Examen partiel

Problème

On considère l'espace vectoriel \mathbf{R}^3 muni de son produit scalaire canonique <, > et de sa base canonique $(\mathbf{i}, \mathbf{j}, \mathbf{k})$. On dit qu'une courbe paramétrée birégulière dans \mathbf{R}^3 est une $h\'{e}lice$ cylindrique si son vecteur tangent fait un angle constant avec un vecteur fixe \mathbf{w} . Si $\alpha: I \to \mathbf{R}^3$ est une courbe paramétrée birégulière, on note $(\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t))$ son trièdre de Frénet au point $\alpha(t)$, $\kappa(t)$ sa courbure et $\tau(t)$ sa torsion en $\alpha(t)$. On note σ la courbe paramétrée $t \mapsto \mathbf{T}(t)$; son image est contenue dans la sphère unité de \mathbf{R}^3 et on l'appelle l'image sphérique de α . Sa courbure sera notée κ_{σ} et sa torsion τ_{σ} .

- 1) On considère la courbe paramétrée $\alpha: t \mapsto (2t, t^2, \frac{t^3}{3})$ de **R** dans **R**³.
- a) Montrer que α est birégulière. Déterminer sa courbure et sa torsion en $\alpha(t)$ où $t \in \mathbf{R}$. On pourra utiliser les formules vues en TD :

$$\kappa(t) = \frac{\|\alpha'(t) \wedge \alpha''(t)\|}{\|\alpha'(t)\|^3} \qquad \tau(t) = \frac{\langle \alpha'(t) \wedge \alpha''(t), \alpha'''(t) \rangle}{\|\alpha'(t) \wedge \alpha''(t)\|^2}$$

- b) Soit $\mathbf{w} = \mathbf{i} + \mathbf{k}$. Calculer $< \mathbf{w}, \mathbf{T}(t) >$. En déduire que la courbe α est une hélice cylindrique. Quel est l'angle constant entre le vecteur tangent et le vecteur fixe?
- 2) Dans cette question, on suppose que $\beta:I\to \mathbf{R}^3$ est une hélice cylindrique paramétrée par l'abscisse curviligne et on prend le vecteur fixe \mathbf{w} de longueur 1.
- a) Montrer que $\langle \mathbf{w}, \mathbf{N}(s) \rangle = 0$ pour tout $s \in I$.
- b) Montrer qu'il existe un réel θ tel que $\mathbf{w} = (\cos \theta)\mathbf{T}(s) + (\sin \theta)\mathbf{B}(s)$ pour tout $s \in I$.
- c) Montrer que θ n'est pas un multiple de π .
- d) Montrer que $\tau/\kappa = \cos\theta/\sin\theta$ et donc que τ/κ est constant.
- 3) Réciproquement, montrer qu'une courbe birégulière β (qu'on supposera paramétrée par l'abscisse curviligne) telle que τ/κ est constant est une hélice cylindrique. (Indication : on étudiera le vecteur $\mathbf{w}(s) = (\cos\theta)\mathbf{T}(s) + (\sin\theta)\mathbf{B}(s)$ où $\tau/\kappa = \cos\theta/\sin\theta$.)
- 4) Montrer que l'image sphérique de la courbe α de la question 1) est contenue dans un cercle que l'on précisera (on demande un dessin!).

5) Soit β une courbe paramétrée birégulière. On admet les formules

$$\kappa_{\sigma} = \sqrt{1 + (\tau/\kappa)^2}$$
 et que $\tau_{\sigma} = \frac{\kappa}{\kappa^2 + \tau^2} \frac{d}{ds} (\tau/\kappa)$.

En déduire que β est une hélice cylindrique si et seulement si son image sphérique est contenue dans un cercle.

Exercice

Soient I un intervalle ouvert de \mathbf{R} et $\gamma: I \to \mathbf{R}^2$ une courbe régulière dans le plan \mathbf{R}^2 paramétrisée par l'abscisse curviligne. On écrit $\gamma(s) = (f(s), g(s))$. Pour $s \in I$, on note $\mathbf{T}(s) = \gamma'(s)$ et $\mathbf{N}(s)$ le vecteur de \mathbf{R}^2 déduit de $\mathbf{T}(s)$ par une rotation de $\pi/2$, et on note $\kappa_a(s)$ la courbure algébrique de γ en s.

1) Vérifier que

$$\begin{cases} f''(s) = -\kappa_a(s)g'(s) \\ g''(s) = \kappa_a(s)f'(s). \end{cases}$$

2) On suppose dans la suite que f(s) > 0 pour tout $s \in I$ et que γ est un homéomorphisme de I sur $\gamma(I)$ muni de la topologie induite de \mathbf{R}^2 . Soit

$$\phi: I \times \mathbf{R} \to \mathbf{R}^3
(u,v) \mapsto (f(u)\cos v, g(u), f(u)\sin v).$$

On note S l'image de ϕ . Montrer que la restriction de ϕ à l'ouvert $I \times J$, où J est un intervalle ouvert de longueur $\leq 2\pi$ est une carte de S. Montrer S est une surface régulière de \mathbf{R}^3 en exhibant un atlas.

3) Montrer que S est orientable.