

Devoir à la maison 3

1. Questions préliminaires

- (a) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres entiers relatifs. Montrer que cette suite converge si et seulement si il existe $N\in\mathbb{N}$ tel que pour tout $k\in\mathbb{N}$ on ait $u_N=u_{N+k}$.
- (b) Soit $\lambda \geqslant 0$, montrer que la suite de terme général $\frac{\lambda^n}{n!}$ converge vers 0.
- 2. Étant donné un polynôme $P \in \mathbb{R}[X]$, on note $\Psi(P) = \int_0^{\pi} P(t) \sin t dt$.
 - (a) Montrer que Ψ est une application linéaire.
 - (b) Déterminer α et β tels que le polynôme $P(X) = \alpha X + \beta$ soit dans $\ker \psi$.
 - (c) Montrer que Im $\Psi = \mathbb{R}$.
 - (a) Soit $M = \sup\{|P(t)|, t \in [0, \pi]\}$. Monter que $|\Psi(P)| \leq M\pi$.
 - (b) Montrer que pour tout polynôme P il existe $c_P \in [0, \pi]$ tel que $\Psi(P) = P(c_P)\sin(c_P)$.
- 3. Étant donnés $a \in \mathbb{N}$, $b \in \mathbb{N}^*$ et $n \in \mathbb{N}$, on pose $P_n(X) = \frac{b^n}{n!} X^n (\frac{a}{b} X)^n$.
 - (a) i. Soit $n \ge 1$. Calculer P'_n en fonction de P_{n-1} .
 - ii. En déduire que pour tout entier k on a

$$P_n^{(k)}(X) = P_{n-1}^{(k-1)}(X)(a-2bX) - 2b(k-1)P_{n-1}^{(k-2)}(X) \cdot$$

- iii. Montrer que pour tout entier n, et tout entier k, les nombres $P_n^{(k)}(0)$ et $P_n^{(k)}(\frac{a}{b})$ sont des entiers relatifs.
- (b) i. Calculer, en fonction de a et de b, le maximum de la fonction $x\mapsto |x(x-\frac{a}{b})|$ sur l'intervalle $[0,\frac{a}{b}]$. On note cette quantité M(a,b).
 - ii. Montrer que pour tout entier n on a : $|\Psi(P_n)| \leqslant \pi \frac{(bM(a,b))^n}{n!}$.
 - iii. En déduire que la suite $(\Psi(P_n))_{n\in\mathbb{N}}$ converge vers 0.
- (c) On suppose à présent que π est un nombre rationnel et on pose $\pi = \frac{p}{q}$. Soit P_n le polynôme étudié dans les questions précédentes avec a = p et b = q.
 - i. Montrer que pour tout entier n la fonction $P_n > 0$ sur $]0, \pi[$.
 - ii. En déduire que pour tout entier n on a $\Psi(P_n) > 0$.
- 4. Montrer que π n'est pas un nombre rationnel.