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In this paper we propose a modeling setting and a numerical Riemann problem solver at the junction of one 
dimensional shallow-water channel networks. The junction conditions take into account the angles with which 
the channels intersect and include the possibility of channels with different sections. The solver is illustrated with 
several numerical tests which underline the importance of the angle dependence to obtain reliable solutions.
1. Introduction

The shallow water model gives an approximate description of free 
surface water flows and takes the form of a non-linear hyperbolic sys-

tem of PDE’s composed of mass and momentum balance equations. It 
is widely used to describe flows in artificial canals and water chan-

nels with applications for instance to environmental problems. In water 
management issues, these equations are considered as a fundamen-

tal tool to reproduce the dynamics of networks of channels or of the 
branching of rivers, which may occur in different types of configura-

tions.

The most straightforward treatment from modeling and numerical 
point of views consists in considering the network as a two dimen-

sional domain covered with an unstructured grid [11,12]. However, 
from a computational point of view it is much more efficient to con-

sider the network as a set of one dimensional channels coupled through 
junctions. The main difficulty in the construction of the model is the def-

inition of the coupling conditions at the junction between the adjoining 
channels and we mention the following reviews for one-dimensional 
flows on networks [5,14]. The coupling condition can be seen as a 
Riemann problem involving a constant state for each of the adjoining 
channels and Riemann problems at a junction are widely discussed in 
literature, see [15,9,20,32,30]. To close the problem, one completes 
the Riemann problem with physical conservation properties across the 
junction, see [28,27]. The method studied in [1] consists in solving a 
one-dimensional flow in each channel, coupled with a 2D solution lo-

cally at the junction. This has the advantage of taking into account 
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naturally the geometry of the junction, and it does not require a restric-

tion to the fluvial regime. In our case, we propose coupling conditions 
with which one can solve the system in a purely 1D setting. In this way, 
our contribution is not just a numerical solver, but it is a junction model 
in its own right.

From a numerical point of view, one has to couple one dimensional 
numerical solvers in the 1D channels with an approximate junction Rie-

mann solver, see [1,4,7,25,33].

We consider a junction of three channels and we assume by con-

vention to have one incoming channel which ends at the junction and 
two outgoing channels which start at the junction. To solve the junc-

tion problem we need to find the three states (mass and discharge) 
corresponding to each of the three one dimensional channels at the 
junction for a total of six unknowns. One imposes mass conservation at 
the junction which yields one equation, then one formulates a left-half 
Riemann problem for the incoming channel and a right-half Riemann 
problem for each of the two outgoing channels. Under subcritical flow 
assumptions, we obtain therefore three more conditions. Thus, two re-

maining equations have to be specified in order to define the junction 
model. In some works the set of equations is completed by assuming 
the continuity of water levels [9,20,32,6] or the continuity of energy 
[28,25]. However, none of these works use a condition that takes into 
account the geometry and especially the angles formed by the channels 
in the fork. For various attempts to include an angle dependency in the 
solver, see [8,26,17]. Different approaches cover the junction with two-

dimensional elements and project the computed 2D solution along the 
one dimensional channels [1].
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These studies have several applications, such as optimization [30,

23,21,22]; see also [3] for an interesting application to the modeling 
of a particular wave energy converter, the so-called oscillating water 
column.

In this article, we propose new coupling conditions at the junction 
that depend on the angles with which the channels intersect, allow-

ing also for channels with different sections, [2,13,29]. Away from the 
junction we assume the solution to be 1D, while we describe the junc-

tion as a pointwise region where coupling occurs between the branches. 
We then consider the physical configuration as a 2D triangle formed 
by the intersection points of the walls of the three channels and, to 
this two dimensional domain, we apply conservation of mass and of the 
two components of momentum. Thanks to this procedure, we obtain for 
the six unknowns at the junction three 1D non linear equations which 
include a dependence on the angles, to be coupled with the three equa-

tions of the characteristic curves. Extending this study to a network of 
channels with several nodes is straightforward. This work therefore ex-

tends the results of [8] by considering branches with different sections. 
We also prove that our approach is a generalization of the junction con-

ditions proposed in [28,25]. In those works, the continuity of the energy 
is used to provide two equations at the junction. Here, we also obtain 
energy continuity, but only for a particular geometrical configuration of 
the junction We also prove the existence of the solution of our junction 
Riemann problem in a few particular cases.

Validation of numerical schemes obtained in this way is carried out 
comparing the numerical 1D solution with the junction, with a fully 2D 
solver, see [17,19,24,18]. We compare therefore our numerical solver 
with a fully 2D solver for shallow water equations showing that the 
numerical approximation improves as the width of the 2D channels is 
reduced.

The paper is organized as follows. In Section 2, we concentrate on 
the solution of the Riemann problem for shallow-water equations. We 
then present the junction geometry in Section 3, defining our coupling 
conditions in Section 3.1. We discuss extensions for special config-

urations in Section 3.2, including also the case of a single channel 
with varying cross-section. In Section 4 we merge the relations at the 
junction with the numerical approximation of shallow water equations 
along the channels. Section 4.3 is devoted to a discussion of the exis-

tence of the numerical solution in a few cases. We end in Section 5 with 
the numerical tests.

2. The shallow water equations and its standard Riemann 
problem

Let us first recall the shallow water or Saint Venant equations, and 
some of theirs properties that will be useful in the following.

2.1. The shallow water equations

The 1D shallow water equations, introduced by Saint-Venant in [10]

and derived in [16] from Navier-Stokes incompressible equations with 
a free moving boundary, describe the water propagation in a channel 
with rectangular cross-section and constant slope as follows:{

𝜕𝑡ℎ+ 𝜕𝑥(ℎ𝑣) = 0,
𝜕𝑡(ℎ𝑣) + 𝜕𝑥(ℎ𝑣2 + 1

2𝑔ℎ2) = 𝑔ℎ𝜕𝑥(𝑆0 − 𝑆𝑓 ),
(1)

with ℎ(𝑥, 𝑡) the water height, 𝑣(𝑥, 𝑡) the water velocity at time 𝑡 and 
location 𝑥 along the channel, 𝑔 the gravity constant, 𝑆0 the bed slope 
function and 𝑆𝑓 the friction slope function. The first equation comes 
from mass conservation and the second one from momentum balance. 
For the purpose of this work, we assume a steady state friction on all 
channels and we assume horizontal channels with zero slope. Thus, the 
source term is zero.

We set 𝑞 = ℎ𝑣 (the quantity ℎ𝑣 is often called the discharge in shallow 
water theory, since it measures the flow rate of water past a point) and 
we reformulate system (1) in vector form as
50
𝜕𝑡𝑈 + 𝜕𝑥𝑓 (𝑈 ) = 0, (2)

where

𝑈 =
(

ℎ

𝑞

)
, 𝑓 (𝑈 ) =

(
ℎ𝑣

ℎ𝑣2 + 1
2 𝑔ℎ2

)
. (3)

For smooth solutions, system (2) can equivalently be written in the 
quasilinear form

𝜕𝑡𝑈 +𝐴(𝑈 )𝜕𝑥𝑈 = 0, (4)

where the Jacobian matrix 𝐴(𝑈 ) = 𝑓 ′(𝑈 ) is

𝐴(𝑈 ) =
(

0 1
−𝑣2 + 𝑔ℎ 2𝑣

)
, (5)

with eigenvalues

𝜆1(𝑈 ) = 𝑣−
√

𝑔ℎ, 𝜆2(𝑈 ) = 𝑣+
√

𝑔ℎ. (6)

Note that in general 𝜆1(𝑈 ) and 𝜆2(𝑈 ) can be of either sign. When the 
velocity 𝑣 = 𝑞∕ℎ of the fluid is smaller than the speed 

√
𝑔ℎ of the gravity 

waves, that is |𝑣| < √
𝑔ℎ, the flow is said to be fluvial or subcritical and 

then one has

𝜆1(𝑈 ) < 0, 𝜆2(𝑈 ) > 0. (7)

Hence, under the subcritical condition (7), there are two waves prop-

agating in opposite directions. The left and right characteristics are 
associated to 𝜆1(𝑈 ) and 𝜆2(𝑈 ) respectively. The ratio 𝐹𝑟 = |𝑣|∕√𝑔ℎ is 
called the Froude number and the flow is subcritical iff 𝐹𝑟 < 1.

In the following, we will assume that the initial data satisfy the 
fluvial regime condition and that the flow remains fluvial throughout 
time. However, other papers, see [1] for example, propose a solution of 
shallow water equations on networks which can be applied also in the 
transcritical and supercritical regimes, by considering a single 2D local 
element at the junction.

2.2. The standard Riemann problem for shallow-water equations

Here we are in particular interested in the solution of the Riemann 
problem:⎧⎪⎨⎪⎩

𝜕𝑡𝑈 + 𝜕𝑥𝑓 (𝑈 ) = 0,

𝑈 (𝑥,0) =
{

𝑈𝑙 if 𝑥 < 0,
𝑈𝑟 if 𝑥 > 0,

(8)

where 𝑈 (𝑥, 0) = (ℎ(𝑥, 0), 𝑞(𝑥, 0))𝑇 is the initial condition and 𝑈𝑙 = (ℎ𝑙, 𝑞𝑙)𝑇
(resp. 𝑈𝑟 = (ℎ𝑟, 𝑞𝑟)𝑇 ) is the initial constant state to the left (resp. to the 
right) of the interface 𝑥 = 0. The characteristic fields of the shallow 
water equations are genuinely nonlinear and therefore the Riemann 
problem always consists of two waves, each of which is either a shock 
or a rarefaction. Under the subcritical flow condition (7), there will be 
one left (with negative speed) and one right (with positive speed) go-

ing wave. In the sequel the left and right going waves are denoted by 
𝑙-wave and 𝑟-wave, respectively. The solution of this Riemann problem 
consists of the 𝑙-wave and the 𝑟-wave separated by an intermediate state 
𝑈̂ = (ℎ̂, 𝑞)𝑇 . We remark that the solution at the interface 𝑥 = 0 coincides 
with 𝑈̂ , which is the intersection point of the two functions 𝑊𝑙 and 𝑊𝑟

defined by

𝑊𝑙(ℎ;𝑈𝑙) =
⎧⎪⎨⎪⎩

𝑣𝑙 − 2(
√

𝑔ℎ−
√

𝑔ℎ𝑙) if ℎ < ℎ𝑙 (rarefaction)

𝑣𝑙 − (ℎ− ℎ𝑙)
√

𝑔
ℎ+ℎ𝑙

2ℎℎ𝑙
if ℎ > ℎ𝑙 (shock wave),

(9)

and

𝑊𝑟(ℎ;𝑈𝑟) =
⎧⎪⎨⎪⎩

𝑣𝑟 + 2(
√

𝑔ℎ−
√

𝑔ℎ𝑟) if ℎ < ℎ𝑟 (rarefaction)

𝑣𝑟 + (ℎ− ℎ𝑟)
√

𝑔
ℎ+ℎ𝑟

2ℎℎ𝑟
if ℎ > ℎ𝑟 (shock wave),

(10)

which return the physically correct ℎ̂ and 𝑣̂ intermediate values con-

necting the left and right states with an entropic solution.
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Fig. 1. A 3 channel junction.
3. Angle dependent conditions at the junction

In this work, a junction is defined as the intersection of three chan-

nels. For more general cases of 𝑁 > 3 channels, see the conclusion 
section.

We assume that 1D shallow water equations hold on each channel 
of the network and we aim at deriving coupling conditions at the junc-

tion to complete the model. These conditions enable to compute the 
intermediate states at the junction for the Riemann problem under con-

sideration.

3.1. Definition of the coupling conditions at the junction

The channels will be labeled 1, 2 and 3 respectively, where chan-

nel 1 is assumed to be parallel to the 𝑥 axis. We fix the origin of the 
reference system in the point where the three channels intersect. Let 𝜃
and 𝜙 be the angles that channel 3 and 2 respectively form with the 𝑥
axis. We will assume that 𝜃 ≥ 0, while 𝜙 ≤ 0, obtaining the geometry in 
Fig. 1a. This is the one dimensional set up.

Further, we will suppose that the channels can have different widths. 
This case has already been considered through Riemann problems for 
augmented shallow water equations, allowing to consider discontinuous 
channel sections, see [2] for example. Let then 𝑠𝑗 , 𝑗 = 1, 2, 3 be the half-

width of each channel. Therefore, we can think that the 1D setup is the 
core of a two dimensional junction, as shown in Fig. 1b.

Let 𝑒𝑘, 𝑘 = 1, 2, 3, be the interface separating the 𝑘-th channel from 
the junction, that is to say the edge of the internal triangle common 
with channel 𝑘, see Fig. 1b. Let 𝑈∗

𝑘
, 𝑘 = 1, 2, 3, denote the state variable 

in channel 𝑘 at the side of 𝑒𝑘 obtained with the 1D solver used in the 
channel, while 𝑈𝑘, 𝑘 = 1, 2, 3, is the state variable at the side of 𝑒𝑘 inside 
the junction. The purpose of the junction Riemann solver is to compute 
𝑈𝑘 given 𝑈∗

𝑘
. Since each state consists of the couple (ℎ, 𝑣), we need to 

find 6 unknowns at the junction. Thanks to the fluvial regime hypothe-

sis, three conditions are obtained finding the intermediate states of the 
one dimensional Riemann problem defined at each interface 𝑒𝑘 and in 
order to compute the three other missing data we shift to the 2D setting 
of Fig. 1b. We consider the triangle formed by the intersection points 
of the walls of the three channels, and to this two dimensional domain 
we apply conservation of mass and of the two components of momen-

tum, which gives us the 3 missing equations. Once the three states 𝑈𝑘, 
𝑘 = 1, 2, 3, at the junction have been computed, we have at each in-

terface 𝑒𝑘 the left and right states which are needed to compute the 
numerical flux at the boundary interfaces of the channels.
51
Note that other forms of control volumes can be considered. How-

ever, we focus here on triangles, which are entirely internal to the 
channels, avoiding therefore to impose arbitrary conditions on the ex-

ternal boundaries.

3.1.1. Junction conditions derived from the Riemann solver

Let us begin with the 3 equations derived from the Riemann solver. 
We emphasize that, by convention, the given configuration fixes chan-

nel 1 as entering the junction and channels 2 and 3 as leaving the 
junction.

Three relations are obtained matching the unknowns 𝑈𝑘 at the junc-

tion with the data 𝑈∗
𝑘

coming from the three channels through equations 
(9) and (10). More precisely,

𝑣1 = 𝑊𝑙(ℎ1;𝑈∗
1 )

𝑣2 = 𝑊𝑟(ℎ2;𝑈∗
2 )

𝑣3 = 𝑊𝑟(ℎ3;𝑈∗
3 ).

(11)

We note again that this construction requires a fluvial regime, in which 
only one wave exits the junction towards each of the three adjoining 
channels. As far as we know, it is not possible to determine conditions 
on data 𝑈∗

𝑘
that ensure that the flow remains in the fluvial regime.

3.1.2. Junction conditions coming from mass and momentum conservation

We now derive the 3 supplementary equations coming from con-

servation of mass and of the two components of momentum. For that 
purpose, we come back to the 2D configuration of the junction and we 
use the following notation

• ℎ denotes the height of water in the 2D configuration,

• 𝐯 = (𝑣𝑥, 𝑣𝑦)𝑇 , denotes the 2D velocity in the 2D junction domain,

• 𝐪 = ℎ𝐯 = ℎ(𝑣𝑥, 𝑣𝑦)𝑇 denotes the 2D discharge,

• ℎ𝑘 and 𝐪𝑘 = ℎ𝑘(𝑣𝑥,𝑘, 𝑣𝑦,𝑘)𝑇 , 𝑘 = 1, 2, 3, denote the average height and 
the average discharge over the edge 𝑒𝑘 of the junction triangle cor-

responding to channel 𝑘, see Fig. 1b.

We first recall the shallow-water equations in 2D, composed of the mass 
conservation equation and of the momentum conservation equation:{

𝜕𝑡ℎ+∇ ⋅ (ℎ𝐯) = 0,
𝜕𝑡(ℎ𝐯) + ∇ ⋅ (ℎ𝐯⊗ 𝐯) + ∇( 1

2
𝑔ℎ2) = 0.

(12)

In the following, we call 𝑇 the triangle formed by the intersection points 
of the walls of the three channels and its boundary 𝜕𝑇 is composed of 
three edges 𝑒𝑘, 𝑘 = 1, 2, 3, see Fig. 1b.
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Fig. 2. A 3 channel junction. Illustration of the geometrical notation. Parame-

ters are 𝑠1 = 𝑠2 = 𝑠3 = 2, 𝜃 = 𝜋

6
and 𝜙 = − 𝜋

3
.

We assume that mass and momentum are conserved in triangle 𝑇 , 
that is to say ∫

𝑇

ℎ(𝑡, 𝑥)𝑑𝑥 and ∫
𝑇

ℎ𝐯(𝑡, 𝑥)𝑑𝑥 are preserved at all times. 

Integrating Eq. (12) on the triangle 𝑇 yields therefore for the mass con-

servation

∫
𝜕𝑇

𝐪 ⋅ 𝐧 = 0, with 𝐪 = ℎ𝐯, (13)

where 𝐧 is the outer normal of 𝜕𝑇 , while the conservation of the two 
components of momentum gives the two relations

∫
𝜕𝑇

(
𝑣𝑥𝐪+

1
2

𝑔ℎ2
(

1
0

))
⋅ 𝐧 = 0, (14)

and

∫
𝜕𝑇

(
𝑣𝑦𝐪+

1
2

𝑔ℎ2
(

0
1

))
⋅ 𝐧 = 0. (15)

Decomposing 𝜕𝑇 as the sum of the three edges 𝑒𝑘, 𝑘 = 1, 2, 3, the 
three conditions at the junction, given by mass conservation and the 
two components of momentum conservation, can then be written as:∑
𝑘=1,2,3

𝓁𝑘𝐪𝑘 ⋅ 𝐧𝑘 = 0, (16a)

∑
𝑘=1,2,3

𝓁𝑘

(
𝑣𝑥,𝑘𝐪𝑘 +

1
2

𝑔ℎ2
𝑘

(
1
0

))
⋅ 𝐧𝑘 = 0, (16b)

∑
𝑘=1,2,3

𝓁𝑘

(
𝑣𝑦,𝑘𝐪𝑘 +

1
2

𝑔ℎ2
𝑘

(
0
1

))
⋅ 𝐧𝑘 = 0, (16c)

where 𝓁𝑘 is the length of the edge 𝑒𝑘 of the triangle, 𝐧𝑘 is the outer 
normal to 𝑒𝑘 and 𝐪𝑘 is the average of 𝐪 on the side 𝑒𝑘 of the triangle.

To specify all quantities appearing in system (16), we need to com-

pute the normals 𝐧𝑘 to the sides of the triangle and their lengths 𝓁𝑘. To 
fix notation, refer to Fig. 2.

To begin with, we need to give the coordinates of the intersection 
points of the walls, namely points 𝑃12, 𝑃13 and 𝑃23 that are displayed 
on Fig. 2. Let us recall that 𝜃 and 𝜙 are the angles of channels 2 and 3 
with the 𝑥-axis, while 2𝑠𝑘 is the section of channel 𝑘.

The equations for the straight lines composing the 1D skeleton of 
Fig. 1a written in parametric form are
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𝑦1 = 𝑡1(1,0)𝑇 ,

𝑦2 = 𝑡2(cos𝜙, sin𝜙)𝑇 ,

𝑦3 = 𝑡3(cos𝜃, sin𝜃)𝑇 ,

with 𝑡𝑘 ∈ℝ, 𝑘 = 1, 2, 3. Then, to obtain the walls of the channels, i.e., to 
construct the 2D setting of Fig. 2, we just need to write the equations of 
the two straight lines parallel to the axis 𝑦𝑘 at the center of the channel, 
and at a distance ±𝑠𝑘 from the axis, for each channel. The walls of the 
three channels are

𝑦±1 = 𝑡1(1,0)𝑇 ± 𝑠1(0,1)𝑇 ,

𝑦±2 = 𝑡2(cos𝜙, sin𝜙)𝑇 ± 𝑠2(− sin𝜙, cos𝜙)𝑇 , (17)

𝑦±3 = 𝑡3(cos𝜃, sin𝜃)𝑇 ± 𝑠3(− sin𝜃, cos𝜃)𝑇 .

The triangle in Fig. 2 across which the 2D interaction occurs is obtained 
intersecting the straight lines defining the walls of the channels. More 
precisely, 𝑃13, is the intersection of 𝑦+1 with 𝑦+3 , 𝑃12 is defined by the 
intersection of 𝑦−1 with 𝑦−2 , and the last point 𝑃23 lies at the intersection 
of 𝑦−3 and 𝑦+2 . We obtain,

𝑃13

(
𝑠1 cos𝜃 − 𝑠3

sin𝜃
, 𝑠1

)
, 𝜃 ≠ 0. (18)

If 𝜃 = 0, the system has a solution only provided 𝑠1 = 𝑠3, and the two 
straight lines actually coincide. In this case we define 𝑃13 = (0, 𝑠1).

Analogously,

𝑃12

(
−𝑠1 cos𝜙+ 𝑠2

sin𝜙
,−𝑠1

)
, 𝜙 ≠ 0. (19)

If 𝜙 = 0, we must have 𝑠1 = 𝑠2, and we pick 𝑃12 = (0, −𝑠1). With this 
approach, we cannot treat the case in which both 𝜙 = 𝜃 = 0, unless we 
consider the two channels 𝑦2 and 𝑦3 superposed one on top of the other. 
We will see in the next subsection how to extend the construction also 
to the case 𝜙 = 𝜃 = 0.

Finally,

𝑃23

(
𝑠3 cos𝜙+ 𝑠2 cos𝜃

sin(𝜃 − 𝜙)
,
𝑠3 sin𝜙+ 𝑠2 sin𝜃

sin(𝜃 − 𝜙)

)
. (20)

The quantity sin(𝜙 − 𝜃) can be zero either for 𝜙 = 𝜃 = 0, in which case 
the two channels coincide, or when 𝜙 =−𝜋∕2 and 𝜃 = 𝜋∕2. In that case, 
a solution exists only for 𝑠3 = 𝑠2, which means that 𝑦−3 and 𝑦+2 coincide, 
and we fix the intersection point to 𝑃23 = (𝑠3, 0).

We will analyze, and extend, the particular cases 𝜃 = 0, 𝜙 = 0, (𝜃, 𝜙) =
(𝜋∕2, −𝜋∕2) in the following section.

Once the points 𝑃13, 𝑃12, 𝑃23 are defined, we can compute all quan-

tities 𝐧1, 𝐧2, 𝐧3, 𝓁1, 𝓁2 and 𝓁3 depending on the geometry appearing in 
(16). The length of the sides is

𝓁1 = ||𝑃13 − 𝑃12||, 𝓁2 = ||𝑃23 − 𝑃12||, 𝓁3 = ||𝑃23 − 𝑃13||, (21)

and the normals are

𝐧1 =
1
𝓁1

⎛⎜⎜⎝
−2𝑠1

𝑠1 sin(𝜃 +𝜙) − 𝑠2 sin𝜃 − 𝑠3 sin𝜙

sin𝜙 sin𝜃

⎞⎟⎟⎠ ,

𝐧2 =
1
𝓁2

⎛⎜⎜⎜⎝
𝑠1 +

𝑠2 sin𝜃 + 𝑠3 sin𝜙

sin(𝜃 − 𝜙)

−
𝑠2 cos𝜃 + 𝑠3 cos𝜙

sin(𝜃 − 𝜙)
−

𝑠1 cos𝜙− 𝑠2
sin𝜙

⎞⎟⎟⎟⎠ ,

𝐧3 =
1
𝓁3

⎛⎜⎜⎜⎝
𝑠1 −

𝑠2 sin𝜃 + 𝑠3 sin𝜙

sin(𝜃 −𝜙)
𝑠2 cos𝜃 + 𝑠3 cos𝜙

sin(𝜃 −𝜙)
−

𝑠1 cos𝜃 − 𝑠3
sin𝜃

⎞⎟⎟⎟⎠ .



M. Briani, G. Puppo and M. Ribot Computers and Mathematics with Applications 108 (2022) 49–65

Fig. 3. Graphic illustration of the existence of a unique solution of system (11)-(24) for the parameters 𝑠1 = 𝑠2 = 𝑠3 = 1, 𝜃 = −𝜙 = 𝜋∕6 and 𝑈 ∗
1 = (1.5, 0)𝑇 , 𝑈 ∗

2 = 𝑈 ∗
3 =

(1, 0)𝑇 .
Remark 1. The construction is well defined as long as the triangle 
formed by 𝑃13, 𝑃12, 𝑃23 is non degenerate. We say that the triangle is 
degenerate when the three points lie on the same straight line. Straight-

forward computations show that this occurs when det(𝐧1, 𝐧3) = 0 which 
is equivalent to the particular combination

(𝑠1 sin(𝜃 −𝜙) + 𝑠3 sin(𝜙) − 𝑠2 sin(𝜃))2 + 4𝑠2𝑠3 sin(𝜙) sin(𝜃) = 0. (22)

In the frame of reference we have chosen, the discharge in the three 
channels can be written as

𝐪1 = 𝑞1

(
1
0

)
, 𝐪2 = 𝑞2

(
cos𝜙

sin𝜙

)
, 𝐪3 = 𝑞3

(
cos𝜃

sin𝜃

)
, (23)

where 𝑞𝑘 = ‖𝐪𝑘‖.

Let 𝑣𝑘 = 𝑞𝑘∕ℎ𝑘 be the velocity along the 𝑘-th channel. Then the con-

servation laws (16) across the junction can be written as

𝓁1ℎ1𝑣1

(
1
0

)
⋅ 𝐧1 + 𝓁2ℎ2𝑣2

(
cos𝜙

sin𝜙

)
⋅ 𝐧2 + 𝓁3ℎ3𝑣3

(
cos𝜃

sin𝜃

)
⋅ 𝐧3 = 0,

(24a)

𝓁1

(
ℎ1𝑣

2
1

(
1
0

)
+ 1

2
𝑔ℎ2

1

(
1
0

))
⋅ 𝐧1

+ 𝓁2

(
ℎ2𝑣

2
2 cos𝜙

(
cos𝜙

sin𝜙

)
+ 1

2
𝑔ℎ2

2

(
1
0

))
⋅ 𝐧2, (24b)

+ 𝓁3

(
ℎ3𝑣

2
3 cos𝜃

(
cos𝜃

sin𝜃

)
+ 1

2
𝑔ℎ2

3

(
1
0

))
⋅ 𝐧3 = 0,

𝓁1

(
1
2

𝑔ℎ2
1

(
0
1

))
⋅ 𝐧1 + 𝓁2

(
ℎ2𝑣

2
2 sin𝜙

(
cos𝜙

sin𝜙

)
+ 1

2
𝑔ℎ2

2

(
0
1

))
⋅ 𝐧2

(24c)

+ 𝓁3

(
ℎ3𝑣

2
3 sin𝜃

(
cos𝜃

sin𝜃

)
+ 1

2
𝑔ℎ2

3

(
0
1

))
⋅ 𝐧3 = 0,

where we used the fact that the axis of channel 1 is parallel to the 𝑥
axis.

3.1.3. Solutions for the whole system of equations at the junction

Combining the three equations (24) with the three equations (11)

coupling the states in the junction with the 1D channels, we find a 
system of 6 non linear equations at the junction, whose solution is given 
by the three intermediate states 𝑈𝑘 = (ℎ𝑘, 𝑣𝑘)𝑇 , 𝑘 = 1, 2, 3.

Remark 2. If we consider a stationary solution of (1) such that the 
velocity is null and the height is constant in space, i.e. ℎ∗ = ℎ̄ and 𝑣∗ =
𝑘 𝑘

53
0, 𝑘 = 1, 2, 3 then ℎ𝑘 = ℎ̄ and 𝑣𝑘 = 0 𝑘 = 1, 2, 3 is a trivial solution of 
system (24)-(11) since 𝐧1 + 𝐧2 + 𝐧3 = 0. This means that the coupling 
condition at the junction preserves the lake at rest stationary solution 
on the whole network.

Substituting 𝑣1, 𝑣2, 𝑣3 from (11) into (24), we find a system of three 
non linear equations in the three unknowns ℎ1, ℎ2 and ℎ3 which gives 
the solution at the junction. Once the parameters 𝑠1, 𝑠2, 𝑠3, 𝜃, 𝜙 and 
𝑈∗
1 , 𝑈∗

2 , 𝑈∗
3 are fixed, these three equations define three hypersurfaces 

whose zeros surfaces can be plotted in ℎ1, ℎ2 and ℎ3 coordinates, see 
Fig. 3a. The intersection of these surfaces is the required solution and 
an example is shown in Fig. 3b.

3.2. Special cases and extensions

In this section, we consider three particular cases.

We start with the simplified case in which the channels are orthog-

onal to the sides of the triangle. In that case, the junction is defined 
uniquely by the three sections and the equations (24) simplify loosing 
the dependency on the angles. In this case, see Fig. 4, it is easy to see 
that the angles 𝜃 and 𝜙 defining the skeleton of the junction coincide 
with the angles labeled 𝜃 and 𝜙 internal to the triangle in Fig. 4, and 
the length of the sides coincides with the width of the channels, namely 
𝑙𝑘 = 2𝑠𝑘, 𝑘 = 1, 2, 3.

Then, it is straightforward to see that the sections depend on the 
angles through the following relations

𝑠2 sin𝜙+ 𝑠3 sin𝜃 = 0,
𝑠1 = 𝑠2 cos𝜙+ 𝑠3 cos𝜃.

(25)

Since in the present case, 𝐪𝑘 is parallel to 𝐧𝑘, equation (16a) becomes

−𝑠1𝑞1 + 𝑠2𝑞2 + 𝑠3𝑞3 = 0. (26)

Equation (16b)-(16c), corresponding to the conservation of momentum 
at the junction in 2D give:(

𝑞21
ℎ1

+ 1
2

𝑔ℎ2
1

)
𝑠1 =

(
𝑞22
ℎ2

+ 1
2

𝑔ℎ2
2

)
𝑠2 cos𝜙+

(
𝑞23
ℎ3

+ 1
2

𝑔ℎ2
3

)
𝑠3 cos𝜃 (27)

and

0 =

(
𝑞22
ℎ2

+ 1
2

𝑔ℎ2
2

)
𝑠2 sin𝜙+

(
𝑞23
ℎ3

+ 1
2

𝑔ℎ2
3

)
𝑠3 sin𝜃. (28)

Using the identities in (25), we can rewrite (27) and (28) as

𝑞21 + 1
𝑔ℎ2

1 =
𝑞22 + 1

𝑔ℎ2
2 =

𝑞23 + 1
𝑔ℎ2

3.
ℎ1 2 ℎ2 2 ℎ3 2
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Fig. 4. A particular case: junction where the directions of the channels are 
perpendicular to the sides of the triangle. Parameters are 𝑠1 = 𝑠2 = 𝑠3 = 2 and 
𝜃 = −𝜙 = 𝜋

3
.

Therefore, conservation of mass and of the two components of mo-

mentum at the junction in this particular case yield

⎧⎪⎨⎪⎩
−𝑠1𝑞1 + 𝑠2𝑞2 + 𝑠3𝑞3 = 0,
𝑞21
ℎ1

+ 1
2

𝑔ℎ2
1 =

𝑞22
ℎ2

+ 1
2

𝑔ℎ2
2 =

𝑞23
ℎ3

+ 1
2

𝑔ℎ2
3.

(29)

Note that in this case, the junction conditions do not depend on the 
angles with which the channels intersect. We thus recover the equal 
energy condition at the junction used by several authors, see [25]

and references therein. This condition derives from the 2D momentum 
conservation at the junction, but we stress that it holds only for the par-

ticular case in which the channels are orthogonal to the sides of the 
triangle defining the junction.

Moreover, straightforward calculations show that equations (25) im-

ply the geometry in Fig. 4. Since the conservation condition can be 
multiplied by a constant without changing the result, we see that for 
each pair of angles 𝜙 and 𝜃 there exists a one parameter set of sections 
𝜆(𝑠1, 𝑠2, 𝑠3), with 𝜆 > 0 for which momentum conservation coincides 
with energy conservation.

Remark 3. The derivation leading to (29) proves that the present dis-

cussion is actually an extension of the junction conditions based on 
energy conservation. Only in the case of the particular combination 
of parameters satisfying (25), the junction Riemann solver does not de-

pend on the angles between the channels. In particular, if all sections 
are equal, (25) implies that conservation of momentum coincides with 
conservation of energy only in the case 𝜃 = 𝜋

3
= −𝜙 see Fig. 4.

We now consider the cases 𝜃 = 𝜙 = 0 and 𝜃 = −𝜙 = 𝜋∕2 which where 
excluded in the generic case described in section 3. We call:

• T-junction: 𝜃 = −𝜙 = 𝜋∕2.

• Straight channel: 𝜃 = 𝜙 = 0, 𝑠1 = 𝑠2 + 𝑠3.

3.2.1. T-junction

In the case of a T-junction, for which the angles are equal to 𝜃 =
−𝜙 = 𝜋∕2 and 𝑠2 = 𝑠3, the points 𝑃12, 𝑃13 and 𝑃23 can be defined as in 
Fig. 5a, namely

𝑃12

(
−𝑠2
−𝑠

)
, 𝑃13

(
−𝑠2
𝑠

)
, 𝑃23

(
𝑠2
0

)
.

1 1

54
Equations (24) reduce to

⎧⎪⎪⎨⎪⎪⎩

− 𝑠1ℎ1𝑣1 + 𝑠2ℎ2𝑣2 + 𝑠2ℎ3𝑣3 = 0,

− 2
(
ℎ1𝑣

2
1 +

1
2

𝑔ℎ2
1

)
+ 1

2
𝑔ℎ2

2 +
1
2

𝑔ℎ2
3 = 0,

−
(
ℎ2𝑣

2
2 +

1
2

𝑔ℎ2
2

)
+ ℎ3𝑣

2
3 +

1
2

𝑔ℎ2
3 = 0.

When 𝑠2 ≠ 𝑠3, the point 𝑃23 can be defined as in Fig. 5b, then

𝑃12

(
−𝑠2
−𝑠1

)
, 𝑃13

(
−𝑠3
𝑠1

)
, 𝑃23

(
min(𝑠2, 𝑠3)

0

)
.

3.2.2. Straight channel

Now, we consider the case when 𝜃 = 𝜙 = 0 with 𝑠1 = 𝑠2 + 𝑠3. There 
is a natural way to define points 𝑃12 and 𝑃13, see Fig. 6. By symme-

try, the 𝑦-coordinate of 𝑃23 should be set to 0 but the 𝑥-coordinate is 
undetermined. We fix 𝑃23,𝑥 = 𝑠1, thus

𝑃12

(
0

−𝑠1

)
, 𝑃13

(
0
𝑠1

)
, 𝑃23

(
𝑠1
0

)
and equations (24) reduce to:

⎧⎪⎪⎨⎪⎪⎩

− 2ℎ1𝑣1 + ℎ2𝑣2 + ℎ3𝑣3 = 0,

− 2
(
ℎ1𝑣

2
1 +

1
2

𝑔ℎ2
1

)
+
(
ℎ2𝑣

2
2 +

1
2

𝑔ℎ2
2

)
+
(
ℎ3𝑣

2
3 +

1
2

𝑔ℎ2
3

)
= 0,

− 1
2

𝑔ℎ2
2 +

1
2

𝑔ℎ2
3 = 0.

Note these conditions are independent of the sections and therefore we 
cannot extend our construction to the case of a single channel with a 
varying cross section with this configuration; see [29] or [2] for an 
exact solution of the Riemann problem for augmented shallow-water 
equations in the case of varying cross section.

4. Numerical scheme for shallow-water equations complemented 
with junction conditions

In this section, we couple a standard final volume scheme for the 
shallow water equations along each channel with the numerical flux 
consistent with our junction conditions (11)-(24).

4.1. One dimensional finite volume scheme

For the sake of simplicity, we will suppose that each channel has the 
same length, discretized with a uniform grid. Then, the computational 
domain in each channel is defined by the finite interval [0, 𝐿], which 
is divided in 𝑀 equal cells, of length Δ𝑥 = 𝐿∕𝑀 . The cell centers are 
given by 𝑥𝑗 = (𝑗 − 1

2 )Δ𝑥, 𝑗 = 1, … , 𝑀 . The numerical solution is piece-

wise constant and is defined as an approximation of the cell average of 
the exact solution 𝑈 at time 𝑡 in the 𝑗-cell given by

𝑈𝑗 (𝑡) =
1
Δ𝑥

𝑥
𝑗+ 1

2

∫
𝑥

𝑗− 1
2

𝑈 (𝑥, 𝑡) 𝑑𝑥, (30)

with appropriate boundary conditions for 𝑈0(⋅) in channel 1 and 
𝑈𝑀+1(⋅) on the two outgoing channels 2 and 3. The system is evolved 
until the final time 𝑇 , with time step Δ𝑡. We denote by 𝑈𝑛

𝑗
the approx-

imate value for the average of 𝑈 in cell 𝑗 at the discrete time 𝑡𝑛 = 𝑛Δ𝑡. 
Hence, the finite volume approximation of system (2) can be written 
under the form

𝑈𝑛+1
𝑗

−𝑈𝑛
𝑗

Δ𝑡
= − 1

Δ𝑥

(
𝐹 𝑛

𝑗+ 1
2
− 𝐹 𝑛

𝑗− 1
2

)
, (31)

where

𝐹 𝑛

𝑗− 1 = 𝐹

(
𝑈𝑛

𝑗−1,𝑈
𝑛
𝑗

)
, (32)
2
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Fig. 5. Junction - Particular cases of the T-junction. Parameters are 𝜃 = −𝜙 = 𝜋

2
and (a) 𝑠1 = 1, 𝑠2 = 𝑠3 = 2 and (b) 𝑠1 = 𝑠2 = 1, 𝑠3 = 2.
Fig. 6. Junction - Particular case of the straight channel. Parameters are 𝜃 = 𝜙 =
0 and 𝑠1 = 0.5, 𝑠2 = 𝑠3 = 0.25.

with 𝐹 (⋅, ⋅) a proper numerical flux. We apply a Godunov type numerical 
flux [31,34], computing the exact intermediate state for the Riemann 
problem between the two cells defined by 𝑈𝑙 = 𝑈𝑛

𝑗−1 and 𝑈𝑟 = 𝑈𝑛
𝑗

for 
𝑗 = 1, … , 𝑀 .

From now on we shall add a channel index and we use the notation 
𝑈𝑛

𝑗,𝑘
, 𝑗 = 1, … , 𝑀 , to indicate the numerical solution along channel 𝑘 =

1, 2, 3 computed at time 𝑡𝑛, in 𝑥𝑗,𝑘. The time step Δ𝑡 is fixed to satisfy 
the stability condition

Δ𝑡 ≤ Δ𝑥

max
𝑘=1,2,3

max
1≤𝑗≤𝑀

max{|𝜆1(𝑈𝑛
𝑗,𝑘
)|, |𝜆2(𝑈𝑛

𝑗,𝑘
)|} , (33)

where 𝜆1 and 𝜆2 are the eigenvalues defined in (6).

Finally, we use free-flow boundary conditions at the external bound-

aries, that is to say, we impose 𝑈𝑛
0,1 = 𝑈𝑛

1,1, 𝑈
𝑛
𝑀+1,2 = 𝑈𝑛

𝑀,2 and 𝑈𝑛
𝑀+1,3 =

𝑈𝑛
𝑀,3.

4.2. Junction conditions and coupling with the finite volume 1D scheme

Let us now explain how we insert the junction conditions (11)-(24)

in the finite volume numerical scheme (31). Let us write scheme (31)
55
in channel 𝑘, 𝑘 = 1, 2, 3 under the following form:

𝑈𝑛+1
𝑗,𝑘

−𝑈𝑛
𝑗,𝑘

Δ𝑡
= − 1

Δ𝑥

(
𝐹 𝑛

𝑗+ 1
2 ,𝑘

− 𝐹 𝑛

𝑗− 1
2 ,𝑘

)
. (34)

In a channel network, the extreme point 𝑥1,𝑘 or 𝑥𝑀,𝑘 can be either a 
boundary point or a junction point connected with other channels. In 
our setting 𝑥𝑀,1, 𝑥1,2 and 𝑥1,3 are junction points, while 𝑥1,1, 𝑥𝑀,2 and 
𝑥𝑀,3 are boundary points. At the external boundaries of the network, 
numerical tests use free-flow conditions, but other boundary conditions 
can naturally be used.

Let 𝑈𝑘 = (ℎ𝑘, 𝑣𝑘)𝑇 , 𝑘 = 1, 2, 3 be the solution to system (11)-(24) with 
𝑈∗
1 = 𝑈𝑛

𝑀,1, 𝑈
∗
2 = 𝑈𝑛

1,2, 𝑈
∗
3 = 𝑈𝑛

1,3 where 𝑈𝑛
𝑀,1, 𝑈

𝑛
1,2 and 𝑈𝑛

1,3 are the values 
computed by the 1D scheme along the channels. Then, at the junction 
points we impose 𝐹 𝑛

𝑀+1∕2,1 = 𝑓 (𝑈1), 𝐹 𝑛
1∕2,2 = 𝑓 (𝑈2) and 𝐹 𝑛

1∕2,3 = 𝑓 (𝑈3).

4.3. Solving the non-linear system at the junction

Now, let us study the solutions to the nonlinear system at the junc-

tion. We recall the notation used in Sec. 3 and denote by ℎ∗
𝑘

and 𝑣∗
𝑘

the 
approximate values of ℎ and 𝑣 near the junction at channel 𝑘 = 1, 2, 3
given by the 1D numerical scheme, see also Sec. 4 for their exact def-

inition. Let Ω be the open set of admissible states, Ω = {ℎ𝑘 ∈ ℝ+
∗ , 𝑣𝑘 ∈

ℝ, |𝑣𝑘| < √
𝑔ℎ𝑘, 𝑘 = 1, 2, 3}. The approximate values ℎ𝑘 and 𝑣𝑘 are then 

obtained solving the non-linear system (24) with 𝑣𝑘 given by (11). Let 
us denote

𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎝

ℎ1
ℎ2
ℎ3
𝑣1
𝑣2
𝑣3

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝑋∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ℎ∗
1

ℎ∗
2

ℎ∗
3

𝑣∗1
𝑣∗2
𝑣∗3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

ℎ1,𝑀
ℎ2,1
ℎ3,1
𝑣1,𝑀
𝑣2,1
𝑣3,1

⎞⎟⎟⎟⎟⎟⎟⎠
.

We can rewrite the system under the following form

Ψ
(
𝑋;𝑋∗) = 0 (35)

where Ψ ∶ Ω ×Ω →ℝ6. In general, existence and uniqueness results for 
solutions to non linear systems are difficult to prove.

Assume that we have solved the system up to 𝑡 = 𝑡𝑛, this gives the 
junction solution 𝑋𝑛,∗ at the edges of the channels. Suppose that we 
have found a solution 𝑋𝑛 such that Ψ(𝑋𝑛; 𝑋𝑛,∗) = 0. If we can prove 
that Det 𝐷Ψ (𝑋𝑛;𝑋𝑛,∗) ≠ 0, where 𝐷Ψ denotes the Jacobian with re-

spect to the first argument, then there exists a unique 𝑋 = 𝑋(𝑋∗), for 
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‖𝑋∗ − 𝑋𝑛,∗‖ < 𝜖, with 𝜖 small enough, such that Ψ(𝑋; 𝑋∗) = 0. There-

fore, if the flow is smooth, one can find Δ𝑡 small enough such that ‖𝑋𝑛+1,∗ − 𝑋𝑛,∗‖ < 𝜖 and the implicit function theorem guarantees that 
there exists a unique solution 𝑋𝑛+1 such that Ψ(𝑋𝑛+1; 𝑋𝑛+1,∗) = 0. So, 
the procedure can be iterated provided one can prove at each step that 
Det 𝐷Ψ (𝑋𝑛;𝑋𝑛,∗) ≠ 0.

In the particular case when all waves are rarefactions, the relations 
(11) become

⎧⎪⎪⎨⎪⎪⎩

𝑣1 + 2
√

𝑔ℎ1 = 𝑣∗1 + 2
√

𝑔ℎ∗
1 ,

𝑣2 − 2
√

𝑔ℎ2 = 𝑣∗2 − 2
√

𝑔ℎ∗
2 ,

𝑣3 − 2
√

𝑔ℎ3 = 𝑣∗3 − 2
√

𝑔ℎ∗
3 ,

(36)

and it is clear that the Jacobian 𝐷Ψ does not depend on the data 
𝑋∗. Thus, starting from a set of data 𝑋∗ and a solution 𝑋 such that 
Ψ(𝑋; 𝑋∗) = 0, once one can prove that

Det𝐷Ψ
(
𝑋;𝑋∗) ≠ 0, for all 𝑋∗,𝑋 ∈Ω×Ω, (37)

the solution exists at each time step. Note that, for the steady solution 
ℎ = 𝑐𝑜𝑛𝑠𝑡. and 𝑣 = 0 one has 𝑋∗ = (ℎ, ℎ, ℎ, 0, 0, 0)𝑇 and Ψ(𝑋; 𝑋∗) = 0 for 
𝑋 = 𝑋∗, thus there exists at least one case for which Ψ(𝑋; 𝑋∗) = 0.

Example 1. In the case when the channels are orthogonal to the sides 
of the triangle, we have

Ψ
(
𝑋;𝑋∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠1ℎ1𝑣1 − 𝑠2ℎ2𝑣2 − 𝑠3ℎ3𝑣3

ℎ1𝑣
2
1 +

1
2𝑔ℎ2

1 − ℎ2𝑣
2
2 −

1
2 𝑔ℎ2

2

ℎ1𝑣
2
1 +

1
2𝑔ℎ2

1 − ℎ3𝑣
2
3 −

1
2 𝑔ℎ2

3

𝑣1 + 2
√

𝑔ℎ1 − 𝑣∗1 − 2
√

𝑔ℎ∗
1

𝑣2 − 2
√

𝑔ℎ2 − 𝑣∗2 + 2
√

𝑔ℎ∗
2

𝑣3 − 2
√

𝑔ℎ3 − 𝑣∗3 + 2
√

𝑔ℎ∗
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Simple algebra gives,

Det𝐷Ψ
(
𝑋;𝑋∗)

=Det
⎛⎜⎜⎜⎝

𝑠1(𝑣1 −
√

𝑔ℎ1) −𝑠2(𝑣2 +
√

𝑔ℎ2) −𝑠3(𝑣3 +
√

𝑔ℎ3)

(𝑣1 −
√

𝑔ℎ1)2 −(𝑣2 +
√

𝑔ℎ2)2 0

(𝑣1 −
√

𝑔ℎ1)2 0 −(𝑣3 +
√

𝑔ℎ3)2

⎞⎟⎟⎟⎠
= 𝜆1(𝑈1)𝜆2(𝑈2)𝜆2(𝑈3)

×
(
𝑠1𝜆2(𝑈2)𝜆2(𝑈3) − 𝑠2𝜆1(𝑈1)𝜆2(𝑈3) − 𝑠3𝜆1(𝑈1)𝜆2(𝑈2)

)
,

where 𝜆1(𝑈1), 𝜆2(𝑈2) and 𝜆2(𝑈3) are defined at Eq. (6).

We can therefore conclude that since we are in the sub-critical case, 
for which 𝜆1(𝑈1) < 0, 𝜆2(𝑈2) > 0, 𝜆2(𝑈3) > 0, we have

Det𝐷Ψ
(
𝑋;𝑋∗) < 0, for all 𝑋∗,𝑋 ∈Ω,

which implies condition (37). This coincides with the case in which one 
assumes the continuity of the energy.

Example 2. Case with vanishing velocities.

Now, consider the case given by system (24)-(11), with only rarefac-

tion waves. In order to simplify the expressions arising in the computa-

tions, we introduce the following notation
56
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛼1 = 𝓁1

(
1
0

)
⋅ 𝐧1 = −2𝑠1,

𝛼2 = 𝓁2

(
1
0

)
⋅ 𝐧2 = 𝑠1 +

𝑠2 sin𝜃 + 𝑠3 sin𝜙

sin(𝜃 − 𝜙)
,

𝛼3 = 𝓁3

(
1
0

)
⋅ 𝐧3 = 𝑠1 −

𝑠2 sin𝜃 + 𝑠3 sin𝜙

sin(𝜃 − 𝜙)
,

𝛽1 = 𝓁1

(
0
1

)
⋅ 𝐧1 =

𝑠1 sin(𝜃 + 𝜙) − 𝑠2 sin𝜃 − 𝑠3 sin𝜙

sin𝜙 sin𝜃
,

𝛽2 = 𝓁2

(
0
1

)
⋅ 𝐧2 = −

𝑠2 cos𝜃 + 𝑠3 cos𝜙

sin(𝜃 − 𝜙)
−

𝑠1 cos𝜙− 𝑠2
sin𝜙

,

𝛽3 = 𝓁3

(
0
1

)
⋅ 𝐧3 =

𝑠2 cos𝜃 + 𝑠3 cos𝜙

sin(𝜃 − 𝜙)
−

𝑠1 cos𝜃 − 𝑠3
sin𝜃

,

𝛾2 = 𝓁2

(
cos𝜙

sin𝜙

)
⋅ 𝐧2 = 𝛼2 cos𝜙+ 𝛽2 sin𝜙,

𝛾3 = 𝓁3

(
cos𝜃

sin𝜃

)
⋅ 𝐧3 = 𝛼3 cos𝜃 + 𝛽3 sin𝜃,

such that

Ψ
(
𝑋;𝑋∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼1ℎ1𝑣1 + 𝛾2ℎ2𝑣2 + 𝛾3ℎ3𝑣3

𝛼1

(
ℎ1𝑣

2
1 +

1
2

𝑔ℎ2
1

)
+
(
𝛾2ℎ2𝑣

2
2 cos𝜙+

𝛼2
2

𝑔ℎ2
2

)
+
(
𝛾3ℎ3𝑣

2
3 cos𝜃 +

𝛼3
2

𝑔ℎ2
3

)
1
2

𝛽1𝑔ℎ2
1 +

(
𝛾2ℎ2𝑣

2
2 sin𝜙+

𝛽2
2

𝑔ℎ2
2

)
+
(

𝛾3ℎ3𝑣
2
3 sin𝜃 +

𝛽3
2

𝑔ℎ2
3

)
𝑣1 + 2

√
𝑔ℎ1 − 𝑣∗1 − 2

√
𝑔ℎ∗

1

𝑣2 − 2
√

𝑔ℎ2 − 𝑣∗2 + 2
√

𝑔ℎ∗
2

𝑣3 − 2
√

𝑔ℎ3 − 𝑣∗3 + 2
√

𝑔ℎ∗
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since explicit computations are too difficult, we restrict ourselves to 
the particular case when solutions with vanishing velocities 𝑣𝑛

1 = 𝑣𝑛
2 =

𝑣𝑛
3 = 0 at the junction exist, that is to say

𝑋𝑛 =
(

ℎ𝑛
1 ℎ𝑛

2 ℎ𝑛
3 0 0 0

)𝑇
.

We already note that 𝐧1 + 𝐧2 + 𝐧3 = 0, if (ℎ∗
1 , ℎ

∗
2 , ℎ

∗
3 , 𝑣

∗
1 , 𝑣

∗
2 , 𝑣

∗
3) =

(ℎ, ℎ, ℎ, 0, 0, 0)𝑇 , 𝑋𝑛 = (ℎ1, ℎ2, ℎ3, 𝑣1, 𝑣2, 𝑣3)𝑇 = (ℎ, ℎ, ℎ, 0, 0, 0)𝑇 is a trivial 
solution of system (24)-(11).

We prove that in this case Det 𝐷Ψ (𝑋;𝑋∗) ≠ 0. In fact,

𝐷Ψ
(
𝑋;𝑋∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 𝛼1ℎ1 𝛾2ℎ2 𝛾3ℎ3
𝛼1𝑔ℎ1 𝛼2𝑔ℎ2 𝛼3𝑔ℎ3 0 0 0
𝛽1𝑔ℎ1 𝛽2𝑔ℎ2 𝛽3𝑔ℎ3 0 0 0√

𝑔√
ℎ1

0 0 1 0 0

0 −
√

𝑔√
ℎ2

0 0 1 0

0 0 −
√

𝑔√
ℎ3

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Det𝐷Ψ
(
𝑋;𝑋∗)

= 𝑔5∕2 Det
⎛⎜⎜⎝
−𝛼1

√
ℎ1 𝛾2

√
ℎ2 𝛾3

√
ℎ3

𝛼1ℎ1 𝛼2ℎ2 𝛼3ℎ3
𝛽1ℎ1 𝛽2ℎ2 𝛽3ℎ3

⎞⎟⎟⎠
= 𝑔5∕2

√
ℎ1ℎ2ℎ3

(
−𝛼1(𝛼2𝛽3 − 𝛼3𝛽2)

√
ℎ2ℎ3 − 𝛾2(𝛼1𝛽3 − 𝛼3𝛽1)

√
ℎ1ℎ3

+ 𝛾3(𝛼1𝛽2 − 𝛼2𝛽1)
√

ℎ1ℎ2
)

= 2𝑔5∕2
√

ℎ1ℎ2ℎ3(
√

ℎ1ℎ2𝑠3 +
√

ℎ1ℎ3𝑠2 +
√

ℎ2ℎ3𝑠1) ×
( 4𝑠2𝑠3
sin(𝜃 −𝜙)

+
(𝑠1 sin(𝜃 − 𝜙) + 𝑠3 sin(𝜙) − 𝑠2 sin(𝜃))2 )
sin(𝜃 − 𝜙) sin(𝜙) sin(𝜃)
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Fig. 7. Test 5.1: numerical convergence at time 𝑇 = 0.9, after the shock has reached the junction; numbers of grid points are 𝑁 = 12, 24, 48, 96. Initial data are given 
in (38).
We notice that this expression is the product of two terms: the first 
one, 2𝑔5∕2

√
ℎ1ℎ2ℎ3(

√
ℎ1ℎ2𝑠3 +

√
ℎ1ℎ3𝑠2 +

√
ℎ2ℎ3𝑠1) is always positive 

since ℎ1 > 0, ℎ2 > 0, ℎ3 > 0.

The second term depends only on 𝑠1, 𝑠2, 𝑠3, 𝜃, 𝜙, that is to say on the 
triangle geometry. This second term vanishes iff the triangle is degen-

erate, see Remark 1.

Therefore, excluding the case of a degenerate triangle,

Det𝐷Ψ
(
𝑋;𝑋∗) ≠ 0.

5. Numerical tests

In order to evaluate the effectiveness of our method we perform var-

ious tests consisting of a subcritical wave propagating across junctions 
of different geometries. For that purpose, we will use the numerical 
scheme presented in the previous section. First of all we check the nu-

merical convergence of the scheme on the whole network under grid 
refinement. Then, we compare numerical simulations on a network with 
𝜃 = 𝜙 = 0, with simulations on a single channel, to show the consis-

tency of the junction conditions with the traditional one-dimensional 
Riemann solver. Subsequently, we increase 𝜃 and 𝜙 in order to en-

hance the influence of the angles in our junction conditions. We also 
investigate numerically the case when water flows out channels 1 and 
57
3 and pours into channel 2. Finally, we compare the dynamics of the 
1D solver with the numerical solution obtained with a two-dimensional 
code.

5.1. Convergence of the 1D numerical scheme

In this test case we check the numerical convergence of the 1D 
scheme (31) coupled with system (24)-(11) at the junction under grid 
refinement. We set the geometry parameters 𝑠1 = 𝑠2 = 𝑠3 = 1, 𝜃 = −𝜙 =
𝜋∕6, 𝐿1 = 𝐿2 = 𝐿3 = 3.5, where 𝐿𝑘 is the length of channel 𝑘. The initial 
data in the three channels is

𝑣𝑘(𝑥, 𝑡 = 0) = 0, 𝑘 = 1,2,3, 𝑥 ∈ [0,𝐿𝑘],

ℎ2(𝑥, 𝑡 = 0) = ℎ3(𝑥, 𝑡 = 0) = 1, ℎ1(𝑥, 𝑡 = 0) =
{

1.5 𝑥 ≤ 𝐿1∕2
1 𝑥 > 𝐿1∕2.

(38)

We expect the formation of a rarefaction wave propagating backwards 
on channel 1 and a shock crossing the junction and traveling with 
positive speed along the two outgoing channels. In Fig. 7 we show 
the solution obtained after the water wave has reached the junction. 
The dynamic involves the three channels and we observe the con-

vergence of the numerical solution under grid refinement. The num-

ber of grid points on each channel is 𝑁 = 12, 24, 48, 96. We observe 
that the solution of system (24)-(11) at the junction does not depend 
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Fig. 8. Test 5.2: comparison of various symmetric geometries with the solution on a single channel at 𝑇 = 0.5: 𝑠1 = 1 and 𝑠2 = 𝑠3 = 1∕2; 𝜙 = −𝜃 and 𝜃 = 0, 𝜋∕12, 𝜋∕6, 𝜋∕3. 
Black dashed line: 1D exact solution to shallow-water system on a single channel; Blue solid line: numerical solution for 𝜃 = 𝜙 = 0. Initial data are given in (38). The 
case 𝜃 = −𝜙 = 𝜋∕3 matches with the “1D energy” solution assuming equal energy at the junction, see (29).
on the grid parameter 𝑁 , proving the consistency of the Riemann 
solver. We observe the formation of a stationary shock at the junc-

tion.

5.2. Comparison with the solution on a single channel

Here we study the influence of our junction conditions involving the 
angles 𝜃 and 𝜙 on the solution.

We set 𝑠1 = 1 and 𝑠2 = 𝑠3 = 1∕2, 𝐿1 = 𝐿2 = 𝐿3 = 5 and the initial data 
are the same as in (38). In all tests we fix the grid parameters Δ𝑥 = 0.01
on each channel and Δ𝑡 to satisfy (33).

We first consider the case 𝜃 = 𝜙 = 0 and 𝑠1 = 𝑠2 + 𝑠3 which cor-

responds to a single channel and for which an exact solution of the 
Riemann problem is known. As expected, the solution of our algorithm 
coincides with the exact solution computed on a single channel, i.e. 
without the junction, see the blue line and the black dashed line on 
Fig. 8.

Next, we change 𝜃 and 𝜙 to study the influence of the angles on 
the dynamics. Specifically, in Fig. 8 the angles vary symmetrically with 
𝜃 = −𝜙 and 𝜃 = 0, 𝜋∕12, 𝜋∕6, 𝜋∕3. We observe that the symmetry of the 
configuration is preserved and that the solution varies monotonically 
58
increasing the angles and moving away from the single channel profile. 
Note that to see the dependence of the solution on the angles, it is es-

sential to include an angle dependence in the junction condition. Notice 
that, the curve obtained for 𝜃 = −𝜙 = 𝜋∕3 is the solution assuming equal 
energy at the junction, see (29). From now on, this case will be called 
“1D energy”.

In Fig. 9 we study the influence of a non symmetric variation 
of the angles: we fix 𝜃 = 𝜋∕8 and vary 𝜙 = −𝑘𝜋∕8 with 𝑘 = 0, 1, 2, 3. 
We observe that the symmetry of the solutions of the two outgoing 
channels is lost and that water meets more resistance as channel 2 
becomes more and more bent. So, the water level decreases in chan-

nel 2 and increases in channel 3. The solution on channel 1 does not 
change because the total lumen of the outgoing channels remains the 
same.

Finally, we compare the 1D solution fixing the two angles and vary-

ing the channel sizes. Specifically, we fix 𝜃 = −𝜙 = 𝜋∕4, 𝑠1 = 𝑠2 = 1 and 
consider 𝑠3 = 0.5, 1, 1.5, 2. In Fig. 10 we observe that, as the section of 
channel 3 increases, the water height decreases in channels 1 and 3 and 
increases in channel 2. The water velocity in channels 2 and 3 follows 
the same behavior, while the velocity in channel 1 increases. However, 
the dynamics in channel 2 does not vary significantly.
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Fig. 9. Test 5.2: comparison of various triangle asymmetric geometries with different angles with the solution on a single channel at 𝑇 = 0.5. 𝑠1 = 1 and 𝑠2 = 𝑠3 = 1∕2, 
𝜃 = 𝜋∕8 fixed and 𝜙 = −𝜋∕8, −𝜋∕4, −3𝜋∕8. Black dashed line: 1D exact shallow-water on a single channel; Blue solid line: numerical solution for 𝜃 = 𝜙 = 0. Initial data 
are given in (38). The curve “1D energy” is the solution assuming equal energy at the junction, see (29).
5.3. Merging channels

In this section we display numerical results for a 2-to-1 or merging

junction for which the water flows from channels 1 and 3 towards chan-

nel 2. We set as initial data

𝑣𝑘(𝑥, 𝑡 = 0) = 0, 𝑥 ∈ [0,𝐿𝑘], 𝑘 = 1,2,3,

ℎ2(𝑥, 𝑡 = 0) = 1, ℎ𝑖(𝑥, 𝑡 = 0) =
{

1.5 𝑥 ≤ 𝐿𝑖∕2
1 𝑥 > 𝐿𝑖∕2.

, 𝑖 = 1,3. (39)

Then, we fix 𝑠1 = 𝑠2 = 𝑠3 = 1, 𝜃 = 𝜋∕3. In Fig. 11, we compare the solu-

tions obtained for 𝜙 = −𝜋∕3, −𝜋∕6, −𝜋∕12, 0. As the angle 𝜙 widens, the 
water height increases in channel 1 and decreases in channel 3. This 
asymmetry explains why the dynamic in channel 2 is almost unaffected 
by the angle variation, the amount of water entering remains almost 
constant.

5.4. Comparison of 1D and 2D solutions

We compare our 1D solver with the 2D shallow water solution (12).

The numerical solution of (12) has been computed by the free and 
open source ToolBox FullSWOF2D (Full Shallow-Water equations for 
Overland Flow in 2D), which is a C++ code for simulations in two di-

mensions [11], which solves the shallow water equations with bottom 
59
topography on a rectangle 𝑅, and is able to deal with wet/dry fronts. 
We compute the solution on the rectangle in Fig. 12a with free flow 
boundary conditions (𝑣𝑥, 𝑣𝑦)𝑇 ⋅ 𝐧 = 0 on the boundary of 𝑅. To obtain 
the 2D geometry of the junction we are interested in, we use a bottom 
topography which is 𝑧𝑖𝑛 = −1 within the dashed region Ω and 𝑧𝑜𝑢𝑡 = 0 in 
the complement Ω𝐶 . We choose the initial water height so that ℎ + 𝑧𝑖𝑛

is less than 𝑧𝑜𝑢𝑡. In this way, the water flows only inside the dashed 
region while Ω𝐶 is seen as a dry state region. Thus the boundary con-

ditions along the channel walls are naturally treated as wet/dry fronts 
occurring in 𝑅.

To compare the results of the 2D solution with the 1D code, the 
values of ℎ, ℎ𝑣𝑥, ℎ𝑣𝑦 of the 2D solution are sampled on the straight lines 
at the middle of the channels (black solid lines in Fig. 12b) of lengths 
𝐿𝑘, 𝑘 = 1, 2, 3. We compare the 1D velocity with the 2D velocity norm √

𝑣2
𝑥
+ 𝑣2

𝑦
. The mesh of the two-dimensional domain contains about 26 ×

104 grid nodes.

We fix the channel lengths as 𝐿1 = 𝐿2 = 𝐿3 = 5 and the simulation 
final time to 𝑇 = 1.5. We set 𝑠 = 𝑠1 = 𝑠2 = 𝑠3, and we compare the 1D 
solution obtained with junction conditions (24)-(11) to the 2D solu-

tion with 𝑠 = 1, 0.5, 0.25. As 𝑠 decreases, the 2D configuration becomes 
closer to the 1D network. Recall that, in the 1D case, if 𝑠 = 𝑠1 = 𝑠2 = 𝑠3, 
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Fig. 10. Test 5.2: comparison of various geometries with different sections at 𝑇 = 0.5. 𝜃 = −𝜙 = 𝜋∕4, 𝑠1 = 𝑠2 = 1 and 𝑠3 = 0.5, 1, 1.5, 2. Initial data are given at Eq. (38).
the solution of the shallow water equations complemented with junc-

tion conditions (24)-(11) does not depend on the value of 𝑠.

We consider two different cases, a diverging junction, that it to say 
the case when water flows from the single channel 1 towards the two 
channels 2 and 3 and a merging junction, when the water flows from 
the two channels 1 and 3 towards the single channel 2. To fix a simple 
convention, we assume throughout the paper that the velocities 𝑢𝑘 > 0, 
when the water is flowing from channel 1 to channels 2 and 3. However, 
this condition on the sign of the velocities is a mere convention. Thus, 
in the case of channels 1 and 3 pouring water in the junction, we will 
have 𝑢1 > 0, 𝑢2 > 0, 𝑢3 < 0.

Diverging junction. We fix 𝜃 = 𝜋∕3, 𝜙 =−𝜋∕12 and initial states as in (38)

for the 1D configuration and for the 2D system such that

𝑣𝑥,𝑦(𝑥, 𝑦, 𝑡 = 0) = 0 (𝑥, 𝑦) ∈ Ω,

ℎ(𝑥, 𝑦, 𝑡 = 0) =
{

1.5 (𝑥, 𝑦) ∈ Ω ∩ {0 ≤ 𝑥 ≤ 𝐿1∕2}
1 otherwise.

(40)

In Fig. 13, the 1D solution with junction conditions (24)-(11) is pre-

sented in solid red, the dotted black curve is the 1D solution assum-

ing equal energy at the junction, as in [25]. We have three 2D so-

lutions which are displayed in dashed blue, magenta and green for 
𝑠 = 1, 0.5, 0.25 respectively. Decreasing 𝑠 we see that the 2D solutions 
converge towards the 1D wave front, both in the two shocks and the 
60
receding rarefaction. The only differences are observed in the flat in-

termediate states at the junction. The junction solver proposed in this 
work seems more accurate than the one with equal energy condition at 
the junction. Some wiggles appearing in the 2D solution might be due 
to numerical artefacts at the interface between dry and wet states of the 
2D code. Therefore, the 1D solver developed in this article combines 
several advantages with respect to the 2D solver: it is easier to imple-

ment, the computation time is smaller, while ensuring good accuracy.

Merging junction. We fix 𝜃 = 5𝜋∕12, 𝜙 = −3𝜋∕8 and initial data as in (39)

for the 1D configuration while for the 2D system as (40) with ℎ = 1.5 in 
the right half of channel 3 too, see Fig. 12b.

As before, in Fig. 14, we superpose the 1D and 2D curves. Again, 
our 1D solution is displayed in solid red and the dotted black curve rep-

resents the solution with equal energy condition at the junction, [25]. 
The 2D solutions are drawn in dashed blue, magenta and green for 
𝑠 = 1, 0.5, 0.25 respectively. Decreasing 𝑠, we see that the 2D solutions 
converge towards the 1D water front, as expected.

T-junction. Here we consider a network with a T-configuration following 
[1]. We set 𝜙 = 0 and 𝜃 = 𝜋∕2 and we assume asymmetric cross sections 
𝑠1 = 𝑠2 = 1, 𝑠3 = 0.5. The initial data are constant all along the three 
channels,

𝑣𝑘(𝑥, 𝑡 = 0) = 0,
ℎ (𝑥, 𝑡 = 0) = 0.05, 𝑥 ∈ [0,𝐿𝑘], 𝑘 = 1,2,3. (41)
𝑘
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Fig. 11. Test 5.3: comparison of the solution for various geometries in the case of a merging at 𝑇 = 0.5, 𝑠1 = 𝑠2 = 𝑠3 = 1, 𝜃 = 𝜋∕3 and 𝜙 = −𝜋∕3, −𝜋∕6, −𝜋∕12, 0. Initial 
data are given at Eq. (39). The curve 𝜃 = −𝜙 = 𝜋∕3 is the “1D energy” solution assuming equal energy at the junction, see (29).
Fig. 12. 2D numerical geometry.

The velocity at the inflow of channel 1, is given by the relation

𝑣1(𝑡) = 0.4 exp (−0.5(𝑡− 3)2). (42)

We compare the solution obtained by our method and the solution ob-

tained by the “1D energy” solver with the solution yielded by our 2D 
solver. Results are shown in Fig. 15. The obtained solutions can be com-

pared with the results in [1] (Figs. 10–11). The two curves given by the 
1D methods follow the main course of the 1D solution shown in [1]. 
They differ in their estimation of the water height from channel 1 to the 
other two channels. Our angle-dependent algorithm (in blue) captures 
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the solution better on channels 1 and 3, which is influenced by the net-

work configuration since it is at 90 degrees with respect to the direction 
of the water flow; on the other hand, our procedure seems to overesti-

mate the water height in channel 2 (the horizontal extension of the first 
channel). The “1D energy” approach (in red) has the opposite behav-

ior. It gives a better estimate on channel 2, which is along the direction 
of the incoming water flow, and overestimates the solution on channel 
3. The estimate of the speed of the shock wave propagating along the 
two outgoing channels given by the two approaches is similar.

6. Conclusions

In this paper we have constructed a model for shallow water equa-

tions on networks by deriving junction conditions that depend on the 
angles of the geometry. We have also presented a numerical solver for 
one dimensional channels in a network. The solver is based on a finite 
volume scheme in each channel and coupling conditions at the junc-

tion are obtained with a single 2D element at the junction across which 
mass and the two components of momentum are conserved. This ap-

proach allows to take into account quite general geometries including 
the dependence on the angles with which the channels intersect at the 
junction and the sections of the channels.
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Fig. 13. Test 5.4, diverging junction: comparison of 2D with 1D solutions at 𝑇 = 1.5: 𝜃 = 𝜋

3
and 𝜙 = − 𝜋

12
, 𝐿1 = 𝐿2 = 𝐿3 = 5, 𝑠1 = 𝑠2 = 𝑠3 = 𝑠 with 𝑠 = 1, 0.5, 0.25 (in the 

2D case). The 1D solution with junction conditions (24)-(11) is displayed in solid red, the 1D solution with equal energy condition in dotted black, the 2D solution 
with 𝑠 = 1, 0.5, 0.25 in dashed blue, magenta and green. Initial data are given at Eq. (38) (1D case) and Eq. (40) (2D case).
62
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Fig. 14. Test 5.4, merging junction: comparison of 2D with 1D solutions at 𝑇 = 1.5: 𝜃 = 5𝜋∕12, 𝜙 = −3𝜋∕8, 𝐿1 = 𝐿2 = 𝐿3 = 5, 𝑠1 = 𝑠2 = 𝑠3 = 𝑠 with 𝑠 = 1, 0.5, 0.25 (in the 
2D case). The 1D solution with junction conditions (24)-(11) is displayed in red, the 1D solution with equal energy condition in dotted black, the 2D solution with 
𝑠 = 1, 0.5, 0.25 in dashed blue, solid magenta and solid green. Initial data are given at Eq. (39) (1D case) and Eq. (40) with ℎ = 1.5 in the right half of channel 3 (2D 
case).
63
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Fig. 15. Test: solution at 𝑇 = 8. 𝜃 = 𝜋∕2, 𝜙 = 0, 𝑠1 = 𝑠2 = 1 and 𝑠3 = 0.5. Initial data are given at Eq. (41) and inflow velocity at Eq. (42).
The solver is based on the assumption that the flow across the junc-

tion is fluvial. Future work on this topic will be concentrated on the case 
of torrential flows and on the dependence of the bottom topography.

The extension of the proposed procedure to the more general case of 
a junction formed by 𝑁 > 3 channels is left to future work. It could be 
handled in several ways. One possibility could be using more than one 
triangle within the junction, i.e. for the case 𝑁 = 4, one could consider 
two three-channel junctions, each represented by a triangle, which faces 
the two channels on two sides, and the second triangle on the third side. 
This would mean to apply our construction twice, in a sort of cascade. 
A second possibility would be to consider a single 2D element, internal 
to the junction, with a shape suited to the geometry of the junction 
(for instance, a quadrilateral element for the case 𝑁 = 4), leading to an 
under-determined system to be solved with a least square method.
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