POLYNOMES ET FRACTIONS RATIONNELLES

1. L'algèbre des polynômes et divisions

1. 1. L'algèbre des polynômes

Définition. Soit $K = \mathbf{R}$ ou \mathbf{C} . Un polynôme à coefficients dans K est un élément de la forme

$$P(X) = a_0 + a_1 X + \ldots + a_n X^n = \sum_{i=0}^{n} a_i X^i$$

où $n \in \mathbb{N}$ et les coefficients a_0, a_1, \ldots, a_n sont des éléments de K. Le symbole X est appelé l'indéterminée (on pose $X^0 = 1$). On note

$$K[X] = \{ \text{ polynômes à coefficients dans } K \}.$$

On identifie K à un sous-ensemble de K[X]. Le degré de P, noté deg(P) est le plus grand entier k tel que $a_k \neq 0$. Par convention, $deg(0) = -\infty$.

On définit sur K[X] les opérations suivantes :

• l' addition

$$(a_0 + a_1X + \ldots) + (b_0 + b_1X + \ldots) = (a_0 + a_1) + (a_1 + b_1)X + \ldots$$

• la multiplication scalaire : pour $\lambda \in K$,

$$\lambda(a_0 + a_1X + \ldots + a_nX^n) = \lambda a_0 + \lambda a_1X + \ldots + \lambda a_nX^n.$$

• le produit

$$\left(\sum_{i=0}^{m} a_i X^i\right) \left(\sum_{j=0}^{n} b_j X^j\right) = \sum_{k=0}^{m+n} c_k X^k$$
 où $c_k = \sum_{i=0}^{k} a_i b_{k-i}$.

Proposition. Soient $P, Q \in K[X]$. Alors $deg(P + Q) \leq max(deg(P), deg(Q))$ et deg(PQ) = deg(P) + deg(Q).

Théorème. Muni des opérations ci-dessus, K[X] est une algèbre commutative sur K.

1.2. Divisions suivant les puissances décroissantes

Théorème (division euclidienne). Soient A et B deux polynômes avec B non nul. Alors il existe deux polynômes Q et R uniques tels que A = QB + R et deg(R) < deg(B). Le polynôme Q s'appelle le quotient et le polynôme R s'appelle le reste de la division euclidienne de A par B.

1.3. Théorie de la divisibilité

Définition. On dit qu'un polynôme non nul D divise P (ou est un diviseur de P) si le reste de la division euclidienne de P par D est 0: on a P = QD. On dit qu'un diviseur de P est trivial s'il est de la forme ou bien λP ou bien λ avec λ scalaire non nul.

Définition. On dit qu'un polynôme P est irréductible si $deg(P) \ge 1$ et tous les diviseurs de P sont triviaux.

Théorème. Soient A et B deux polynômes non nuls. Alors il existe un polynôme C tel que tout polynôme qui divise A et B divise aussi C. On dit que C est un PGCD de A et B et on écrit C = PGCD(A, B). Tous les PGCD de A et B sont de la forme λC où λ est un scalaire non nul.

Théorème (Bézout). Soient A et B deux polynômes non nuls. Alors il existe deux polynômes U et V tels que PGCD(A, B) = UA + VB.

Définition. On dit que deux polynômes A et B sont premiers entre eux si leur PGCD vaut 1.

Corollaire (Gauss). Soient A, B, C des polynômes non nuls. Si A divise BC et si A et B sont premiers entre eux, alors A divise C.

Corollaire. Soient A et B deux polynômes premiers entre eux. Alors il existe deux polynômes U,V uniques tels que deg(U) < deg(B), deg(V) < deg(A) et 1 = UA + VB.

1.4. Divisions suivant les puissances croissantes

Théorème. (divisions suivant les puissances croissantes à l'ordre k) Soient A et B deux polynômes avec b_0 (terme de degré 0) non nul et $k \in \mathbb{N}$. Alors il existe deux polynômes Q et R uniques tels que $A = QB + X^{k+1}R$ et deg(Q) < k.

2. Théorème de d'Alembert-Gauss et factorisation

2.1. Le problème de la factorisation

Théorème (factorisation). Tout polynôme de degré ≥ 1 peut être écrit comme un produit de polynômes irréductibles.

2.2. Racines et le théorème de d'Alembert-Gauss

Définition. On dit que $a \in K$ est racine de $P \in K[X]$ si P(a) = 0.

Proposition. Un scalaire a est racine d'un polynôme P si et seulement si X - a divise P. On appelle multiplicité de la racine a le plus grand entier n tel que $(X - a)^n$ divise P.

Proposition. Un polynôme de degré n a au plus n racines comptées avec leur multiplicité.

Théorème (Alembert-Gauss)(admis). Tout polynôme $P \in \mathbf{C}[X]$ de degré ≥ 1 admet au moins une racine.

Corollaire. Tout polynôme $P \in \mathbf{C}[X]$ de degré $n \geq 1$ peut être écrit $P(X) = \lambda(X - a_1) \dots (X - a_n)$, où $\lambda, a_1, \dots, a_n \in \mathbf{C}$. Alors, a_1, \dots, a_n sont les racines de P comptées avec leur multiplicité.

Corollaire. Les polynômes irréductibles dans C sont les polynômes de degré 1.

2.3. Factorisation dans R[X]

Proposition. Soit $a \in \mathbb{C}$ une racine de $P \in \mathbb{R}[X]$. Alors \overline{a} est aussi une racine de P.

Théorème. Les polynômes irréductibles dans \mathbf{R} sont les polynômes de degré 1 et les polynômes de degré 2 dont le discriminant est < 0.

3. Fractions rationnelles et éléments simples

3.1. Le corps des fractions rationnelles

Définition. Soit $K = \mathbf{R}$ ou \mathbf{C} . Une fraction rationnelle à coefficients dans K est un élément de la forme P/Q où $P,Q \in K[X]$ et $Q \neq 0$. Par définition, si $D \in K[X]$ est non nul, on peut simplifier par D, de sorte que PD/QD = P/Q. On note

 $K(X) = \{ \text{ fractions rationnelles à coefficients dans } K \}.$

On identifie K[X] à un sous-ensemble de K(X) en identifiant P à P/1.

On définit sur K(X) les opérations suivantes :

 \bullet l'addition

$$\frac{P_1}{Q_1} + \frac{P_2}{Q_2} = \frac{P_1 Q_2 + P_2 Q_1}{Q_1 Q_2}.$$

• le produit

$$\frac{P_1}{Q_1} \frac{P_2}{Q_2} = \frac{P_1 P_2}{Q_1 Q_2}.$$

Théorème. Muni de l'addition et du produit, K(X) est un corps, c'est-à-dire tout élément non nul est inversible.

3.2. Décomposition en éléments simples

Définition. On dit qu'une fraction rationnelle $R \in K(X)$ est un élément simple si $R = P/Q^n$ où Q est un polynôme irréductible, n est un entier ≥ 1 et deg(P) < deg(Q).

Théorème (admis). Soit R = P/Q une fraction rationnelle telle que deg(P) < deg(Q). Alors R peut-être écrite comme une somme d'éléments simples. Les éléments simples de cette décomposition sont de la forme $P_{i,j}/Q_i^j$ où Q_i est irréductible et Q_i^j divise Q.

3.3. Décomposition en éléments simples sur C

Comme les polynômes irréductibles sur ${\bf C}$ sont les polynômes de degré 1, les éléments simples sur ${\bf C}$ sont de la forme

$$\frac{\lambda}{(X-a)^n},$$

où $\lambda, a \in \mathbf{C}$ et n est un entier ≥ 1 .

3.4. Décomposition en éléments simples sur R

Les éléments simples sur ${\bf R}$ sont de la forme

$$\frac{\lambda}{(X-a)^n},$$

où $\lambda, a \in \mathbf{R}$ et n est un entier ≥ 1 ou de la forme

$$\frac{\lambda X + \mu}{(aX^2 + bX + c)^n},$$

où $\lambda, \mu, a, b, c \in \mathbf{R}$, n est un entier ≥ 1 et $b^2 - 4ac < 0$.