, x) + v(x, L(t))∂x Fε(t, x)|dx

+ε

2
a(0)

L(t)

L(t) + κ
cε
0(t). (37)

Proof From the definitions of the tail distributions in Eq. (21), the following equations
hold true:

∂x F(t, x) = − f (t, x),

∂x Fε(t, x) = − f ε(t, x), a.e. in R+.

By Def.2.3, we have:

F(t, x) =
+∞∫

max(x,Xc(t))

f 0(X(0; t, y))∂y X(0; t, y)dy

=
{∫ +∞

0 f 0(y)dy if x ≤ Xc(t),∫ +∞
X(0;t,x)

f 0(y)dy if x ≥ Xc(t).

Therefore if x ≤ Xc(t), then ∂t F(t, x) = 0 = ∂x F(t, x). And if x ≥ Xc(t), the
following expressions hold:

∂t F(t, x) = − f 0(X(0; t, x))∂t X(0; t, x),

∂x F(t, x) = − f 0(X(0; t, x))∂x X(0; t, x) = − f (t, x).

By properties of characteristics we have: ∂t X(0; t, x) + v(x, L)∂x X(0; t, x) = 0
and thus:

∂t F(t, x) + v(x, L(t))∂x F(t, x)

= − f 0(X(0; t, x))(∂t X(0; t, x) + v(x, L)∂x X(0; t, x)) = 0.

We then compute:

∂t E(t, x) = ∂t Fε(t, x) − ∂t F(t, x)

= −v(x, L(t))∂x (Fε − F)(t, x) + ∂t Fε(t, x) + v(x, L(t))∂x Fε(t, x).
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We integrate the previous equality, we use the definition (46) of v with hypothesis
(H3) and we find:

d

dt

∫
R+

|E |dx = −
∫
R+

v∂x |E |dx +
∫
R+

sign(E)(∂t Fε + v(x, L(t))∂x Fε)dx

= −[v(x, L(t))|E(t, x)|]+∞
0 +

∫
R+

∂xv|E |dx +
∫
R+

sign(E)(∂t Fε + v∂x Fε)dx

≤ v(0, L(t))|E(t, 0)| + (‖a′‖∞ + ‖b′‖∞)

∫
R+

|E |dx +
∫
R+

|∂t Fε + v∂x Fε|dx

= (‖a′‖∞ + ‖b′‖∞)

∫
R+

|E |dx +
∫
R+

|∂t Fε + v∂x Fε|dx + ε

2
a(0)

L(t)

L(t) + κ
cε
0(t).

The last equality is obtained since b(0) = 0 and |E(t, 0)| = |
∫
R+

( f ε − f )(t, x)dx | =
ε

2
cε
0(t), see Eq. (33). �


Thanks to the equation on Fε given by Lemma 3.5, we control the second term in
Eq. (37) in the next lemma.

Lemma 3.7 There exist some constants C1, C2 > 0 independent of ε such that for all
t ∈ (0, T ]:

∫
R+

|(∂t Fε + v∂x Fε)(t, x)|dx ≤ εC1 + C2|Lε(t) − L(t)|. (38)

Proof First by construction of both aε and bε, and the fact that a and b are lipshitz
continuous, one has for all x, y ∈ R+ such that |y − x | ≤ ε:

|aε(y) − a(x)

ε
| ≤ 2‖a′‖∞

and similarly for bε. Also observe that the derivative of x → x
x+κ

is bounded by 1
κ
.

Then using equation (31) and definition (46) of v, we find the following estimate
for all x ≥ ε

2 :

|∂t Fε(t, x) + v∂x Fε(t, x)| ≤ 2‖a′‖∞
∫ x

x−ε
f ε(t, y)dy + 1

ε

a(x)

κ
|Lε(t) − L(t)|

∫ x

x−ε
f ε(t, y)dy

+ 2‖b′‖∞
∫ x+ε

x
f ε(t, y)dy

+ a(x)
L(t)

L(t) + κ
|∂x Fε(t, x) − �−ε Fε(t, x)|

+ b(x)|∂x Fε(t, x) − �ε Fε(t, x)|.
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Now, for all x < ε
2 , using equation (32), assumption (H’1) and since ∂x Fε(t, x) =

− f ε(t, x), we find:

|∂t Fε(t, x) + v∂x Fε(t, x)|
≤ |1

ε

∫ x

− ε
2

aε(y)
Lε(t)

Lε(t) + κ
f ε(t, y)dy − a(x)

L(t)

L(t) + κ
f ε(t, x)|

+ |1
ε

∫ x+ε

ε
2

bε(y) f ε(t, y)dy − b(x) f ε(t, x)|.

The term involving a and aε is bounded by adding and removing the appropriate
terms and observing that for all x < ε/2, f ε(t, x) = cε

0(t):

|1
ε

∫ x

− ε
2

aε(y)
Lε(t)

Lε(t) + κ
f ε(t, y)dy − a(x)

L(t)

L(t) + κ
f ε(t, x)|

≤ | x + ε
2

ε
a(0)

Lε(t)

Lε(t) + κ
cε
0(t) − a(x)

L(t)

L(t) + κ
cε
0(t)|

≤ a(0)cε
0(t)

x + ε
2

ε
| Lε(t)

Lε(t) + κ

− L(t)

L(t) + κ
| + |a(x) − x + ε

2

ε
a(0)| Lε(t)

Lε(t) + κ
cε
0(t)

≤ a(0)cε
0(t)

κ

x + ε
2

ε
|Lε(t) − L(t)| +

(
|a(x) − a(0)| + a(0)

ε
2 − x

ε

)
cε
0(t)

≤ a(0)cε
0(t)

κ
|Lε(t) − L(t)| + (

ε

2
‖a′‖∞ + a(0))cε

0(t).

In the right hand side of the last inequality, the first term is bounded usingLemma3.2
as well as the term involving ‖a′‖∞. The remaining term a(0)cε

0(t) is bounded using
Lemma 3.3, hence there exists a positive constant C independent of ε such that for ε

small enough and for all t ∈ (0, T ], a(0)cε
0(t) ≤ ε(cε,0

0 + C) and since we assume
assumption (H9) to hold true, we finally obtain for all x ≤ ε

2 :

|1
ε

∫ x

− ε
2

aε(y)
Lε(t)

Lε(t) + κ
f ε(t, y)dy − a(x)

L(t)

L(t) + κ
f ε(t, x)|

≤ a(0)c̄0
κ

|Lε(t) − L(t)| + ε

(
K + C + ‖a′‖∞c̄0

2

)
.

The term in b and bε is easily bounded using assumption (H2b) and Lemma 3.2:

|1
ε

∫ x+ε

ε
2

bε(y) f ε(t, y)dy − b(x) f ε(t, x)|

= | x + ε
2

ε
bε
1cε

1(t) − b(x)cε
0(t)| ≤ Cbε

(
c̄1 + c̄0

2

)
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Fig. 2 Representation of the cells �ε
i−1, �

ε
i and �ε

i+1 and of the value ε� x
ε �

Now we can integrate |∂t Fε(t, ·) + v∂x Fε(t, ·)| over R+ using the two previous
estimates. Note that using Fubini’s theorem and Eq. (33), we have

∫ +∞
ε
2

∫ x

x−ε

f ε(t, y)dydx

=
∫ +∞

− ε
2

f ε(t, y)

∫ y+ε

max(y,ε/2)
dxdy

=
∫ ε

2

− ε
2

f ε(t, y)

∫ y+ε

ε
2

dxdy +
∫ +∞

ε
2

f ε(t, y)

∫ y+ε

y
dxdy

= cε
0(t)

∫ ε
2

− ε
2

(y + ε

2
)dy + ε

∫ +∞
ε
2

f ε(t, y)dy

= ε2

2
cε
0(t) + ε

∫ +∞
ε
2

f ε(t, y)dy= ε

∫ ε
2

0
f ε(t, y)dy + ε

∫ +∞
ε
2

f ε(t, y)dy

= ε

∫ +∞

0
f ε(t, y)dy ≤ εm.

Therefore, we get:

∫
R+

|∂t Fε(t, x) + v∂x Fε(t, x)|dx ≤ ε(2‖a′‖∞ + 2‖b′‖∞|)m

+ ‖a‖∞
κ

|Lε(t) − L(t)|m

+ ‖a‖∞
L(t)

L(t) + κ

∫ +∞
ε
2

|∂x Fε(t, x) − �−ε Fε(t, x)|dx

+
∫ +∞

ε
2

b(x)|∂x Fε(t, x) − �ε Fε(t, x)|dx

+ a(0)c̄0
κ

|Lε(t) − L(t)| + ε(K + C + ‖a′‖∞c̄0
2

) + Cbε

(
c̄1 + c̄0

2

)
.

(39)

We now compute the difference between the continuous and discrete derivatives on
Fε.We denote by �x� the nearest integer functionwith the upper-rounding convention:
�0.5� = 1. Figure2 shows a representation of the cells �ε

i−1, �
ε
i and �ε

i+1 as well as
an example of the result of � x

ε
� for x ∈ �ε

i .
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Let us first compute the integral of |∂x Fε(t, x)−�−ε Fε(t, x)|, using Eq. (36) and
the fact that f ε is constant equal to cε

i (t) on the cells �ε
i :

∫ +∞
ε
2

|∂x Fε(t, x) − �−ε Fε(t, x)|dx

=
∫ +∞

ε
2

| f ε(t, x) − 1

ε

∫ x

x−ε

f ε(t, y)dy|dx

=
∫ +∞

ε
2

1

ε
|
∫ x

x−ε

( f ε(t, x) − f ε(t, y))dy|dx

=
∫ +∞

ε
2

1

ε
|
∫ ε(� x

ε
�− 1

2 )

x−ε

( f ε(t, x) − f ε(t, y))dy|dx

=
∫ +∞

ε
2

|cε
� x

ε
�(t) − cε

� x
ε
�−1(t)|

ε(� x
ε
� − 1

2 ) − (x − ε)

ε
dx .

Now, observe that for all x ∈ �ε
i one has cε

� x
ε
�(t) − cε

� x
ε
�−1(t) = cε

i (t) − cε
i−1(t),

which gives:

∫ +∞
ε
2

|∂x Fε(t, x) − �−ε Fε(t, x)|dx =
∑
i≥1

|cε
i (t) − cε

i−1(t)|
∫
�ε

i

ε(� x
ε � − 1

2 ) − (x − ε)

ε
dx

= ε

2

∑
i≥1

|cε
i (t) − cε

i−1(t)|.

Hence, according to Lemma 3.4 there exists a constant C(T ) > 0 independent of
ε such that:

∫ +∞
ε
2

|∂x Fε(t, x) − �−ε Fε(t, x)|dx ≤ εC(T ). (40)

We proceed similarly for the term
∫
R+ b(x)|∂x Fε(t, x) − �ε Fε(t, x)|dx :

∫ ∞
ε
2

b(x)| f ε(t, x) − 1

ε

∫ x+ε

x
f ε(t, y)dy|dx

=
∫ ∞

ε
2

b(x)

ε
|
∫ x+ε

x
( f ε(t, x) − f ε(t, y))dy|dx

=
∫ ∞

ε
2

b(x)

ε
|
∫ x+ε

ε(� x
ε
�+ 1

2 )

( f ε(t, x) − f ε(t, y))dy|dx

=
∫ ∞

ε
2

|cε
� x

ε
�+1(t) − cε

� x
ε
�(t)|b(x)

x − ε(� x
ε
� − 1

2 )

ε
dx

123



16 Page 32 of 50 L. Meyer et al.

=
∑
i≥1

|cε
i+1(t) − cε

i (t)|
∫

�ε
i

b(x)
x − ε(� x

ε
� − 1

2 )

ε
dx .

Owing to hypothesis (H2b), we simply bound the last integral as follows:

∫
�ε

i

b(x)
x − ε(� x

ε
� − 1

2 )

ε
dx ≤ Cb

ε2

2
(i + 1

6
).

Hence, according to Lemma 3.4, there exists a constant C(T ) > 0 independent of
ε such that:

∫ +∞
ε
2

b(x)|∂x Fε(t, x) − �x Fε(t, x)|dx <
ε

6
C(T )(1 + ε

2
). (41)

We conclude from Eqs. (39)–(40)–(41) by regrouping together terms not depending
on ε.

�

We now proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1 Let T > 0 and consider t ∈ (0, T ]. We begin by integrating (37)
over [0, t], using Lemma 3.7:

∫
R+

|E(t, x)|dx ≤
∫
R+

|E(0, x)|dx + (‖a′‖∞ + ‖b′‖∞)

∫ t

0

∫
R+

|E(s, x)|dxds

+
∫ t

0

∫
R+

|∂t Fε(s, x) + v(x, L(s))∂x Fε(s, x)|dxds + ε

2
a(0)T c̄0

≤
∫
R+

|E(0, x)|dx + (‖a′‖∞ + ‖b′‖∞)

∫ t

0

∫
R+

|E(s, x)|dxds

+ εT C1 + C2

∫ t

0
|Lε(s) − L(s)|ds + ε

2
a(0)T c̄0.

Then observe that:
∫
R+

x f ε(t, x)dx =
∫
R+

x
∑
i≥0

1�ε
i
(x)cε

i (t)dx =
∑
i≥0

∫
�ε

i

xdxcε
i (t) =

∑
i≥0

iε2cε
i (t).

Using conservation equations (14c) and (7) and Fubini’s theorem, this leads to the
bound:

|Lε(t) − L(t)| = |
∫ ∞

0
x( f ε(t, x) − f (t, x))dx |

= |
∫ ∞

0
(Fε(t, x) − F(t, x))dx | ≤

∫
R+

|E(t, x)|dx,
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which finally yields:

|Lε(t) − L(t)| +
∫
R+

|E(t, x)|dx

≤ 2
∫
R+

|E(0, x)|dx + 2(‖a′‖∞ + ‖b′‖∞)

∫ t

0

∫
R+

|E(s, x)|dxds

+ 2εT C1 + 2C2

∫ t

0
|Lε(s) − L(s)|ds + εa(0)T c̄0.

By the assumption on E(0, x) and Grönwall’s lemma, we finally conclude that:

|Lε(t) − L(t)| +
∫
R+

|E(t, x)|dx

≤ ε
(
2Cinit + 2C1T + a(0)T c̄0

)
exp(2(‖a′‖∞ + ‖b′‖∞ + C2)T ).

�


4 Derivation of second order model and stationary solutions

4.1 A second-order Lifshitz–Slyozovmodel with diffusion

Up to this point we have studied a Lifshitz–Slyozov model, that is to say a transport
PDE. However, this model leads to stationary solutions which are combinations of
Dirac masses centered at the zeros of velocity v. Hence, since we aim at obtaining
asymptotically bimodal distributions, we would like to add a diffusion term to our
model in order to smooth the stationary solutions. Unfortunately and up to our knowl-
edge, no biological argument can be found to explain such a diffusive term or to give a
proper way of deriving it from biological considerations. Nonetheless, one can see this
diffusive term as a second order term emerging from the preceding convergence result,
see for example (Vasseur et al. 2002; Schlichting 2019; Deschamps et al. 2017). We
expect the asymptotic solutions to Lifshitz–Slyozov model with diffusion to approxi-
mate better the solutions to Becker–Döring system, when ε is small. However, we are
not able to provide convergence results in the large time limit.

We follow here the derivation of the diffusive term presented inVasseur et al. (2002)
and we use the notation introduced at Sect. 3.
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Now, from Proposition 2.2, we can add and subtract the appropriate terms in φ to
get:

∫ ∞

0
( f ε(t, x) − f ε(0, x))φ(x)dx

=
∫ t

0

∫ ∞

0
(�εφ(x)aε(x)

Lε(t)

Lε(t) + κ
− �−εφ(x)bε(x)) f ε(t, x)dxdt

=
∫ t

0

∫ ∞

0

φ(x + ε) − φ(x − ε)

2ε
(aε(x)

Lε(t)

Lε(t) + κ
− bε(x)) f ε(t, x)dxdt

+ ε

2

∫ t

0

∫ ∞

0

φ(x + ε) − 2φ(x) + φ(x − ε)

ε2
aε(x)

Lε(t)

Lε(t) + κ
f ε(t, x)dxdt

+ ε

2

∫ t

0

∫ ∞

0

φ(x + ε) − 2φ(x) + φ(x − ε)

ε2
bε(x) f ε(t, x)dxdt

=
∫ t

0

∫ ∞

0
�̄εφ(x)(aε(x)

Lε(t)

Lε(t) + κ
− bε(x)) f ε(t, x)dxdt

+ ε

2

∫ t

0

∫ ∞

0
�2

εφ(x)(aε(x)
Lε(t)

Lε(t) + κ
+ bε(x)) f ε(t, x)dxdt

where �̄hφ(x) = φ(x+h)−φ(x−h)
2h and �2

hφ(x) = φ(x+h)−2φ(x)+φ(x−h)

h2
.

This leads us to study the PDE (18).

4.2 Stationary solutions for the second-order Lifshitz–Slyozovmodel

In this section, we present the stationary solutions of system (11) without diffusion and
system (18) with diffusion. The stationary solutions of system (18) have previously
been described in Hariz and Collet (1999); Vasseur et al. (2002); Goudon andMonasse
(2020). We notice that stationary solutions are very different in nature from one model
to the other. Equation(11) does not yield nontrivial smooth stationary functions, andwe
rather expect stationary solutions to be linear combinations of Dirac masses, located
at roots of the asymptotic velocity.

We can compute explicitly stationary solutions of system (18), namely:

∂t g = 0 ⇐⇒ ∂x (vg) − ε

2
∂2x (dg) = 0.

Together with boundary conditions (17) this leads to stationary solutions denoted
by MLstat , depending on stationary Lstat ∈ R+ under the form:

MLstat (x) = C(m, Lstat)

d(x, Lstat)
exp
(2

ε

∫ x

0

v(y, Lstat)

d(y, Lstat)
dy
)
, (42)
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Fig. 3 Plot of function
L → �(L) for L ∈ [10−12, 1]
with functions a and b defined at
Eqs. (4) and (5) and parameters
given at Table 1

where the constant C(m, Lstat) is determined in order to satisfy
∫
R+

MLstat (t, x)dx =
m, that is to say

C(m, Lstat) = m∫
R+

1

d(x, Lstat)
exp
(2

ε

∫ x

0

v(y, Lstat)

d(y, Lstat)
dy
)
dx

and Lstat solves the constraint equation

Lstat +
∫
R+

x MLstat (x)dx = λ. (43)

Note that function � : L → L +
∫
R+

x ML(x)dx is continuous on R+. Moreover,

straightforward computations show that thanks to expression (42) and expressions
for a and b that �(0) = 0 and � →

L→+∞ +∞. Therefore, for all λ ≥ 0, there exists

at least one value for L which satisfies Eq. (43). Regarding unicity of stationary
solutions, it would need to prove strict monotonicity of �, which is so far an open
question. However, we may observe numerically that the application � : L → L +∫ xmax
0 x ML(x)dx seems strictly non-decreasing, see Fig. 3.

Remark In other modeling contexts, one may choose different functions a and b such
that existence of stationary solutions may not be true for all value of λ. For example,
a(x) = 1 and b(x) = xs with s ≤ 1 implies lim

L→0+ �(L) = λ0 > 0. Hence for values

of λ such that λ < λ0, the system might not have smooth stationary solutions, see
Sect. 5.2.5 and Figs. 13 and 14.

In the following section, we will present some numerical simulations for system
(18) and control that stationary solutions MLstat follow a bimodal distribution for well-
chosen parameters.
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5 Numerical simulations

In this part, we use a finite volume well-balanced scheme introduced in Goudon and
Monasse (2020) to approximate time dependent solutions to Eq. (18). This scheme is
inspired by the work in Jin and Yan (2011). Afterwards, we explore numerically the
solutions to system (18) for various sets of parameters. We also compare the Lifshitz–
Slyozov diffusive equation with the transport equation (11) and with the transport
equation (11) with a constant diffusive term. We will finally explore the case when
λ < λ0 = limL→0+ �(L) => 0 mentioned previously in the remark of Sec. 4.2.

Note that in this section, unlike the previous ones, we are working on a bounded
domain x ∈ [0, xmax] rather than on R

+.

5.1 A well-balanced numerical scheme for system (18)

In the following, we will need to compute some approximations for the stationary
solutions MLstat since we need them in the well-balanced scheme, see later on. More-
over, it will enable us to compare the asymptotic profiles with the stationary solutions
in the numerical tests.

Let us recall that stationary solutions MLstat are defined by an explicit expression
given at Eq. (42) with Lstat satisfying constraint equation (43). Therefore, to compute
this stationary solution, a simple dichotomymethod is implemented to find the solution
to �(L) = λ, since the application � is increasing in the range of L that interests us,
see Fig. 3. We use the trapezoidal rule for the computation of the integrals.

Since we are interested in a conservative PDE, we use a finite volume scheme. We
also aim at capturing correctly stationary solutions and for that purpose, we implement
a well-balanced scheme introduced in Goudon and Monasse (2020). Let us detail the
scheme here.

The scheme is based on a change of variables in the PDE (18) to obtain a symmetric
operator. This will allow simpler calculations down the line. Denote DL the spatial
operator in the PDE, i.e.:

DL g = ∂x F(g; x, L) = ∂x

(
− v(x, L)g + ∂x (d(x, L)g)

)
.

We recall that the stationary solution associated with the value L is given by:

ML(x) = C(m, L)

d(x, L)
exp
( ∫ x

0

v(y, L)

d(y, L)
dy
)
. (44)

This stationary solution satisfies DL ML = 0 and we can rewrite the operator DL

in the following way:

DL g = ∂x

(
d(x, L)ML∂x (

g

ML
)
)
.
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Then we perform the change of variable h = g√
ML

and introduce the new operator

D̃L , which is symmetric for the L2 inner product:

D̃L h = 1√
ML

DL(h
√

ML) = 1√
ML

∂x

(
d(x, L)ML∂x (

h√
ML

)
)
.

Note that we use an implicit discretization in time in order to avoid a constraining
time step for the diffusion operator.

Given a mesh of size �x > 0 in space, we discretize the interval [0, xmax] and
consider N cells C j = [x j−1/2, x j+1/2], 1 ≤ j ≤ N centered at point x j , with
x j = j�x and x j+1/2 = ( j + 1/2)�x . We also introduce a time step �t > 0 and the
discretization times tn = n�t, n ∈ N.

We denote by hn
j an approximation of the average of function h on cell C j at time

tn , that is to say hn
j ∼ 1

�x

∫
C j

h(tn, x)dx . We also define MLn , j as an approximation

of stationary solution MLn defined at Eq. (44) at point x j with L = Ln , and Dn
j+1/2 as

an approximation of diffusion coefficient d(x j+1/2, Ln) at point x j+1/2 with L = Ln ,
see expression (16).

We denote by Fn
j+1/2 an approximation of flux d(x, L)ML∂x (

h√
ML

) at the bound-

ary x j+1/2 of cell C j at time tn .
We therefore discretize Eq. (18a) as follows:

hn
j+1 − hn

j

�t
= 1

�x
√

MLn , j
(Fn

j+1/2 − Fn
j−1/2)

= 1

�x
√

MLn , j

(
Dn

j+1/2

√
MLn , j+1MLn , j

hn+1
j+1/

√
MLn , j+1 − hn+1

j /
√

MLn , j

�x

− Dn
j−1/2

√
MLn , j MLn , j−1

hn+1
j /

√
MLn , j − hn+1

j−1/
√

MLn , j−1

�x

)
.

Regarding boundary conditions, we want to preserve the zeroth-order moment∫ xmax

0
g(t, x)dx =

∫ xmax

0
g0(x)dx , which implies to use the following null-flux

boundary conditions:

−v(x, L(t))g(t, x) + ε

2
∂x (d(x, L(t))g(t, x))|x=0,xmax = 0.

The boundary conditions are implemented by using the null-flux conditions for the
flux computed at x−1/2 and xN+1/2. This amounts to setting Fn−1/2 = Fn

N+1/2 = 0 in
the text.
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In order to update the value of L , we derive Eq. (18b) with respect to time and we

discretize the equation ∂t L = −
∫
R+

x∂t g(t, x)dx , which gives:

Ln+1 = Ln − �x
N∑

i=1

xi (g
n+1
i − gn

i ).

This update leads to a restriction on the time step �t to preserve positivity of Ln+1

as seen in Goudon and Monasse (2020). Then a sufficient condition would be to set :

�t |P−1Bn||Pgn| ≤ Ln .

where Bn is defined as:

Bn
i =

⎧⎪⎪⎨
⎪⎪⎩

−Dn
1/2

MLn ,1/2

MLn ,0
, if i = 0,

1

MLn ,i
(DLn ,i+1/2MLn ,i+1/2 − Dn

i−1/2MLn ,i−1/2), otherwise.

5.2 Numerical results

The previous numerical scheme enables us to explore the properties of system (18)
as a model for adipocyte distribution evolution in time. Table 1 presents the value of
most parameters for the simulations. Unless stated otherwise, these parameters shall
be fixed for this section. Concerning values of parameters, a few of them are chosen
in accordance with biological observations. Vlipids and r0 have fixed given values. The
value of γ is taken from Soula et al. (2015). Values of other parameters are chosen
as to observe bimodal distributions. We refer the reader to Giacobbi et al. (2023) for
further investigation into the values of those parameters.

5.2.1 Asymptotic behaviour of the second order Lifshitz–Slyozov system (18)

To begin with, we check that the asymptotic profile obtained with the time evolution
of the solution thanks to the previous described scheme coincides with the stationary
solution of Sec. 4.2.

First, one may assume that given an initial condition (g0, L0), the asymptotic
behaviour of the system is governed by the two parameters m and λ. This means that
given two initial conditions (g0

1, L0
1) and (g0

2, L0
2) such that m1 = m2 and λ1 = λ2,

the stationary solutions are equal. In Fig. 4b, both initial conditions are Gaussian func-
tions centered at x1 = 1 and x2 = 3 with m1 = m2 and initial values L0

1 and L0
2 are

chosen so that λ1 = λ2. We indeed observe that the asymptotic profile is the same
for these two initial conditions. From numerical explorations, we believe that this is
a general behaviour of the model. For different boundary conditions, a proof of the
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Fig. 4 Left : Distributions of adipocytes with respect to size, i.e. amount of lipids, starting with λ = 3.5 and

initial distribution g0(x) = C exp

(
− 1

2

(
x−3
0.5

)2)
(in dashed blue line): asymptotic profile (dotted yellow

line) and stationary solution (black full line) both present bimodality. Parameters of the system are given at

Table 1. Right : Asymptotic profiles g
asympt
1 and g

asympt
2 , from two initial conditions (g01 , L0

1) and (g02 , L0
2)

such that m1 = m2 and λ1 = λ2. Note that the two asymptotic distributions are superimposed

uniqueness of stationary solutions can be found in Hariz and Collet (1999). We are
unaware of a proof that would work in our case, but we think that the result should
also hold true. Moreover, up to our knowledge, no proof of the asymptotic behaviour
of the diffusive Lifshitz–Slyozov system is available for the moment, see Conlon and
Schlichting (2019) on a related but different equation.

5.2.2 Bimodality vs unimodality

Since the main aim of the model we develop and study in this paper is to represent
bimodality of the distribution on the stationary solution, we check if we effectively
find some parameter ranges for which we observe this behaviour. In particular, we
investigate the dependency with respect to λ. Note that, since λ is defined by expres-
sion (7), we change λ by changing the initial conditions L0 and g0, in the case of time
evolution of the system, or by changing the value of Lstat when considering stationary
solutions.

In Fig. 4a, we plot densities of adipocytes as a function of size x . It shows
the result of the scheme starting from a Gaussian initial condition g0(x) =
C exp

(
−1

2

(
x − 3

0.5

)2
)

plotted in dashed blue line and L0 such that λ = 3.5.

The value of C is determined such that m = 1. The stationary solution is denoted
gstat = MLstat - in black full line - and the final result of the scheme at time t = tmax
is denoted g(tmax, ·) and represented in dotted yellow line. tmax is determined such
that the relative difference between the size distribution g(tmax, ·) and the stationary
solution MLstat is less than 5 × 10−5. We can observe that bimodality is obtained for
the stationary solution as well as for the asymptotic profile of the adipocyte size distri-
bution and that there is a good correspondence between the two functions. Up to some

numerical error of order 10−12, both the initial number of cells m =
∫ xmax

0
g0(x)dx
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Fig. 5 On the left: time evolution of the size distribution with respect to size in the bimodal case; on the
right: time evolution of the external lipid concentration. We observe that the asymptotic profile coincides
with the computed stationary solution. Parameters of the system are given at Table 1

Fig. 6 On the left: distributions of adipocytes with respect to size, i.e. amount of lipids, starting with λ = 7

and initial distribution g0(x) = C exp

(
− 1

2

(
x − 6

0.5

)2)
(in dashed blue line). On the right: time evolution

of the external lipid concentration. Asymptotic profile (dotted yellow line) and stationary solution (black
full line) both present unimodality. Parameters of the system are given at Table 1 (color figure online)

and the initial amount of lipids λ are conserved, as expected. In Fig. 5, we plot the
time evolution of the solution : on the left, adipocyte density is displayed as a function
of x for various times and on the right, the evolution with respect to time of external
lipid concentration L is plotted. We observe that L tends to a stationary value and g
to a stationary profile with bimodality as expected.

Nowwemay investigate the behaviour of the stationary solutions and the asymptotic
profiles with respect to λ. A first crucial information is that depending on λ, different
types of modality can be observed. Figure6 presents a case where the stationary solu-
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Fig. 7 Different types of stationary solutions : on the left we plot the inverse of the function φ : L →
L + ∫∞

0 x ML (x)dx . We plot the inverse φ−1 rather than φ because the value we change in the model
is λ and not Lstat . Some points are colored according to the type of stationary solution we obtain. There
are indeed four different types of stationary solutions: left unimodal (in green), bimodal (in red), central
unimodal (in yellow) and right unimodal (in black). On the right: for each type, a stationary solution is
plotted in the same color as on the left for one value of λ. Left unimodal (here for λ = 0.191) corresponds
to the case where there is not enough lipids in the system and therefore all cells are of small size. Bimodal
(here for λ = 3.52) is the expected behaviour of the stationary distribution with both small and large cells.
Central unimodal (here for λ = 9.96) happens when the amount of lipids λ is too large and most cells are
of large size. This is not observed in vivo, where we expect a little amount of small cells to remain. Right
unimodal (here for λ = 14.9) happens when the total amount of lipids is very large and due to the null-flux
boundary conditions most cells are of the maximal size xmax = 15. This behaviour is not biologically
relevant (color figure online)

tion is unimodal, obtained with initial conditions g0(x) = C exp

(
−1

2

(
x − 6

0.5

)2
)
,

where C is choosen such that m = 1, and L0 such that λ = 7. We remark that L also
tends to a stationary value and densities converge towards a stationary distribution
with unimodality. Biologically, we can relate this to the fact that if the amount of
lipids in the system is higher, cells have a tendency to put into storage the maximum
amount of lipids and thus cells are bigger in average. From a mathematical point of
view, since the optima can be linked to the velocity zeros, this means that for bigger
λ, two of the zeros of speed V - and therefore two optima - disappear and thus only
one zero remains giving rise to a unimodal profile.

More generally, we can investigate the profilemodalitywith respect to the value of λ
using the computation of stationary solutions. In Fig. 7 on the left, we present the type
of modality of the stationary solutions as a function of λ. Left (resp. right) unimodality
is labeled in green Y (resp. in black x) when a single mode concentrated on the left
(resp. right) of the domain is observed. Central unimodal stationary solution is labeled
in yellow + when the unique mode is concentrated inside the domain. Bimodality is
labeled in red.

In Fig. 7 on the right, a plot for each of the 4 types of modality is presented. We
represent the stationary solution MLstat with respect to x . Four different values of Lstat
corresponding to various λ are considered, namely Lstat = 0.05 and λ = 0.191 for
the left unimodality (top left, in green), Lstat = 0.075 and λ = 3.52 for the bimodality
(top right, in red), Lstat = 0.1 and λ = 9.96 for the central unimodality (bottom left, in
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Fig. 8 Different stationary
solutions depending on the value
of ε. We observe that bimodality
holds for values of ε small
enough. Parameters of the
system are given at Table 1

Fig. 9 Different stationary
solutions depending on the value
of diffusion rate D taken as
constant in space and time.
Parameters of the system are
given at Table 1

yellow) and Lstat = 0.2 andλ = 14.9 for the right unimodality (bottom right, in black).
For a biological interpretation, left modality is observed when the amount of lipids is
too low and thus cells are of relative small sizes. Rightmodality is a consequence of the
amount of lipids being too large and represents the whole cell population approaching
its maximal volume. A mathematical interpretation is given by again considering the
zeros of the velocity with an influence on the optima of the profile. Left (resp. right)
modality is reached when zeros disappear and/or go outside the domain from the left
(resp. from the right). The first mode in the bimodal case can also be localized at 0,
the smallest zero of the velocity being outside the domain (on the left).

5.2.3 Influence of " and comparison with a constant diffusion rate D

In this part, we explore the influence of parameter ε on the shape of stationary solutions.
We can observe in Fig. 8 that higher values of ε smoothen the two maxima of the
solution, as expected. For smaller values of ε, the nadir (i.e. the localminimumbetween
the twomaxima) gets sharper and for very small ε this may result numerically in taking
very small time and space steps. This is easily interpreted as the fact that when ε = 0,
we consider the classical Lifshitz–Slyozov systemwhere stationary solutions are sums
of Dirac masses which is difficult to obtain numerically without a dedicated scheme.

The choice we made for the diffusion rate is supported by the convergence results
from the Becker–Döring to Lifshitz–Syozov model and the behaviour of second order
terms. However this choice is not motivated by biological observation. Hence one
may make the assumption that the diffusion rate is constant in both time and space.
This unfortunately results in quite different results as shown in Fig. 9. We point out
that to obtain bimodality some parameters need to be readjusted in this case. Hence
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Fig. 10 Numerical solution for the first order Lifshitz–Slyozov model (11) (in dotted blue line) compared
to the stationary solution of the Lifshitz–Slyozov diffusive model (18) (in orange plain line) with the same
parameters and same initial condition (displayed in black dashed -dotted line). The solution to the first order
Lifshitz–Slyozov model is expected to converge to a Dirac mass and is displayed for a time before reaching
the asymptotic profile (color figure online)

comparing the solutions of the system under consideration (18) and the solutions
with constant diffusion rate proves to be difficult because the behaviour of stationary
solutions is heavily dependent on the choice of parameters.

We still can make a few comments about the resulting solutions. The constant dif-
fusion rate tends to smoothen the first maximumwhereas in the non-constant case, the
diffusion is relatively close to zero, leading to a sharper maximum. Our investigation
of the available data for adipose cell distribution leads us to believe that non-constant
diffusion rates have better chances of making the model fit with the data. We also
point out that in the case of constant diffusion, each type of modality, as previously
described, is obtainable.

5.2.4 Comparison with the first order model

Stationary solutions for the first order Lifshitz–Slyozov model are not so easily
computed theoretically. Nonetheless we can explore these solutions numerically as
asymptotic profiles of the solutions of system (11). For that purpose, we use a stan-
dard upwind scheme for transport equations, since the velocity is known. Figure10
presents the result of an upwind scheme for the Lifshitz–Slyozov model with the same
initial conditions and parameters as in Fig. 5. We expect singular stationary state for
the first order Lifshitz–Slyozov model. We may interpret stationary state that concen-
trates at two points as a degenerate bimodal solution. Using the same parameters as
in Fig. 5, we can see on Fig. 11 that the solution concentrates to a singular Dirac mass
and that in this case we cannot recover bimodality, unlike the case of second-order
Lifshitz–Slyozov model, see Fig. 10. We also point out that the asymptotic values of
L are different in both cases.

By changing initial conditions and the parameter β to β = 100, we can nonetheless
obtain a bimodal solution for the first order Lifshitz–Slyozov model (11) as seen in
Fig. 12 on the left. However, by changing the initial condition f 0, we can see on
Fig. 12 on the right that we do not obtain the same asymptotic solutions. This leads
us to believe that in the case of the first order Lifshitz–Slyozov model the asymptotic
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Fig. 11 Numerical solution for the first order Lifshitz–Slyozov model (11) with same parameters and initial
data as in Fig. 5. On the left: time evolution of the size distribution with respect to size; on the right:
time evolution of the external lipid concentration. The solution to the first order Lifshitz–Slyozov model is
expected to converge to a Dirac mass and is displayed for a time before reaching the asymptotic profile

Fig. 12 Asymptotic profiles for the first order Lifshitz–Slyozov model (11) with m = 1 and λ = 2. Left:
f 0(x) = C1[�x,1](x). Right: f 0(x) = C1[0.5,1](x). The difference in the initial conditions leads to
different profiles. To observe bimodality the parameter β was changed to β = 100 in both cases

solutions depend on the initial condition g0 and not only on m and λ, unlike for second
order Lifshitz–Slyozov model (18).

5.2.5 The case � < 8(0)

As explained in the remark of Sec. 4.2, for different choices of functions a and b than
those of the adipocyte model, we may find situations where lim

L→0+ �(L) = λ0 > 0.

In this subsection, we explore the evolution of a solution for a value of λ such that
0 < λ < λ0, that is to say in a case when no smooth stationary solution exists. An
example of choice for a and b is a(x) = 1 and b(x) = (x + 1)2/3 and in Fig. 13, the
function L → �(L) is displayed in that case.

123



16 Page 46 of 50 L. Meyer et al.

Fig. 13 Plot of function
L → �(L) with a(x) = 1 and
b(x) = (x + 1)2/3. In that case,
limL→0+ �(L) ∼ 0.025 > 0
and the existence of smooth
stationary solutions for values of
λ such that λ < λ0 is not
guaranteed

Fig. 14 Case when a(x) = 1 and b(x) = (x + 1)2/3 and λ < λ0. On the left: time evolution of the size
distribution with respect to size; on the right: time evolution of the external lipid concentration

We show in Fig. 14 the time evolution of the density profile (on the left) and of the
external lipid concentration L (on the right) computed numerically in a case where
λ < λ0.We observe that, as expected, L tend to 0 asymptotically and that the adipocyte
density seems to converge towards a Dirac mass centered at 0. Numerical simulations
prove difficult because of the constraint on�t to enforce the stability of the numerical
scheme. More precisely, this constraint induces that �t should be bounded above by
Ln . Hence as the computation time increases, we observe that the value of Ln tends
to zero, as the solution gets closer to the asymptotic profile and therefore that the time
step eventually gets smaller than machine precision. In this case, the scheme fails to
conserve both λ and m.

6 Conclusion

Our work provides a new approach for looking into convergence from Becker–Döring
to Lifshitz–Slyozov, and numerical results indicating that the second order Lifshitz–
Slyozov model is better suited to model adipocyte size distribution than previous
approach relying on first order Lifshitz–Slyozov model.
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The originality of this study lies in the following points :

• a new second order Lifshitz–Slyozov model (18) for adipocyte size distribution
with a diffusion term derived from a discrete model,

• Becker–Döring and Lifshitz–Slyozov systems with an unusual velocity (46) -(5)
with three zeros and a saturation term in L , which leads to different types of
stationary solutions,

• an additional conservation law (8) with respect to classical systems, enforcing
uncommon boundary conditions, see Eq. (10) and (17),

• a new proof of convergence result from Becker–Döring solutions to Lifshitz–
Slyozov solutions, using tails of distributions, that provides an upper bound on the
speed of convergence.

• numerical results showing that bimodal distributions, as well as unimodal profiles,
can be obtained asymptotically with system (18), according to the parameters,

• numerical results exploring the influence of parameter ε and comparing the diffu-
sion term of system (18) with a time and space constant coefficient.

• numerical results shows that the second order system (18) provides universal
asymptotic profile that does not depend on initial condition (but only on λ, m),
contrary to first order system (11).

We believe that the distribution tail approach could be further investigated to show
convergence towards the solutions to the second order Lifshitz–Slyozov equation. The
asymptotic behaviour of solutions to the second order Lifshitz–Slyozov model will be
investigated in future works.

Annex: Compactly supported solution

We look at the solutions of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t f (t, x) + ∂x (v(x, L(t)) f (t, x)) = 0, (45a)

L(t) +
∫
R+

x f (t, x)dx = λ, (45b)

(v(x, L(t)) f (t, x))
∣∣
x=0 = 0, (45c)

f (0, x) = f 0(x) and L(0) = L0, (45d)

with

v(x, L) = a(x)
L

L + κ
− b(x). (46)

We show the following lemma

Lemma 6.1 Assume f 0 is a finite measure. Assume a and b are C1 globally Lipschitz
functions, and furthermore that a is bounded and b monotonously increasing from 0
to +∞. Then if f 0 is compactly supported, the unique solution of (45) is compactly
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supported for all times, and there exists x∞ such that

lim
t→∞

∫ ∞

x
f (t, y)dy ≤

(∫ ∞

0
f 0(y)dy

)
1x≤x∞ . (47)

Note that the assumptions on a and b are satisfied by (4)–(5).

Proof Well-posedness under smooth linearly bounded coefficients is granted, see for
instance (Collet and Goudon 2000; Calvo et al. 2021). For the control of the support
of its solution, we use the comparison principle for the tail distribution. Let K such
that a(x) ≤ K for all x , and let define g the solution of the linear transport equation

⎧⎪⎨
⎪⎩

∂t g(t, x) + ∂x ((K − b(x))g(t, x)) = 0, (48a)

((K − b(x)))g(t, x))
∣∣
x=0 = 0, (48b)

g(0, x) = f 0(x). (48c)

Let F(t, x) = ∫∞
x f (t, y)dy and G(t, x) = ∫∞

x g(t, y)dy. Using similar calcula-
tions as in the proof of Lemma 3.6, we easily obtain

∂t (G − F)(t, x) + ((K − b(x))∂x (G − F)(t, x)

=
(

a(x)
L

L + κ
− K

)
∂x F(t, x) ≥ 0, (49)

so that we have for all times t and all x , by comparison principle (and because it holds
true at time 0),

F(t, x) ≤ G(t, x). (50)

The end of the proof follows by trivial calculation on the linear transport equation,
with x∞ = b−1(K ). �


Data availibility The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.
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