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Abstract

The purpose of this thesis is to study the dispersive properties of the solu-
tions of the Schrodinger, wave and heat equations and their perturbations
with potential on Riemannian manifolds. Furthemore, we consider a few ap-
plications of these results to the corresponding nonlinear Cauchy problems.

A first main question studied in the present thesis is: what part of the
dispersive properties is preserved if we perturb the equations with a potential
term of the form V (¢, z)u or simply V (z)u? The importance of this question
is clear both from the point of view of the applications, and as a first step
for the general case of equations with variables coefficients.

In Chapter 2 we consider the perturbed wave equation

uy — Au + V(z)u =0, n=3. (0.0.1)

We show the dispersive estimates in the case of a small potential in the Kato
class, [74], and then we extend these results under the weaker assumption
that the potential belongs to a suitable Kato class (see Definition 2.2.1); the
positive part of the potential can be large. This result is almost optimal
results for the case of large potential [38].

We consider also the Schrodinger equation

1
Zut— Au+V(t,z)u =0, (0.0.2)

in arbitrary dimension n > 1. Instead of the stronger dispersive estimate,
our goal here is to prove only the Strichartz estimates. We give two quite
general results of this type.

In the first one, we deduce the complete Strichartz estimates for the
solution of the Schrédinger equation (0.0.2) perturbed with a larger class of
potentials satisfying V' < |z|72, via interpolation between the endpoint and
the energy estimate. These arguments are then extended to the case of a
small time dependent potential V (¢, ).

We study also the heat equation

ug — Au+ V(t,z)u =0, (0.0.3)

perturbed by a singular potential and we prove the existence of solutions,
the maximum principle and the dispersive estimates.



In our second result concerning equation (0.0.2), we do not assume that
the potential is small.

We study the dispersive properties of the linear Schrodinger equation
with a time-dependent potential V' (¢,z). We show that an appropriate in-
tegrability condition in space and time on V, i.e. the boundedness of a
suitable L} L} norm, is sufficient to prove the full set of Strichartz estimates.
We also construct several counterexamples which show that our assumptions
are optimal, both for local and for global Strichartz estimates, in the class
of large unsigned potentials V € L L;.

The next chapters of the thesis are dedicated to the following question:
do these techniques and ideas extend to more general equations on mani-
folds? We are interested in particular to investigate the extensions of these
equations to more general Riemannian manifolds, and the influence of the
curvature on the dispersive properties.

In Chapter 3, we deal with the case of noncompact manifolds of nega-
tive curvature. In particular, we study the Schrodinger equation perturbed
with a potential V' € L} L; on the hyperbolic spaces H", obtaining suitable
weighted Strichartz estimates with weights related to Banica’s ([5]). As an
application of these estimates, we prove the global existence of small solu-
tions to the semilinear perturbed Schrédinger equation on H”; the nonlinear
term may depend also on the space variables, and it is allowed to increase
as |z| — oo.

In this paper, we prove Strichartz estimates for radial Schrodinger and
wave equations on Damek-Ricci spaces and in particular on symmetric spaces
of noncompact type and rank one, using the perturbative theory with po-
tentials. It is natural to expect that the curvature of the manifold noncom-
pact has some influence on the dispersive properties, indeed we obtain the
weighted Strichartz estimates for the perturbed Cauchy problem.

Finally, the last Chapter 4 is devoted to the opposite situation of mani-
folds with positive curvature. We prove two new results about the Cauchy
problem in the energy space for nonlinear Schrodinger equations on four-
dimensional compact manifolds. The first one concerns global wellposed-
ness for Hartree-type nonlinearities and includes approximations of cubic
NLS on the sphere. The second one provides, in the case of zonal data on
the sphere, local wellposedness for quadratic nonlinearities as well as global
wellposedness for small energy data in the Hamiltonian case. Both results
are based on new multilinear Strichartz-type estimates for the Schrodinger

group.
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Chapter 1

Introduction

The main subject of this thesis is the study of the dispersive properties of
some fundamental equations of mathematical physics, such as the Schrodin-
ger equation

tug + Au =0,
the heat equation

up — Au =0
and the wave equation

Ut — Ay = 0,

and their perturbations with a potential:
iug + Au+ V(t, z)u =0, ur — Au+ V(t,z)u =0,

Ut — Au + V(t,.’L‘)’u =0.

Moreover, we shall study the extensions of these equations to more general
Riemannian manifolds, and the influence of the curvature on the dispersive
properties of the solutions. We shall also consider a few applications of these
results to the corresponding nonlinear Cauchy problems.

The notion “dispersive properties” which we used above requires some
explanation. It is well-known that some evolution equations of some classical
waves have finite “speed of propagation”. For instance, for the wave equation
signals travel with speed equal to one; this means that if the initial data have
support in a ball of radius R, the solution at time 7" has support in a larger
ball of radius R + 7. Thus the energy of the solution spreads over a region
that increases with time, and it is natural to expect that the size of the
solution decreases accordingly. From a physical point of view, one can think
of the waves spreading on the surface of a lake when we throw a stone: the
circles become larger and larger, but the amplitude of the waves decreases
until they disappear (this nice example is due to F.John). The traditional
terminology for this phenomenon is the decay of solutions as t — oo.
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But it is also well known that a similar phenomenon occurs also for
other equations, even if the speed of propagation is not finite: the most
important examples are the Schrodinger and the heat equation, mentioned
above. For these equations it is very easy to prove the property, thanks
to the explicit representation of the solutions; but it is also clear that the
mechanism must be different from the wave equation. For instance, if the
initial data have compact support, the solutions of these equations at time 1"
do not have compact support. In these cases, using the Fourier transform one
can see that the components of the solution with different frequencies travel
at different speeds. Then it is natural to think of a “cloud of particles” which
have different energies, and for this reason travel at different speeds. This
picture is probably at the origin of the modern terminology: in recent years,
instead of decay of solutions, one speaks of dispersion, and the property is
called dispersive property, in order to unify the cases of finite and infinite
speed.

The study of these properties is of fundamental importance from several
points of view. First of all, there is essential phisical importance of the study
of asymptotic properties of the solutions: for instance, in scattering theory
the most important problem is to determine the scattered amplitude of the
waves after the interaction, but not the precise mechanism of the interaction.
Moreover, dispersive estimates have been used as a very useful tool in many
nonlinear problems; in particular, for the semilinear Schrodinger and wave
equations, the modern theory of local and global well posedness is based
essentially on these estimates. We mention among the others the results of
global existence with small data for semilinear perturbations, and the local
existence of solutions of low regularity (due to von Wahl, Strichartz, John,
Pecher, Brenner, Klainerman, Kapitanski, Shatah, Struwe, Kenig, Ponce,
Vega, Bourgain, Tao and many others; see the references [67], [68], [69],
[112], [62], [12], [13], [90], [70], [92], [81]).

We must also mention that there is a very deep connection between dis-
persive estimates and some fundamental results of harmonic analysis known
as restriction properties. The phenomenon can be described as follows: con-
sider a function f in L?(R"), and its Fourier transform f Then we ask if it
possible to restrict fto a hypersurface S of dimension smaller than n, and
if we can estimate some norm of the restriction. In general f is only L?, and
hence the restriction to S has no meaning since S has measure zero. But if
we assume that f is in L', then f is bounded and continuous, and we can

define the restriction of fto S and also estimate the maximum of ﬂs with

the L' norm of f. This argument can be extended to more general LP spaces
and surfaces, and there are many deep open problems in this direction.
Now, consider for instance the solutions of the homogeneous wave or
Schrodinger equation. If we take the Fourier transform of the solution with
respect to space and time, we obtain a measure with support on a hypersur-
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face (cone or hyperboloid). Then the dispersive estimates for the solution
imply corresponding estimates for these measures. In other words, disper-
sive properties imply restriction properties, and viceversa. This connection
has been used in both directions and has been intensively investigated in
recent years.

We now describe our results in more details; first of all we recall some
standard facts. Consider first the n-dimensional Schrédinger equation, with
n > 1,

iug + Au = 0, u(0,z) = f(x).

Since the solution can be represented as

1 lz—y|?

u(t,z) = "2 f(z) = (Amit) 2 /ei i f(y)dy,

one obtains directly the following decay estimate
"2 f (@) < C % fllpr (1.0.1)
Notice that the solution of the heat equation
ug — Au =0, u(0,z) = f(x)

have a (formally) very similar representation, apart from an imaginary factor
at the exponent:

) = 5 0) = s [

Then by the same method we obtain
e 2 f (@) < C 2 [|f |10 (1.0.2)

The corresponding estimate for the wave equation is more delicate. Al-
though already known in some special cases, the first complete analysis was
the 1971 paper of von Wahl (see [112]), who proved that the solution to the
n-dimensional wave equation, n > 2

Ou = (02 — A)u = 0, u(0,z) =0, ut(0,2) = f
satisfies the decay estimate
Ju(t, )| < C (L4077 [1fllwwa

for N = N(n) large enough and where W¥>! are the classical Sobolev spaces.
This estimate was improved, extended and refined by Brenner (who intro-
duced the use of Besov spaces), Pecher, Kapitanski, Ginibre and Velo, and
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others (see the references [62], [51]), and finally the following optimal esti-
mate was obtained:

wt,2)| <Ct T |\fl o . (1.0.3)
| | B, 7 (R")

Here B, (R") is the homogeneous Besov space defined by

1715, @y = 2265 (V=B)1 I, (104)

JET

where ¢;(r) = ¢;(|z]) is a Paley-Littlewood partition of unity, i.e., ¢;(r) =
$0(2797), ¢o(r) = 1(r) —4(r/2), with +/(r) being a nonnegative function in
Cg° such that ¢(r) =1 for r < 1 and #(r) = 0 for r > 2.

These estimates are now called the L>® — L' dispersive estimates.

Starting from the dispersive estimates, it is possible to deduce several
other space-time estimates which are generally called Strichartz estimates.
Actually, the estimate originally proved by Strichartz was only a special
case; his method of proof was based on techniques of harmonic analysis (e.g.
Stein interpolation theorem). On the other hand, by refining the technique
of Brenner and using some subtle functional analysis arguments, Ginibre
and Velo [51] obtained the complete set of estimates, with the exclusion of
some exceptional cases (the endpoint cases); the gap was finally closed by
Keel and Tao [66] who gave the final form of the estimates.

For the Schrodinger equation on R, the Strichartz estimates can be
written in the following form:

HeitAfHLP(I;Lq(R")) < [flz2(&n) (1.0.5)

for any f € L?, any (bounded or unbounded) time interval I C R, and for
all sharp §-admissible couples (p, q):

+ 2% =7, DP,q>2and(p,q) # (2,00). (1.0.6)

>~ 3

1
p
The case (p,q) = (2,-2%) is called the endpoint; estimate (1.0.5) is true
also at the endpoint for n > 3. When n = 2 the endpoint is exactly
(p,q) = (2,00); in this case the estimate is false in general. The equiva-

lent nonhomogeneous form of (1.0.5) is

for all (p,q) and (p, §) admissible, p’ and ¢’ being dual to p, ¢ respectively.
We consider now the case of the wave equation. The Strichartz estimates
for the wave equation on R"

t .
/ AP (s, 2)ds
0

< C||F||Lﬁ’([;L§’(Rn)) (1.0.7)
LP(I;L9(R™))

Otu — Au = F(t,z), u(0,z) =up(z), u(0,z)=u(zx), (1.0.8)
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under the assumption that the dimensional analysis (or ”gap”) condition

1 n n 1 n
poq 2 P q (1.09)
holds, are the following
lellzpes < € (fuollj + lwtll s + 1PNy 1) (1.0.10)

for any dataug € HY, uy € H' 1, F € L’;’qu, any (bounded or unbounded)
time interval I C R, and for all 2=t-admissible couples (p, q), (p, §), i.e. such

2
that
1 -1 -1 2(n—1
R < n—, p €]2,00] and q € [Z,L ,n>3.  (1.0.11)
P 2q 4 -3

Estimate (1.0.10) is true also at the endpoint (p,q) = (2, 2(::31)) for n > 4,
but is false when n = 3.

As mentioned above, one of the most important applications of these
estimates is to nonlinear evolution equations, in particular semilinear equa-
tions of the form

(10, — H)u = F(u), u(0,z) = f(x)

(to fix the ideas, we consider the case of the Schrédinger equation). The
usual way to prove local existence for this type of equations is a contraction
mapping method. More precisely, one considers first the linear map ¢: G —
u, where u is the solution of the linear equation

(¢0y — H)u = G, u(0,z) = f(z).

By suitable linear estimates, which in the classical results are energy esti-
mates, one proves that ® is bounded between two suitable Banach spaces,
® : Yy — Xy; the index T refers to the fact that we consider solutions
defined on a bounded interval of time 0 < ¢ < T'. Since ® is a linear map-
ping, it is actually Lipschitz continuous, and the Lipschitz constant (in many
cases) depends on 7" and is small when T is small. In other words, @ is a
contraction for small times. Now consider the nonlinear term F'(u). If we
can prove that the F(u) takes X7 to Yp and is also Lipschitz continuous
between these spaces, in other words if F'(u) satisfies a nonlinear estimate
of the form

1£(u) = F()llyy < ¢(llullxr)lle = ollxq

then the composition ®(F(u)) is a contraction on Xy for small times. The
fixed point is a local solution of the Cauchy problem considered.

In many situation, the linear estimate can be improved using the Strichartz
estimates; this can be used for instance to obtain the local well posedness
for solutions with low regularity.
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Moreover, using Strichartz or more general space-time estimates, this
method can be applied also for large times; the contraction property of the
nonlinear term is now obtained by assuming that the initial data are small.

We mention that these techniques are not sufficient to handle more gen-
eral nonlinear terms, for instance containing derivatives. For the nonlinear
Schrodinger equation, this more difficult problem was studied by Bourgain,
Kenig-Ponce-Vega and others ([12], [13], [67], [68]), using more refined meth-
ods, including smoothing estimates, local Morawetz estimates, and suitable
modified Sobolev spaces adapted to the structure of the equation (which
are now called Bourgain spaces). For the nonlinear wave equation and re-
lated equations and systems of mathmatical physics, including Yang-Mills,
Maxwell-Klein-Gordon and others, Klainerman and his group have applied
analogous method to prove delicate results of local well posedness in low
regularity spaces.

We must also mention the beautiful theory developed by Burq, Gérard
and Tzvetkov (see [22], [24], [25]), concerning the nonlinear Schrédinger
equation on compact manifolds.

A first main question studied in the present thesis is: what part of the
dispersive properties is preserved if we perturb the equations with a potential
term of the form V' (¢, z)u or simply V' (z)u? The importance of this question
is clear both from the point of view of the applications, and as a first step
to the general case of equations with variables coefficients.

Notice that it is easy to destroy the dispersive properties by a potential
perturbation. For instance, if we add to —A a negative potential term V' (z)u,
V' <0, it is well known that the operator —A+V (z) has eigenfunctions u(x)
for positive eigenvalues, provided V is large enough; then it is sufficient to
consider the corresponding standing wave, of the form e‘*u(z), to produce
a solution of the evolution equation with a norm constant in time. Thus we
see that the potential V' must satisfy suitable assumptions.

In particular for the Schrodinger equation perturbed with a potential
independent of time, this problem has been studied by many authors. A
basic general results was obtained by Journé, Soffer and Sogge [60] who
proved that the dispersive estimate is still true provided the potential is
nonnegative and belongs to the Schwartz class. This assumption has been
relaxed and the result refined by many authors, in particular we mentions
Yajima, Rodnianski, Schlag and Goldberg ([108], [88], [52]). Notice that the
main problem here is to find minimal assumptions on the potential V' (x)
which guarantee that the dispersive estimate is true; in dimensionn = 1,2, 3
this program has almost been completed, while in higher dimension it is still
not clear what are the minimal assumptions.

Much less is known for potentials V(¢,2) which depend also on time.
In general one must assume that the potential is small in a suitable norm.
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Rodnianski and Schlag proved the dispersive estimate for the equation
1
—uy — Au+ V(t,z)u =0, (1.0.12)
1

provided the space dimension is n = 3 and V satisfies

sup [V (¢, )l a2 (rsy + sup/ Mdey <€,
t v JrsJr |z =yl
e small enough. Here V(7,x) is the Fourier transform of V' with respect to
time.

In Chapter 2 we consider equation (1.0.12) in general dimension n > 1.
Instead of the stronger dispersive estimate, our goal here is to prove only
the Strichartz estimates. We give two quite general results of this type.

In the first one, we prove that the Strichartz estimates hold for (1.0.12),
n > 1, under the assumption that the norm

sup ||V (¢, - %oy <€
teRII (D] FERS

is small enough. Here L(3:°) is the weak Lebesgue (or Lorentz) space.

Notice that, even in the special case n = 3, this assumption is much weaker
that Rodniaski aréd Schlag’s; indeed, the Lorentz space L) contains the
Lebesgue space L2 strictly, and we make no assumption concerning the norm
of the Fourier transform of V.

In our second result concerning equation (1.0.12), we do not assume that
the potential is small. Instead, we replace this by a condition of “smallness
at infinity”, i.e., integrability, of the following form

IVl L (msLs (mryy < 00

where the indices satisfy
1 n

- + 2% = 1. (1.0.13)
We further stress that the potential V can be large and also negative. Under
these conditions, we prove that the Strichartz estimates are valid for any
dimension n > 1. Moreover, by a suitable class of counterexamples, we
prove that our assumption (1.0.13) is necessary for the Strichartz estimates
to hold, at least in the class of potentials V € L"L5.

In Chapter 2 we counsider also the perturbed wave equation
uy — Au+ V(z)u =0, n > 2. (1.0.14)

For this equation, Beals and Strauss proved the dispersive estimate provided
the potential is nonnegative (or small) and in the Schwarz class (7], [8]).
As for the Schrodinger equation, also in this case many authors have tried
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to relax the assumptions on V, including Yajima, Cuccagna, Georgiev and
Visciglia ([108], [32], [44]). We consider the special case of dimension n = 3,
for which we have obtained a first result in the case of a small potential
in the Kato class in [74], and then we extended the results to the case of
a large potential, an almost optimal result in [38]. Indeed, we can prove
the dispersive estimate under the quite weak assumption that the potential
belongs to a suitable Kato class (see Definition 2.2.1); the positive part of the
potential can be large. When the potential is large we have the additional
problem of resonances and eigenvalues, and this makes the proof of the decay
properties much harder.

The next chapters of the thesis are dedicated to the following ques-
tion: do these techniques and ideas extend to more general equations on
manifolds? We are interested in particular to the study of the dispersive
properties of some evolution equations on curved manifolds.

We begin by studying, in Chapter 3, the case of noncompact manifolds
of negative curvature. In this case it is natural to expect that the dispersive
properties should be better than the ones in the flat case, since the solutions
have more “room” to disperse.

We recall that the asymptotic properties of evolution equations on non-
compact manifolds have been studied only very recently. Banica [5] con-
sidered the constant negative curvature case and studied the Schrodinger
equation on the hyperbolic space H". In dimension n = 3 she obtained a
dispersive estimate with the same rate of decay t~! as in the flat case; how-
ever the L>® and L' norms are replaced by suitable weighted norms, and
this shows that the curvature improves the dispersion at space infinity.

In the first part of Chapter 3 we apply this result to the Schrodinger
equation on H" perturbed with a potential V € LiL}; as expected, we ob-
tain suitable weighted Strichartz estimates with weights related to Banica’s.
As an application of these estimates, we prove the global existence of small
solutions to the semilinear perturbed Schrodinger equation on H™; the non-
linear term may depend also on the space variables, and it is allowed to
increase as |z| — oo.

In the second part of Chapter 3 we consider also a more general class of
noncompact manifolds, which are frequently called the Damek-Ricci spaces,
also known as Harmonic AN groups; these spaces have been studied by sev-
eral authors in the past 15 years ([4], [89], [11], [10], [29], [30], [33], [35], [36],
[87], [100] and others). As Riemannian manifolds, these solvable Lie groups
include all symmetric spaces of noncompact type and rank one, namely the
hyperbolic spaces H" (R), H"(C), H* (H), H?(0), but most of them are not
symmetric, thus providing numerous counterexemples to the Linchnerowicz
conjecture [35]. This was implicitely formulated in 1944 by Linchnerowicz,
who showed that every harmonic manifold of dimension at most 4 is a sym-
metric space, leaving open the question, if this assertion remains true in
every dimension. Though in 1990, Szabo proved it is true for any simply
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connected compact harmonic manifold ([99]), in 1992, Ewa Damek and Ful-
vio Ricci found a large class of non-compact harmonic manifolds which are
not symmetric spaces. More details on Damek-Ricci spaces are contained in
the section 3.4.1.

We restrict to the radial case, in which the Laplace operator admits
a explicit description and can be reduce to the Jacobi operator. Then we
prove, both for the Schrodinger and for the wave equation, suitable weighted
Strichartz estimates with weights depending on the parameters of the man-
ifold. In the special case of the three-dimensional hyperbolic space H? our
method allows us to reobtain Banica’s dispersive estimate by a very simple
proof.

The idea of our proof is to transform the equation into a new perturbed
one with a suitable potential V' on R™; then, using the results of the pertur-
bative theory of Burq, Planchon, Stalker and Tahvildar-Zadeh [19], we can
obtain the Strichartz estimates. More precisely, the radial operator —A s
can be reduced to an operator of the form —A + V', where the potential V'
has a critical decay ~ |z|~2 and can be treated by the methods of [21].

It is interesting to note that we obtain the results on these noncompact
manifolds as application of the perturbative theory on R", thus avoiding the
difficulties caused by the geometry of these spaces.

Our first result concerns the Schrodinger equation on S; we can prove
the following weighted Strichartz estimates

lwgullo @ ius)) < Cllwsuollizgs) + Cllwg Fllw g o sy

with the weight

r

sinhr (m;k)(l_%) k2
wy(r) = < ) (coshr)i(l_a).

Also for the wave equation on S we are able to prove the following
weighted Strichartz estimates

lwgullLer,Las)) < C H— + C H H + Cllwg Fllp# @,1# (s))>
with the weights
(m+k) 2
h 2 (1 ) k 2
wy(r) = (Sm T) (Coshr)g( 3),
r

and . . .
o(r) = r®t3(sinhr)~(@+2) (coshr)~B+32),

Finally, the last Chapter 4 is devoted to the opposite situation of mani-
folds with positive curvature. In contrast with the negative curvature case,
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the positive curvature tends to destroy the decay properties of the equation,
and in general the results both from the point of view of decay and regular-
ity are worse than in the flat case. More precisely, we study the nonlinear
Schrodinger equation on the four dimensional sphere S*, or, more gener-
ally, a four dimensional compact manifold M. In this situation, the cubic
equation

iug + Apru = ([ul*)u,

is critical, and well posedness barely fails. However, if we introduce a slightly
regularizing operator as follows

iug + Apru = (1 — A)"u})u, a >0, (1.0.15)

then the situation is greatly improved. Notice that (1.0.15) can be regarded
as a natural generalization of the classical Hartree equation

dup + Au = (|27 * [u?) u.

We consider (1.0.15) both on a general four-dimensional compact manifold
and on the sphere S%. In both cases we obtain the global well posedness in
the energy space, provided o > 1/2 in the general case and « > 0 in the
case of the sphere. The main tool here is a careful application of suitable
multilinear estimates, adapted to the case of a compact manifold. These
estimates are new and they are close to the restriction method of Bourgain.

In order to go below the cubic powers, but using the same multilinear
techniques we are led to deal with the following quadratic equations on the
sphere S4:

i0ru + Au = q(u),

where ¢g(u) is a homogeneous quadratic polynomial in u,, i.e.,
q(u) = au® + ba® + c|ul?.
Notice that a subclass of these equations consists of Hamiltonian equations

_ov

q(u) 75

where V' is a real-valued homogeneous polynomial of degree 3 in u,u; with
the above notation, this corresponds to ¢ = 2a. The advantage of Hamilto-
nian equations is the conservation of energy

1
E = —/ |Vu|2d$—l—/ |V (u) dr = const.
2 /M M

For instance we have

1 1
q(u) = |u|2 + §u2 = V(u) = §|u|2(u +@).
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Concerning the local existence, we are able to prove a well posendess result
below the energy norm, and precisely in H® for any s > 1/2, provided we
assume that the data are “radial”, which in the case of the sphere becomes
the assumtpion of zonal initial data.

On the other hand, a general global existence result with small data
meets essential difficulties. Indeed, the conservation of energy is not suffi-
cient to prevent the blow up; we construct explicit (and easy) examples of
this phenomenon. However, the possibility of constructing these blow up
solutions is connected with an algebraic condition on the quadratic polyno-
mial ¢; we are able to characterize completely the terms which give rise to
blow up, and for the other cases we can prove a result of global existence
with small (zonal) data in the energy space H'.

The results of my thesis are contained in the following papers ([74], [38],
[75], [39],[76], [77], [47]):

V.PIERFELICE; Decay estimate for the wave equation with a small po-
tential, to appear on NoDEA.

P. D’ANCONA, V. PIERFELICE; On the wave equation with a large
rough potential to appear on Journal of Funct. Anal.

V. PIERFELICE; Strichartz estimates for the Schrodinger and heat equa-
tions perturbed with singular and time dependent potentials. Preprint 2004.

P. D’ANCONA, V. PIERFELICE, N. VISCIGLIA; Some remarks on the
Schrodinger equation with a potential in Lj L] to appear to Mathematische
Annalen.

V. PIERFELICE; Weighted Strichartz estimates for the radial perturbed
Schrodinger equation on the hyperbolic space. Preprint 2004.

V. PIERFELICE; Weighted Strichartz estimates for the Schrédinger and
wave equations on Damek-Ricci spaces. Preprint 2005.

P. GERARD, V. PIERFELICE; Nonlinear Schodinger equation on four-
dimensional compact manifolds. Preprint 2005.



Chapter 2

Dispersive equations with
potential perturbations on
flat manifolds

2.1 Introduction

In this chapter we study the dispersive properties of several perturbed evo-
lution equations (wave, Schrodinger, heat) in the absence of curvature, i.e.,
on R". The perturbations we consider are of potential type, both depending
and not depending on time.

For the three dimensional wave equation

Ou+ V(z) =0, n=3

the potential will be independent of time and very rough: more precisely
V(z) belongs to the Kato class (see Definition 2.2.1). We shall first consider
the case of a small potential, for which the proofs are simpler, and then we
shall extend the results to the case of a large potential in the Kato class.
When the potential is large we have the additional problem of resonances
and eigenvalues, and this makes the proof of the decay properties much
harder. In both cases we shall prove the dispersive estimate

utt, )| < <

for a suitable constant C' depending on the initial data. These results have
been published in the papers [74] and [38].

Several works have investigated the Cauchy problem for the wave equa-
tion perturbed with a potential and the dispersive estimate for it. In [8] the
potential satisfies (essentially) the following decay assumption:

V(@) <

i el 2 1

20
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for some C,d > 0, moreover V must be smooth. Under this condition the
authors proved LP — v decay estimates but not the dispersive estimate,
which was obtained by the same methods and under similar assumptions in
[7]. These works treat also the case of dimension n > 3.

In [32] (only for the case of space dimension 3) the previous assumption
is weakened and the decay required at infinity for the C? potential V is the
following one:

DOV (2)] < —C

> W, |05| <2

For general dimension n, the best results are due to Yajima, who, in a
series of papers (see e.g. [106], [107]), proved the LP boundedness of the
wave operator intertwining the free with the perturbed operator; as a conse-
quence he obtains dispersive estimates for a variety of equations, including
the wave equation. We should also mention that the Strichartz estimates
can be proved independently of the dispersive estimates, under quite general
assumptions on the perturbed operator; for a nice proof see [21]; see also
[20] and [27].

In the special case of dimension n = 3, Georgiev and Visciglia [44] were
able to prove the dispersive estimate for potentials of Holder class V' (z) €
CY(R3\ 0), « €]0, 1], satisfying for some ¢ > 0

C

One sees that the potential V(z) is bounded by

C .
V(z) < P if |z| > 1,
and by
C .

The last estimate shows that V' admits a singularity such that it is not in
L? (R3) (when e < 1). In fact one has V € L3279 0 L3/249 for § small
(0 <6 < 3e/4).

Notice that the space of functions with bounded Kato norm contains
L3/%1 since

Vlix < ClVIlLsrza

by the Hardy-Sobolev inequality. Thus from the point of view of regularity
assumption

IV]lk < o0 (2.1.2)
is weaker than (2.1.1).
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The critical behavior for the potential is clearly V ~ |z|~2. The family
of radial potentials

—9)2
wherea>—(n )

a
V@) = o w2

yn2>2,

is studied in the papers [78] and [19]. More precisely, in the first paper
one shows that in the radial case, i.e. when the initial data are radially
symmetric, the solution to the perturbed wave equation satisfies the gener-
alized space-time Strichartz estimates (1.0.10) but not the dispersive esti-
mate (1.0.3), as it is shown by suitable counterexamples. Since their proof
was based on estimates for the elliptic operator P, := —A + #, the corre-
sponding Strichartz estimates hold also for the Schrodinger equation. In the
second paper these results are extended to general non radial initial data.
Notice that the inverse square potential belongs to the weak Lf’u/ 2~ [3/2,00
Lorentz space.

Thus it is natural to ask what are the weakest assumptions on the po-
tential that imply the dispersive estimate. In section 2.3 we prove that it
is sufficient to assume that V belongs to a suitable Kato class of potentials,
and no smoothness at all is required. The proof of this result is quite lenghty
and difficult. For this reason, we decided to treat in section 2.2 the special
case of a small potential satisfying the condition

IVlx < 4. (2.1.3)

In this case the proof is easier to follows since it is based on a Neumann
development of the perturbed resolvent.
For the Schrodinger equation

iug — Au~+ V(t,z)u =0, n>2 (2.1.4)

we shall investigate the case of time dependent potentials. In this case, for
large potentials it is known that in general there is no decay.
In a classical paper, Journé, Soffer and Sogge ([60]) proved the standard
dispersive estimate .
fu(t, 2)] < CE 5 (0, 2 (2.1.5)

provided the time independent potential V' (z) is sufficiently smooth and
decaying at infinity, and O is not a resonance. This result was improved
by several authors, in the direction of requiring less regularity and decay
of V(z). Tt appears that the limiting behaviour is V' ~ |z|~2, or more
generally V' € L™/?; in dimension three Goldberg [52] recently proved that
(2.1.5) holds provided V € L3/?t* 0L, and this appears to be nearly optimal.

The situation when the potential V' (¢,z) depends also on time is much
more difficult, and almost completely open. In dimension three Rodnianski
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and Schlag [88] were able to prove the dispersive estimate for potentials
V(t,x) such that the norm

sup ||V (¢, )|l 372 + sup T dx
teR R3

z€R3 |$ -

is small enough, where V (7, z) is the Fourier transform with respect to ¢ of
V(t,x). The cases of higher dimensions or large potentials are still open.

From all the above results it appears that V € L2 or V ~ |z|=2 are
both reasonable candidates for the limiting behaviour of the potential. In
section 2.4 we unify these conditions and we go one step further; indeed, we
consider potentials belonging to the weak Lebesgue (Lorentz) space L(5%),
Since our results are based on perturbative methods we need to impose a
smallness condition, however with the advantage that we can treat also time
dependent potentials V (¢, x).

More precisely, we can prove the complete Strichartz estimates for (2.1.4)
when the real valued potential V' = V (¢, x) satisfies

sup [V (¢,)|l (3.0 = Co  is small enough (2.1.6)
teR
(see Theorem 4.2.24 below; see also [9] for more details on Lorentz spaces).
When the potential does not depend on time we can compute the constant
more accurately: the same result holds provided

2n
IV 5.0 < Cin=2)’ (2.1.7)

where (s is the Strichartz constant for the unperturbed equation (see The-
orem ?? below) . We mention that the case of dimension n = 3 and of
a potential V' = V(z) independent of time has been considered earlier by
Georgiev and Ivanov in [43].

For the heat equation the results are stronger, as natural. Indeed, in
Theorem ?? we consider a real valued potential V (z) € L(3:°), which we
split into positive and negative part V(z) = Vi (z) — V_(z), V& > 0, and
we assume that the negative part satisfies

2n

“V*HL(%,OO) =0 < m

(2.1.8)
Under this condition we can prove that the maximum principle holds, and as
a consequence we deduce the full Strichartz estimates. When the potential
is nonnegative, we can also prove the stronger L>® — L' estimate (2.1.5)
(Proposition 5).

Finally, we study equation (2.1.4) when the potential V' (¢, z) is large but
satisfies an integrability condition of the form

1
VeLlL, —+£=1
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and again we prove the complete Strichartz estimates in all dimensions. We
also show that if the potential is in V € Ly L$ but L + 2 3 1, the Strichartz
estimates are not true. These results have been published in the papers [75]
and [39].

2.2 The wave equation with a small rough poten-
tial

In this section, we prove a dispersive L>° decay estimate for the wave equa-
tion perturbed with a small non smooth potential belonging to Kato class
in the case three dimensional. Notice that from this estimate, following [66],
one can obtain the complete set of space-time estimates as above. In or-
der to introduce our assumption on the potential V' we recall the following
classical definition:

Definition 2.2.1. The measurable function V' (z) on R, n > 3, is said to
belong to the Kato class if

v
lim sup / %dy = 0. (2.2.1)
{0 gpeRrn lz—y|<r |$ - y|

Moreover, the Kato norm of V(z) is defined as

Wi = sup [ L, (2.22)
z€R" JR® |x _y|n

For n = 2 the kernel |z — y|?> ™ is replaced by log(|z —y|1).

The two notions are of course related (e.g., a compactly supported func-
tion of Kato class has a finite Kato norm, see Lemma 2.3.11 in Section
2.3).

Remark 2.2.1. The relevance of the Kato class in the study of Schrodinger
operators is well known; full light on its importance was shed in Simon
[91] and Aizenmann and Simon [2]. The stronger norm (2.2.2) was used by
Rodnianski and Schlag [88] who proved the dispersive estimate for the three
dimensional Schrodinger equation with a potential having both the Kato
and the Rollnik norms small.

We can now state the main result of this section. Consider the Cauchy
problem
Ou+V(z)u=0,t>0, z € R,

u(0,z) =0, (2.2.3)
Ut(o,fL’) = f(m)a

then we have:
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Theorem 2.2.1. Assume that V is a real-valued, measurable function on
R3 such that
WVlk < 4m, (2.2.4)

then the solution u(t,z) of (2.2.8) satisfies the dispersive estimate

C
et ey < MLt ooy (2.2.5)

Remark 2.2.1. It is natural to expect that the estimate (2.2.5) holds with the
homogeneous Besov spaces Bll’l(ﬂ@) instead of B} | (R*). Indeed, in the next
section we shall show that this can be obtained by a much more complex
proof; the interest of (2.2.5) is mainly in the simplicity of the arguments
used.

2.2.1 Properties of perturbed operator

We denote by Hy the Laplace operator —A as a self-adjoint operator on
L?(R?) with dense domain H?(R?). In this section we shall only consider
the case of a small potential, since the proofs are simpler; but the following
lemma can be extended also to potentials with a large positive part, as we
shall show in the next section. Thus we have:

Lemma 2.2.1. Let V be a real-valued function on R® such that
IVlx < 4n. (2.2.6)

Then there exists a unique non-negative self-adjoint operator —Ay = —A +
V with D(—Ay) = H*(R3) such that

(9 (A +V)Y) 12 = (0, =A%) 2 + (Vio,¥) 2, Vo, € HAR). (2.2.7)

Proof. To prove this fact we can use the KLMN Theorem (see [83] Theorem
10.17), and it is sufficient to verify the following estimate

[ V@lee)ds <o [ 1Vo)Pda + bz (2.238)
R3 R3

for some constants a < 1,b > 0. We can rewrite (2.2.8) as follows

e |

2

<H0+—> ®
a

1
Writing g = (Ho + %) 2, we see that we need only to prove the following

inequality
, b\ "2
i (e 2)

(V) 12| < alp,—Ap)r2 +bllell7: = a

< allgll>,
L2
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for some 1 >a > 0,b > 0.
Now consider the operator T' = |V|% (Ho + g)

b\ 3

ITT* || 2z = a < 1. (2.2.9)

_1
2 and its adjoint

We must prove that

Using the explicit representation of resolvent in R3:

(Ho—i-g)_lso in /Rs e y|f(y)dy, (2.2.10)

|z —y|
we can write

2

—1
. 1 b 1
ITT*¢l7> = |||V2 (Ho + —) \4E w

2
flfv yl .
o L V@I [ e Vel da
and using the Cauchy-Schwartz inequality we have
~/Ela—yl eVl
_ d _ dy |d
e [ Vel [ v | | [ttty |ds

(/) (25 )

which by the definition of Kato norm [|V'||x we can estimate as follows

||V HK // <V [
dydz 9.
N |z 2 (47r)2 Ielz:

Therefore we have

1V llx
(4m)
by the assumption (2.2.6). Thus we have proved that —A+V is a self-adjoint
operator with domain H?(IR?). Notice that we have proved inequality (2.2.8)

for all b > 0.
Now we prove that —A + V is a positive operator. Indeed

|TT* |2 = =a<1 (2.2.11)

(“A+V)p,0) 12 = (=Dp, ) 12+ (Vo,0) 12 > Vol — [V, 0) 2]
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using inequality (2.2.8) we have

> (1 - a)||Vell2e —bllel2: > —blle]2

for every b > 0, and this implies that

(FA+V)p,9)2 2 0. (2.2.12)

2.2.2 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1 is based on the representation formula (see [110])
for functions of the self-adjoint operators H:

¢(H)f = L* — lim = /OOO PN [Ry (X +ie) — Ry (X —ig)]fd\, (2.2.13)

e—0 271
valid at least for all f € C§°(R?). Consider the following Cauchy problem

Ou+V(z)u=0,t>0, z € R,

u(0,z) =0, (2.2.14)
ui(0,7) = (v —Avy) f ().
Here ¢;, 7 = 0,1,... is a standard non homogeneous Paley-Littlewood par-
tition of unity; we recall that ¢;(A) = ¢o(277)) and that
Yo+ =1
J=0

for a suitable 1y € C§°(IR?).
Then the solution of (2.2.14) can be expressed as

ult,2) = Uy (s (V=AV) S, (2:2.15)
where
_ sin(ty =AY
Uy (t) = ﬁ

Since —Ay is a self-adjoint operator we can write the solution using the
spectral representation (2.2.13), i.e.

u(t,z) = L* — ;5% 2%”/0 @j(ﬁ)%mv(k +1ie) — Ry (A —ig)]fdA.

The main point in the proof of Theorem 2.2.1 are the following L™ — L'
estimates of the resolvent Ry (A £ 40) and its square:
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Proposition 2.2.2. Assume that the potential V satisfies

V=

1. 2.2.16
i < (2.2.16)

Then for any X € RY,e > 0 we have the following estimates:

. . A
By Ot ie) — By — i)l flie < G LI f I, (2217)
|Rv (A +ie)2 — Ry (A — i)l < — || l1e (2.2.18)
Vv 1% L > 871'\/)\_5 Lt i
-2
where Cy = (1 - %) and
2 2\1/2
e = At (N +e7) > 0.

2

Before proving Proposition 2.2.2, we show how from it the dispersive
estimate follows easily. Define

ue(t,z) = /0 ) w(@M[RV(A +i€) — Ry (A —ig)]fd,

so that for all ¢t > 0
ue(ta ) — u(t7 ) in LZ;

integrating by parts we have

" %/Ooo 9 ((PJ(\/X)[RV()\ + ig) — RV()\ — 26)]f> (COS \/Xt)d)\

By the properties of the Paley-Littlewood decomposition and using the fol-
lowing relation

O\ [Rv(\+ie) — Ry(A —ig)] = Ry(A +ie)? — Ry (A —ig)?,  (2.2.19)

we obtain
1 o0
ul < [ 1o RIRY O+ i) — Ry (3 = ie)]fla+
1 oo
+¥ / (Pj(\/X)HRV()\ +i€)? — Ry (\ —ie)?]f|d\.
0
Then applying Proposition 2.2.2 and the elementary inequalities
VA< VA <VA+ e

we obtain, since ¢;(VA) = ¢o(277V)),

Cv dX

ul 0 [ [2 71 VRV + V) + L@ V)|

S
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and after the change of variables . = 277v/A we obtain
Vi %, 2+ e
et e < (1= 1) "o ZEE

for some constant C) independent of 5 and €. If now we let ¢ — 0, and we
remark that u, — u in L? implies the convergence a.e. for a subsequence,
we obtain

1% 2 9j
lw(t, )| < <1 - %) Cl7||f||L1. (2.2.21)

The estimate for the term corresponding to g is identical.
Now we use a standard trick: writing for j > 1

0; =pj—1+@;+pjn

we have that ¢;, 7 = 0,1,2,... is another Paley-Littlewood decomposition
with the property that ¢; = ¢; - ¢;. Hence the Cauchy problem (2.2.14) is
identical to the problem

Ou+4V(z)u=0,1t>0, z € R,
u(0,z) =0, (2.2.22)

ug(0,2) = @5 (v —Av)ei(v —Av) f(z)

and estimate (2.2.21) gives also

Ju(t, e < Cv 2 llg (V=B (2.2.23)

If we now consider the original Cauchy problem (2.2.3) we obtain by linear-
ity, after summation over 7,

C
lu(t, Mz < =N Fllsy, 1) (2.2.24)

1l 0 = [ (V=20 1o + 3 20 (V=AW Iz

J=0

where the last equality is the definition of the perturbed Besov norm Bll,l (V).
The final step in the proof of Theorem 1 is the inequality

1151, 0y < ClF sy o)

to estimate with the standard Besov norms. This step will be completed in
Section 2.2.
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We now go back to the proof of Proposition 2.2.2. We split the proof
into a few lemmas. An essential tool will be the explicit representation of
the free resolvent Ry (see [83] p 58):

ei€lz—yl
_{ 27 Jrs T 9W)dy,  Im € >0,

iglz—y|
i Jws \x_y\y 9(y)dy, Im ¢ <0.

Ro(€%)g = (~A—¢)™! (2.2.25)

By elementary computations we obtain that for any A € R and ¢ > 0

A 1 eii\/zkl"*y' _ _
Ro(Aie)gle) = - [ S e I Ry, 2220
where ) 1/2
A+ (A
a = 2 ;8 7o (2.2.27)

Moreover by the resolvent identity

S Ro(2) = FA(2),

we can represent also the square of the resolvent:

Ro(\ £ie)%g <i\/_+z )1/e(ﬂﬁf‘zfx—e)’“‘yg(y)dy.

2/ A
(2.2.28)
It is easy to derive from (2.2.26) the inequality
1
Ro(A ie)glo)| < 5 [ 120, (2.2.29)
4 Jgs |z =yl

which is true for all A,e. On the positive real axis the following well known
representation holds: for any A > 0,

_ 1 +ivAlz—y|
Ro(AEivlg(e) = 1= [ ety (2230

while on the negative real axis we have (now we are outside the spectrum)

1 VA [z—y|
R(-Ng) = 1 [ S gty A0 (2.2.31)
Am Jgs |z -yl
Then we have:
Lemma 2.2.3. For any A € R", &€ > 0 the operators Ry(A+ic) — Ro(\—ig)
are bounded operators in L(L'; L°°) satisfying

I[Ro(X +ie) — Ro(A —ig)] flL= <

‘gf (2.2.32)
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A similar property holds for the operators Ro(A+ic)? which satisfy for X € R,
g€ > 0 the estimate

IRo(A £ ie)* I < ||f||L (2.2.33)

Finally, for any measurable function V(x) with |V||x < oo, the operators
V Ro(X £ i€) are bounded on L', the operators Ry(\ % ig)V are bounded on
L™, and we have for all \ € R, ¢ >0

“V“K

[Bo(A £ i)V fllLe < £l zee (2.2.34)

and

V
IV E(A i)l < 1O

[nalve (2.2.35)

Proof. The estimates (2.2.32) and (2.2.33) follow easily from (2.2.25), (2.2.26),
(2.2.29).
Using (2.2.29) we obtain immediately

RV @) < 1= [ T irlay,

|_47r

Rﬂw—m
and hence
1 Vi(y V K
IRo(2)V fll= < - sup / Wy i = 18 g
4m zER3 JR3 |:v—y|

In a similar way, using the explicit representation of resolvent Ry we have

/ If(y)ldy‘dx:
Rﬂx—m

Wl
4W//RS |x_y| V@7, 4, < Wiy gy

Lemma 2.2.4. Let A € R, ¢ > 0. Assume that the potential V is a real-
valued, measurable function on R3 such that

IVl
47

(2.2.36)

O

<1 (2.2.37)

Then the operator I+ Ro(Axie)V belongs to L(L°; L*°) and has an inverse
satisfying

e —1
(I + Ro(A £ ig)V) Y| oy oo < (1 | 47|1K> ; (2.2.38)
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analogously we have

1% —1
I(I+VReAxie)) Ypm < (1- Vil = (2.2.39)
4

Moreover for X\ € R, € > 0 the operator I —V Ry (A+tie) belongs to L(L'; L')
with norm bounded by

174 —1
II = VRy (A %ie)|| 11 < <1 - %) . (2.2.40)

Proof. Since ”V”K < 1 by assumption, by (2.2.34) the operator (I + RyV)
is invertible and the Neumann series

o0

(I+RV) ' =D (~)F(ReV)*
k=0

converges in £(L*; L*°). In conclusion we have
1

_ Vilk -
1 4

I(Z + RoV) " Hlzoospoe <

In a similar way, since Ve HK < 1 by assumption, by (2.2.35) the operator

(I + V Ry) is invertible and the Neumann series

o0

(I+VRy) ' =D (—1)"(VRy)*
k=0

converges in £(L'; L'). Then we have

1
(I +V Ro(2)) i < [ Vs

4

Finally recalling the resolvent identity
Ry(z) = Ry (I + VRy),
since (I + V Rp) is invertible in L' as proved above, we can write
(I-VRy)=(I-VRy(I+VRy) "),

and (2.2.39) implies that (I — VRy) : L' — L' with norm

(I = VRv)|lpip < (2.2.41)

_ IVl
1 4

This concludes the proof of the Lemma. ]
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Lemma 2.2.5. Assume V satisfies (2.2.37). Then for all z = X\ + ic with
A€ R, € >0 the following identity holds:

Ry (z) — Ry (z) = (I + Ro(2)V) Y[Ro(z) — Ro(2)]I — VRy(2)) (2.2.42)

and defines a bounded operator in L(L'; L>°). Moreover, we have the esti-
mate

IRy (A + ig) — Ry (A —ie)]gllLe < Cvv/AcllgllLe (2.2.43)
where Cy = (1 — ||V||x /(4m)) 2.

Proof. Thanks to Lemma, 2.2.4, we can write the following identities for the
resolvent operator Ry

Ry (2) = (I + Ro(2)V) ' Ry(2), (2.2.44)
Ry (2) = Ro(2)(I +VRy(z)) ", (2.2.45)
Ry (2) = Ro(2)(I — VRy(2)). (2.2.46)

Then we can write
Ry (z) — Ry (2) = Ro(z) — Ro(2) — Ro(2)V Ry (2) + Ro(2)V Ry (2);
adding and subtracting Ro(2)V Ry (2), and factorizing leads to
= (Ro(2) — Ro(2)) — (Ro(2) — Ro(2)) VRv (2) — Ro(2)V (Rv(2) — Rv(2))

whence (2.2.42) follows easily. The bound of this operator is an obvious
consequence of Lemmas 2.2.3 and 2.2.4. U

We have proved the first half of Proposition 2.2.2. The second part is a
consequence of the following Lemma:

Lemma 2.2.6. Assume V satisfies (2.2.37). Then for all N € R, € > 0 the
following identity holds:

Ry(Axie)? = (I+Ro(Atie)V) 'Ro(Axie)?(I+VRo(A£ie)) ™! (2.2.47)

and defines a bounded operator in L(L'; L*). Moreover, we have the esti-
mate

|Ry (X £ ig)?g||p~ <

Cy
—_— 2.2.48
< 87r\/>\—g“g”L1 ( )

where Cy = (1 — ||V || /(4m)) 2.

Proof. The proof is analogous to the proof of the Lemma 2.2.5, and fol-
lows from the identities (2.2.44), (2.2.45), and from the properties proved in
Lemma 2.2.3 O
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2.2.3 The equivalence B} (V) ~ B} (R?)

The main purpose of this section is to prove the equivalence between non
homogeneous, perturbed Besov spaces and non homogeneous classic Besov
spaces. This fact concludes the proof of Theorem 2.2.1, because it implies
that from (2.2.24) we obtain the following dispersive estimate

Cy

lu(t, Mee < C—=IIflIp1 (r3), (2.2.49)
t 1,1

where Cy = (1 — %)_2‘
Now we recall the definition of the classical non homogeneous Besov

spaces.

Definition 2.2.1. Let ¢;, j = 0,1,... be a standard non homogeneous
Paley-Littlewood partition of unity; we recall that ¢;(A) = ¢p(27/)) and
that

supp o = {A: 271 < |A| < 2} such that @o(A) >0 for 271 <A < 2.
do+ Y wi=1,
320

for a suitable 1)y € C§°(R?). The non homogeneous Besov spaces B, , are
defined by

By, ={u:ue§, |lullps, < oo}, (2.2.50)
with the norm
1
o0 q
lullBs, = l¥o(D)ullce + | Y 27l (D)ullf, | (2.2.51)
j=0

where D =+v/—-A,and s € R, 1 <p,q < oo.

Clearly, B, , are normed linear spaces with norms || - ||ps . Moreover,
b ’
they are complete and therefore Banach spaces.
In a similar way, we can define non homogeneous perturbed Besov spaces
as

By (V) ={u:u e s, “UHBg’q(V) < oo}, (2.2.52)
with the norm
1
o q
“UHB;,q(V) = [J1o(Dv )ul|r + ZQ”‘IH%(Dv)uH%p , (2.2.53)
j=0

where Dy = V/-Ay =v-A+V,andseR, 1<p,q< oo.
Now we see the following
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Theorem 2.2.2. Assume that the potential V satisfies (2.2.37). Then the
following equivalence holds:

311,1(V) = BII,I(R?))a (2.2.54)

i.e.
“f“Bll,l(V) = Hf”Bil(Rfi)- (2.2.55)

To prove Theorem 2.2.2 we need some Lemmas. In the following we shall
use the operator

(—A)~'f = Ro(0

47r Iﬂv - yl
which satisfies the identity
I'=(=A)Ry(0) = Ro(0)(=A)
(see standard references) and, writing —Ay = —A + V', the operator
(—Av)™" = Ry (0) = Ro(0)(I + VRo(0))™" = (I + Ro(0)V)) ™" Ro(0)
which satisfies the analogous identities
Ry (0)(=Ay) = Ry(0) (A +V) = (I + Ro(0)V) 'Ro(0) (A + V) =1

and
(=Av)Ry(0) =I.

Moreover we recall that the operator V Ry (0) is bounded on L' since

VROl < 3 [ [ Wy < IVl

and its dual Ry(0)V is bounded on L*° with the same norm. Thus also
V Ry (0) and Ry (0)V given by

VRy(0) = VRo(0)(I +VRo(0)~", Ry(0)V = (I+Ro(0)V) "Ro(0)V

are bounded on L' and L™ respectively, with norms

VRO = Ry < I (Vi
4 47

Now we proceed as Theorem 7.1 in [44].
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Lemma 2.2.7. Let ¢, 7 =0,1,... be a standard non homogeneous Paley-
Littlewood partition of unity, and let V' satisfy (2.2.37). Then the following
inequalities hold for all p € [1,00]

s (V/=Ay)(=Av) e < C27%, § >0, (2.2.56)

i (V=Av)(=Av) || r—1e < C2%, j >0, (2.2.57)

o (v —=Av) e —ze + o (vV/ —Av) (=Av) ||Lr 10 < C, (2.2.58)
loi(V=Av)|lrsre < C, § >0 (2.2.59)

We notice that (2.2.56), (2.2.57), (2.2.58) hold also if we consider the
Laplace operator —A instead of —Ay (take V = 0).

Proof. Consider
g(A0) = po(VAX oL

where @o(VA) € C3°. Since our potential belongs to the Kato class and —Ay
is a non-negative operator we can apply Theorem 2.1 in [58] and obtain the
following estimate

lg((=Av)O)|r 10 < C,

where C is a constant independent of § €]0, 1]. Thus we have

leo(0v/ (—Av) 1) (=Av) Hlze1e < CO, 6 €]0,1],

we can choose § = 2% j > 0, and we known that ¢;(vVA) = ¢o(277V)),
so this proves the first inequality of the Lemma.
As above, we consider now

g(A0) = o (V) N,

and we apply to it again Theorem 2.1 in Nakamura-Jensen. If we choose
6 = 2%, j > 0 we obtain the second inequality

i (V=Av)(=Av)|lr e < C2%, 5 > 0.
Finally, in a similar way choosing
g(\) = Po(VA) with 6 =1

or

g(A\) =P (V)X with 6 =1

or

g(\0) = o (VA0 L,

we prove the last two inequalities. O
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Lemma 2.2.8. Under the same assumptions as in the preceding Lemma we
have

lo; (V=Av)eor(V=D)|lp1 o < C275F2F v ik > 0. (2.2.60)

Proof. We can write ¢;(v/—Ay)pr(vV—A) as

0i(V=Av)(=Ay) T (=Ay)pr(V=-A) =
= 0i(V=Ay)(=Av) T (=A)pr(V-A)+
+ o (V-Av)(—Av) T Ve (V=A).

Using (2.2.56) and (2.2.57) it is easy to see that we have the following

o (V/=Av)(=Av) (= A)pp(V=D) || 11 < C277 ik > 0.
(2.2.61)
Moreover we can write

0i(V=AV) (~Ay) T Vpr(V=A) =
= @i (V=2v)(=Ay) TV Ry (0)(=A)pr(V=A),
and we can apply to it (2.2.56):
lo (V=2v)(=Av) " Ve (V=24)ll i <
< C2 VR (0)lpr 5 | (=)o (V=2)l| g1 1

by (2.2.57) in Lemma 2.2.7 we obtain

_ _9i IV .
i3 (VB0 (=)™ Vipr (VB 1o < 02 M2k 1y >

and this concludes the proof.
O

Now we see the proof of Theorem 2.2.2. The first step is to prove the
following inequality
1Flls:, vy < CllfllBr, &) (2.2.62)

By the definition of non homogeneous perturbed Besov spaces we have,

writing for brevity
Dy =+v/—-Ay, D=v-A

1151, vy = 10 (D) flls + D 2 llp;(Dv) fllze- (2.2.63)
j=0
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We know that

D)+ k(D) =

k>0

and thus we have

111, vy < [1$0(Dv)dho(D) fllr + > o (Dv) (D) flli+

k=0
+3 2o (Dy)go(D) fllpr + D 2l (Dv)r(D) fllzr-
j=0 4,k>0

Now we estimate separately the four terms.
Applying to the first term the (2.2.58) we obtain that 1y (Dy ) is bounded
on L' so that

[90(Dv)o (D) fllr < Cllf e (2.2.64)

and since

Ifllze < o (D)flloe + Y llei (D) flle,

7>0

this is smaller than | f||p1  (rs)-
In the same way we have for the second term

> " llto(Dy)pr(D f||L1<OZ||sok )fllze < Clflls, e
k=0

For the third term we can write
m .
> 2l (Dy)o(D) fll11 = ZQJHSDJ Dy)(=Ay) T (=Av)¢o(D) f |
j=0
and from (2.2.56) in Lemma 2.2.2 we have

<Oy 27 (=Av)¢o(D)fllr = Cl(=Av)¢o(D) [t <

i>0
< Cll(=A)9o(D) fllLr + ClIVo(D) fllLrs

by our assumption on the potential we have

IVipo(D)fllr = ||[VRo(0)(—A)ho (D) fll11 < “VHK

1(=A)4o (D) f| 1

and since (—A)1 (D) is bounded in L! by (2.2.58), the third term is bounded
by

o0

> 2 l0;(Dy)go(D) fllrr < Coll £l (2.2.65)

j=0
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Finally, we divide the fourth term in the cases 5 < k and 5 > k:

> Yl (Dv)er(D)fllpr =D+

J,k>0 J<k >k

for j < k we use the fact that ¢;(Dy) are bounded on L' with uniform
norm by (2.2.59) and we obtain

Do<D lenD)flle D 27 =2 25 pr(D)f 1

j<k k>0 0<j<k k>0

For j > k, we know that ¢; = ¢;¢; and we have

S 27105 (D) pr(D) il = 3 27105 (Dv) o (D) k(D) f .15

>k >k

now applying to the last term the Lemma 2.2.8 we have

S 27 lp; (Dv)pr(D)pr(D) fll < 3 C267928 |5 £ 1

J>k j>k
and since ;. ;2 k=3 <1 we have
S 2 (DV)er(D)f s < O 2D f - (2.2.66)
Jk20 k>0

In conclusion, we obtain

1t vy < Clfller + 022’““@% D)fller < Ifllsy ey (2:2.67)

E>0
The second step is to prove the following inequality
Hf“Bll,l(Rf‘) < Hf“Bil(V); (2.2.68)

this is completely analogous to first step, and so the proof is concluded.

2.3 The wave equation with a large rough poten-
tial

We consider now the case of the wave equation
Oi4nu + V(z)u =0, u(0,z) =0, u(0,2) = f(z), (2.3.1)

perturbed by a large potential in the Kato class.
The main new difficulty is the possibility that the operator —A + V (z)
has eigenvalues or resonances.
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As it is well known, the presence of eigenvalues or resonances can influen-
ce the decay properties of the solutions. The standard way out of this
difficulty is to assume that no resonances are present on the positive real
axis, and in many cases this reduces to assuming that 0 is not a resonance.
In our first result this assumption takes the following form. We denote as
usual by Ry(z) = (—z—A)~! the resolvent operator of —A, and by Ry(A%i0)
the limits lim. o R(\ & ie) at a point A > 0. Then we assume that

The integral equation f + Ro(A 4+ i0)V f = 0 has no nontrivial
bounded solution for any X > 0,

or, equivalently,

1 iV |z—y|
f+—/ O W) fly)dy =0, fEL® A>0 — f=o.

In Jus Tz ]
(2.3.2)

In several cases this assumption can be drastically weakened, as discussed
below.
We can now state the first result of the section:

Theorem 2.3.1. Let V = Vi + Vo be a real valued potential of Kato class.
Assume that:

i) V1 is compactly supported and has a bounded Kato norm;

ii) Vo has a small Kato norm and precisely

1
Vallxc - (1 n Euw@ < in; (23.3)

i11) the negative part V_ = max{—V,0} satisfies
V-l < 2m; (2.3.4)

iv) the non resonant condition (2.3.2) holds for all X > 0.
Then any solution u(t,x) to problem (2.3.1) satisfies the dispersive estimate

lat, Maee < C M F gy sy (2.3.5)

We give some comments on the above assumptions.

Remark 2.3.1. Condition (2.3.3) can be intepreted as a smallness at infinity
of V, and is satisfied by quite a large class of potentials. For instance,
assume that V belongs to the Lorentz space L3/>'(R?). By the extended
Young inequality we have

I llx < collfllgsran

for some universal constant c¢y. Thus we see that V has a bounded Kato
norm, and a similar argument shows that V' also belongs to the Kato class.
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Moreover, if x(z) is the characteristic function of the ball {|z| < 1}, we can
decompose V as follows: for any R > 0,

V=Vi+Ve, Vi=x(z/R)V, Vo=(1-x(z/R)V.

Notice that
||V2||K < C()||V2||L3/2,1 —0 as R— +00;

on the other hand,
Villg < eollVillpsrza < col|Villgs/zn

independently of R, and hence
1
Walie (1 4517l ) 0 as R +oe

In other words, assumptions (i) and (ii) are automatically satisfied by any
potential in L3/%'. We can sum up this argument in the following Corollary:

Corollary 2.3.2. Assume the real valued potential V belongs to L3/ with
IV_llk < 27 and satisfies the non resonant condition (2.3.2). Then the
same conclusion of Theorem 2.3.1 holds.

In particular, this applies to potentials belonging to L3/29 (R3)NL3/219 (R3)
for some § > 0, in view of the embedding

L3/2—(5(R3) N L3/2+(5(R3) g L3/2’1(R3).

This covers the potentials satisfying (2.1.1), as remarked above.

It is interesting to compare this to the results of Burq et al. [20], [21]
concerning the inverse square potential; in the scale of Lorentz spaces we
can say that the dispersive estimate holds when V' € L3/%! but not when
V € L3/%%_ It is not clear what can be said for potentials of Lorentz class
L3/24 with 1 < ¢ < 00, and in particular for L3/2 = [,3/2:3/2,

Remark 2.3.2. 1t is a problem of independent interest to find conditions on
the potential V' which ensure that no resonances in the sense of (2.3.2) occur
on the positive real axis. A well known result in this direction was proved
in [3] (see in particular Appendices 2 and 3). We briefly recall two special
cases which can be applied here (V' is always real valued):

Proposition 2.3.3. (Alsholm-Schmidt) Let n = 3. Assume that V € L2 . and

that, for some C,R,e > 0, one has |V (z)| < Clz|727¢ for |z| > R. Then
property (2.3.2) holds for all X > 0.

Proposition 2.3.4. (Alsholm-Schmidt) Let n = 3. Assume that, for some
C,R,e >0, one has |V (x)| < Cl|z| 1€ for |x| > R. Moreover, assume that
either V€ L' N L? or (z)'/?t<V € L?. Then property (2.3.2) holds for all
A> 0.
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Notice that the results of [3] do not apply to the potentials like (2.1.1)
since the singularity |z| 2%¢ is not L%OC; however, in order to apply e.g.

Proposition 2.3.3, it is sufficient to assume that

<
|$|2+€ + |x|3/275

|V (x) (2.3.6)
When V satisfies (2.3.6), (iii) of Theorem 2.3.1, and A = 0 is not a resonance
(in the sense of (2.3.2)), then the dispersive estimate is true.

We further stress that the above propositions do not rule out the pos-
sibility of a resonance at A = 0. This case can be excluded (at least in the
sense of (2.3.2)) if one requires a stronger decay at infinity of the potential;
as an example, we can prove the following

Theorem 2.3.5. Let Vi be a nonnegative L? function such that Vi(z) <
Clz|=379 (5 > 0) for large x. Then there exists a constant (Vi) > 0 such
that: for all real valued functions Vo of Kato class with

1Vl < €(V1) (2.3.7)

and for V.= Vi + Vo, the solution u(t,z) of problem (2.3.1) satisfies the
dispersive estimate (2.3.5).

In essence, this result states that the dispersive estimate holds (without
additional assumptions on the resonances) for all nonnegative potentials de-
caying faster than |z|~3 and for all “small enough” perturbations thereof;
however, it does not give a measure of the smallness of admissible pertur-
bations. For this, we must use Theorem 2.3.1 which requires the additional
assumption (2.3.2).

Remark 2.3.3. In Section 2.3.6 we prove the equivalence of the standard
homogeneous Besov norms with the perturbed ones, i.e., generated by the
operator —A + V:

B (R)=B; (V), 0<s<2 1<g<oo, n>3
for all potentials V' =V, — V_ with Vi > 0 and
n/2 n
Vil <oor V-l <721 (5 - 1) (2.3.8)

(see Theorem 2.3.23). For this result, a suitable extension of some lemmas
in [58]-[59] was needed, which in turn required an improvement in Simon’s
estimates for the Schrodinger semigroup [91]. Indeed, in Proposition 2.3.18
we prove that the semigroup e“®~") has an integral kernel k(t,z,y) such
that (n > 3)

@rt)™"2 s
—2||V_|&/cn

k(8,2 y)] < 1 (2.3.9)
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and satisfies the estimate

_ 2mt)~7 n(l 1
et 10y < ( , = (— — —> . 2.3.10
|| ||£(Lp7Lq) — (1 _ ||V7“K/Cn)2 ’Y 2 ( )

Thus, as a byproduct of our proof we obtain the following parabolic disper-
sive estimate (see Proposition 2.3.18):

Theorem 2.3.6. Let n > 3, assume the potential V (z) is of Kato class, has
a finite Kato norm and its negative part V_ satisfies

n/2p (2 _
IV_llx < 2727 (2 1) (2.3.11)
Then the solution u(t,z) to the perturbed heat equation

up — Au+ V(z)u =0, u(0,z) = f(x) (2.3.12)

satisfies the dispersive estimate

z(;_;) 1 1
u(t, e < Ct2\e 2/ f]|Le, 5+5:1’ g€[2,0].  (2.3.13)

Remark 2.3.4. As noticed in [44], in dimension n = 3 the spectral repre-
sentation of the solution and an integration by parts are sufficient to prove
the dispersive estimate, provided suitable L' — L™ estimates for the spec-
tral measure are available. Here we follow a similar line of proof; however,
we prefer to apply the spectral theorem outside the real axis and to prove
estimates which are uniform in the imaginary part of the parameter. This
approach does not require to extend the limiting absorption principle to the
perturbed operator, as it would be necessary when working on the real axis.
See also the previous work [76] where the case of potentials with a small
Kato norm was considered.

2.3.1 Properties of the free resolvent

We have already studied the properties of the free resolvent in the last
section; here we review and expand those results in a more systematic way.
We start from the representation of Ry(z) = (=A — 2)~! in R® (see

e.g. [88]):

1 eiélz—yl
— —9g(y)dy for Im& > 0
Am Jgs |z =yl

1 eiiﬂwfy‘
—/ ——g(y)dy for Im¢ < 0.
Am Jge |z =y

(2.3.14)
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By elementary computations we obtain that for any A € R and € > 0

1 / etV A |z—yl

= — e el ul/ 2V g () dy (2.3.15)
4 |z —yl

Ro(A + ig)g(x)

where

A4+ (N2 +e2)1/?
2

These formulas define bounded operators on L?, provided € > 0 or A < 0.

When approaching the positive real axis, i.e., as € | 0, this property fails;

however if we consider the limit operators for A > 0

A = > 0. (2.3.16)

1 / eiiﬁ\wfy\

T 4r

Ro(A £140)g(x) (y)dy (2.3.17)

9
|z =yl
then the limiting absorption principle ensures that Ry(A & 40) are bounded
from the weighted space L2({(z)*dr) to L?({x)~*dz) for any s > 1, and
actually Ro(A £ i) — Ro(A £140) in the operator norm (see e.g. [1], [567]).

For negative A the estimates are of course much stronger since we are in
the resolvent set of —A. Using

£ £
0< A <=, > VA forall A <0
2 2V A
we have from (2.3.15), for all A <0, >0
Ro(\ £ Lo fe Vil 2.3.18
) < — _ ..
R i) < - [Tty @319
and actually for A < 0,e =0
- L pe VBl
o £i0(a) = - [ Tty

We collect here some immediate consequences of the above representa-
tions which will be used in the following. Since

e
Ro(h +i2) — Ro(r — ie))g = = [ SOVALZ =) —etomsirovis g

s |z —y]
(2.3.19)
we can write for all A\ € R and ¢ > 0
. . VA
I[Ro(A +ig) — Ro(A —ig)]gl|ee < 27: llgllz:- (2.3.20)

Recalling Definition 2.2.1, a straightforward computation shows that

: 1
IRBo(A £ i€)Vyllzee < lIVilxllglze  VAER, €20 (2.3.21)



45

for any measurable function V' (z), and in a similar way

1
[V Ro(A £ie)gllpr < EHVHKHQHLI VAeR, €2>0. (2.3.22)

Of course for negative A\ we have better estimates:

Lemma 2.3.7. Assume V is of Kato class and has a finite Kato norm.
Then for all § > 0 there exists Cs > 0 such that

V%

VIX

|Ro(A £ ie) Vgl < <5 + Gy ) lgllzee  YA<0, e>0 (2.3.23)

and

V%

v

IV Ro(A £ ig)g|| 1 < <5+c ) lgll.s  YA<0, e>0. (2.3.24)

Proof. By (2.3.18) we have

WA gVl ay,

|_47r |z —y|

|Ro(A £ ie)Vyg(z)

Now for any » > 0 we can split the integral in two zones |z — y| < r and
> r; for the first piece we have

1 1
/ Wyt vVIevlgy < L / W g1l
47T |lz—y|<r |:E y| 4m |le—y|<r |$ - y|

and this can be made smaller than d|g||z~ by the definition of Kato class
(2.2.1), provided we choose r < r(d). With this choice we can estimate the
second piece as follows

AT Jip—y|>r(s) [T — gl 47rr ()N |z =yl

where we have used the inequality e™® < 1/a, and this proves (2.3.23).
Estimate (2.3.24) follows by duality. O

We shall also need estimates for the square of the resolvent Rg(\ = ig)?.
Since by the resolvent identity

L Ro(2) = R3(2),

we have the explicit representations

Ro(\ +ic)%g (i\/_+z )1/e(ﬂ‘/x‘ﬁ)'x‘y'g(y)dy

(2.3.25)

2V
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and
1 .
Ro(X £i0)%g = im / eEVATYlg (1) dy. (2.3.26)

From these relations we obtain immediately the estimate, valid for all A € R
and ¢ > 0 with (X, e) # (0,0)

IRo(A % i)?gl = < (2.3.27)

1
el

2.3.2 The perturbed operator for large potentials

In Section 2.2.1 we proved the selfadjointness of the operator —A +V (x) for
a real valued small potential in the Kato class. We show here that the same
result can be proved also when the positive part of the potential is large, by
a slightly more involved argument. More precisely we have:

Lemma 2.3.8. Let V =V, — V_ with V3 > 0 be a measurable function on
R3 satisfying

Vi is of Kato class, ||V_||x < 4. (2.3.28)
Then the operator —A+V defined on C§°(R"™) extends to a unique nonneg-
ative self-adjoint operator H = —A +V with domain D(H) = H*(R?) such
that

(P, Hp) o = (b, =A%) o + (9, V)2 >0 Vop € HA(RY). (2.3.29)

Proof. We shall use the KLMN Theorem (see [91], Vol.II, Theorem 10.17).
Thus it is sufficient to verify the following inequality:

[ V@le)Ps <a [ [Vo@Pda+ el (2330

for some constants ¢ < 1, b € R and for all test functions ¢ (whence the
same inequality is true for all ¢ € H' which is the domain of the form

—(Ap,9)).
First of all we prove that for some a € ]0,1[ and for all b > 0

[ V-@le@)Pds < al Vel + Ul (2:3.31)
This is equivalent to
1 2
2 b\2
(V. @) 2| < alp, =Ap)p2 +bllellz. =a ) Ho+— ) o)),
L2
where Hy = —A is the selfadjoint operator with domain H2(R?). Thus,

1
writing g = (Hg + g) 2 ¢, the inequality to be proved takes the form

1 b 3
[V_|2 H0+a g|| < allgllL2,

L2



47

for some 1 > a > 0 and all b > 0; and this is equivalent to prove that

|TT*|| 22 = a® < 1 (2.3.32)

1
where we introduced the operator T = |V,|% (Ho+ %) ? and its adjoint

b\ 2
T*:(H0+E> V|

Using the explicit representation

(Ho—i-g)_lso yp /Rs e y|s0(y)dy

|z —y|
we can write

2

-1
1 b 1
Tl = V-1t (o + ) v =

L2
f\x y\ . ’
/W’ / V()| Hlo()ldy| de

and by the Cauchy-Schwartz inequality we have
) o~/ eyl Vel
<— [ |Vo(= /7V_ydy /7903; dy | dz.
e [ @I [ el

Now by definition of Kato norm we have (for all z and any a,b > 0)

=/ o lz—yl
e Va V_(y
/7|V—(y)ldy§/| ( )|dy§ IV_llx (2.3.33)
lz -y lz -y

which implies

. V. \/7|3’7 Z/|
MTnm_”'”//| ¢ Vo) Pdyde.

e -yl

Using again (2.3.33) we obtain

ITT |7 < ()2 lellZ:

which means

V_
ITT*|| 22 < % =a<1 (2.3.34)
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by assumption (2.3.28), and this proves (2.3.31)
To conclude the proof it is sufficient to show that for all test functions
@, for all @ > 0 and for some b =b(a) € R

[, Vi @le(e)de < al Vel + bl (2:3.35)

The proof is almost identical to the above one; the only difference appears
in estimate (2.3.33) where we split the integral as follows

nmmwz/ +/
|z—y|<r |e—y|>r

for arbitrary » > 0. Fix now d > 0; if we choose r > 0 small enough, the
first integral can be made smaller than ¢ by assumption (2.3.28); on the
other hand, with r chosen, the second integral can be made smaller than §
by choosing b large enough. In conclusion we have

e—\/g\x—y\
/ e Ve

|z -y

/e_ﬁx_y IV (y)ldy < 26
T V+Wey =
|z —y|
provided b in (2.3.35) is large enough.
Inequality (2.3.30) is now a trivial consequence of (2.3.31) and (2.3.35);
thus the assumptions of the KLMN theorem are satisfied and we can con-
struct H = —A 4+ V as a selfadjoint operator on H2. To check that it is

positive, we write

(“A+V)p,0) 12 = (=Dp, ) 12+ (Vo,0) 12 > [Voll7: = [(Vop, ) 2];

by inequality (2.3.31) we may continue

> (1-a)||Vel2e —bllel2: > —blle]2

for every b > 0, and this implies
(A +V)p,9)p2 > 0. (2.3.36)
]

Remark 2.3.5. The above proof can be easily extended to general dimension
n > 3. Indeed, the kernel Kys(z) of (—A + M)~! for M > 0 satisfies

1
lim sup el K(z) =0 (2.3.37)

Kiz)| < ——
RS AT Mt

for each fixed r > 0 (see e.g. [91], p.454), and these are exactly the properties
we used in the above proof. Moreover, the constant c,, is well known and is
equal to

ap = 4727 (g - 1) .
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Thus we see that the result of Lemma 2.3.8 is true for all n > 3, provided
the negative part of V satisfies

IV |k < 4x™?/T (g - 1) . (2.3.38)

2.3.3 Spectral calculus for the perturbed operator

Lemma 2.3.8 allows us to apply the spectral theorem and hence to use the

functional calculus for H = —A+V, i.e., given any function ¢(\) continuous
and bounded on R, we can define the operator ¢(H) on L? as
1
d(H)f = 9 L% — liJI})l/ d(N)[Rv (N +ie) — Ry (A —ie)]fdX  (2.3.39)
&

where

Ry(z) = (~A+V —2)7!

is the resolvent operator for H (see e.g. Vol. II of [101]). When the limit
absorption principle is satisfied, one can define the limit operators Ry (A=£:0)
and take the limit in the spectral formula as ¢ — 0. Instead, here we shall
use formula (2.3.39) exclusively, since our estimates will always be uniform
in the parameter € > 0.

For z outside the positive real axis we have the well known identities

Ro(2) = (I + Ro(2)V) Ry (2) = Ry (2) (I + VRo(2)), (2.3.40)

and a standard way to represent Ry (z) in terms of Ry(z) is to construct
the inverse operators (I + Ro(z)V) ™. This is the content of the following
proposition, which is the crucial result of the paper. In the following we
shall consider in detail the case of dimension 3 alone, but all the results
in this section can be extended to general dimension n > 2 by suitable
modifications in the proofs.

Proposition 2.3.9. Under the assumptions of Theorem 2.3.1 (or Theo-
rem 2.3.5) there exists g > 0 such that the bounded operators I + Ry(X +
ie)V: L® — L are invertible for all X € R, 0 < e < g9 with a uniform
bound

I(I + Ro(A£ie)V) M gpoipooy S C for all A\ER, 0 < e <ep. (2.3.41)

We need a few lemmas. First of all we recall the standard L? weighted
estimate of the free resolvent (see e.g. [1] or Vol.II of [57]; see also [6]):

Lemma 2.3.10. For all A > 0 and € > 0, the free resolvent Ry(\ +
ic) is a bounded operator from the weighted L*((z)%*dz) to the weighted
L?((z)=2%dz) space for any s > 1/2; moreover the following estimate holds
with a constant C' = C(s) independent of €, A:

“

[{z) ™" Ro(A £ ie) fl > < 7

[1{2)° fl L2- (2.3.42)
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The following is an elementary but useful property of Kato class func-
tions:

Lemma 2.3.11. A compactly supported function of Kato class has a finite
Kato norm.

Proof. Let V(x) be of Kato class with support contained in a ball B(0, R) C
R3. Then by definition we have the uniform bound

vV
/ Viy)ldy < / WVl 4, < ¢,
le—y|<1 e—y|<1 1T = Yl

for some Cj independent of z; thus, covering the support of V' with a finite
number of balls of radius 1, we see that V' € L!. Hence we can write

Ve [ ey [ MOy <y

|$ - y| lz—y|<1 |$ - y| z—y|>1 |$ - y|

and this concludes the proof. O
The next lemma is sligthly modified from [91]:

Lemma 2.3.12. If V(z) is a compactly supported function in the Kato
class, then there exists a sequence of functions V. € C§°(R3) such that ||V. —
Vigk — 0 and supp V. | suppV as € — 0. When V > 0, the functions V.
can be taken monnegative too.

Proof. By the preceding lemma V has a finite Kato norm, and clearly it
belongs to L!. Consider now a sequence of nonnegative radial mollifiers,
i.e., let p(x) € C§°(IR?) be a nonnegative radial function with support in the
ball {|z| < 1} such that [ p(z)dz = 1, and set p.(z) = e 3p(z/e). Then we
have the following standard properties of the Newton potential 1/|x|:

1 1
Tl * pe = Tl for |z| > ¢, (2.3.43)

1
_*PES

7] for all |z| # 0. (2.3.44)

1
]

Define now V. =V x p; for fixed = we have

‘/Jiyiﬂy‘/ﬁzgdz‘:‘/V(y)(mim -[5) dy‘

and since by (2.3.44) the term in brackets is positive,

< [vw (|x i %U W= / ||;/ Ey)y|| W
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where in the last step we used (2.3.43). Taking the supremum in z, we

obtain V)l
IV = Vi < sup | Dl g,
z€R3 J |z—y|<e |$ - y|

and recalling Definition 2.2.1 we conclude that ||V. — V||x — 0. Finally,
the support of V; is contained in the set of points at distance < ¢ from the
support of V', and clearly V' > 0 implies V7 > 0. U

We prove now a property of the squared operator (RoV)?:

Lemma 2.3.13. Let V be a compactly supported function in the Kato class.
Then for all X > 0, € > 0 and § > 0 there exists a constant Cs depending
only on § such that

HRMAi%Hﬁ%OiﬁdVﬂhmg<6+$%>Hﬂhw- (2.3.45)

Proof. By the maximum (Phragmén-Lindel6f) principle, since Ry(z) is holo-
morphic, it is sufficient to prove the estimate for € = 0, i.e., for the operators
Ry(X £140). If we approximate V' by the sequence of test functions V. con-
structed in Lemma, 2.3.12, we can write

Ro(A£3i0)VRy(A£i0)V = Ro(V — Vo)RoV + RoVoRo(V — V.) + RyV. Ry V..
and using estimate (2.3.21) we obtain
IR0V RoV fllzee < (2m) M IVl - IV = Vellie - | flzoe + | RoVeRo Ve f 2o

- (2.3.46)
We can choose € = £(§) so small that

_ 1
@) V- IV = Vellie < 56,

and hence it sufficient to prove (2.3.45) with V replaced by V.. Now we have

V. V.R,yV.
|mnmnﬂﬂs/‘ |Adm%ﬂﬂm+/‘ VeRoVef] )
lz—y|<r |z —y| |o—y|>r |z — y|

the first term clearly satisfies

/ Vel dySC/ dy =o(r)—0
|lz—y|<r |37 - y| lz—y|<r |$ - y|

since V; is bounded, so that we find for all > 0

1
[BoVeRoVef ()] < o(r) [Vl fllzee + —lIVeRoVef (2.3.47)
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where in the last step we used the property

Vel

I A

already used in the course of the proof of Lemma 2.3.12. In order to estimate
the second term in (2.3.47), we may write for some s > 1/2

IVeRoVefllpr < ()" Vell 2 [[{x) = RoVe £l 2

and applying Lemma 2.3.10 we get

o
< ﬁ’“ 2)° Vel 22| fllze < \/—HfHLOO

since V; is in C§°. Coming back to (2.3.47), we obtain

RoV.RoV.f (2)] < (a<r>||V||K||f||Loo ; 9%) 1l

whence (2.3.45) follows. O

We prove now a fundamental compactness property:

Lemma 2.3.14. Let V be a compactly supported function in the Kato class.
Then for all X € R, € > 0 the operator Ry(A £ie)V: L® — L™ and the
operator VRy(A%ic): L' — L' are compact operators. Moreover, if f € L™
then the function Ry(A x£ie)V [ satisfies

Ro(A+ie)V f| < % (2.3.48)

for some C > 0, and hence in particular Ro(\ £ ie)V f € L?({x) %%dz) for
all s > 1/2 and A\, e > 0.

Proof. If the support of V' is contained in the ball {|z| < M}, we see that,
for all |z| > 2M and y in the support of V', we have |z —y| > |z|-M > |z|/2.
Thus by the explicit representation of Ry we get

2
RV f(2)] < /Md@/ <2 / Vildy for |z > 2M
|z —yl ||
and recalling that V € L' we obtain the inequality
2
RVl for fa] > 201 (2.3.49)

From (2.3.49) and the usual estimate

[RoV f ()] <

BV £ ()] < 11K

1fllzee-
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we easily deduce the final statement (2.3.48) and that RyV f € L?((z)~%*dx)
for all bounded f and s > 1/2.

In order to prove the compactness property, we may assume that V is
a smooth function with compact support. Indeed, by Lemma 2.3.12, V' can
be approximated in the Kato norm by test functions V., so that RgV is the
limit of the sequence of operators RyV; in the £(L°°; L°°) norm, since

1
1RoVz = RoVllgroesnoey < - lIVe = Vi

Thus the compactness of RgV follows from the compactness of RyV.. A
similar argument holds for V Ry. From now on, we shall assume that V' €
cge.

Let f; be a bounded sequence in L*°; writing

1 eii\/z‘x_y‘ e
V:RoV f(x) = E/V(y)f(y)vm (We elz—yl/2vAe dy

we immediately obtain a bound for ||[VRyV f;|| 1o, uniform in j (recall that
V now is smooth and compactly supported). Thus an application of the
Ascoli-Arzeld theorem shows that the sequence RoV f; is precompact in the
L norm on any bounded set in R3. Using this compactness property for
small z and again inequality (2.3.49) for large x, by a diagonal procedure
we obtain that RoV f; has a uniformly convergent subsequence on the whole
R3.

To prove the compactness of V Ry we write it as V Ry = A, + B, where

Vig) [etvail-d
Argle) = 2 [ e R = gty (2350

Byg(z) = e el U2V 1y, ( — y))g(y)dy; (2.3.51)

Vix) etivAclz—y|
Ar / |z -yl

here x,(y) = x(y/r) is a cutoff function equal to 1 for z near the origin and
vanishing for large x. It is easy to show that B, is a compact operator on
L'; indeed, it is a bounded operator from L! to W11 (Q) for Q any bounded
open set containing the support of V', while W1!(Q) is compactly embedded
in L'(R*) by the Rellich-Kondrachov Theorem. Since || A, ||z(z1;01) — 0 as
r — 0, we regard as above V Ry as the uniform limit of compact operators,
and this concludes the proof. O

The following version of the same lemma will be useful later on:

Lemma 2.3.15. Assume V satisfies the inequality |V (z)| < C{z)™370 for
some C,§ > 0. Then all the conclusions of Lemma 2.3.14 remain true.
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Proof. The estimate follows immediately from the standard inequality

dy C
/ W gl = (@)

(see e.g. Appendix 2 of [2]). The compactness property is proved as above
using the Ascoli-Arzela Theorem. O

We are now ready to prove the main proposition of this section.

Proof. (of Proposition 2.3.9). The inversion of I + Ry(z)V : L>® — L™ is
quite easy when Rz << 0. Indeed, Lemma 2.3.7 states that for all § > 0
there exists a constant Cs > 0 such that

|4
||R0(>\Zl:i€)V||£(Loo;Loo) §5+05w YA<0, e>0.

Nk

Hence, in particular, for A < —§%(C;||V'||x) 2 we have || Ro(Atie) V|| g(100;00) <
20, and this means that the norm [|Ro(X =+ ie)V||(p=;1~) tends to 0 for
A — —oo, uniformly in €. Thus I + Ry(A £ i)V can be inverted by expan-
sion in Neumann series for any € > 0 and any A\ < —M provided M > 0 is
large enough, and the £(L°°; L*°) norm of the inverse operator is bounded
by a constant depending only on M (and V).

We now consider the case Rz >> 0. Let V = V; + V5 be as in Theorem
2.3.1, and write for brevity

T=Ro(2)V1,  S=Ry(2)Va.

We first notice that I + S can be inverted for all z € C, with bounded
inverse; indeed, by (2.3.21) the norm of S: L* — L% is bounded by
V2|l /(47), which is strictly smaller than 1 by assumption (2.3.3), and
the result follows again by a straightforward Neumann series expansion. We
thus get for all z

(T + S) Ml gqpoespoey < (1= [|Valli/(4m) " (2.3.52)

We then invert I + T for large A = Rz. Lemma 2.3.13 ensures that
IT2|| £(1o0;150) — 0 as A — oo. This implies that for any & €]0,1[ we can
find As such that for all Rz > As, I — T2 is invertible with norm

‘ -

(I = T?) "M gpoesnoe) < (2.3.53)

1—

[«

Since I — T has norm in £(L*; L) bounded by 1 + (47)~!||V1||x indepen-
dently of z and
I-TY(I-TH ' =I+T)",
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we conclude that also I + T is invertible for any Rz > Ay, with bound

1

175t Villx/ (4m)). (2.3.54)

I+ 1) "Ml £poe;ze) <
Consider now for Rz > As the operator
S(I+T)

by the usual bound ||S|z(gec;r) < [|Val|x/(47) and by (2.3.54) we obtain

@
1-46

] 1 Lo, Il
1 —
IS+ T ewmnm) < gVl (1+ TEL) =

where the constant «, recalling the main assumption (2.3.3), satisfies

Wallx (1 + “Vl“) <1
47

o=

1
A7
Hence we see that

[0}

@y
1-5°

IS(L +T) Ml g(roosoe) <

provided § < 1—aq, i.e., provided A; is large enough. Thus, choosing a value
of A\s large enough, we have that for Rz > As the operator

I+S(I+17)"!
is invertible. Finally, writing
IT+S+T) ' =+ 'T+ST+17)"H7 !,
we see that I + S+ T =1 + RyV is invertible with the bound

_ V] 1
1T + Ro(2)V) Ml gguosie) < (1 n ”4;”) @35

for Rz > As.

It remains to invert I + S + T for —M < Rz < A5, 0 < Sz < g (or
0 > 3z > —eg), with a uniform bound. To this end we shall apply Fredholm
theory; notice that the standard analytic Fredholm theory cannot be applied
directly since we are not in the usual Hilbert framework but we are working
in L* instead. We proceed in two slightly different ways according to the
set of available assumptions.
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2.3.4 Case A: assumptions of Theorem 2.3.1

The first step is to prove that I +S + 7 : L™ — L is injective. A general
argument shows that this is always the case when z is outside the positive
real axis [0, +o0[, provided V = V; + Vs satisfies (i), (ii) of Theorem 2.3.1.
To see this, we approximate V; with a sequence of nonnegative test functions
Vs in such a way that [|[V3 — Vj||x — 0 (see Lemma 2.3.12); thus we can
decompose V' as

V =Vs+ Wy, 0< Vs € CF°, Wl = Vo + V1 = Vsl < 4n

for 0 small enough. Assume now that the bounded function g satisfies the
integral equation
(I+Ro(2)V)g=0, z¢R";

we shall prove that ¢ = 0. Indeed, we can rewrite the equation as follows:
(I + Ro(2)Ws)g = —Ro(2)Vs9 € L.

Now, Ry(z)Wj; has norm < 1 as a bounded operator on L, hence we can
invert I + Ro(z)W; and we obtain

g = —(I + Ro(2)Ws) ™' Ro(2)Vsg.

Note that
(I 4+ Ro(2)W;5) 'Ry(2) = (—2z — A+ W;) !

is exactly the resolvent operator of —A + Wy, at a point z outside the
spectrum. Moreover, Vg is in L2, hence g = (—z — A + Ws)™'V;g is in H?;
since

(—z—A+V)g=0, z g Rt

we conclude that g = 0 as claimed.

When z € [0, +00], assumption (iv) of Theorem 2.3.1 means exactly that
I + S+ T is injective on L*°, thus we have nothing to prove in this case,
and we obtain that I + 5 + T is injective for all values of z € C.

The second step is to prove that I + .S + T is invertible. Recalling that
I + S is invertible for all z, we can write

I+S8S+T=I+TI+S) HI+S)

which implies that I + T(I + S)~! is also injective for all z. But 7', and
hence T'(I + S)~! are compact operators on L*, thanks to Lemma 2.3.14.
By Fredholm theory this implies that I + 7'(I + S) ! is invertible, and in
conclusion I + S + T is invertible too and the following identity holds:

I+S+T)t=T+8)'I+TUI+8)~HL (2.3.56)

The last step is to prove a uniform bound on (I + S+ 7)!. This is the
content of the following lemma, which is our L* replacement for the usual
analytic Fredholm theory in the Hilbert spaces L?({x)*dx).
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Lemma 2.3.16. Assume V = Vi+ Vo, with V) compactly supported, ||V1||x <
+o0o, and |Va||x < 4m. If the operator I + Ry(2)V : L™ — L is invertible
for all z in a compact set D C C* = {Rz > 0} (or D C C ), then

sup |(1 + Ro(2)V) ™ || g(1o05120) < 0.
zeD

Proof. We write as before
T = Ry(2)V1, S = Ry(2)Va (2.3.57)
and when z, is a sequence of points in C we shall also write
T, = Ro(zn) V1, Sn = Ro(zn)Va (2.3.58)

Moreover, we shall denote by L% the space of bounded compactly supported
functions, and by Lg° its closure in L°°; in other words Lg° is the space of
bounded functions vanishing at infinity, with the uniform norm.

The proof consists in several steps.

STEP 1: S is a bounded operator from Lg° into itself. Indeed, given any
¢ € Lg°, decompose it as

¢ = dn + Yu, dm = ¢ Lijzj<my

where 1y|,<ary is the characteristic function of the ball {|z] < M}. As in
the proof of Lemma 2.3.14, we have immediately

C
On the other hand,

since ¢ vanishes at infinity. Then, given any 6 > 0, we may choose M = Mj
such that |||z < 0; from (2.3.59) we obtain

Vallp:

|z]

1S6()] < ISt ()] + 1Sa ()] < T for ja] > 2Ms
and this implies S¢ € L.

STEP 2: If D > 2z, = z and ¢ € Lg°, then S,¢ = S¢ uniformly on R"
(with the notations (2.3.58)). To prove this, we notice that

jeiunle—yl _

provided wy,w stay in a compact subset of C; from this, it easily follows
that
|(Ro(zn) — Ro(2)f| < C(D) - |2"% = 23/ - || flI s (2.3.61)
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with the determination (pe’?)!/? = \/ﬁew/Q. Now, let ¢ € Lg°; to prove that
Sn¢ = Ro(zn)Vad converges to S¢ = Ry(z)Va¢ uniformly, we decompose
¢ = ¢p + P as in Step 1 and write

|Snd(z) — Sé(z)| < |Sndm(z) — Shrr(2)| + [Sntpar(z) — Sthar()].

The second term is bounded by

|Sntpar () = Sar(2)] < Vallxellparll e

which can be made smaller than § > 0 provided M > Mj, as in the preceding
step. To the first term we apply (2.3.61) and we obtain

|Snbar (@) — Shar(z)] < C(D) - |25/% = 22 [Vl i gy <any b [l o

whence we see that this term tends uniformly to 0 for each fixed M, when
Zn — 2, Zn, 2 € D, and this proves the claim.

Note that in Steps 1 and 2 we did not use the assumption ||Va||x < 4m;
both properties are true for potentials of arbitrary (but bounded) Kato
norm; in particular, they hold for 7', T,.

STEP 3: It D 3 2z, — 2, ¢ € Lg® and k > 1, then Skgp — Sk ¢ uniformly
on R" (where S¥, S* are the k-th powers of the operators defined in (2.3.57),
(2.3.58)). It is sufficient to write

k
Sh—SF=>"8I"1(S, — )k
j=1

and prove the convergence of each term separately. Indeed, S¥7¢ is a
fixed element of LY by Step 1, hence (S, — S)S*7¢ — 0 uniformly by
Step 2, and remarking that S}, are bounded operators on L with norm
157l < |ISnllY < 1, we conclude that S; (S, — S)S*¥J¢ — 0 uniformly, as
claimed.

STEP 4: If D 3 2, — zand ¢ € L, then (I+5,) ¢ tends to (I+5) 1¢
uniformly on R”. To prove this, note that can write for any NV > 1

N 00
(T48) = (I+8) 1 =S (-1 (s -5+ 3 (~1)F(sE - sb;
k=1 k=N+1

the second sum can be estimated in the norm of bounded operators on L™
as follows

o0
S ||N+1 ||S||N+1
_yk(gh _ gyl < [19n
2 VNS =) S e g

which is smaller than § for N > Ny large enough; on the other hand, we can
apply Step 3 to the terms S¥ — S* for £ = 1,..., N, and this concludes the
proof of this step.
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STEP 5: Conclusion of the proof. We know already that (I + S)~! is
well defined with bounded operator norm for all z, hence by the identity

I+T+S=I+S8)I+(I+8)7'T)

we see that it is sufficient to bound the operator norm of (I + (I +S)~'T)~!
for z € D. By the uniform boundedness principle, our claim reduces to the
following: given any sequence z, in D, which can be assumed to converge
to z € D, we have that for all ¢ € L> there exists c¢(¢) > 0 such that, for
all n,

(T + (T + S,) ")~ ¢l < () (2.3.62)

(just take any sequence z, such that the norm in (2.3.62) converges to the
supremum over D). We use again the notations (2.3.57), (2.3.58).
Indeed, assume by contradiction that there exists ¢ € L* such that

NI+ I+ 8, T,) Y| = 00 asz, — 2 (2.3.63)

and consider the renormalized functions

(I+(I+8,) ') ¢
I+ (I+8,) 'T) gl

Pn =
Clearly we have
|l =1, (I4 I+ Sy) ‘T —0 in L™, (2.3.64)
We have also ||T,, — T'|| — 0, since using again (2.3.61)
(T = T)p| < O(D) - |z/* = 2| - Vil | Bl e
This and (2.3.64) imply
[Pnllee =1, (I+ (I +80) 'T)hp =0 in L™ (2.3.65)

Now, by Lemma 2.3.14, we know that 7" is a compact operator on L*> and the
image of T' is contained in L§° (see (2.3.48)), hence by possibly extracting
a subsequence we obtain that T, converges uniformly to some function
¢ € Lg°. Now we can write

(I +8n) T = (I 4 Sn) H(Thn — ) + (L + Sn) ¢

since ||(I +S,)7!|| < C independent of n, the first term converges uniformly
to 0, and by Step 4 we obtain that

(I+8p) " Tpn, — (I+S)7%¢
uniformly. By (2.3.65), this implies the uniform convergence

bn = —(I+8) ¢ = ¢
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notice in particular that ||¢||fec = 1. Summing up, we have proved that
Yoo =—(I+85)7¢, Ty (=TYy
and this implies
Y+ (I+8) Tp=0 ie. [+S+T)p=0

which is absurd since I + T + S is invertible and ||¢||p~ = 1. O

2.3.5 Case B: assumptions of Theorem 2.3.5

We note that a potential V satisfying the new assumptions can be split as
V =V{+ V) with V{, V] as in (i), (ii) of Theorem 2.3.1 (take V{ = V for
|z| < R and 0 outside, with R large enough). Thus, for z ¢ [0, \s] the same
arguments as in Case A apply; also Lemma 2.3.16 can still be used. Hence
it is sufficient to prove that I + Ry(z)V is invertible for z € [0, \s] under the
new assumptions.

Since V; fulfills the conditions of both Propositions 2.3.3 and 2.3.4, we
see that the operators I + Ry(XA £10)V; are injective on L* for all A > 0.

We now prove injectivity also at A = 0. Thus, let the bounded function

f satisfy
flz)+ / %dy = 0; (2.3.66)

in particular, f is a weak solution of
Af=Vif e Ll?> = fe H

Now, if V}(z) < C{z)~37? for || > M, we have immediately, for all |z| >
oM,

C dy C
< 0 — o - 7 <=
£@] < Vil apean 1 e 17 + Ol [ T S T

]

(see Lemma 2.3.15 above). Differentiating (2.3.66) we see that V f satisfies
an analogous integral equation

Vi) + [ )0y = 0

which implies

VF(@)] < CIfll~ / 'Vl(yy’|'2dy.

|z —
Proceeding as above, we can write for |z| > 2M

dy C

C
< o ——= o [ ——2 <
IV (@) < Vil qaj<anllfllL P +Clfle /<y>3+5|x_y|2 S TP
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thanks to the standard inequality (see [2])

dy C
/ WP — o = @)

Thus we have proved that for all |z| > 2M

C C
f@) < V@) < 3 (2.3.67)

] |z[?
Now a standard cutoff trick can be applied (see the Appendix of [51]): let
¢ € C§° equal to 0 for || > 2 and equal to 1 for |z| < 1, consider the
identity

y 1 y -
VIE+ValfR) 6 (%) dy = -+ Vo (%) Tdy
J s vistye (R av=—5 [ vo(g

and apply the estimates (2.3.67) to the right hand member, for R large
enough. We obtain

[P vilrPy o (%)< &

and taking the limit as R — oo we conclude that f = 0, i.e., 0 is not a
resonance.

Writing as before T' = Ry(z)V;, we have just proved that I+7T is injective
on L™ for z € [0,\s]. Now we remark that we can split V3 = V{ + V/" as
the sum of a compactly supported function V{ € L?, hence with bounded
Kato norm, and a function V{" < C(z)737%. The corresponding operators
T =T + T" are compact on L™ by Lemmas 2.3.14, 2.3.15 respectively,
hence T' is compact and by Fredholm theory we can conclude that I + T is
invertible for all z € [0, A\s]. Then Lemma 2.3.16 ensures that the operator
norm (I + 7')~! is bounded by some constant Cy uniform on z € [0, As].

Now, writing

I+T+S=I+T)I+(I+T)19)
we see that in order to invert /+7+S it is sufficient to invert I+ (1 +7)~'S;

e Wallx _ , Vel
_ - 2|l K 2|l K
I(T+T)= S| < (I(T+71)7" - <Gy
A7 4
this can be achieved by a Neumann expansion as soon as the Kato norm of
V5 is small enough, i.e.,

47

\%
1Vallx < C

=: ¢(V1).
This is exactly assumption (2.3.7).

Thus we have proved that I + S + 1" is invertible for all complex z, and
a last application of Lemma 2.3.16 concludes the proof of Case B. O
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We can now draw some consequences which shall be used in the following.

Corollary 2.3.17. Under the assumptions of Theorem 2.3.1 (or Theorem
2.3.5) there exists g > 0 such that the bounded operators I + V Ry(\ +
ie): L' — L' are invertible for all A € R, 0 < & < g with uniform bound

(I +VRo(Axie)) gy, <C forall A€R, 0<e<e. (2.3.68)

Proof. The operators I + V Ry are one to one on L' by duality, since by
Proposition 2.3.9 the operators I+ RyV are onto. They are onto by Fredholm
theory, since V Ry are compact operators on L' by Lemma 2.3.14. Finally,
the bound on the inverse also follows by duality and the bound (2.3.41);
indeed, (L')" = L® and hence

I(I+VRy)fllpr = sup /h(I—i—VRo)fda;: sup /f(I—I—ROV)hd:U.
1AllLoo =1 Ikl Loe =1

O

As a consequence of (2.3.40) and of Proposition 2.3.9, Corollary 2.3.17
we can write the standard representation formulas:

Ry(2) = (I + RyV) 'Ry(2) = Ro(2)(I + VRy) L. (2.3.69)
By combining these relations we easily obtain the identity

Rv()\ + i&) — Rv()\ — i&) =

= (I + Ry(\ —ie)V) M (Ro(\ +ie) — Ry(A —ie))(I + VRp(\ +ig)) ™"
(2.3.70)

for all A € R, € €]0,¢p]. Then by the bounds (2.3.20) and (2.3.41), (2.3.68)
we obtain

I[Bv (A +ie) — Ry (A —ie)]gllze < OVA:lglp1- (2.3.71)

for all A € R, ¢ €]0, &¢].
Moreover from (2.3.69) we get

Ry(A£ie)? = (I+Ro(A+ie)V) 'Ro(A£ie)?(I+ VRy(Axie)) ! (2.3.72)
and recalling (2.3.27) we obtain

C

Ry (\ £ie)?g| .~ <
| Rv ( )*gllz < /n

lgll 2 (2.3.73)

for all A € R, € €]0, eo].
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2.3.6 Equivalence of Besov norms

This section is devoted to prove the equivalence of perturbed and standard

Besov spaces . ‘
B (R*) = B} (V) (2.3.74)

which holds for 0 < s < 2 and 1 < g < oo under our assumptions. An
analogous property holds also for non homogeneous spaces.

We begin by adapting to our situation a result of Simon [91] (whose
proof we follow closely). Hoping that estimates (2.3.77) and (2.3.79) may
be of independent interest, we shall give the proof for general dimension
n. If the negative part of the potential is in the Kato class but not small,
by Theorem B.1.1 of [91] the semigroup is still bounded, but its norm may
increase exponentially as t — oo.

Proposition 2.3.18. Assume the potential V. =V, —V_ on R* n > 3,
Vi >0, satisfies
Vi is of Kato class (2.3.75)

and "
IV_|lk < cn = 22"2)T (5 - 1) (2.3.76)

and consider the selfadjoint operator H = —A + V. Then for all t > 0 and

1 <p<q<oo the semigroup e is bounded from LP to LY with norm
—tH (27”5)77 n (1 1)
e ey < , =—|-=—=1. 2.3.77
|| ||£(Lp7Lq) = (1 _ ||V7“K/Cn)2 vy 2 P q ( )
Moreover, under the stronger assumption
1
IV-llk < 5Cn (2.3.78)
e is an integral operator with kernel k(t,z,y) satisfying
(27Tt)_n/2 7‘ a2
k(t, z,y)| < e leyl*/8t, 2.3.79
S [ P (25.79)
Proof. In the following we shall use the more convenient notations
1 1

thus in the final step it will be necessary to substitute t — 2¢ and V' — V/2
in order to obtain the correct estimates.
The fundamental tool will be the Feynman-Kaé¢ formula

(™ f) (@) = Bq (exp (— /OtV(b(S))dS> f(b(t))> (2.3.81)



64

which is valid under much more general assumptions (see e.g. [111]). Here
E, is the integral over the path space  with respect to the Wiener measure
pz, ¢ € R™ while b(t) represents a generic path (brownian motion). We
shall not need the full power of the theory but only a few basic facts:

i) Given a non negative function G(z) on R" we have the identity

B, ( /0 tG(b(s))ds) ~ [ Qe - 1)Gwdy (2.3.82)

where Qy(x) is the function

t 2
Qi(z) = /0 (2ms) /2121725 g, (2.3.83)

It is easy to see by rescaling that

. 92—
OO(QWS)_R/QB_‘x‘Z/QSds = - T%_2€_Td7'|$ =T (ﬁ - 1) -
0 0 27r"/2 2 27'('”/2

so that by definition of ¢, (see (2.3.76))

Qt(:v) < L

— Cn|x|n72

(2.3.84)

and by (2.3.82) .
E, ( /0 G(b(s))ds) < iuGuK. (2.3.85)

ii) Khasminskii’s lemma ([65]; B.1.2 in [91]): if G(z) is a non negative
function on R" such that for some t

o= sup 7, (/Ot G(b(s))ds> <1, (2.3.86)

then

sup B, (exp (/OtG(b(s))ds>> < lia. (2.3.87)

An immediate application is the following: if V_ satisfies
IV-llx <en

we have ;
1
a=supk, (/ V(b(s))ds) < c—||V,||K <1
T 0 n

by (2.3.85), so that

sup B, (exp ( /0 t V(b(s))ds)) < W (2.3.88)
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These simple facts gives us the first L — L°° estimate for the semigroup.
Indeed, by the Feynman-Ka¢ formula we have

le™ " fllLe = sup B, (exp (— /OtV(b(s))ds> f(b(t))) <

TeR™

< Ul (e (= [ 17 0tepias) ) < M s

The second step is a L? — L™ estimate. By the Feynman-Ka¢ formula
and the Schwarz inequality

t 1/2
e_tH T ex — _(b(s))ds 1/25
e £ )ISEI< p( 2 [ v )>d)) E, (1 ((0))

= [(e 21 o) Y2 et 212 (2.3.90)

where in the last step we used again the formula; now e "0 is the standard
heat kernel which has norm (27t)~"/2 as an L' — L°® operator, while we can
apply estimate (2.3.89) to the operator e *(H0+2V)  We thus obtain

_ 1| oo _
which implies
2mt) /4
et fllpe < ( 2, 2.3.91
provided
c
V-l < 2.
By duality, since e is selfadjoint, we obtain the L? — L™ estimate
omt) /4
et < ( : 2.3.92

using the semigroup property we can write
_ _tyg _t
e tHf —¢ 2H€ 2Hf

and applying (2.3.91) first, then (2.3.92) we obtain

—tH o < (Wt)_n/Q
le T le= = G e

Now recalling (2.3.89), by duality and interpolation we obtain

AAVAR (2.3.93)

o (mt)~7
le e = T v e 7en

5111l e
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(the constant could be slightly but not essentially improved) with v as in
the statement. The change t — 2t, V — V/2 gives (2.3.77).

Let now g(x),h(x) be bounded functions; the same argument as in
(2.3.90) gives

1/2

e h(@)| < [ EF2R) )] (el (2)]

and multiplying by ¢(z) and taking the sup we get
_ . /2, — 1/2
llge™ Bl oo < [lge™ 2|12 | ge ™o h | 2. (2.3.94)

We choose
9 =XK1, h=fxK,
where f(z) is a bounded function while x g, , Xx, are the characteristic func-

tions of two disjoint compact sets K1, Ko. We may estimate the first factor
in (2.3.94) using (2.3.93) as follows

—n/2
~t(Ho+2V) 111100 < lle=tHOA2V) B[] 00 < (mt)
loe il < e il < Gy sl

while for the second we may use the explicit kernel of e7tHo j.e.,
(2t) /2 exp(—|r — y|?/2¢)
and we obtain
lge o bl < (@mt) "2 exp(=d2/20) | frallp,  d = dist(Ky, Ko).

In conclusion we have
2
)—n/ZB—d /4t
4:“V “K/C ||fXK2“L1a
— n

d= diSt(Kl, Kg)
(2.3.95)
By the Dunford-Pettis Theorem (see Treves [105] and A.1.1-A.1.2 in [91)),

this implies at once that e " has an integral kernel representation, with
kernel

_ it
ke Fll <

(Wt)in/2 _| 2
k(t — x—yl|?/4t

and this concludes the proof (after rescaling back ¢t — 2¢, V- — V/2). O

We shall now use the above kernel representation of the semigroup to
improve a result due to Jensen and Nakamura (Theorem 2.1 in [58]):
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Proposition 2.3.19. Assume the Kato class potential V =V, —V_ on R",
n >3, Vi >0, satisfies
IVillg < o0 (2.3.96)

and 1
— . n/2 n
|| [/_“ K < —2Cn =T /| (—2 — 1) (2397)

and consider the selfadjoint operator H = —A+V. Then for any g € C§°(R)
and any 0 > 0 the operator g(O0H) is bounded on LP(R™), 1 < p < oo, with
norm independent of 0:

||g(0H)||[,(LP;LP) < C(p,n,g,V) (2398)
The same property holds for the rescaled operators

“g(HH)Hﬁ(LP;LP) < C(panagv V)a (2399)

where Hy = —A + 0V (\V/0x).

Proof. The proof for fixed 6 is contained in [59]. In [58], Theorem 2.1, the
result was extended to the uniform estimate (2.3.98) for 0 < 6 < 1, under
assumptions on the potential weaker than ours. Following that proof, in
order to extend the result to # > 1 it will be sufficient to prove that a
few estimates are uniform in @ > 1. More precisely, consider the rescaled

potential
Vio(z) = 0V (V0z); (2.3.100)

notice that the Kato norm is invariant under this transformation:
Vollg = IV k- (2.3.101)

Consider the operator
Hy=-A+Vj. (2.3.102)

We proceed exactly as in the proof of Theorem 2.1 in [58]; as remarked there,
(2.3.98) is a consequence of (2.3.99). Thus we are reduced to prove that

lg(Ho)llz(Le;Lry < C (2.3.103)

uniformly in 0, and this amounts to prove three estimates uniformly in 6:
i) a pointwise estimate for the kernel of e ¢,
ii) an L? — L? estimate for the operator (Hg + M)~1/2, M > 0 a fixed
constant (we can take M = 1 here),
iii) an L? — L? estimate for the operator d,(Hy + M) /2.
Step i) follows directly from estimate (2.3.79)

(27#)7”/2 6—|a:—y|2/4t.

ky(t, z, <
| (9( y)| 1_2||V0—||K/cn

(2.3.104)
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which is uniform in € > 0 since by (2.3.100)
Vo_llx = V- Ilx

does not depend on 6.
Step ii) is trivial since ||(Hy + M)*1/2||£(L2;L2) < M2, To get iii), we
must prove that
|0 (Hy + M)~ 2|2 < C) flz2

or equivalently
lgll 1 < Cll(Hg + M) ?g]| 2 (2.3.105)

for some C' independent of # > 0. We rewrite (2.3.105) as
C Mgl < (—Ag,g) + (Vog,g) + Mlgl2s. (2.3.106)
Clearly (2.3.106) is implied by
((Vo—g,9)| < allg|ly + M|gl|?:, «@<1, «independent of 6. (2.3.107)

Now recall (2.3.31), where we proved the inequality in dimension n = 3: for
allb > 0

|(Vagp, )| < a(=Ap, ¢) +bllellL (2.3.108)
where by (2.3.34)
2 _ IVellk
=— 23.1
a ppm (2.3.109)

We can now apply (2.3.108), (2.3.109) to Vp_ whose Kato norm is indepen-

dent of 6: v v 1
2o Woll Vel _ e _ 1

47 47 81 4

by (2.3.97), and this concludes the proof of iii) in dimension n = 3.

The proof for n > 3 is identical; it is sufficient to use again (2.3.31),
(2.3.34) which are still true for general dimension n, as noticed in Remark
2.3.5. U

The following consequence will be useful:

Corollary 2.3.20. Assume V satisfies the assumptions of Proposition 2.3.19,
let Hy = —A + 0V (V0z), Hy = —A, and let p;(s) = po(277s), 1;(s) =
$0(2775) be two homogeneous Paley-Littlewood partitions of unity, j € Z.
Then we have the estimates: for all 5,k € Z,

o (VEHp) 4k (VHo) | (150 < C2 52 (2.3.110)

with a constant C' independent of j,k and of @ > 0. The same estimates
hold interchanging Hy and Hy.
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Proof. We first note two consequences of (2.3.98): for all j, with a constant
independent of j,

i (VHg)Hyll g(rosrey < C2%, o (VH) Hy M| g (s < C27%
(2.3.111)
and the analogous ones for Hj instead of H (indeed, the case V = 0 is a
special case of (2.3.111)). The first one follows by choosing

9(s) = po(Vs)s = g(2 ¥ Hy) = ¢;(VHg)2 ¥ Hy;
the second one follows by
9(s) = po(Ve)s™' = g(27¥Hy) = j(VH)2Y H,".

Then we can write

0;i(VHg)yu (v Ho) = ¢j(VHg)Hy " Hytpy(v/Ho) =
= ¢;(VHg)Hy " Hopr(v/Ho) + ¢j(VHg)Hy Vot (\/Ho).

The first term can be estimated immediately using (2.3.111):

lo; (VHg)Hy " Hotby (v Ho) |l (o, poy < C27 212K,

for the second one we may write

l; (VHg)Hy 'Votbr (v Ho) |l c(oipey < C2 % |Vythi (v Ho)ll £ (1o 10)

and since
Vot (v/Ho) = VyRo(0) Hotpr(v/Hp),

recalling that VpRy is a bounded operator on L' (with norm proportional
to the Kato norm of Vj which does not depend on 6) and applying again
(2.3.111) we obtain (2.3.110).

For higher dimension n > 3 the proof is identical; only in the last step
we need the estimate

IVRo(0)fllr < CIV Ikl

which is true for any n. Indeed, Ry(0) apart from a constant is the con-
volution with the kernel |z|?~™, and this gives immediately that Ry(0)V is
bounded on L* with norm C||V||g. By duality we deduce that V Ry (0) is
a bounded operator on L' with the same norm. O

Using Corollary 2.3.20 we can show the equivalence of non homogeneous
Besov spaces nyq(V) with the standard ones, and later on we shall prove
the more delicate result concerning the homogeneous case. We recall the
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precise definition: given a homogeneous Paley-Littlewood partition of unity
©i(s) =o(277s), j € Z, we set for p € [1,00], g € [1,00[, s €R

1/q
11155, 0 = | 2 2%le; VDS,
JEZL

with obvious modification when ¢ = oo. On the other hand, if we consider
a non homogeneous Paley-Littlewood partition of unity, i.e., ¢; as above for

g > 0, and we set
Yo=1-2 ¢
320

we have 9y € C§°(R"), and we can define the non homogeneous Besov norm

as
1/q

11l vy = | IoVEDFIIT + D 270, VH)fI1],
Jj=0
When V' = 0 we obtain the classical Besov spaces, which we denote simply
by B, , and B .

Theorem 2.3.21. Assume the Kato class potential V.=V, — V_ on R",
n >3, Vi >0, satisfies
IVillx < o0 (2.3.112)

and 1
14 lo = n/2 n_
|| —||K < 2Cn =7 /F (2 1) (2.3.113)

Then we have the equivalence of norms

1B o = 1fB2, (2.3.114)
for all g € [1,00], 0 < s < 2. Moreover, for the rescaled potentials
Vo(z) = 0V (Voz) (2.3.115)
we have the uniform estimates

CHIfllsg, < IIFls;: vy < Cllf s, (2.3.116)
with a constant C independent of 8 > 0.

Remark 2.3.6. In order to improve the result and consider higher values of
s > 2 stronger smoothness assumptions on the of the potential V' are neces-
sary; we shall not pursue this problem here. Also, to prove the equivalence
of Besov spaces B, , for p # 1, one should prove different bounds for the op-
erator V Ry on LP; this is possible but quite technical and we limit ourselves
to the case p = 1 which is our main interest here.
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Proof. We shall limit ourselves to the case ¢ = 1 and we shall only prove
the inequality

1B, vy < CllS Ml 5 (2.3.117)

the proof of the reverse inequality and of the cases 1 < ¢ < oo are completely
analogous.

In the following we shall drop the index 6 since all the estimates we use
(from Proposition 2.3.19 and Corollary 2.3.20) have constants independent
of 6 > 0.

Using the notations

Dy =vVH, D=+/H

we have
o0
118, vy = N0 (Dv) fllr + ZQ‘jsH‘Pj(DV)fHLI- (2.3.118)
5=0
Using
1=yo(D)+ > or(D),
k>0
we have

1B, vy < lo(Dyv ) (D) fllzr + > lvo(Dv)er(D) fll 2+

k=0
o0
+ ) 2%l (Dy)yo(D) flipr + > 2750 (Dv)or(D) fllzr =
§=0 3,k>0
=1+1I+1I1+1V.

We estimate separately the four terms.
Since by (2.3.99) 1 (Dy ) is bounded on L', we have for the first term

I'=lgo(Dv)o(D)fllLr < ClIF e (2.3.119)

and since

£z < Io(D) Fllzr + D les (D) fli e

J=0
this is smaller than C||f||ps , -
The same argument gives for the second term

1T = Z 1Yo (Dv)or (D) fllLr < CZ lek(D) fllzr < ClifllBg,
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As to the third term, we can write
m .
> 2% (Dy )4po(D) fll 1 = 22‘””% (Dv)(=Av)  (=Ay)go(D) fl e
j=0

and recalling (2.3.111) used in the proof of the corollary we have (for s < 2)

1< CY 2797 (=Av)go(D) fllpr = Cll(=Av)gho(D) fllr <

§>0
< Cll(=A)9o(D) fllLr + ClIVo(D) fllr-

Now we have

IVipo(D) fllpr = [V Ro(0)(=A)dho (D) fllr < ClIV x| (=A)sho (D) f | 1
and since (—A)1(D) is bounded in L! by (2.3.99), we conclude that

ITT < Co|[fllpr < CsllfllBs, (2.3.120)

as for the first term.
Finally, we split the fourth term in the two sums for 7 < k and j > k:

v =3 2lg;(Dv)er(D)fll =S+

7,k>0 i<k >k

For j < k we use the fact that ¢;(Dy) are bounded on L' with uniform
norm by (2.3.99) and hence

S <Y oDl Y 2 =203 25 lpu(D) 0.

i<k k>0 0<j<k k>0

For j > k, we write ¢; = @;(@j—1 + ¢; + @jt1) = @jp; and we have
> 20 (Dv) k(D) fllr =D 2%l (Dv) ok (D)pk (D) f 115
j>k j>k

now by the corollary we obtain
> 20 (Dv) k(D) k(D) fllr <D 025 D025 g £
j>k j>k

and since D ;o p 2(k=1)(2=5) < 1 we have

v =3 2°0;(Dv)pe(D)fll < €3 2 0r(D) Il < Cllfllsy , es)-
3,k>0 k>0

(2.3.121)
and this concludes the proof. ]
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We shall finally show that the preceding result implies the equivalence
also for homogeneous Besov spaces. Indeed, the uniformity of estimates
(2.3.116) makes it possible to apply a rescaling argument, using the following
lemma:

Lemma 2.3.22. Let s € R, p,q, € [1,00]. The homogeneous B;,q(V) norm
has the following rescaling property with respect to scaling (Sxf)(x) = f(Ax):

153 iy, 00y = A" 21 g, v, (2.3.122)

provided A = 2F for some k € Z.

Remark 2.3.7. A similar property holds also for any positive A, with equality
replaced by equivalence of norms, however (2.3.122) will be sufficient for our
purposes.

Proof. From the identity
(A +V(2))Srf(2) = X2S\(=A+ A2V (2/)) f ()

we obtain the rule
Ay Sy =XNS\Ay, _,

with the usual notations
Ay =A+4V,  V,=0V(Vox).

This implies
g(=Av)Sx = Sy g(= Ay, _,)

and in particular for the functions ¢;(s) = ¢o(277s), writing as usual Dy =
\% _AV7 ) )
¢j(Dv)Sx = ¢o(277 Dv)Sx = Sxgo(27ADy, _,).

With the special choice A = 2¥ this can be written
¢j(Dv) Sk = Sordj—k(Dv,_,,)-
Hence we have the identity, for A = 2%,

15, =D 2 e (D)8 I, = D 25927 855 4(Dv, ) f 1
’ JEZ JEZ

since LP rescales as \™"/P; writing 27592k74/p — 2k(s—n/P)ag(i+k)sq and shift-
ing the sum 5 + k£ — j we conclude the proof. U

Thus we arrive at the final result of this section:
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Theorem 2.3.23. Assume the Kato class potential V. =V, —V_ on R",
n >3, Vi >0, satisfies
IVillg < oo (2.3.123)

and 1
174 Zo = on/2 n_
|| ,HK < 2Cn =T /F (2 1) (2.3.124)

Then we have the equivalence of norms
£ vy = 11, (2:3.125)
for all g € [1,00], 0 < s < 2. Moreover, for the rescaled potentials
Vo(z) = 0V (Voz)
we have the uniform estimates

-1
C M, < Wy < Ol (2.3.126)
with a constant C independent of 0 > 0.

Proof. We shall consider in detail the case ¢ = 1 only, the remaining cases
being completely analogous.

We already know that (2.3.126) holds for dotless Besov spaces. Now we
need to prove the following inequalities

C s vy < W33, ) < Ol ) + Ol g iy (23:120)

with a constant C independent of 8 > 0.
First of all we prove that (D =+/—A, Dy, = /—Ay,)

> 2%l (Dvy) fllzr < Cligho(Dv,) £l (2.3.128)
j<—1

We notice that g is equal to 1 on the support of ¢; for 7 < —1. Hence
©; = ;1o for § < —1 and we can write

125 (Dvg) fllLr = Nl (Dvg)tho(Dv) fll e < Cligho(Dvg) £l 1

(we have used the uniform estimates (2.3.98)-(2.3.99)). Thus (2.3.128) fol-
lows, provided s > 0 so that Ej < 1 275 is convergent.
The term for j = —1 is estimated in a simple way (p_1 = ©_1 (%o + 1))

lo—1(Dvy) flir < llo—1(Dvy)ho(Dvy) fllzr + llo—1(Dvy)p1(Dvy) fllzr <
< Cllgo(Dvy) fllr + Cllgr(Dvy) Iy (2.3.129)

Clearly, (2.3.128) and (2.3.129) imply immediately the first inequality (2.3.127).
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The second inequality in (2.3.127) is easier: it is sufficient to prove that

190(Dvy) fllr < C Y Ml (D) £l

J<l

which follows from 9y = y-> <1 ¥ the triangle inequality, and the bound-

edness of 1y(Dy,) on L' with uniform norm. This give (2.3.127). Notice
that all the constants appearing in the above inequalities are uniform in
6 > 0.

By (2.3.127) and the equivalence (2.3.116) we can write for 0 < s < 2

1F gy, < Clfllsg, < CllFlls vy < CllF gy vy + ClF g0, -

If we apply this inequality to a rescaled function Sy f and recall Lemma
2.3.22, we obtain for all k € Z

2K g < C2CN Sl o+ C2 gy

, V02—2k)

with constants independent of k,0; we can now choose 6 = 2%+, divide by
2k(s=1) and let k — 400 to obtain

||f||13'i’,1 < C||f||Bil(V7)

which is the first part of the thesis. The reverse inequality is proved in the
same way. ]

2.3.7 Conclusion of the proof
By the spectral calculus for H = —A + V, given any bounded continuous

function ¢(s) on R, we can represent the operator ¢(H) on L? as

$H)f =5 L? —lim [ p(A)[Rv (A +ie) — Ry (A —ie)] fdX. (2.3.130)

If ¢ = ¢ is the derivative of a C' compactly supported function we can

integrate by parts obtaining the equivalent form

PH)f = o L? — lim [ (V) [By (A + i€)? — Ry (X —ie)?|fd\. (2.3.131)

Now, fix a smooth function v(s) with compact support in |0, +oo[ and

consider the Cauchy problem

— > 3
{ Ou+V(z)u=0, t>0, z€R (2.3.132)

U’(Oat) =0, ut(Oax) = 1/1(H)9
for some smooth g. Then the solution v can be represented as

u(t,") = L? — lim u.(t,-)

e—0
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where

1 sm(t\/_)
wmify VA

or equivalently, after integration by parts,

ue(t,z) = PY(N)[Ry (A +ie) — Ry (A —ig)]gdX  (2.3.133)

ue(t, ) = Lt /OO cos(EVN) Y (N)[Ry (A + ie) — Ry (A — ie)]gdA+

mit J,
+ Lt ” cos(tV A PN [Ry (A +ie)? — Ry (A — ie)?]gdA.  (2.3.134)

™ 0

Estimates (2.3.71) and (2.3.73) applied to (2.3.134) give

¢ [ |9 )
o < = "\ d\
fucte Mo < oS [ (Wi + 2
and recalling that
ASA S A+
we obtain
(VI

VA

Let now ¢;(s), j € Z be the homogeneous Paley-Littlewood partition of
unity defined in the Introduction, with

pj(s) = do(27s),

Juet, Yo < gl / N <|¢'(A>|(¢X+¢E>+'¢ )dA. (2.3.135)

define
9j(s) =j-1(s) + ©;(s) + ¢j+1(s) (2.3.136)
and choose in (2.3.132)

P(N) = 3;(VA) = Go(277VA).

We thus obtain

C [~ VA+VE | [Ro2V)
oo < ol 5 | <2 b2 VR )dA

which after the change of variables u = 27v/X gives

et Yz < 5@+ VE)llglor. (2.3.137)
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for some constant C' independent of j,¢ and g. If we let ¢ — 0, for fixed ¢ the
functions u. (t, ) converge in L? to the solution u(t, z); hence a subsequence
converges a.e. and we obtain the estimate

27
lult Mz < C—lgllis (2.3.138)

for the solution u(t,z) of the Cauchy problem

O = > R3
{ u+ V(z)u =0, t>0, z € (2.3.139)

If we now choose

9=;(VH)f

and notice that ;9 = ¢j¢;f = ¢;f since ¢; = 1 on the support of ¢;, we
conclude that: the solution u(¢,z) of the Cauchy problem

Ou + V(z)u = 0, t>0, z € R
2.3.140
{umﬂzm w(0,%) = oy (VIS (2.3.140)
satisfies the estimate
2J
Ju(t, )l < C;!l@j(\/ﬁ)fllu (2.3.141)

Consider now the original Cauchy problem (2.3.1); decomposing the ini-
tial datum f as
f=>_ei(VH)f
JEL
applying estimate (2.3.141) and summing over j, we obtain by linearity that
the solution u(t,z) to (2.3.1) satisfies the estimate

o
let, Mo < =I5y oy (23.142)

Since by Theorem 2.3.23 this norm is equivalent to the standard one, we see
that the proof of Theorem 2.3.1 is concluded.
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2.4 The Schrodinger and heat equation perturbed
with a small rough potential

In this section we consider perturbed Schrodinger and heat equations
1
0w —Au+Vu=0, u(0,z)=uy(x), (2.4.1)
i

Ou—Au+Vu=0, u0,z)=uy(r) (2.4.2)

in dimension n > 3. The importance of these equations in quantum me-
chanics (see [61]), in the theory of combustion (see [109]) and in many other
applications is well known.

In this Section we deduce the complete Strichartz estimates for the so-
lution of the Schrodinger equation (2.4.1) perturbed with a larger class of
potentials satisfying V' < |z|72, via interpolation between the endpoint and
the energy estimate. The arguments of the previous sections are then ex-
tended to the case of a small time dependent potential V (¢, x).

We study also the heat equation (2.4.2) perturbed by a singular potential
and we prove the existence of solutions, the maximum principle and the
dispersive estimates.

2.4.1 Selfadjointness of H = —A+V

In this subsection we check that the sum H = —A + V can be realized as
a selfadjoint operator on L? by a standard Friedrichs extension. This will
allow us to consider the Schrodinger flow e *# and the heat flow et in
the following of the section. Notice that here we assume that the potential
is in the weak Lebesgue space L(%’oo), which is not comparable to the Kato
class considered in the last sections.

Consider the bilinear form

B = (VAo + [ V@If@)Pde, 2 €®n >3,

It is not difficult to see that
f—=Vf

is a self adjoint operator with dense domain H2(R"). In this case we can
use the KLMN- theorem (see theorem 10.17 in [83]). Due to this theorem it
is sufficient to verify the estimate

IRCIERE

<o [ 195 Pde = by,

with a < 1. Indeed, our assumption

2n

||V(')||L(%,oo) < m,
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implies that
VIV]e L),

so that, by the Holder inequality for Lorentz spaces,

IVIVIflle < CIVIVILeeo [ fllLae < CCllfllpa,

where
2n

n—2

, le.g=

N —
S|+

q
Using the Sobolev embedding (see [9]) H'(R") < L(2)(R"), we get

£l L@ < Cullfllgn

and

< IVIVIFIZ2@n) < CEC2CEIV £ 1172y

| V@lf)Pds

If Cp is such that CCyC; < 1 ie. Cy < CLCI, where C is the constant
from the Hélder inequality (for Lorentz spaces) and C is the constant from
Sobolev embedding, then we can conclude, using the KLMN theorem, that
there exists a self-adjoint operator H = —A + V such that

(A +V)f, iz = IVIB: + /R V(@) (@) Pde.

2.4.2 Strichartz estimates for the Schrédinger flow e~

In this subsection we study the decay properties of the Schrodinger flow for
the operator H constructed above. More precisely, we can represent the
solution to the Schrodinger equation (2.4.1) as

u(t) = Ul(t)ug, U(t) =e “H,

Our starting point will be the following Strichartz estimate, essentially
proved in the paper [66]:

Proposition 2.4.1. Let n > 3 and consider the Cauchy Problem for the
Schrodinger equation

10w — Au=F(t
O = Au = F(i, 2), (2.4.3)
u(0,z) =0, z € R,
then the following estimates hold:
||UHL€L§;1,2) < CHFHL?'ng’,Q), (2.4.4)
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lullgrzs < ClIF]] (2.4.5)

i
or all p,p € [2,00], and q,q € |2, 2" , such that
n-2

n 1 n no_mn
p 2 4 poo2g 4
Remark 2.4.1. Note that for the Schrodinger equation (p, q) = (2, %) it is
the end-point Schrodinger-admissible for n > 3.

Proof. The second estimate (2.4.5) is the standard Strichartz estimate, proved
in [66]; notice that it follows from the stronger estimate (2.4.4) by embedding
of Lorentz spaces.

Estimate (2.4.4) in the endpoint p = p =2, g =¢q = 2—”2 is proved in

section 6 of [66]. On the other hand, the point p = p = o0, ¢ = § = 2
reduces to the standard conservation of energy since L(22) = L2, Thus by
interpolation we obtain (2.4.4) in the dual case p = p, ¢ = ¢. We conclude
the proof applying as usual the T method. O

Our next step is to establish the end-point estimate for the perturbed
Schrédinger equation:

Proposition 2.4.2. Let n > 3 and consider the Cauchy Problem

1 — =
70— Au+ Vu=F (2.4.6)
u(0,2) =0, = € R,
where V.=V (z) is a real-valued potential such that
2n
0o = _n 9.4,
Vil = Co < gy (247

(here Cy is the constant appearing in the Strichartz estimates for the unper-
turbed equation). Then the following estimate holds

lull 202 < CJIF|| (2.4.8)

=1 sl
p q
'Ll

where
2n

q:ma

and p € [2,00], and § € [2, %] are such that

1+n_n
po2¢ 4
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Proof. Indeed we can consider the solution v = w; + ug as the sum of
solutions to following Cauchy problems

(2.4.9)

%Btul — Au1 = F,
u(0,) =0, z €R, n>3,

and

{ %8tu2 — Aug = —Vu, (2.4.10)

uw(0,2) =0, z € R", n > 3.

For (2.4.9) we have the classical Schrodinger equation, such that

) (2.4.11)

||U1“L?L§;q,2) S CsHFHL?/qu

is satisfied for the Proposition 2.4.1 (see [66]).
Since for the Cauchy problem (2.4.10) we have

L2l
we are in position to apply the Holder estimate (see Theorem 3.5 in [73])

IVl w2 < CoAlVI, (200 lull a2y < CaCollull @2 (2.4.13)

L3

where

so if Cj is such that C;CyCy < 1, i.e.

2n

RRATEP)

we see that from (2.4.11), (2.4.12) and (2.4.13) that

Cs
< ———||F
L%Lglﬂ) — 1 _ CSCOCQH ||

[l ' L@

where
L n_n
P2 4

So using the Theorem of Calderén (see Lemma 2.5 in [73])

1 1
di\4a 4
lull o < (;) ol

ford > di, 1 < p < 00, we get

N
Q[

2
Iz = Il < (5) o0
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and
||U||L5’Lg’ = ||U||L5'Lgi',q’) 2 ||U||L5'ng’,2)a
So we arrive at
2n
lullzzzy < CIFl g, a= "o, 23,
where .
o ("= 2\~ Cs
n 1-— CSCOCQ ’
and

+n_n
2§ 4

1
p
In the next step we consider the point p = oo, ¢ = 2:

Proposition 2.4.3. Let n > 3 and consider the Cauchy Problem for the
perturbed Schrodinger equation

1
19w — Au+Vu=F
{ POt = AUt VU=, (2.4.14)

u(0,2) =0, = € R,
where V.=V (z) is a real-valued potential such that
“VHL(%’OO) < 00. (2415)
Then the following estimate holds

lullgerz < ClIF| (2.4.16)

L7 i
where p € [2,00], and § € [2, 2% are such that

' n—2

1+n_n
po2¢ 4

Proof. Multipling the perturbed Schrédinger equation (2.4.14) by u and
taking the Imaginary part of integral

Im G 8tu-7jd$>+1m (/ |Vu|2d$>+1m </ V|u|2da:> =TIm </ Fadm> :
Rn n R?’L n

we notice that
Im </ |Vu|2d:v>

Im (/ V|u|2d:v> =0,

0

and
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thus we have

—Re (% o - ﬂdm) =Im (/ Fﬂda;) .
R?’L n

The Cauchy-Scwhartz inequality implies
Orllu(t)72 < IFllz2llull e,
and we obtain .
u®llz < [ 17l
0
so we obtain the following estimate
||u||L°°L2 S C“F“LILZ. (2417)

The estimate (2.4.8) leads to

2
lellpore < CIF Nz, 0= =,
by duality we have also
, 2n
P A (2.4.15)
Interpolating between (2.4.17) and (2.4.18), we obtain
lullzcz < CIFNp .
where
L.on_n
P2 4
O

We can now conclude the proof of the full Strichartz estimates for the
problem:

Theorem 2.4.1. Letn > 3, p,p € [2,00], and let q,q € [2, %] be such that

1 n n

p o A

n
+_

1 n
po2q 4

Let V=V (z) be a real-valued potential such that

VI, (8.0 =Co < (2.4.19)

Cs(n—2)’
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where Cs is the universal Strichartz constant for the unperturbed equation.
Then the solution to the Cauchy Problem

U(O, :E) =,
satisfies the estimates
ull o, @2y + lllo@szzy < CNFN g, pa oy + CllfllEe,  (24:21)
and
lullzogesry) + lullo@ezy < CIEN g, oy + CllF N2 (2.4.22)

Proof. Assume first that f = 0. By interpolation between (2.4.8) and
(2.4.16), we get
lull prg < CIEN 7
for all (p,q), (p,q) as in the statement of the Theorem.
Assume now that FF = 0 and f arbitrary. The previous estimate and the

TT* argument of [51], yield the estimate

lullzpre < ClIfllze-

Notice that the conservation of energy gives also

lullzpre + llullc, e < ClIf L2

Summing up we obtain (2.4.22). The proof of (2.4.21) is similar (see also
the proof of Proposition 2.4.1). O

If we start from the local Strichartz estimates instead of the global ones,
in a similar way we can prove the following

Theorem 2.4.2. Under the assumptions of Theorem 2.4.1 we have
Il oo + iy < CUF oy + Ol (2:4:23)

for all T > 0 and with a constant C' independent of T'.

2.4.3 The case of time dependent potentials

The arguments of the previous sections can be extended to cover the case of
a small, time dependent potential V' (¢,x). Indeed, our method of proof
is based on a perturbation of the standard Strichartz estimates for the
Schrodinger and heat equations. However, we notice that in this case we
cannot use the standard theory of selfadjoint operators to study the per-
turbed Hamiltonian H = —A + V(¢,z). Thus in the following we shall
consider the problem of existence and of the decay of solutions.
Our first result is the following:
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Theorem 2.4.3. Letn >3, p,p € [2,00], and let q,§ € [2, 2%] be such that

n—2
1 n n 1 n n
-4 — =, -+t —==-.
p 2q 4 p 2¢ 4
Let V =V (t,z) be a real-valued potential such that
||V||L?oLig,oo) = Co (2.4.24)

is small enough. Then for any F(t,z) € L' LT there exists a unique global
solution u(t,z) of the the Cauchy Problem

{ Lo — Au+V(t,z)u = F(t,z), (2.4.25)

u(0,z) = f.
which satisfies the estimates
lull ooy + lelle®ezzy < CIEN g g, a2y + Cllfllz2,
and
lull i geseg) + lullo@irzy < CIEN g, oy + CllF 2

Analogous estimates hold on finite time intervals [0, T] with constants inde-
pendent of T.

Proof. The proof follows the lines of the proof of Theorem 2.4.1. We define
®(v) as the solution u of the linear problem

1w —-Au=F —
{ 0L u (t,z) — V(t,z)v, (2.4.26)

u(0,z) = f.
By Proposition 2.4.1 and [66] we have

lullpoor2 + lullp2p@e < CIF = Vollpapw e + 1 fllz
< ||F||L2L(q’,2) + ||VU||L2L(q’,2) +1fllz2,
2n

where ¢ = =%, Using the Holder inequality for Lorentz spaces (see [73])

and the assumption (2.4.24), we get
ullpoore + lJull opwe < CF N 2w 2 + Collvllpz @ + 11 2

Thus @ : v € L2L@2) s y € L2L@2) N L®°L2. We show now that ® is a
contraction on the space L2L(%2). Let vy, vy € L2L(%2) guch that O(v;) =
u;,1 = 1,2; then we have

|ur —usal| oo g2 +llur —uallpopo < IV (01 =)l 202 < Collvi—v2llr2p@o-
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If Cy < 1 the map @ is a contraction, and this implies that for any F' €
L2192 and f € L? there exists a unique solution u(t,z) € L2L42) N[> L2
of the Cauchy problem (2.4.25).

In particular for all F € C° and f € L? there exists a unique solution.
When F' € C2°, we can proceed as in Proposition 2.4.2 and we can prove
the endpoint estimate

lellzeg < CUEN g + 112, (2.4.27)

with
2n
n—2’

and p € [2,00], and ¢ € [2, %] are such that

q:

1 n n_n

P2 4

The only difference in the proof is to replace (2.4.13) with the following
Holder estimate

Wl g < OV g ollllzpan < CCollullpopan.  (24.28)

Loort

On the other hand, we can repeat the proof of Proposition 2.4.3 and we
obtain

lullgorz < CIEN 7 par + 1122 (2.4.29)

where
1 n n

p o 4

Then by interpolation we obtain the full Strichartz estimates
el gy 000, + Illc@eizsy < CIF Ly gy +Cllf e (24.30)

for all F € C2°.

Since we have proved that for all such F' there exists a unique solution
u(t, ), by a density argument we easily obtain that for all F' € LI LY there
exists a unique global solution u(t,z) € LY L%, with 1—13 +t: =1

O

2.4.4 Heat equation perturbed with a singular potential

This section is devoted to a study of the perturbed heat equation. The
ideas of the preceding sections can be applied also in this case with some
modifications. The main difference is the role of the positive part V. of
the potential V; indeed, in order to prove the decay of the solution, weaker
assumptions on V. are sufficient.

Our result is the following:
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Theorem 2.4.4. Let n > 3 and assume the potential V € L{z°°). More-
over, assume that the negative part V_ = —(V A 0) satisfies

2n

IVl 200y = Co < Cin=2)

(2.4.31)

Then any solution to the following Cauchy problem

{ Opu — Au+V (z)u = F(t,x), (2.4.32)

u(0,7) = ug € L' N L™,
satisfies the Strichartz estimate

lull Lo reseg) + lullo@izz) < CIEN g, oy + Clluoll 2

where p,p € [2,00], and q,G € [2, %] are such that
1 n n 1 n n
-+ — =, <=+ ==
p 2q 4 p 2q 4

We split the proof of Theorem 2.4.4 in several parts.

Proposition 2.4.4. Let n > 3 and consider the following Cauchy problem

ou—Au+V =0
= Au+ V(@) =0, (2.4.33)
U(O,.’L’) =wup > 0,
with initial data ug € L' N L>®, and we assume that
V() >0 and Ve L), (2.4.34)

Then there exists a unique solution to the Cauchy problem (2.4.33)
u(t, ) = e~ oy,
satisfying the mazimum principle, i.e.
u > 0.

Proof. Since we know that the maximum principle holds if the potential
is positive and V' € L%, we consider a sequence of truncated potentials
Vi =V Ak, k> 1so that V, € L>®. We consider then the respectively
approximated Cauchy problem

Owup — A Vi =0,k>1

Uk(O,{L‘) = Up, U Z 07
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and by maximum principle 0 < ugy; < ug < ug. Since {ug} is a sequence
decreasing and ug € L' N L, then by monotone convergence Theorem we
have that {u} converge in strong sense to u(¢, )

u(t,x) = LP — lim wug(t, x), 1 <p<oo.

k—o0

Now it suffices to prove that u(¢, z) is a solution to (2.4.33), so we have that
0 <u < ug < ug. Thus since u(t, ) satisfies the Maximum principle (see
[72]), we have the uniqueness of the solution to (2.4.33).

Since ug € L'NL>® and {uy} is a sequence decreasing such that ug < |ul,
by Theorem of Lebesgue we have the convergence uy — u in L.
As consequence we have following convergences in the distributional sense

D' Vk — oo
U — U,

8tuk — 8,511,,
Aup — Au.
Then it remains to prove that we have the following convergence
Vkuk —Vu
in the distributional sense. Indeed, we shall use the identity
Viug — Vu = (Vi — V)ug + V(ug —u). (2.4.36)
Consider the first term to (2.4.36) and since L(z>°) L] . we can take

V € Lio(R"),

that implies
/ V(z) - Vi(@)ldz — 0 ¥k — oo,
K

so that

/ IV (2)~Vie(@)lJug (t, 2)|dz < sup [ug(t, )| / V(@) Vi(o)ldz — 0, ¥k — co.
K TERM K

Thus the first term converges

(Vk—V)uk—>0 Vk — oo

in the distributional sense D’.
Now we are ready to estimate the second term to (2.4.36). We have

IV (ue = w)llr < VI Lcg o0 lue = wllpan < Collur — ull e
where % =1 — 2, and using the real interpolation (see [73])

L(qyl) — (LI’LOO)(l—%,l)v
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we have the following

n—2

2 n—2
lue — ull L@y < fluk — ull a1 [lug — ull % -

Since {uy} is decreasing and uy, < up € L' N L, by monotone convergence
Theorem one obtains
“uk - UHLl —0,

and
|lug — ul|po — 0.

Thus V(uy —u) — 0 in L', and so it converges in distributional sense, i.e.
Vkuk —Vu—0.

This concludes the proof.

O
Proposition 2.4.5. Let n > 3 and assume that
Vi(z) >0,  VieLE>), (2.4.37)
Then any solution to the Cauchy problem
{ Opu — Au+ Vi(z)u =0, (2.4.38)
u(0, z) = ug,
satisfies the dispersive estimate
Jut, i < luoll (2:4:39

Proof. Consider the Cauchy problem for the heat equation with the same
initial data to (2.4.38)

{ Ot = Al =0, (2.4.40)

(0, z) = ug,ug > 0.

The dispersive estimate (2.4.39) is valid for this problem.
Let w = & — w. Then w is a solution to the following Cauchy problem

w(0.2) 0. (2.4.41)

{ ow — Aw = Vi (z)u,
Since 0 < V, € L5 we can apply it the previous Proposition and we
obtain that
u > 0.
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So applying one more the maximum principle for (2.4.41) we obtain

<

0<w=1u—u.

Thus we have

o
(VAN
IS

IN
<

and the dispersive estimate

C
e, Mz < rlluollzr,

follows. This concludes the proof of this Proposition. O

Now we use the connection between self-adjointness and semibounded
quadratic form, extending the notion of ”closed” from operators to forms.

Lemma 2.4.6. Let n > 3 and assume that
Vi(z) >0, VielL®™), (2.4.42)
Then the operator Hy = —A + V, is self-adjoint in H*(R™).

Proof. Consider the quadratic form
B = (VEV e + [ V@If@)Pds, 2 €0 n >3,

on the dense subspace H'(R") of L?(R").

To prove this Lemma it suffices to apply the standard theory of sym-
metric quadratic forms (see e.g. Theorem VIIIL.15 in the [82]). One can see
easily that B(f, f) is a positive quadratic form, thus it remains to see that
it is closed in H'(R"), i.e. H'(R") is complete under the norm

AP == B, ) + 112 (2.4.43)

Since V4 (z) > 0 one obtains

AN = IV FIZe + (Vi fs Pz + 11172 > Clf Il (2.4.44)

The assumption on the potential implies that

VVy e L),

so that, by the Holder inequality for Lorentz spaces,
IV Vi fliz < CllVVill Lo 1 fll L@ < CCollfll w2

where

N —
S|+

1
q



91

Using the Sobolev embedding (see [9]) H'(R") < L(&)(R"), we get
1Nl L@ < Crllfll g

and
Vet Pz = | [ V@l @) Pda] < IVTEF e < O
so that
AP < ClfIIF-

Thus we have the equivalence

LA 2 0 s (2.4.45)
and the conclusion follows at once. O
Remark 2.4.2. Since Hy = —A + V, is a self-adjoint operator, we can rep-

resent the solution to the Cauchy problem

_A =
{ Ou u+ Vi(z)u =0, (2.4.46)

U(O, .’L‘) = U,

u(t) = U(t)uo, U(t) = et

and U(t) is a continuous semigroup in L? and we have the energy inequality
1U(H)uoll L2 < fluollL2- (2.4.47)

Notice that interpolating the dispersive estimate (2.4.39) with the energy in-
equality we obtain LP-decay estimates, and using the T method of Ginibre
and Velo (see [51], [66]) it is possible obtain the full Strichartz space-time
estimates

lull Lo ry;ze) + lullo;ee) < C“F“Lﬁ’(Rt;LZ') + Clluoll 2,

with
1 no_n 1 no_n

201 52 A
Remark 2.4.3. Consider the following perturbed Cauchy problem

{ Oru — Hou + V_(2)u = F(t,x), (2.4.48)

u(0, z) = g,

where V_ € Lz ||V_ |, .00y < Co. Using the same argument of sub-
section 2.4.1 we show that the operator H = Hy — V_ is selfadjoint, so the
solution to (2.4.48) is u(t,z) = e *Hug. Moreover, repeating the same steps
of section 2.4.2, it is not difficult to show the full Strichartz estimates for
the heat flow e ¥ and this concludes the proof of Theorem 2.4.4.
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2.5 The Schodinger equation with a large poten-
tial

In the last section of this chapter we shall consider the Schrodinger equation
perturbed by a large unsigned time dependent potential V' (¢, z)

i0u — Au+ V(t,z)u =0 (2.5.1)

and its inhomogeneous version with a source term. Of course in general
there is no hope to prove decay estimates in this case; thus we shall assume
an integrability condition at infinity of the form V' (¢,z) € LjL$ which in
some sense replaces the smallness condition of the preceding section.

Our goal here is to show that, by purely elementary arguments based on
integrability properties of the potential, it is possible to obtain a great deal
of information on the behaviour of the solution, and to prove the Strichartz
estimates for a wide class of large potentials with no definite sign. Moreover,
the usual obstructions to decay are present also in this general situation:
existence of standing waves, rescaling and pseduoconformal symmetry of
the equation. Using these, we are able to show that our conditions are also
necessary, at least in the class of potentials under consideration.

For the convenience of the reader we recall here the classical Strichartz
estimates for the Schrodinger equation, and introduce some notations. We
use a prime to denote conjugate indices; moreover, for any subinterval I of
R (bounded or unbounded) we define the mixed space-time norms

1/p
lollzgas = ( [ 1t it 252
1

and when I = [0, 00| we write simply LPL? in place of LYL. Similarly, we
shall write
CiLP = C(I; LP), CLP = C([0, +o0[; LP) (2.5.3)

for 1 <p < .

Definition 2.5.1. Let n > 2. The pair (p,q) is said to be (Schridinger)
admissible if

1 n

n
sty =1  PaE 2,00,  (n,p,q) # (2,2,00). (2.5.4)

The Strichartz estimates can be stated as follows: for all admissible couples
(p,q) and (p,q) there exists a constant C(p,p) such that, for all interval
I C R (bounded or unbounded), for all functions ug(z) € L?*(R"), and

F(t,z) € LI;’Lq’ the following inequalities hold:

itA

e"“ug < C(p,p) lluoll2 (2.5.5)

Pra
LPL
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< Clp.p) | F|
LPLe

t

‘ / el(t_s)AF(s) ds (2.5.6)
0

Note that the constant is independent of the interval I.

Clearly, when n > 3 the constant can be taken also independent of p and
p: we shall denote this universal constant (which depends now only on the
space dimension n) by Cy. When n = 2, the constant is unbounded as p | 2
or pl 2.

51 -1
Lrra

Here €2 is the unitary operator

_ile—yl®
e

WA
S = ) G

f(y) dy, (2.5.7)

ile—y|*

e_ A(t— s)
/ (t SAF dS_/ /n 47'('Zt—8 n/2 (S,y) dde,

which is properly defined on L? but can be extended to different L? spaces
using e.g. these explicit expressions.
Consider now the differential equation

i0u — Au + V(t,z)u = F(t,x), u(0,z) = up(z). (2.5.8)

For low regularity solutions, it is customary to replace (2.5.8) with the in-
tegral equation

t
me:ﬂ%mm+/eMﬂﬂmg—V@mmd& (2.5.9)
0

The two formulations are equivalent under very mild assumptions on the
class of solutions; we shall not discuss this problem here, instead we shall
use the integral formulation exclusively.

We can now state our first result:

Theorem 2.5.1. Let n > 2, let I be either the interval [0,T] or [0,+o0],
and assume V (t,x) is a real valued potential belonging to

Vite) € LI, 4o =1 (2.5.10)

for some fized r € [1,00[ and s €]n/2,00]. Let ug € L? and F € L’;’Lq’ for
some admissible pair (p',q).

Then the integral equation (2.5.9) has a unique solution u € C;L? which
belongs to L?Lq for all admissible pairs (p,q) and satisfies the Strichartz
estimates

lullpre < Cv [Juollr2 + Cv || F| (2.5.11)

B d -
Lrr
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When n > 3, the constant Cy can be estimated by k(1 4+ 2Co)*, where Cy
is the Strichartz constant for the free equation, while k is an integer such
that the interval I can be partitioned in k subintervals J with the property
IVilLres < (2Cy)~t. A similar statement holds when n = 2, provided we
replace Cy by C(p,p).

Finally, when F = 0 the solution satisfies the conservation of energy

lu(®)ll2 = lluoll2,  t €L (2.5.12)

Remark 2.5.1. We emphasize that the potentials V (¢, x) considered in Theo-
rem 2.5.1 may be both large and change sign. The usual smallness assump-
tion is replaced here by the integrability condition with respect to time,
which ensures smallness of V' on sufficiently small time intervals, and for
t>> 1.

Remark 2.5.2. By iterating the argument of the proof, it is easy to extend
the above result to any potential of the form

V=V i+-+V
where Vi, ...,V satisfy assumption (2.5.10), with possibly different indices

), ;-
Remark 2.5.3. Note that when I is a bounded interval, assumption (2.5.10)
can be relaxed to

1 n
t L7L? -+ — <1 2.5.1
V(,.’L‘)E I ’ ’I“+28_, (53)

indeed, from (2.5.13), using Holder’s inequality in time we can easily show
that also (2.5.10) holds, for a smaller value of r and the same value of s.

Thus in particular we see that the existence part of our theorem extends
a result of Yajima [108], who proved that the equation (2.5.9) (or (2.5.8))
is well posed in L? with conservation of energy, provided the potential V'
satisfies

V=WVi+V,, WVieLil*, VyeL¥L’ (2.5.14)
with > 1 and
Lo (2.5.15)
r 2s e

(see also the preceding remark).

When the potential V' (¢, z) belongs to L{°L™*, i.e., in the limiting case of
Theorem 2.5.1, the result can not be true; indeed, this case includes the static
potentials V (z) € L% without any positivity or smallness assumption. We
mention that even for a nonnegative potential in L™/? it is not known if the
Strichartz estimates are valid in general. The best result in this direction
is due to Rodnianski and Schlag [88] who considered bounded potentials
defined on R" satisfying the estimate |V (z)| < C|z| 2 ¢ for |z| large enough.
However, in the limiting case we can prove a partial substitute of Theorem
2.5.1. To simplify our statement we introduce the following definition:

n/2
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Definition 2.5.2. Let V(z) be a real valued function such that
H=A-V(z)

has a selfadjoint extension. We say that the potential V (z) is of Strichartz

type if for all bounded time interval I = [0, T, for allug € L? and F € LIEIL'?’
with (p, §) admissible, the integral equation

. t .
u(t,z) = Mg + / I B () ds (2.5.16)
0

has a unique solution u(t,z) € C;L? satisfying the Strichartz estimates

[ullpg e < CULV) Nluolle2 + C(L V) [|F] (2.5.17)

L?I qu
for all admissible pairs (a,b).
Then we have:

Theorem 2.5.2. Let n > 3, let I be a bounded interval [0,T] and let
V(t,z) € CL™?. Assume that for each t € I, V(t,-) is of Strichartz
type, while the functions uy and F(t,z) are as in Theorem 2.5.1. Then
the conclusion of Theorem 2.5.1 holds true (local Strichartz estimates).

The result holds also in the case I = [0,00[ (global Strichartz esti-
mates) under the additional assumption: there exists Ty > 0 such that
NVt ) pnse < (2Ch) 71 for t > Ty.

Remark 2.5.4. By simple modifications in the proof, Theorem 2.5.2 can be
extended to any potential of the form

V(t,.’L’) = Vl(tvx) + VQ(t,Q}),
with V; as in the theorem while V5 € LL"? satisfies

1Vall <e(V)

Ler™/?

for a suitable small constant €(V;) depending only on V;.

Ezample 2.5.1. To illustrate a possible use of Theorem 2.5.1, consider the
semilinear Schrodinger equation

i0u — Au+ f(u)u =0, lf(w)] < Clul”, v>1, (2.5.18)

f real valued, which includes both focusing and defocusing equations with a
power nonlinearity. Then we may regard (2.5.18) as a Schrodinger equation
with a time dependent potential

V(t,x) = f(u(t,x)).
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We see that V satisfies the assumptions of Theorem 2.5.1 provided

werirt, f4_1 oo (2.5.19)
a 20 v
Thus any solution satisfying (2.5.19) satsfies the full set of Strichartz esti-
mates.

For instance, in the case of the (focusing or defocusing) quintic Schrodinger
equation in three dimensions, any solution u € L'°L'0 satisfies the Strichartz
estimates; this was the first step in the proof of the global well posedness
for the radial defocusing three dimensional quintic in [18].

Ezample 2.5.2. We give a simple application of Theorem 2.5.2. Counsider a
real valued potential V € CL? and assume it satisfies the bounds

0<V(tz) < ¢

n

for some C,0 > 0. Then we can prove that V (¢, x) satisfies the assumptions
of Theorem 2.5.2 and hence the local Strichartz estimates hold (and also the
global ones, under the additional assumption of smallness at infinity).

Indeed, let W (z) = V (to, x) for an arbitrary fixed ¢p; we must show that
W (z) is of Strichartz type. The existence part of the definition is trivial; let
us prove the estimates. Consider the operator H = —A + W(xz); H has a
unique selfadjoint extension by standard results, with spectrum contained in
[0, +00[; by Theorem XIII.58 in [85] H has no strictly positive eigenvalues,
since W is bounded and decays as |a;|*2*5 at infinity; 0 is certainly not an
eigenvalue since H f = 0 implies f = 0 easily. This implies that the operator
H has a purely continuous spectrum. Now Theorem 1.4 in [88] states that
P.e™ gatisfies the full set of Strichartz estimates when the potential is
bounded and decays faster than |z|~2 at infinity; here P, is the projection
on the continuous subspace of L? for H, which coincides with all of L? as
we have just proved. In conclusion, W (z) = V (o, z) is of Strichartz type as
claimed.

Remark 2.5.5. Condition (2.5.10) is quite natural, in view of the following

argument: the standard rescaling u.(t, z) = u(e?t, ez) takes equation (2.5.1)
into the equation

10ue — Aue + Ve(t, z)ue = 0, Vi(t,z) = €2V (*t, ex), (2.5.21)
and we have )
WVellzrre = 053 |V e (2.5.22)

so that the L"L® norm of V. is independent of € precisely when r, s satisfy
(2.5.10).

Indeed, by a suitable use of rescaling arguments, it is possible to show
that the condition 1/r + n/(2s) = 1 is necessary in order that the global
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Strichartz estimates be true for any potential belonging to the classes L"L?
(see Theorem 2.5.3 below).

Concerning the local Strichartz estimates, the situation is more interest-
ing. When 1/r+mn/(2s) < 1, as already observed in Remark 2.5.3, the local
Strichartz estimates are an elementary consequence of Theorem 2.5.1. On
the other hand, when 1/r +n/(2s) > 1, it is possible to show that the local
Strichartz estimates fail. This case is more delicate; actually it is not even
clear if equation (2.5.1) is well posed in L? under this assumption on V.

We collect our counterexamples in the following theorem, concerning the
homogeneous equation

iug — Au~+ V(t,x)u = 0. (2.5.23)

Note that the case (r,s) = (co,n/2) is almost trivial since it is based on the
construction of a standing wave for (2.5.23); we state it in some length both
for completeness, and because the remaining counterexamples are based on
it. Thus, in the proof of Theorem 2.5.3 it is essential to use potentials which
change sign.

Theorem 2.5.3. Let n > 2. Then we have the following.
(i) (Case r = 0c0) We can construct a potential W(z) € C§°(R"™) and a
function ug € H® for all s > 0 such that

—Aug + W(z)up + ug = 0. (2.5.24)
Hence the function u(t,z) = e""ug(z) € CL? solves (2.5.23) with
V(t,z) = W(x) € L([0, +ool; L"*(R")),

and does not belong to the space LP([0,+oc[; LY) for all admissible pairs
(p,q) # (00,2). In other words, there exists a potential V(t,z) belonging to
L*®L? for all s € [1,00] such that the global Strichartz estimates (2.5.11) on
I =[0,+00[ do not hold for equation (2.5.23).

(ii) (Counterezamples to global estimates) For every pair (r,s) with r €
[1,00[, s €]n/2,00] and X

n
S+ AL (2.5.25)

we can construct a potential V (t,z) € L"(]0,+oo[; L) and a sequence of
solutions uy(t,r) € C([0, +oo[; L?) to equation (2.5.23) such that

I lull Lo La

=00 for every admissible pair (p,q) # (00,2). (2.5.26)
koo [lug (0) 2

(iii) (Counterexamples to local estimates) For every pair (r,s) with r €
[1,00[, s €]n/2,00] and

4>, (2.5.27)
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we can construct, on any given bounded time interval I = [0,T], a potential
V(t,z) € L"([0,T); L*) and a sequence of solutions uy(t,z) € C([0,T]; L?)
to equation (2.5.23) such that

luell 2o

im =00 for every admissible pair (p,q) # (00,2). (2.5.28)
koo [lug (0) 2

We conclude the paper with a result showing that, at least for a re-
stricted range of indices r, s, the conclusion of Theorem 2.5.3, part (iii), can
be improved in an essential way. While the above theorem was based on
suitable rescaling arguments, Proposition 2.5.4 exploits the pseudoconformal
invariance of the Schrédinger equation.

Proposition 2.5.4. Let n > 2, and assume r € [l,00[ and s €|n/2,n|

satisfy

1 n
— 4+ — > 1. 2.5.29
2r + 2s ( )

Then we can construct a potential V (t,z) € L"(0,1; L*(R")) and a solution
u(t,z) € C([0,1]; L?) to equation (2.5.23) such that, for all admissible pairs
(p,q) with p < oo, and for any 0 < T < 1, we have

we LP(0,T; LYR™))  but  u¢ LP(0,1; LY(R")).

2.5.1 Proof of Theorem 2.5.1

We shall consider in detail only the case n > 3; in the case n = 2, when the
endpoint fails, it is sufficient to replace in the following arguments the space

_2n_
L?ILT“2 with any L’}Lq with g arbitrarily large.
We distinguish two cases, according to the value of r € [1, ool.

2.5.2 Case A:r € [2,00]

Consider a small interval J = [0, 4], and let Z be the Banach space
S
2= 0307, ol = wax {lollpe, ol
LZLm™

Notice that, by interpolation, Z is embedded in all admissible spaces L, L?.
For any v(t,z) € Z we define the mapping

d(v) = ePugy + /0 t e SRR (s) — V(s)v(s)] ds. (2.5.30)

A direct application of (2.5.5), (2.5.6) gives

12()llz5 Lo < Colluollzz + CollVull » o + Coll£l (2.5.31)
J

o
Lo L
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for all admissible (p,q), (po,qo), (P,q), and by Hoélder’s inequality we can
write

190z < Collwol + CollV g ol , 2o+ CollFl g (2582
provided we choose py, gp such that
I 1 1 I n+2 1
po 2 T Qo  2n S
Note that
1 n 1 n+2 1 n 1 n+2 n
—+— ==+ —(=+=)=z+ —1=-
po  2q0 2 4 r 25 2 4 4

by our assumptions on r, s, and moreover
r€ 2,00 = p € [2,00]

so that our choice of pg, gy always gives an admissible pair in the case under
consideration.
In particular, choosing (p, q) = (00,2) or (2,2n/(n — 2)), we obtain

@)z < Colluollz + CollV Iy L= llvllz + Coll Fl (2.5.33)

Lp;I qu

Thus ®(v) belongs to all the admissible spaces L L?, and to prove that
®(v) belongs to Z it remains only to show that w is continuous with values
in L2. But this is an immediate consequence of the following simple remark:

Remark 2.5.6. Let G(t,z) € L% LY with (a,b) admissible. Then the function
t .
w(t, ) :/ 92 Q(s) ds
0

belongs to CyL?. Indeed, this is certainly true if we know in addition that G
is a smooth function, compactly supported in x for each ¢. If we approximate
G by a sequence of such functions G; in the LﬁlLb’ norm, the Strichartz
estimates imply that the corresponding functions w; converge in L>®L?,
whence the claim follows.

We have thus constructed a mapping ® : Z — Z. Assume now the
length 0 of the interval J is chosen so small that

1
CollVllzyze < 55 (2.5.34)

this is certainly possible since r < oo. With this choice we obtain imme-
diately two consequences: first of all, the mapping @ is a contraction on Z
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and hence has a unique fixed point v(¢,z) which is the required solution;
second, v satisfies

1
lollznze < ColluollLz + 5 llvlly Lo + CollF (2.5.35)

b d
L3 L
whence we obtain

||”||L1J’Lq < 20y [Juo|| L2 + 2Co || F|| (2.5.36)

o
LhL

It is clear that the above argument applies on any subinterval J =
[to, t1] € I on which a condition like (2.5.34) holds; of course, we will obtain
an estimate of the form

loll iz o < 2Collo(to)llze + 20l Fll Ly o (2.5.37)
J
Notice also that (2.5.37) implies in particular
lot)llz2 < 2Collo(to)llz + 2CollFll g - (2.5.38)

Now we can partition the interval I (bounded or unbounded) in a finite
number of subintervals on which condition (2.5.34) holds. Applying induc-
tively the estimates (2.5.37) and (2.5.38) we easily obtain (2.5.11) and the
claimed estimate for the Strichartz constant.

The last remark (2.5.12) concerning the conservation of energy can be
proved by approximation as follows: let V;(¢, z) be a sequence of real valued
smooth potentials, compactly supported in x, and let v; be the correspond-
ing solutions; then the differences w; = v — v; satisfy (in suitable integral
sense)

iow; — Awj + Vw; = (V = Vj)v; = Fj.

Now we observe that the smooth solutions v; have a conserved energy; more-
over, we can choose the approximating potentials V; in such a way that they
converge to V in L7 L* and their Strichartz constants do not exceed the above
constructed constant for V. Indeed, if we can partition [ in a finite set of
subintervals satisfying (2.5.34), we can choose exactly the same subintervals
for each V; provided we construct V; by a convolution with standard molli-
fiers, so that their Lebesgue norm does not increase. In conclusion, the v;
satisfy uniform Strichartz estimates, and this implies that the nonhomoge-
neous terms F; = (V — Vj)v; tend to 0 in the (dual) admissible spaces, by
estimates identical to the above ones. Thus in particular w; — 0 in L>®L?
and this shows that also v(¢,z) satisfies the conservation of energy.

2.5.3 Case B: r € [1,2]

The method in this case is quite similar to the above one, but instead of
(2.5.31) we use the estimate

12()[[Lz pa < Colluollz + CollVoll 2 + CollFl| 7, o (2.5.39)
L J

Ls+2
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where (p, ¢) and (p, §) are arbitrary admissible pairs, while the pair (r, 2s/(s+
2)) is the dual of (r',2s/(s — 2)) and this last pair is admissible since

1 n
rl 2

s—2 n +n s—2 mn

2s 25 2 25 4
where we have used the assumption 1/r + n/(2s) = 1; notice also that
r € [1,2] and hence 2s/(s +2) € [1,2] too.

Thus by Holder’s inequality we obtain

1@z e < Colluollr> + Coll Vg Le vl s 2 + CollF]] (2.5.40)

7 d
LyL

and choosing (p, q) = (00,2) or (2,2n/(n — 2)) and proceeding as above we
arrive at

1
12(v)llz < Colluoll 2 + Sllvllz + Coll £l (2.5.41)

5 Gl .
Ly

From this point on, the proof is identical to the first case.

2.5.4 Proof of Theorem 2.5.2

The proof follows the same lines as the preceding one; indeed, the continuity
in time of the potential allows to consider V (¢, z) as a small perturbation of
V (tg,z) for ¢t near ty.

Let J = [0, 4] be a small interval, and consider again the space

2n
R L
J L:z]Ln72
On Z we construct a map ® defined as follows:
. t .
®(v) = e uy + / IR (s) — W (s)u(s)] ds, (2.5.42)
0

where

H=A-V(0,z), Wi(t,x) =V (t,z) — V(0,z). (2.5.43)

We have used the assumption that V(0,z) is of Strichartz type (Definition
2.5.2) to make meaningful the operators e’ ; on the other hand this implies
also that the full Strichartz estimates (2.5.5), (2.5.6) hold for the group e
hence we can write

(2.5.44)

=1 5!
3 Ly L1

@)z e < Cllugllz + C [Woll | 20 + C|F
L2
for all admissible pairs (p,q) and (p,q). Notice that here C' is a constant

depending on V' and the interval J only, and can be assumed to be non
increasing when ¢ | 0. This implies

[2()l[Lz e < C lluollzz +C IIWIIL?Ln/zllvlngL% +C Y o (2:545)
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and if ¢ is so small that

1
n/2 <

vl <3 (2.5.46)

L®L
which is possible by the continuity of V' (t, ) as an L™/ ?-valued function, we
arrive at

1
12()llz < C lluollz2 + Fllvllz + C I (2.5.47)

22 i
This guarantees, as above, the existence of a unique local solution belonging
to the space Z and satisfying the Strichartz estimates with some constant
C(0) for some time interval [0, ).

The same argument can be applied near each point {5 € I. More pre-
cisely, let J = [tg — 0,t9 + 6] N I and assume ¢ > 0 is so small that the
potential

W(t,x) =V (t,x) — V(to, )

satisfies
W (t, M pnre < (2C(V(tg, )™t fort € J, (2.5.48)

where C'(V (tg,x)) is the Strichartz constant corresponding to the potential
V (to,z) and relative to the interval [0, ¢y + 1]. Then we may argue as above,
and we obtain that for any given initial time ¢; € J and for any f € L?, the
Cauchy problem

i0u — Hu = F(t,z) — W(t,z)u, u(ty) = f, H=A-V(ty,z)

(interpreted as usual in integral form via the group e***) has a unique solu-

_2n_
tion in Z = C;L? N LAL"*, which satisfies the Strichartz estimates

[@()]lz < 2C(to) [luollL2 + 2C (to) || F]| (2.5.49)

7L
for some constant C(ty) depending on the point ¢y but not on the initial
time ¢ € J.

Now we may proceed by a continuation argument as follows. Extend
the local solution constructed on [0,4] to a maximal interval [0,T*[; i.e.,
consider the union of all intervals [0, d] on which a solution v € C([0, 6]; L?)N
L(0, 5;L%) exists and satisfies (for all admissible pairs) the Strichartz
estimates with some constant Cs. Assume by contradiction that 7% < T.
Then the above local argument applied at tg = 1™ on a suitable interval of
the form J = [T* — ¢, T* + ¢] shows that we can patch the maximal solution
and extend it to [0,7™ + ¢]. Moreover, we claim that the extended solution
satisfies the Strichartz estimates on [0,7* + ¢]: indeed, chosen any #; such
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that T* —e < t; < T, by construction we see that the estimates hold both
on I = [0,t1], with initial data at ¢t = 0:

lullzr 1o < C" lulto)llzz + C" |1 Fl o s (2.5.50)
I Ly L
and on J = [T — ¢, T + €|, with initial data at ¢ = ;:
lull gz e < C" u(t)llzz + C" I ENl oo (2.5.51)
J

for a suitable constant C’. Since |lu(t1)||z2 can be estimated exactly by
(2.5.50) (p = 2,q = o0), we easily conclude the proof of our claim. This
contradicts the assumption 7% < T and we obtain that 7" =T

The modifications required to prove the final remark concerning the case
I =[0,00], and also Remark 2.5.4, are obvious.

2.5.5 Proof of the counterexamples
An eigenvalue problem.

The first step in our construction requires to find a potential V' (z) such
that the operator —A + V' (x) has a negative eigenvalue, i.e., such that the
equation

—Aug + V(z)ug + v*ug =0 (2.5.52)

admits a solution uy € H' for some v > 0. There are many results on this
problem, and in general there is a clear connection between the number of
such eigenvalues and the size of the negative part of V, in a suitable norm.
This is true both in the negative sense (explicit bounds on the number of
the eigenvalues) and in the positive sense, which is our main focus here.
For instance, it is known that (see [85]) if V(z) € L"™/?(IR") satisfies the
assumption

the set {x € R": V(z) < 0} has a positive measure, (2.5.53)
then there exists A9 > 0 such that, for all A > Xy, the equation
—Aug 4+ AV (2)up + y2ug = 0 (2.5.54)

admits at least a solution f € H' for some v > 0. It can also be proved that
the dimension of the eigenspace grows to infinity as A tends to infinity.
However, for our purposes here we need only a much less precise result,
which can be proved directly by an elementary variational argument. Both
this result and the proof we give here are completely standard, but we prefer
to include it here for the convenience of the reader. Indeed, take any smooth
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compactly supported function w(z) such that w(zg) > 0 at least in one point
zo. Then consider the minimization problem with a constraint

;Ifréiz\r/}/Rn(|vf|2+|f|2) dx on M:{fEHI:/Rnw(:v) |f|2d:v:1}

(2.5.55)
Note that M is not empty, thanks to the assumption w(zg) > 0. The
existence of a solution to problem (2.5.55) can be proved easily by a standard
compactness argument, since we can work on the (bounded) support of w(z).
On the other hand, the Euler-Lagrange equation of the problem is

—Af+ f=pw(z)f (2.5.56)

(where p is a Lagrange multiplier); hence, choosing W(z) = —pw(z) and
ug = f, we see that ug solves the equation

—Aug + W(z)ug +up =0 (2.5.57)
and hence
u(t,z) = e "ug(z) solves iuy — Au+ W (z)u = 0. (2.5.58)

Note also that a trivial bootstrapping argument gives ug € H?® for all s > 0.
This concludes the proof of Theorem 2.5.3, part (i).

Proof of Theorem 2.5.3, case 1/r +n/(2s) <1, r # oo
We start from the function (2.5.58) and we apply the standard rescaling
u(t, ) = uc(t, x) = u(e’t, ex) = e_i€2tu0(ex). (2.5.59)
Then the function u, solves globally
10yue — Aue + We(z)ue = 0, W (z) = €W (ex). (2.5.60)
Consider now two monotone sequences of positive real numbers
0=Ty <Ty <--- <T} T +o00, 0<epd0, k=0,1,2,3,...
(2.5.61)

and define a potential V (¢, z) on [0, +oo[xR" by patching the potentials V,
as follows:

V(t,z) = We, () for te Tk, Tp+1[, £=0,1,2,.... (2.5.62)
Thus u,, solves the equation

i0u — Au+ V(t,z)u =0 (2.5.63)



105

on the interval [T, Tj11].
Choose now r and s satisfying

1
Sh <l r#oo (2.5.64)
r 2s

and assume we can choose the parameters T}, ¢, in such a way that
IVllzros < Wiz Y (Thyr — T) /75 < o0, (2.5.65)
k>0

then V' (t,z) € L"(]0,+o0o[; L*). On the other hand by Theorem 2.5.1 we can
extend (uniquely) ue, to a global solution of (2.5.63) in C([0, +oo[; L?(R"))
which we shall denote by wuk(t,z). Notice that, by the same theorem, we
have

g (t, ) 22 = const. = [Jue, (Ti) ||z = € ™/2||uo|| 2 (2.5.66)

recalling the explicit expression (2.5.59) of u.. On the other hand, we can
write

Nukllrgspay > Nkl Loy 1sisz) = e e 1y 500) = (T—Ter1) e | Juo| o
(2.5.67)
by an elementary calculation. The Strichartz esimates are violated when

Huk“LP(R;Lq)
[[ur (0)] 2

and this holds provided the parameters T}, €5, satisfy the condition

is unbounded, (2.5.68)

lukllLr@pe) _ e llzo @ mpisie) _ [luollLe
lur(O)llz2 = [lue (0)]]r> [[uoll >

(Tk — Tk+1)1/p€g_5 — 00.

(2.5.69)
In conclusion, we only need to adjust the parameters (2.5.61) so to satisfy
the two conditions (2.5.65) and (2.5.69):

Z(Tk-i-l - Tk)l/rﬁiin/s < 00, (T = Te1)Pe; @ =00, (2.5.70)
k>0

given an admissible pair (p,q) with p # oo and (r,s) as in (2.5.64). With
the special choices

To=0, Tho1=Tr+k* e=1, e, =k 5?2 k=1,2,3,...
(2.5.71)
for some «, 8 > 0, the conditions reduce to

« n « n n
— — -1 — — —. 2.5.72
T+B28<ﬂ ; p+52q>ﬁ4 ( )
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Since (p,q) is admissible, the second condition simplifies to > 3, and
rearranging the first one we are reduced to

a—ﬂ+ﬁ<%+£><ﬂ_17 a> 6. (2.5.73)

T 2s

The term in brackets is smaller then 1 by assumption, hence if we choose

a>p> [1 - (% + 1)] B (2.5.74)

any

2s

with « close enough to 3, we conclude the proof of the first part of Theorem
2.5.2, (ii).
2.5.6 Proof of Theorem 2.5.3, case 1/r+n/(2s) > 1, r # o

As in case 2.5.5 the proof is based on a rescaling argument. First of all
we prove part (ii). Consider again the rescaled solution (2.5.59) which
solves equation (2.5.60) globally with a smooth compactly supported po-
tential W,(z) = €W (ex). Now, take two monotone sequences of positive
real numbers

l=€ <€ <+ < T 400, 0<d;d0, k=0,1,2,3,... (2.5.75)

and define a potential V' (¢,z) on [0, +oco[xR" as follows:

(2.5.76)

V() W, (z) iftekk+ 0], z € R,
) =
0 elsewhere.

Note that V(¢,z) € L?°L> for any bounded time interval I, while globally

1/r 2—
Vs < IWllee D8, ™", (2.5.77)
E>0
As above, the function u,, solves the equation

i0u — Au+ V(t,z)u =0 (2.5.78)

on the interval ¢t € [k,k + 0k, and can be extended to a global solution
ug (¢, z) of the same equation thanks to the existence part of Theorem 2.5.1
(recall that V' € L°L>). Moreover, uj has a conserved energy

k(8,12 = Nk, )2 = € uoll 2. (2.5.79)

Then, as before, we can estimate

n

ukllreriney e lookpropne)y — luollne a/p 3-2
) > Ok = 5/ Fel . (2.5.80)
|k (0)[| L2 [[ue, (0)] 22 Juoll 2 * 7*
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Again, in order to violate the Strichartz estimates for an admissible couple
(p, q) and the potential V' € L"L?, it is sufficient to satisfy the two conditions

SOMTET c oo, 6P S o (2.5.81)
k>0
With the special choices
o=k e =KP/?, (2.5.82)
the parameters a, 8 > 0 to be precised, we are reduced to

(0]

_;+(1_2”_8)5<—1, —%+<%—2"—q>ﬁ>0. (2.5.83)

Since (p, ¢) is an admissible pair, the second condition is equivalent to a < /3
and we can rewrite the conditions as

a—p

r

+ <l + E) B>pB+1, a < pB. (2.5.84)
r 2s

Recall now that we are considering the case

1
S+l (2.5.85)
r  2s

hence we may choose any £ such that

B> [(% + %) - 1] - (2.5.86)

and choosing then any a < 8 close enough to 5, we easily satisfy the condi-
tions (2.5.84).

This concludes the proof of part (ii) of Theorem 2.5.3.

Part (iii) can be proved by a simple modification of the preceding proof.
Indeed, consider again the sequence d = K~ constructed above, and notice
that it is not restrictive to assume that 8 > a > 1. Thus the series ) dj
converges, and the sequence of partial sums

k
Ty =Y 6 (2.5.87)
j=0

is positive, strictly increasing, and converges to

lim T, =T = 0. 2.5.
Jim T}, kz>0k (2.5.88)
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We can now modify the definition (2.5.76) of the potential V' (¢, z) as follows:

’ 0 if t € [0, |- o

This defines a potential on I x R* = [0,7T] x R*, whose L}L* is given again
by (2.5.77). The remaining arguments of the preceding proof apply without
modification.

The proof of Theorem 2.5.3 is concluded.

2.5.7 Proof of Proposition 2.5.4

The main tool of the proof is the pseudoconformal transform

X2 e 1 X
u(t,z) — U X)=e¢ ' T 2u|—=,—= (2.5.90)

T T
which takes a solution (¢, z) of the Schrodinger equation in the variables
t, x into another solution of the same equation, in the variables T, X. If we

apply the transform to the solution (2.5.58), we obtain a function U (T, X)
which solves

iopU — AxU+V(T,X)U =0, U(1,X) =" u(X), (2.5.91)
where the potential V (T, X) is given by

V(T,X) = %W (%) . (2.5.92)

It is easy to compute explicitly the norm of V on the interval [0, 1]:

1 1/r
HWMMm=(ATW“%ﬂ Wil < o0 (2.5.93)

and this integral converges since our assumption (2.5.29) on the pair (r,s)

is equivalent to
r (ﬁ — 2) > —1.
s

On the other hand, the LYL? norm of U(T, X) on an interval of the form
[0,1] with 0 < § < 1 is given by

1 p(ﬂiﬂ) 1/p 1 ) 1/p
0lger = ([ 276 ) i = ([ 172) T 1wl (299

since admissible pairs (p, q) satisfy p(n/q — n/2) = —2. This implies that
U(T, X) belongs to all LYL? spaces for I = [6,1] for all 0 < § < 1, but not
for I = [0, 1] where the integral diverges. Note also that

IU (L) 2 = lluolle-

It is sufficient now to apply to U(T,X) a reflection and a translation
in time 7" to obtain exactly the counterexample required in Theorem 2.5.4.
The proof is concluded.



Chapter 3

Equations on noncompact
manifolds with negative
curvature

3.1 Introduction

This chapter is devoted to the study of the perturbed Schrodinger equation
on some manifolds with constant negative curvature:

iug — Apu + V(t,a;)u = F(t,ﬂ)),

where —Aj; denotes the Laplace-Beltrami operator of the manifold M.
More precisely, we shall consider the special case M = H", the hyperbolic
space of dimension n, and the more general class of Damek-Ricci spaces.

Our first goal is to prove the analogous of Strichartz estimates on H";
the effect of negative curvature is that in the estimates new weights appears,
increasing as |z| — oco. Thus in the presence of negative curvature the esti-
mates are stronger than in the flat case. If a large time dependent potential
V(t,z) is present, we can extend the results of Section [lavoroconNicola] to
this case, and we can prove the Strichartz estimates provided V satisfies
a suitable weighted Lj L} condition. We then apply these estimates to the
semilinear Schrodinger equation with a power nonlinearity depending also
on the space variables:

iy — Apnu + V(¢ 2)u = g(|z|, u).

We prove results of both local and global well-posedness for radial solutions
in the energy class. The behaviour of the nonlinearity for which we have
global existence is similar to the flat case, but here we can allow a growth of
the nonlinear term as || — oo, which is more general than in the flat case.

109
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In the next section we investigate the case of Damek-Ricci spaces S, and
we consider the free Schrédinger and wave equations

iug — Agu = F(t,|z]), uy — Agu = F(t,|z|).

For these equations, in the radial case, we prove generalized Strichartz esti-
mates with weights; again, these estimates are stronger than the correspond-
ing ones on R", as an effect of curvature. We notice also that in the case
of the three dimensional hyperbolic space H? we reobtain (with a simpler
proof) a weighted dispersive estimate proved by Banica in [5].

The results of this chapter are contained in the papers [76] and [77].

3.2 Strichartz estimates

For the convenience of the reader, we collect here the Strichartz estimates
for the Schrodinger and the wave equations on R”, which we shall extend
to more general manifolds in the following sections. Standard references are
[98], [51], and [66].

The Strichartz estimates for the Schrodinger equation on R™ can be
written in the following form:

1”2 Fll ocrspaqrny) < I Nlz2n) (3.2.1)

for any f € L?, any (bounded or unbounded) time interval I C R, and for
all sharp H-admissible couples (p, g):

1 n n

-4+ —=- > 2 and 2 . 3.2.2

Sty — g pezZan (p; ) # (2,00) (3.2.2)
The case (p,q) = (2, -2%;) is called the endpoint; estimate (3.2.1) is true also
at the endpoint for n > 3. When n = 2 the endpoint is exactly (p,q) =
(2,00); in this case the estimate is still true when f is a radial function, but
is known to be false in general.

The equivalent nonhomogeneous form of (3.2.1) is

for all (p,q) and (p, §) admissible, p’ and ¢’ being dual to p, g respectively.
The Strichartz estimates for the wave equation on R"

t
/ =92 F (s, z)ds

0 < CHFHLﬁ’([;Ld’(Rn)) (3.2.3)

Lp(1;L1 (&™)

~02u+Au=F(t,z), u(0,2)=ug(z), Ou(0,z) = u(z), (3.2.4)

under the assumption that the dimensional analysis (or "gap”) condition

Lron_

SR

1
R (3.2.5)

"=
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holds, are the following

lullzpre < Clluoll gy + Clluall gy + CIE] (3.2.6)

=1 5!
p q
P

for any data ug € HY, uy € H"™!, F € L’;ILq', any (bounded or unbounded)
n—1

time interval I C R, and for all “5=-admissible couples (p, q), (P, q), i.e. such
that

1 n—-1 _n-1 2(n—1)

- < 2 d 2 > 3. 3.2.7
St e < , PEJ2,00]and g € [2,——2"1, n 2 (3.2.7)
Estimate (3.2.6) is true also at the endpoint (p,q) = (2, 2(7?__31)) for n > 4,

but is false when n = 3.

3.3 Hyperbolic spaces

We consider here the Schrodinger equation on the hyperbolic space

{ v+ St =0, (3.3.1)

u(0,z) = f(2), Q€ H".

See the following section for the main properties of H" and its Laplace-
Beltrami operator Agn. The solution u can be represented using the unitary
operators eitAun a9

u(t, Q) = etAun f, (3.3.2)

It is natural to expect that the curvature of the manifold has some influ-
ence on the dispersive properties. Indeed, in [5] the following estimate was
proved for u(t,Q) = e*Ae" f n > 3 odd,

1 1 / P T o
u(t, )] < C <|t|% + M%) /H3 £ (£2)] (Sinhp> asy’, (3.3.3)

where by p we denoted the hyperbolic distance between the points Q and €.
If we compare (3.3.3) with the standard dispersive estimate on R"”, we see
that the effect of the curvature is a weight in the right hand side of (3.3.3).
If we restrict to radial data f, then (3.3.3) implies the weighted estimate

C

w(2)|u(t, 2 —
(Ot < op

/Hn | £ () |w™H(Q)dY (3.3.4)

where the weight function w(f2) is given by

sinh d(0, Q)

w(®) = d(0,9)

(3.3.5)
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Here we denote by 0 the origin of the hyperbolic space, 0 = (1,0,...,0), and
the LP space on H" as

[P = [P(H") = LP(dS),

where d2 is the measure on the hyperbolic space H" (see the following
section for the precise definitions).

Thus by using interpolation and the standard 77 argument of [51], [66],
it is easy to obtain the weighted Strichartz estimates

1”25 f 1l porspaqwa-2)) < CllF 2y (3.3.6)
which can be written also
_2
lw' =725 f| ey < Ol fll 2 (3.3.7)

Moreover, the TT* argument gives the equivalent estimate

for all admissible couples (p, q) and (p, ¢), for all radial functions f(£2) and
F(t,8), and for all unbounded interval I C R when n = 3 and bounded
interval I C R when n > 3 odd.

Consider now a perturbed Schrodinger equation of the form

™

t
w e / e t=)2an B(s Q)ds

-z
i <Cllw 1 F“Lﬁ’(I;Li’) (3.3.8)

LP(I;L9)

This can be regarded as a first step to the general equation with variable
coefficients. As it was observed in [39], a perturbation of the form (3.3.9) can
be treated if we assume that the potential V satisfies suitable integrability
properties in space and time.

The main result of this section is the following

Theorem 3.3.1. Let I be an interval of the form [0, +o0[ in three dimension
and [0,T] bounded when n >3 odd. Let V : I x H* — C be a function such
that

2
|w(2)™s Vi pr(r;ps) < 400 (3.3.10)
and indices T, s satisfying
1 n n
- + % = 1, rel,o0] and s € [5,00] (3.3.11)

Moreover, assume that

i) V is a radial function in €);

i) in the endpoint case (r,s) = (00, %), the norm ||w_%V||LOO(I;L%) is small
enough.
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2 =1 ~r
Let f € L? and F such that w' 7 F € LP (I; LT) be two functions radial
in Q, with (p,q) admissible. Then the Cauchy problem

{ O+ Agnu + V (¢, Qu = F(t,9), (33.12)

U’(Ov Q) = f(Q)a

has a unique solution u € C(I; L?) satisfying for all admissible couples (p, q)
the weighted Strichartz estimates

_2 17%
lo' Tullgozize < Clflle + Clw' ™7 Fll gy (3.3.13)

with p,q,p,q as above.
When F =0, the norm ||u||2 is constant in time.

Remark 3.3.1. Note that for a singular coefficient V'(¢,2) it is not clear in
general if the Cauchy problem (3.3.12) is well posed. Thus in the proof
of Theorem 3.3.1 we must also obtain the existence and uniqueness of the
solution u(t,§2).

Remark 3.3.2. By iterating the argument of the proof, one can treat easily
the case of a general potential

V="+...+V

such that each Vi,..., V) satisfies the assumptions of the Theorem 3.3.1
(with possibly different values of r, s).

Remark 3.3.3. In the case of a bounded time interval I = [0, 7], we can easily
extend the results of Theorem3.3.1 to any potential satisfying (ii) with

L™
ro 2s =

Indeed, by Holder inequality we see immediately that a such V' satisfies (ii)

for a different couple (7, 3).

In the second part of the paper we shall consider an application of
Theorem3.3.1 to a nonlinear Schrodinger equation of the form

i0u + Amnu = g(Q,u). (3.3.14)

Notice that our weighted estimate (3.4.20) makes it possible to consider
coefficients ¢(€2,u) which are unbounded as || — oco. Our result is the
following;:

Theorem 3.3.2. Let n > 3 odd. Let V be as in Theorem 3.3.1. Assume
g :H" x C — C is such that:
(i) Im(g(,u)) =0 (gauge invariance);
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(ii) if lL<~y <1+ %, the following inequalities hold:

(2, u)] < Cw(Q)n |u]?, (3.3.15)

4
n

19(2,v) = g(2w)| < Cw(Q)7 (o] + [w)T™ o — wl; (3.3.16)

(7ii) g is a radial function of Q.
Then the Cauchy problem

{i@tu + Amu+ V(t, Qu = g(Q, u), (3.3.17)

u(0,Q) = f(Q) radial,

has a unique global solution u € C(R,L?) such that w' i € LP(R; L) for
all admissible couples (p,q).

Moreover, when v =1+ % the result is still true provided the L? norm
of data ||fl|12 is sufficiently small and without hypothesis ().

3.3.1 Basic properties of H"

We recall briefly some properties of the hyperbolic space that we shall use in
the following. We shall represent H” as the upper branch of the hyperboloid:

H* = {Q = (t,x) € R"™, (t,x) = (coshr,wsinhr), r >0, w € S" '},
This can be written in an equivalent way as follows:
H' = {z = (20,1, ...,2,) € R 25 >0, [z,2] =1}
where [z, y] denotes the inner product on R**!
[z,y] = Toyo — T1y1 — - — TnYn.
If we restrict to H" the Lorentz metric on R**!
di* = —dt* + dz”
we obtain the following riemannian metric on the hyperbolic space
ds® = dr? + sinh? rdw?
as it follows immediately from the relations
dt = sinhrdr, dx = coshrwdr 4+ sinhrdw.

The distance between two points in this metric can be written explicitly,
using the above defined inner product

d(Q, ') = cosh™([Q, ).
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A useful special case is the distance of a point from the origin 0 which cor-
responds to (g, Z1,...,2y) = (1,0,...,0) or equivalently to (¢,7) = (1,0):

d(£2,0) = d((cosh r,sinhrw), (1,0)) = cosh!(coshr — 0) = r.

Finally, the corresponding measure can be written in the coordinates r, w as
follows:

o0
f(Q)dQ = / f(r,w) sinh™ ! rdrdw.
Hr 0 Snfl

The Laplace-Beltrami operator on the hyperboloid has a simple expres-
sion in terms of the laplace operator on the sphere:

coshr 1
Agn = 02 —1)—— —_
“ rtn )sinhr " sinh?r

ASn—l.

3.3.2 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 follows closely the ideas of [39]. For the benefit of
the reader we give here a complete proof, with the necessary modifications.

In the following for simplicity we write only A instead of Agn. We shall
also introduce the notation

ALY = [P(J; L9(dR2))

for the mixed spaces on the product J x H", where J is any time interval
[0,00[ when n = 3, and [0,7] bounded when n > 3 odd.
We distinguish two cases, according to the value of r € [1, ool.

3.3.3 Case A: r € [2,00]

Consider a small interval J = [0, ¢] and the norm

2
o]l = max {uvumz, @l | } ;
J

note that 5 5 5
1——-=-— for r=_"_
T n n—2

Let Z be the Banach space

Z={f € CyL%: ||fllz < oo}
with the norm ||v||z. Then, by interpolation, Z is embedded in all admissible

spaces LE LY.
For any v(t,Q) € Z we define the mapping

t
D (v) = etPanf 4 /0 =98 B (s) — V(s)u(s)] ds. (3.3.18)
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A direct application of the weighted Strichartz estimates (3.3.8) gives

1-2 -5 1-2
lw™«@(v)||lge e < Col[fll2 + Collw VvllLiqug + Collw™ @ F| g
(3.3.19)
for all admissible (p, q), (po, q0), (7,G). Now, by Hélder’s inequality we have
2 —

1-2 2
lo B Voll o <l
LJOLO

2
- 2
"y 2

HLSLS “wanL%L%

and this gives

—2 _2 2 1-2
lw' 1 @)z e < Collfllr24Collw™s VlLr s [lwnoll 20 +Collw 7 F]|
L2L"2

2%
7 J
(3.3.20)
provided we choose py, gp such that
1 1 1 1 »n+2 1
po 2 o  2n s

Indeed, our choice gives in particular (see the weight for V)

2 2 2
1—— ——
‘N n

S
Note that

1 n 1 n+2 1 n _1+n—|—2 1="
-2 4 4

— 4=+
Po  2q0 2 4

r  2s

by our assumptions on r, s, and moreover
re 2,00 = po€[200]

so that our choice of pg, qp always gives an admissible pair in the case under
consideration.
In particular, choosing (p, q) = (00,2) or (2,2n/(n — 2)), we obtain

1-2 2 -2
[w™ 2 @(v)]|z < Coll fllz2 + Collw™=ViiLyLellollz + Collw™ 7 F]|

JZA R
(3.3.21)
Thus ®(v) belongs to all the admissible weighted spaces L5 L?, and to
prove that ®(v) belongs to Z it remains only to show that « is continuous
with values in L?. But this is an immediate consequence of the following

simple remark:

Remark 3.34. Let G be such that w'™ v G(t,Q) € LY LY with (a,b) admis-
sible. Then the function

t .
w(t,Q) = / =981 () ds
0
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belongs to CyL?. Indeed, this is certainly true if we know in addition that G
is a smooth function, compactly supported in € for each ¢. If we approximate
G by a sequence of such functions G so that wlfb%Gj converges to w v G
in the L‘}’Lb' norm, the Strichartz estimates imply that the corresponding
functions w; converge in L*°L?, whence the claim follows.

We have thus constructed a mapping ® : Z — Z. Assume now the
length § of the interval J is chosen so small that

2 1
Collw™sVly e < (3.3.22)

53
this is certainly possible since r < co. With this choice we obtain imme-
diately two consequences: first of all, the mapping ® is a contraction on Z
and hence has a unique fixed point v(¢,Q) which is the required solution;
second, v satisfies

_2 1 _2 _2
lw' ™5 0l|p 10 < Collfllze + s llw' 0]l oo + Collw' " T FI| » o (3.3.23)
J 2 J L; L
whence we obtain
1-2 1-2
o'~ Fvllgs e < 2Colflse +2Collw' ¥ Fll o (3.3.24)

It is clear that the above argument applies on any subinterval J =
[to, t1] € I on which a condition like (3.3.22) holds; of course, we will obtain
an estimate of the form

1-2 1-2
ot Follpie < 2000 (to)lx + 200! T Fl e (3325)
Notice also that (3.3.25) implies in particular
_2 1-2
lw' ™ oty 2 < 2Co|[v(to)l 2 + 2Co||Jw' FHL’}'LCI" (3.3.26)

Now we can partition the interval I (bounded or unbounded) in a fi-
nite number of subintervals on which condition (3.3.22) holds. Applying
inductively the estimates (3.3.25) and (3.3.26) we easily obtain (3.3.13).

The last remark concerning the conservation of energy can be proved by
approximation as follows: let V;(¢,) be a sequence of real valued smooth
potentials, compactly supported in €2, and let v; be the corresponding solu-
tions; then the differences w; = v — v; satisfy (in suitable integral sense)

iatwj — Apr w; + ij = (V — Vj)’l}j = Fj.

Now we observe that the smooth solutions v; have a conserved energy; more-
over, we can choose the approximating potentials V; in such a way that

w_%Vj they converge to w3V in L7L? and their Strichartz constants do
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not exceed the above constructed constant for V. Indeed, if we can partition
I in a finite set of subintervals satisfying (3.3.22), we can choose exactly the
same subintervals for each V; provided we construct V; by a convolution
with standard mollifiers, so that their Lebesgue norm does not increase. In
conclusion, the v; satisfy uniform Strichartz estimates, and this implies that
the nonhomogeneous terms F; = (V — Vj)v; tend to 0 in the (dual) admis-
sible spaces, by estimates identical to the above ones. Thus in particular
w; — 0 in L®L? and this shows that also v(t,(2) satisfies the conservation
of energy.

3.3.4 Case B: r € [1,2]

The method in this case is quite similar to the above one, but instead of
(3.3.19) we use the estimate

1—-2 _2
lw™ ¢ @ ()| gz 2 < Collfllr2 + Collw™ <Vl

(3.3.27)
where (p, ¢) and (p, ¢) are arbitrary admissible pairs, while the pair (r, 2s/(s+
2)) is the dual of (r/,2s/(s — 2)) and this last pair is admissible since

1 n s—2 n n 5—2_n

r’+_' 2s :£+2 25 4

where we have used the assumption 1/r + n/(2s) = 1; notice also that
r € [1,2] and hence 2s/(s 4+ 2) € [1,2] too.
Thus by Holder’s inequality we obtain

2 2 _2
o' =8 )llig00 < Coll 2+ Collw™#Vllg s oll 1+ Collw'~F Fl
(3.3.28)
and choosing (p, q) = (00,2) or (2,2n/(n — 2)) and proceeding as above we
arrive at

1 _2
12()llz < Collfllzz + 5 llvllz + Collw' "7 F|| (3.3.29)

3 g -
AL

i From this point on, the proof is identical to the first case.

3.3.5 Case C: (r,s) = (oco,n/2)
In the last case we assume the potential to be small in the following sense:

_4
Jo™ Vs < e

The proof is similar to Case A, with the same choice of the indices; we obtain

1-2 _4 2 1-2
lw™ @@ ()| z o < Collfl|L24Collw nVlngoL%Hw"vlngL%wLCollw CE
(3.3.30)
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and by the smallness assumption we can write

1-2 2 1-2
lw' =5 @)z 10 < Collfllz2 + Coellwnvll | 2a + Collw' "7 F|l o
L5L J
(3.3.31)

Choosing (p, q) = endpoint we easily conclude the proof of the Theorem.

3.3.6 Proof of Theorem 3.3.2

We begin by the critical case v =1 +4/n. We define ®(v) as the solution u
of the Cauchy problem

{ i+ Apru+ V (L, Q)u = g(Q,v), (3.3.32)

u(0,9Q) = f(22) radial.
By Theorem 3.3.1 the following weighted Strichartz estimate holds
_2 1-2
lo S ulliorsne < ClFlle + Clw' T g(@0) | gy (3:3.33)

with p,q,p, ¢ as above. By (3.3.15) we have
1-2 1-2+4
' S ullioisny < Clfllze + Cllw'™ 3 5ol g

and we obtain that

1-2 o
lo' v ulluoqassey < ClFllee + Clwol gy (3.3.34)

1( 2 4)
g = — 1_T,+_ .
¥ 7 n

We have to require the admissibility of couples (p, ¢) and (p, §); moreover we
must choose p, ¢ in such a way that the last norm in the above inequality
is the same as the norm at the left hand side. We can express all these
conditions by the following system:

where

Py =p,
o
M= i (3.3.35)
5_'_2_(1:17 papE[Q’OO]
%_*_%:%a qaqepv%]’
i.e. !
n ) 0% n non
S g S L A S LRI I O 3.3.36
52 p+2( q) TItT T ( )
Now, if we know that
4
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we see that we can choose admissible couples (p,q) and (p,q) as above.
Moreover, if we substitute in the definition of o the above relations, we
obtain

and thus we have proved that ® maps the Banach space X with norm

1—2
[vollx = w7l Lo (1;19)

into itself.

We show now that ® is a contraction on the space X. Let vi,v9 € X
such that ®(v;) = wu;,% = 1,2; then we can apply the weighted Strichartz
estimate to the difference v; — v and we get the following:

1-Z
lur —uallx < flw 7 (Jor]" = |o2") | Lo 10
By (3.3.16) we have
1- 244 _ _
< lw ™7 oy = val(lor "7 + o2l Yl 11
and as before we obtain
lur — uzllx < llvr — vollx [l (Jor| + [o2)) 15" (3.3.37)

If we assume now that v; € X such that ||v;||x < e, with € small enough,
and also that || f]|z2 < d, by (3.3.34) we note that

lul|x < C8+Ce? =Co+ Ce(e771) < ¢

provided ¢, § are such that Ce?~! < % and C0 < 5. We have also

—

lur = ualx < [lor = v2l|x G277 < gllor —vallx

provided ¢ is so small that 2Ce7~! < % Thus, if initial data are small
ie. ||fllzz < 0, the map ® is a contraction and this implies that there
exists a unique solution u(¢,2) of the Cauchy problem (3.3.2) such that

2
w' du(t,Q) € LP(I; L9) with a admissible couple (p,q) when y =1 + 1 As
observed above one see easily that this is the unique solution in u(t,Q) €
C(R; L?) with radial initial data in L?.

In the subcritical case, i.e., when v < 1 + %, we proceed as above and
using the Holder inequality in time on I = [0,7] we can prove that ® is a

2 2

map from X, := {w' v € LP(I;LY) : ||w1_av||Lp([;Lq) < M} into itself,
provided the time 7" is small enough. Indeed, choosing the indices as above
and applying Holder’s inequality in time we have

_2 _2
lo' ™l oy < ClF e + OT 0! 00l A>0 (33.38)
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for some A > 0. We must to prove that ® is a contraction on the space X;.
By hypothesis (ii) we obtain that

-1 -1
lur —wzlx,, < Cllor = vallxy, TA(lon I, + llo2l%,) (3.3.39)
Let v; € X and let || f|| € L?, by (3.3.38) we note that
lullx,, < Clfllge + OMTA = C| fll 2 + CM(M'™Y) < M,

provided M is so large that C& > C/||f[|? and T is so small that CT* M7 1 <
%. Thus we have also

_ 1
Uy — u2 Xyvy > U1 — U2 X S S|V — V2 Xumr
| Ix < | 1, C2T* M7 < 5 |

1

if 20T M7"! < 1. In conclusion, if M > 2C| f||;2 and T < (m)i,
then the map ® : X, — X,/ is a contraction and as consequence there exists
a unique solution v € X s to Cauchy problem (3.3.17) when v < 1 + % for
radial initial data large f € L?. Notice that T' depends only by L?-norm of

initial data i.e. )
1 by
T=|———==| =TUflL2)
(802Hf!|"£21>

and thanks to the conservation of charge, i.e., ||u(t)||2 = || f||z2 for all ¢,
we can iterate the above argument starting at ¢ = 7" and we can solve up
to time 27, then up to time 37, and so on. In other words, the solution
exists for all times. Thus we have proved the global existence of a unique
solution to Cauchy problem (3.3.17) for large radial initial data in L? when
vy<1l+ %.

3.4 Damek-Ricci spaces

In this section we study the Schrodinger and wave equations in the more
general context of Damek-Ricci spaces, also known as Harmonic AN groups;
these spaces have been studied by several authors in the past 15 years ([4],
[89], [11], [10], [29], [30], [33], [35], [36], [87], [100] and others). As Rie-
mannian manifolds, these solvable Lie groups include all symmetric spaces
of noncompact type and rank one, namely the hyperbolic spaces H"(R),
H" (C), H* (H), H?(0), but most of them are not symmetric, thus providing
numerous counterexemples to the Linchnerowicz conjecture [35]. This was
implicitely formulated in 1944 by Linchnerowicz, who showed that every
harmonic manifold of dimension at most 4 is a symmetric space, leaving
open the question if this assertion remains true in every dimension. Though
in 1990, Szabo proved it true for any simply connected compact harmonic
manifold ([99]), in 1992, Ewa Damek and Fulvio Ricci found a large class
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of non-compact harmonic manifolds which are not symmetric spaces. More
details on Damek-Ricci spaces are contained in the following section.

Our goal here is to extend the Strichartz estimates for the radial Schrodinger
and wave equations on Damek-Ricci spaces.

The idea of the proof is to transform the equation into a new perturbed
one with a suitable potential V' on R™; then, using the results of the pertur-
bative theory of Burq, Planchon, Stalker and Tahvildar-Zadeh [19], we can
obtain the Strichartz estimates. More precisely, the radial operator —A s
can be reduced to an operator of the form —A + V', where the potential V'
has a critical decay ~ |z|~2 and can be treated by the methods of [21].

It is interesting to note that we obtain the results on these noncompact
manifolds as application of the perturbative theory on R", thus avoiding the
difficulties caused by the geometry of these spaces.

Our first result concerns the Schrédinger equation on S; we can prove
the following weighted Strichartz estimates

lwgullLer,Lv(s)) < Cllwz uollpz(sy + Cllwg Fll o g 17 (s))>

with the weight

sinhr S (-3
we(r) = ,

Also for the wave equation on S we are able to prove the following
weighted Strichartz estimates

(coshr)g(l_%).

U U1
lwgulzoge.oisy < C |7 s €1 |nos sy  Cl0a Fllis sy
with the weights
(m+k) 2
inh 2 (=) k
ayfr) = (2 " (coshr) 501,
T

and . . .
o(r) = r*F3 (sinhr) ~(@+2) (coshr) ~(F+2),

3.4.1 Harmonic analysis associated to L,z Jacobi operator

In this section we recall the spherical harmonic analysis on Damek-Ricci
spaces S = AN, developed in [36] ([4], [89]), in accord with the general
framework of Jacobi analysis [71].

First of all we recall briefly the structure of these spaces. Let n be a
two-step nilpotent Lie algebra equipped with an inner product (, ). Denote
by 3 the center of n and by v the orthogonal complement of 3 in n. So that

n=0v®3, [v,0]C3, [v,3]=0 and [3,3] =0.
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For Z € 3 let Jz : v — v be the linear map defined by
(JzX,Y)=(Z,[X,Y)), (3.4.1)
for every X,Y € v. If, for every Z € 3, X € v,
J2X = —||Z)?X, (3.4.2)

where | - || is the norm defined by an inner product, then n is a algebra of
Heisenberg type. Denoting by m = dimbv and k¥ = dim}, for £ > 1 there
exists a algebra of Heisenberg type if and only if the possible dimensions
m, k are the values in the following table:

k|8 +1|8+2|8+3|8+4|8+5|8+6|8+7]| 8a+8

m 24a+1b 24a+2b 24a+3b 24a+4b 24a+5b 24a+6b 24a+7b 24a+8b

where a > 0 and b > 1 are arbitrary integers. In particular m is always
even.

The corresponding (connected) and simply connected Lie groups N are
called groups of Heisenberg type. We shall identify them with their Lie
algebra n via the exponential map exp : n — N. Thus multiplication in
N = n reads

(X,2) - (X', 2 =(X+X',Z+Z + %[X, X'). (3.4.3)

We will not develop here the geometry and the analysis on N; see for example
[10] chapter 2; [36] chapter 3. Consider ([11], [10], [29], [30], [33], [34], [35],
[36], [100]) the semi-product S = N x R’ defined by

1
(X,Z,a)(X',Z' ') = (X + a2 X', Z +aZ' + 5a%[X, X'). (3.4.4)

S is a solvable (connected and) simply connected Lie group, with Lie algebra
5 =0 @3 @R and Lie bracket

1 1
(X, Z,0),(X', 2" 0] = (EEX' — EK'X, (7' - 07 +[X,X'],0). (3.4.5)
S is equipped with left-invariant Riemnnian metric induced by
(X, 2,0), (X', 2", 0)) = (X, X') + (2, Z') + ¢ (3.4.6)

on 6. The associated left-invariant (Riemannian-Haar) measure on S is given
by

a—axdz %, (3.4.7)
a

Here Q = 5 + k is the homogeneous dimension of N. Thus we have the
following definition.
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Definition 3.4.1. We call Damek-Ricci spaces the (connected and) simply
connected Lie groups S = AN for which Lie algebra is s = n @ R with the
Lie bracket (3.4.5), provided with left-invariant Riemnnian metric induced
by inner product (3.4.6) on s.

Most Riemannian symmetric spaces G/K of noncompact type and rank
one fit into this framework. According to the Iwasawa decomposition G =
NAK, they can be realized indeed as S = NA = AN, with A =R N is
abelian for real hyperbolic spaces G/K = H"(R) and of Heisenberg type in
the other cases G/K = H"(C), H"(H), H?(0). Notice that these classical
examples form only a very small subclass of harmonic AN group, as can be
seen by looking at the dimension:

H"(R) | H"(C) | H"(H) | H*(O)
k| [0 1 3 1
m | [n—1] | 2(n—1) | 4(n — 1) 8

In the ball model B(s), the geodesics passing trough the origin are the
diameters, the geodesic distance to the origin is given by
1+ |2"]] .

r=d(z',0) = log T i.e. p=|2'|| = tanh g, (3.4.8)

and the Riemannian volume writes

dV = 2™+k (sinh g)m““(cosh g)kdrda, (3.4.9)

where do denotes the surface measure on the unit sphere 0B(s) in s and
n = dimS = m + k 4+ 1. In particular, the volume density in normal
coordinates at the origin, and by translation at any point, is a purely radial
function, which means that S is a harmonic manifold ([35], [99]). Like all
harmonic manifolds, S is an Einstein manifold. A lenghty computation
yields the actual constant:

Ricci curvature = —(% + k) x Riemannian metric. (3.4.10)

The sectional curvature, as far as it is concerned, is nonpositive, with min-
imum = —1 ([10]). Notice that it may vanish, contrairly to the hyperbolic
space case.

Now, we recall the principal techniques of harmonic analysis on these
spaces. The commutativity of the convolution on bi-K-invariant objects
on G is basilar for the harmonic analysis on symmetric spaces G/K. If
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one replace bi-K-invariance by radiality, a similar phenomenum appears on
general S. As established in [36], for the convolution on S:

(u*0)(z) = /S u(y)oly™"z)dy,

the radial integrable functions on S form a commutative Banach algebra
L'(S)!. We note that for distribution, invariant differential operators, ...
radiality is defined by means of an averaging operator over spheres, which
can be written r(n

(%)

=55 [ dofipo)
2m2 JoB(s)

in the ball model and generalizes K averages on rank one symmetric spaces
G/ K. The algebra of invariant differential operators on S which are radial is
a polynomial algebra with a single generator, the Laplace-Beltrami operator
L.

i)

Definition 3.4.2. We define a spherical function on S as a radial eigen-
function ¢ of L (and thus automatically analytic), normalized by ¢(0) = 1.

The radial part (in geodesic polar coordinates) of the Laplace-Beltrami
operator L on S writes
0? {m +k s| 0

s k
dL = — ——— coth — + — tanh —. 4.11
ra 92 + 5 coth g + 5 tan 2} P (3 )

By substituting r = §, 4radL becomes the Jacobi operator [71]

2

radL = % +{(2a+1)cothr + (258 + 1) tanh r} 82’ (3.4.12)
r r

with indices a = %’““ and 8 = %, a>p> —%. For every A € C there
exists a unique radial C*° function ¢ such that

Loy = —(A2 4 p*)py and ¢(0) = 1. (3.4.13)
Note that ¢y = ¢, if and only if A = +u. Moreover

PA(r) = 2F1(p = iA, p -+ iAs 5 — sinh? 7), (3.4.14)

where 9 F} is the hypergeometric function

(@) ()k 2*

Fi(a,bciz) =Y ~2kOIEZ
2 1((1, 707Z) ‘ (C)k; k’7

(3.4.15)

WE

i

with (a)o = 1, (a)p = ala+ 1)(a + k — 1) if & > 1; the function oF) is
extended analytical to C\[1, oco].
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For Re(i\) = —ImA > 0, we have the following asymptotic behaviour:

oa(z) ~ V)N DT as = r(z) = +oo, (3.4.16)

_ T(m+k) T@2n) TEA+D)
where ¢()\) = T (m3E) T2+ T) r(i,\+%ig)
S are Jacobi functions: ,

() = $537 (5).

The spherical Fourier transform is defined by

. Notice that spherical functions on

. n,n.n/2 ) r r
i = [ depr(a)flw) = 2 " dr(sinh )™ (cosh D)o (1) £ 1),

s /2 Jo ; 3
(3.4.17)

for radial functions f = f(z) on S, which we shall identify with functions
f = f(r) of the geodesic distance to the origin r = d(z,0) € [0,400). The
spherical Fourier transform concides with the Jacobi transform:

/2~ (a,f)

Fy) _ 92—k )
foy =24 5y 70T 20,

3.4.2 Weighted Strichartz estimates for the Schrodinger equa-
tion on S

We obtain the following result.

Theorem 3.4.1. Assume n > 3. Let uy and F be two functions radial in
z € S, such that wouy € L*(S) and wz F € LP (R; LY (S)). Consider the
Cauchy problem

0 L, = F(t,z),
i+ Lajg u = F(t,7) (3.4.18)
u(0, ) = uo(r),
then for all 5-admissible couples (p,q) and (p,q), i.e. such that
1 n n 2n
-4 — = - 2 d 2 3.4.19
L=t peocdandge 2200 e
the following weighted Strichartz estimates holds
||wq“||LP(R,Lq(S)) < Cllwz UO“L?(S) + C“w?fF“Lﬁ’(R,Lq’(s))a (3.4.20)
with the weight
(m+k) 2
inhr) 2 (70) k(2
wq(r) = (SH; T) (coshr)g(1 3), (3.4.21)
ond o= gkl s L
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In the special case a = %, the space S is the three-dimensional real

hyperbolic space H? (R), the following weighted dispersive estimate holds

sinh r C T
t,z) < = : ‘ . 3.4.22
< r ) fut, 2)] < 5 4o (smhr) L (B (R)) ( )
Proof. Let L, g be the Jacobi operator defined as
5 =02+ B(r)o, + p?, (3.4.23)
where we have set
B(r) = (2a+ 1) cothr + (28 + 1) tanh r (3.4.24)
and
k-1 k-1 1
p=(a+pB+1), a:%, B:T, a>p> ~5- (3.4.25)

Notice that (3.4.23) includes the radial part of the Laplace-Beltrami operator
on hyperbolic spaces and more generally on Damek-Ricci spaces S defined
above. Recall that the radial part of the Laplace operator in R" is

~1
A=o2+ 1

Or.

The idea of the proof is to construct a transformation which maps the Jacobi
operator on S into the radial part of the Laplace operator defined on R” by
imposing the following

u(t,r) = o(r)v(t,r). (3.4.26)

We have then
Log u(t,r) = 02u(t,r) + B(r)oru(t,r) + p*u(t,r) =
07 (a(r)o(t,r)) + B(r)d(o(r)u(t,r)) + p*o(r)u(t,r) =

o(r) [831)(25,7") + (2001((:)) + B(r) ) 9pv(t ( UH((:)) + B(r)

The crucial point is imposing the following condition

ig;+BUj:2a:1, (3.4.28)

and solving this differential ordinary equation we obtain

2

o(r) = r+3 (sinhr) =@+ (cosh r) =43, (3.4.29)

Replacing (3.4.29) in the coefficient of v(¢,r) in (3.4.27), after some compu-
tations, we obtain the potential
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Thus, using formula (3.4.24) we achieve

1\ 1 1 | 1

V(r) = (012 - Z) ﬁ—( 2 Z) coth? r— (/32 - Z) tanh? r+ (a 4 ﬁ2 2) )
(3.4.30)

Notice that V' € C*°[0,00) and it tends to zero as 7 — oco. As a result, we

have obtained the perturbed Schrodinger equation
0w+ Av — Vo =0 (3.4.31)

on R?**2 where V=-V. Now, we aim to study the behavior of V. Tt is
not difficult to check that our potential satisfies the inequality
~ a

Vi(r) > ——

ot (3.4.32)

where a = (n_f)Z. This allows us to apply the result of Burq, Planchon,

Stalker and Tahvildar-Zadeh (see [19]), where they prove Strichartz esti-
mates for the Schrodinger and wave equations perturbed with the potential
satisfying inequality (3.4.32). Thus, if we consider the Cauchy problem

(3.4.33)

i+ Av— Vo = ((t,i;),
'U(O,.’L‘) = Yo,

with radial initial data, we obtain the following Strichartz estimates

F
||U||Lp(R,Lq(R2a+2)) < C||U0||L2(R2a+2) +C||— (3.4.34)
T IL? (R,LT (R22+2))
If we put (3.4.26) we obtain the following inequality
F
H—‘ < H ul (3.4.35)
Lr(R,L9(R2?>+2)) L2(R2a+2) O || LF (R, L7 (R20+2))
Writing explicitely the left hand one has
-
q
| - </ (/ |u(t,m)a(x)_1|qdm> dt) -
O Il1LP(R,L1(R2>+2)) R R2c+2
replacing (3.4.29) into the weight ¢ in polar coordinates we have
AN

sinhr oty B+1
u(t,r, w) ( ) (coshr)” ™2
T

q
r"Yrdw | dt|
s»—1JR

I
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where a = , B = %, a>p> —%; for simplicity let us consider

only the radial component

(LU

since on the Damek-Ricci spaces S the Riemannian volume is

dV = 2™k ginh ™ cosh® drd@,

m+k—1
2

b
q q

sinh 7™ *cosh r* dr) dt

sinh r A=) k(12
u(t,r) < ) (coshr)2' q

r

where dw denotes the surface measure on the unit sphere 0B(s) in s and
n =dimS =m + k + 1, we obtain
o\
dr) dt|
k
2

R S

thus denoting w,(r) our weight (

S

m_-i-k(l_z)

u(t,r) <Sth> ’ ! (coshr)g(l_g)

r

sinhr) mT-Hc(l_g
r
= Cllwg ullLr(r,Le(5))-

In an analogous way, writing explicitly the right hand side of (3.4.35), by
similar computations we conclude the proof of all weighted Strichartz esti-
mates in Theorem 3.4.1.

In the special case a = % our Damek-Ricci space is the real hyperbolic
space of dimension three H3(R) when 8 = —%. In this case m = 2 and k = 0.
To prove the weighted dispersive estimate (3.4.42) we proceed as above; we
notice that after our transformation (3.4.26) the potential (3.4.30) becomes

V(r) =0,
thus we obtain a linear Cauchy problem

10w + Av =0, (3.4.36)
v(0,x) = v, o

which satisfies the dispersive estimate

C
o)l sy < 57 10/l @s).
Using the inverse transformation and computing as before we prove the

following
sinh r C T
( ) Ju(t,z)| < = uo|
r t2 L(H3 (R))

and this concludes the proof of Theorem 3.4.1. O

?

sinh r

=
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3.4.3 Weighted Strichartz estimates for the Wave equation
on S

Theorem 3.4.2. Assume n > 3. Let ug and F be two functions radial in
z € 8, such that “ € H7(S), & € H"(S) and wyz F € LP'(R; LI (8)).
Consider the Cauchy problem

—02u+ Lo g u=F(t,x),
u(0,z) = ug(r), (3.4.37)
ui(0,2) = u(r),

then for all "T_l—admissible couples (p,q) and (p,q), i-e. such that

1 n-1 n—1
<

P 2q — 4

, P €J2,00],and q € [2, (3.4.38)

the following weighted Strichartz estimates holds

Uy
)T |5 + Cllwg Fll o s)),

(3.4.39)

HH’Y—l(S)

<c| 2|
lwqull e r,La(s)) < o s

with the weights

wy(r) = <Smhr> ’ (coshr)g(k%), (3.4.40)

and
o(r) = ro* 3 (sinhr) (@2 (coshr)~(F+2). (3.4.41)

In the special case a = %, the space S is the three-dimensional real

hyperbolic space H? (R), the following weighted dispersive estimate holds

(sinhr) u(t, )| < C ‘

r t

r

(3.4.42)

ul‘

sinhr  llprams (r))

The proof is based again on the change of variables (3.4.26), (3.4.29)
which reduces Jacobi operator to a standard Laplace operator perturbed
with a potential. Since the result of [19] are valid also for the wave equation,
we can proceed exactly as in the proof of Theorem 3.4.1.



Chapter 4

Nonlinear Schrodinger
equations on compact
manifolds with positive
curvature

4.1 Introduction

We have seen that, on a manifold, negative curvature has the effect of im-
proving the dispersive properties of evolution equations. In this chapter we
examine a model situation when the curvature is positive, by studying some
nonlinear Schrodinger equations on the four dimensional sphere S*; we also
consider the more general case of compact four-dimensional manifolds. In
contrast with the negative curvature case, the positive curvature tends to
destroy the decay properties of the equation, and in general the results both
from the point of view of decay and regularity are worse than in the flat
case.

In particular, the situation for compact manifolds has been investi-
gated in a recent series of papers ( [22], [24], [25], see also [26], [46]) by
Burq-Gérard-Tzvetkov. They studied the Cauchy problem for nonlinear
Schrodinger equations (NLS) on Riemannian compact manifolds, generaliz-
ing the work of Bourgain on tori ([14], [15]). In [22], Strichartz estimates
with fractional loss of derivatives were established for the Schrodinger group.
They led to global wellposedness of NLS on surfaces with any defocusing
polynomial nonlinearity. On three-manifolds, these estimates also provided
global existence and uniqueness for cubic defocusing NLS, but they failed to
prove the Lipschitz continuity of the flow map on the energy space. These
results were improved in [24], [25] for specific manifolds such as spheres, tak-
ing advantage of new multilinear Strichartz inequalities for the Schrodinger
group (see also [23]). In particular, on such three-manifolds the Lipschitz
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continuity and the smoothness of the flow map on the energy space were
established for cubic NLS, as well as global existence on the energy space
for every defocusing subquintic NLS.

However, none of the above methods provided global wellposedness results in
the energy space for NLS on four-dimensional manifolds. This is in strong
contrast with the Euclidean case (see [50], [65], [27]). The only available
global existence result on a compact four-manifold seems to be the one
of Bourgain in [15], which concerns defocusing nonlinearities of the type
|u|lu and Cauchy data in H?(T*). Let us discuss briefly the reasons of this
difficulty. On the one hand, Strichartz estimates of [22] involve a too large
loss of derivative in four space dimension ; typically, for cubic NLS, they
lead to local wellposedness in H® for s > 3/2, which is not sufficient in
view of the energy and L? conservation laws. Moreover, these estimates are
restricted to LY L norms with p > 2 and the admissibility condition

1 2

-+-=1,

p q
so that the analysis does not improve when the nonlinearity becomes subcu-
bic. On the other hand, the analysis based on bilinear Strichartz estimates
is currently restricted to nonlinearities of cubic type, and on S* it only yields
local wellposedness in H? for s > 1. In fact, this obstruction can be made
more precise by combining two results from [22] and [24]. Indeed, from
Theorem 4 in [22], we know that the estimate

2 .
| @ dtde S 1 s

is wrong, which, by Remark 2.12 in [24], implies that the flow map of cubic
NLS cannot be C? near the Cauchy data ug = 0 in H*(S%).

The goal of this section is to provide further results on four-dimensional
manifolds. We shall study two types of NLS equations. In section 4.2.1, we
study NLS with the following nonlocal nonlinearity,

{ 0w+ Au = (1= A)~*ul?) u,

(0, 2) = o) (4.1.1)

where a > 0. Notice that the homogeneous version of this nonlinearity on
the Euclidean space R? reads

1 2
<|x|d—2a * lul ) u

so that (4.1.1) can be seen as a variant of Hartree’s equation on a compact
manifold. Combining the conservation laws for (4.1.1) with suitable bilinear
estimates, we obtain the following result.
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Theorem 4.1.1. Let (M,g) be a compact Riemannian manifold of dimen-
sion 4 and let @ > L. There exists a subspace X of C(R, H'(M)) such
that, for every ug € H' (M), the Cauchy problem (4.1.1) has a unique global
solution w € X. Moreover, in the special case M is the four-dimensional
standard sphere M = S*, the same result holds for all values o > 0 of the
parameter.

The proof of Theorem 4.1.1 relies on the following quadrilinear estimates

// ZtT A)fa(ulﬂg)u:;ﬂ;;dﬂidt
m (N1, -+ Na))*° (| full 2y | 2l o2 oy 1 f3 2 oy | Fall 22 oy

for every x € C§°(R), for every so < 1 and for f1, fa, f3, f4 satisfying

sup
TER

L i=aen, 2n, () = fis 7 =1,2,3,4.

Here and in the sequel m(Ny,---, Ny) denotes the product of the smallest
two numbers among Ny, No, N3, N4. Moreover u; and f; are linked by

uj(t,x) = S(t)fi(z), 3 =1,2,3,4,

where S(t) = /2. Notice that, compared to the multilinear estimates used
in [25], a frequency variable 7 is added in the equation. It would be interest-
ing to know if the smallest value of a for which these estimates (and hence
Theorem 4.1.1) are valid depends or not on the geometry of M.

In Section 4.2.2, we come back to power nonlinearities. Since we want to
go below the cubic powers and at the same time we want to use multilinear
estimates, we are led to deal with quadratic nonlinearities. In other words,
we study the following equations,

i0yu + Au = q(u), (4.1.2)

where ¢g(u) is a homogeneous quadratic polynomial in u,w
q(u) = au® + bu® + clul?.
Notice that a subclass of these equations consists of Hamiltonian equations

ov

q(u) = B

where V' is a real-valued homogeneous polynomial of degree 3 in u,u; with
the above notation, this corresponds to ¢ = 2a. In this case, the following
energy is conserved,

E = / \Vul? + V (u) do
M
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A typical example is

1 1
Viw) = Sl + ), glw) = |l + 50
Notice that this Hamiltonian structure does not prevent from blow up in
general. In the above example, a purely imaginary constant as Cauchy data
leads to a blow up solution ! Therefore we can only hope for local-in-time
existence. Our results are the following.

Theorem 4.1.2. If (M, g) is the four-dimensional standard sphere , then the
Cauchy problem (4.1.2) is (locally in time) uniformly well-posed in H . (S*)
for every s > 2, where stonal(S4) denotes the H® space of zonal functions

relative to some pole w € 8* : f(x) = f((z,w)) .

The main tool in the proof of Theorem 4.1.2 is the following trilinear

estimate on linear solutions u;(t) = S(t) f;,
su ) €T (ui(t,x), ug(t,z), us(t,x)) dzdt
rek //S4 1l @), et ), wslt 7)) (4.1.3)

< C (min(Ny, N2, N3))*° | fill 2oy 1 f2ll 254 1 31l 2 s4)

for every R-trilinear expression 7 on C3, for every x € C$°(R), for every
so > 1/2 and for zonal functions fi, fo, f3 satisfying

1 i=acn, ong (i) = fin 7=12,3.

It would be interesting to know whether the above estimate holds with non
zonal functions for some sy < 1 ; this would extend the above theorem to
any finite energy Cauchy data.

Moreover we give a classification for all the Hamiltonian quadratic non-
linearities for which the Cauchy problem associated to (4.1.2) has a unique

global solution for suitable small initial data in zonal(S4)

Corollary 4.1.1. Assume (M,g) is the four-dimensional standard sphere
and ¢ = 2a. Then the following assertions are equivalent.

i) There exists a subspace X of C(R, H} . (S%)) such that, for every small
initial data ||u0HHZ10nal(54) < ¢, the Cauchy problem (4.1.2) has a unique
global solution u € X.

ii) The parameters a,b satisfy

= =b. (4.1.4)

It would be interesting to know whether blowing up solutions exist for
non small data under property (4.1.4).

When property (4.1.4) is not satisfied, our blowing up solutions are par-
ticularly simple, since they are solutions of the ordinary differential equation
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deduced from (4.1.2) for space-independent solutions. Another open prob-
lem is of course to find a wider variety of blowing up solutions for equation
(4.1.2) in this case.

4.2 Wellposedness via multilinear estimates

The main step of this section is to prove a result of local existence in time
for initial data in H'(M) using some multilinear estimates associated to the
nonlinear Schrodinger equation, that we will establish in Section 4.2.2 with
a special attention to the case of the sphere. For that purpose we follow
closely the ideas of Burq, Gérard and Tzvetkov ([26], [24]). In those papers,
the authors extended to general compact manifolds the nonlinear methods
introduced by Bourgain ([14], [15], [L7]) in the context of tori R? /Z?. Finally,
we achieve the global wellposedness thanks to the conservation laws.

4.2.1 'Well-posedness in Sobolev spaces for the Hartree non-
linearity

In this subsection we prove that the uniform wellposedness of (4.1.1) on
M can be deduced from quadrilinear estimates on solutions of the linear
equation. Firstly, we recall the notion of wellposedness we are going to
address.

Definition 4.2.1. Let s € R. We shall say that the nonlinear Schrédinger
equation (4.1.1) is (locally in time) uniformly well-posed on H?®(M) if, for
any bounded subset B of H*(M), there exists 7' > 0 and a Banach space
X7 continuously contained into C([-T,T], H*(M)), such that

i For every Cauchy data ug € B, (4.1.1) has a unique solution u € X
ii If up € H°(M) for o > s, then u € C([-T,T], H°(M)).
iii The map ug € B — u € X7 is uniformly continuous.

The following theorem stresses the general relationship between uniform
wellposedness for equation (4.1.1) and a certain type of quadrilinear esti-
mates.

Theorem 4.2.1. Suppose that there exists C > 0 and sg > 0 such that for
any fla f23 f37 f4 € L2(M) SatZSfyZ’ng

1\/17AE[N],2N]](f]) = f]? .] = 172737 43 (421)
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one has the following quadrilinear estimates

/ / ltT A)fa(’u,1U2)’U,3U4d!L'dt

m (N1, -+ Na)) (| full 2y | 2l 2oy 1 f3 L2 any | fall 2 oy
Uj(t): St fi, 7=1,2,3,4,

where x € C°(R) is arbitrary, and m(Ny,---,Ny) denotes the product of
the smallest two numbers among Ny, No, N3, Ny. Then the Cauchy problem
(4.1.1) is uniformly well-posed in H5(M) for any s > sg.

sup
TER

(4.2.2)

Proof. The proof follows essentially the same lines as the one of Theorem 3
in [24] and relies on the use of a suitable class X** of Bourgain-type spaces.
We shall sketch it for the commodity of the reader. We first show that (4.2.2)
is equivalent to a quadrilinear estimate in the spaces X*?. We then prove
the crucial nonlinear estimate, from which uniform wellposedness can be
obtained by a contraction argument in X%’b. Since this space is continuously
embedded in C([-T,T), H*(M)) provided b > 3, this concludes the proof of
the local well posedness result.

Following the definition in Bourgain [14] and Burq, Gérard and Tzvetkov
[26], we introduce the family of Hilbert spaces

XPR x M) ={veS(RxM): (1+]id +A2)3(1 - A)sv e L2(R x M)}
(4.2.3)
for s,b € R. More precisely, with the notation

(@) = V142,

we have the following definition :

Definition 4.2.2. Let (M, g) be a compact Riemannian manifold, and con-
sider the Laplace operator —A on M. Denote by (e;) an L? orthonormal
basis of eigenfunctions of —A, with eigenvalues uj, by I the orthogonal
projector along e, and for s > 0 by H®(M) the natural Sobolev space

generated by (I — A)%, equipped with the following norm

ullFrs ary = Y e Il 72 - (4.2.4)
k

Then, the space X**(Rx M) is defined as the completion of C§°(Ry; H*(M))
for the norm

p——

s gescnr) = Z 107 + ) ) 2 T () 32, 12001

= ||S(—t) u(t, )“HbRt,HS M))?

where ﬁk\u(r) denotes the Fourier transform of IT,u with respect to the time
variable.

(4.2.5)
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Denoting by X%’b the space of restrictions of elements of X**(Rx M) to
| = T,T[xM, it is easy to prove the embedding

Vb > % X3P c C([-T,T), H*(M)). (4.2.6)
Moreover, we have the elementary property
Vfe HY (M), Vb>0, (tz)~ SEt)f(z)e X (4.2.7)
We next reformulate the quadrilinear estimates (4.2.2) in the context of
X5t spaces.

Lemma 4.2.1. Let s € R. The following two statements are equivalent:

i) For any f; € L* (M), j = 1,2,3,4, satisfying (4.2.1), estimate (4.2.2)
holds;

ii) For any b > % and any u; € X0 (R x M), j =1,2,3,4, satisfying

1\/1—Ae[Nj,2Nj](Uj) = 4y,

one has

4
1 - U1UQ)U3U4d.’L'dt < C( (Nl, s ,N4))SO H ||uj||X0ﬁb(R><M)-
j=1

(4.2.8)

Proof. We sketch only the essential steps of the proof of ii) assuming i), since
we follow closely the argument of Lemma 2.3 in [26]. The reverse implication
is easier and will not be used in this paper.

Suppose first that «; are supported in time in the interval (0,1) and we
select x € C3°(R) such that x =1 on [0, 1]; then writing ug(t) = S(—t)u;(t)
we have easily

it (T1—T2+T3—74)

(1= A)"*(urU2)ustys) (

x (1— A)*Q(S(t)uﬁ(ﬁ)S(t)ag(72))5(t)u3(73)5(t) @y (14) dry dry drs dry,
where ﬂg denotes the Fourier transform of ug with respect to time. Using

i) and the Cauchy-Schwarz inequality in (71, 79, 73, 74) (here the assumption
b > % is used, in order to get the necessary integrability) yields

4
| =) amuadedt] S m(, - N TS ey

4
m(Ni, -, Nyg)*° H 1wl xo.0(mx 1y -
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Finally, by decomposing u;(t) = >, ., ¥(t — 5)u;(t) with a suitable ¢ €
C3°(R) supported in (0,1), the general case for u; follows from the special
case of u; supported in the time interval (0,1). O

Returning to the proof of Theorem 4.2.1, there is another way of esti-
mating the L' norm of the product ((1 — A)~%(u1t2)usty).

Lemma 4.2.2. Assume « as in Theorem 1 and that uy,usg,us, s satisfy
L T=Rev 2N (uj) = uj. (4.2.9)

1
Then, for every s' > sq there exists b' €]0, 5[ such that

4
1 — uluQ)U3U4da;dt‘ < Cm(Ny,-- ,N4)5, H lujill o -

(4.2.10)

Proof. We split the proof in several steps.
First of all we prove that, for a > 0,

1 — *(u12)ustgdrdt

< Cm(Ny, -, 2H||UJ||X01/4

(4.2.11)
By symmetry we have to consider the following three cases:

m(Ni,---,Ng) = NiNo ,m(Ny,--+ ,Ns) = N3Ny, m(Ny,--- ,Ny) = N1 N3.

In the first case, by a repeated use of Holder’s inequality, we obtain

// (1 — A)"*(uru2)ususdadt

< O(1 = A)"*(wiu2) L2 (r, Lo (ar)) llusBall L2, L1 (ar))

< Cllurtiz|| 2w, Lo (ary) usBall L2 (v, L1 (a1
< Clluall e, Lo (v 1wl Law,poe (ary) lusll o @, 2 (ary) lwall Lo g, 22 (a1

where we also used that (1—A)~® is a pseudodifferential operator of negative
order, hence acts on L*°(M). By Sobolev inequality, we infer

4
1 — U1UQ)U3U4dQ}dt < C(N1N2 H ||u]||L4 RL2 )) .
j=1

By the Sobolev embedding in the time variable for the function v(t) =
S(—t)u(t), we have XO/* c L*(R, L?(M)), and this conclude the proof of
the first case.
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In the second case m(Ny,---,Ng) = N3Ny we can proceed in the same
way by writing the integral in the form

U1U2(1 — A)a(U3U4)d$dt‘ .
Finally, when m Nl, -, Ny) = N1 N3, we write the integral as follows

1 — 7% ’U,1U2)(1 - A)*%(u;),ﬂzl)dmdt s

and by Cauchy—Schwarz and Holder’s inequalities we estimate it by

<@ = A) 2 (uaTo) o 2y (1 — A) 72 (usTa) || o r2any)

< Cllurtz|| g2, 2 (any) lusBall L2 (v, 22 (ar))

< Cllurll e, oo (ary) el pa L2 (any) 1usl Lo, oo (ary) lwall L4, L2 (0 -
Finally we conclude the proof of (4.2.11) by means of Sobolev’s inequality

in both space and time variables as above.

The second step consists in interpolating between (4.2.8) and (4.2.11) in
order to get the estimate (4.2.10). To this end we decompose each u; as
follows

u] = E uj,Kja uj,Kj = 1Kj§<i8t+A><2Kj (U’])’

where K; denotes the sequence of dyadic integers. Notice that
2 2b 2 2
lailXos = 3 K luwgore 7 @enry = D i xos-
K; K;

We then write the integral in the left hand side of (4.2.10) as a sum of the
following elementary integrals,

I(Kl, e , / / 1 — u1 K1U2 K2)U3 K3’u,4 K4d.’L'dt

Using successively (4.2.8) and (4.2.11), we estimate these integrals as

[[(Ky,---  Ka)| < Cm(Ny, - Nu)™ Y (K1K2K3K4)6H g ;2
K1,K3,K3 J=1
(4.2.12)
where either (o, 5) = (so,b) for every b > 1/2, or (0,) = (2,1/4). There-
fore, for every s’ > sg, there exists by < 1/2 such that (4.2.12) holds for
(0,8) = (8',b1). Choosing b’ €]by,1/2[, this yields

1 — ’U,1’U,2)’U,3’U,4d$dt‘

4
< Cm(Nla U 7N4)s, Z (K1K2K3K4)blib’ H “U’j“XO,b' )
Ky, Ky Jj=1
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which completes the proof, since the right hand side is a convergent series.

O

We are finally in position to prove Theorem 4.2.1. We can write the
solution of the Cauchy problem (4.1.1) using the Duhamel formula

u(t) = S(t)up — i/o St —7) (1= A) *(|u(r)]*)u(r)) dr . (4.2.13)

The next lemma contains the basic linear estimate.

Lemma 4.2.3. Let b,V such that 0<b <3, 0 <b<1-=1V. There exists
C > 0 such that, if T € [0,1], fo (t —7)f(7)dr, then

o0 < CTl””"'HfH (4:2.14)

s,—bl -
XT

We refer to [52] for a simple proof of this lemma.
The last integral equation (4.2.13) can be handled by means of these
spaces X%’b using Lemma 4.2.3 as follows

t
/0 St =) (1= 2)™(lu(™)*)u(r)) dr|| g2
< OT5 7Y (1 = A)~(Ju(r)*)u(r)) s,

(4.2.15)

Thus to construct the contraction @ : X%’b — X%b, ®(v;) = w41 =1,2 and
to prove the propagation of regularity ii) in Definition 4.2.1, it is enough to
prove the following result.

Lemma 4.2.4. Let s > s9. There erists (b,b') € R? satisfying
1
0<b’<§<b, b+b <1, (4.2.16)

and C' > 0 such that for every triple (uj), j = 1,2,3 in X**(R x M),
11 = A) " (uruz)us|| xs, o < Clluallxsslluallxsollusl|xso.  (4.2.17)
Moreover, for every o > s, there exists Cy such that
11— A) " (|ul)ull xorv < CollullXos lullxon - (4.2.18)

Proof. We only sketch the proof of (4.2.17). The proof of (4.2.18) is similar.
Thanks to a duality argument it is sufficient to show the following

3
1 - ’U,1’U,2)’U,3’U,4d$dt‘ <C H Nwjllxse | Ilwall y—sur-
j=1

(4.2.19)
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The next step is to perform a dyadic expansion in the integral of the left
hand-side of (4.2.19), this time in the space variable. We decompose u1, ug, u3, u4
as follows:

wj =y uing, N = Ly aein ang) (4):
N;j

In this decomposition we have
et e = D N lwjn, xos =Y llwgn 5ss-
N;j Nj

We introduce now this decomposition in the left hand side of (4.2.19), and
we are left with estimating each term

J(Ni,--+,Ny) :// (1 — A)"*(u1,n, U2, N, )u3, Ny Ua, N, dTdt
RJM

Consider the terms with N < Ny < N3 (the other cases are completely
similar by symmetry). Choose s’ such that s > s’ > sg. By Lemma 4.2.2
we can find b such that 0 < b’ < % and

4
[Ny, Ng)| < CY (NN [T g, Nl o - (4.2.20)
N;j j=1

This is equivalent to

3
s ( Na\°
[J(N1, - No)| S C ) (NiN2)® (E) | QA P [ [
N; j=1

In this series we separate the terms in which Ny < C'N3 from the others.
For the first ones the series converges thanks to a simple argument of sum-
mation of geometric series and Cauchy-Schwarz inequality. To perform the
summation of the other terms, it is sufficient to apply the following lemma,
which is a simple variant of Lemma 2.6 in [24].

Lemma 4.2.5. Let a a positive number. There exists C' > 0 such that, if
for-any 7 =1,2,3, Cpug; < pgy, then for every p > 0 there exists Cp > 0
such that for every w; € L*(M), j = 1,2,3,4,

4
/M(l — A)fa(HklwIHkag)Hk3w3Hk4w4dm < Cp ,U,];f H ||UJj||L2.
j=1

Remark 4.2.1. Notice that if M = S* the above lemma is trivial since in
that case, by an elementary observation on the degree of the corresponding
spherical harmonics, we obtain that if k4 > k1 + ko + k3 then the integral
(4.2.20) is zero.
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Finally, the proof of Lemma 4.2.4 is achieved by choosing b such that % <
b < 1—b' and by merely observing that

gl o < Nlujllxss s 7=1,2,3.

4.2.2 Local wellposedness for the quadratic nonlinearity

In this subsection, we study the wellposedness theory of the quadratic non-
linear Schrédinger equation posed on S*

0+ Au = q(u),  q(u) = au® + ba* + clul?, (4.2.21)

with zonal initial data u(0, z) = up(z).

In fact we shall prove Theorem 4.1.2 on every four-manifold satisfying the
trilinear estimates (4.1.3). This is a result of independent interest that we
state below.

Theorem 4.2.2. Let M be a Riemannian manifold, let G be a subgroup of
isometries of M. Assuming that there exists C' > 0 and sg such that for any
w1, uz, uz € L*(S*) G-invariant functions on M satisfying

1 i=aen, 2n, (i) = fin 7 =123, (4.2.22)

one has the trilinear estimates

sup
TER

/ / ZtTT U17u27u3)d$dt < C(mln(Nl’N27 N3 SO H ||f]||L2

j=1

(4.2.23)
where T (uy,u2,u3) = uyugus or T (ur,uz,uz) = uugts and x € C°(R)
is arbitrary. Then, for every s > sg, the Cauchy problem (4.2.21) is uni-
formly well-posed on the subspace of H*(M) which consists of G-invariant
functions.

Proof. 1t is close to the one of Theorem 4.2.1 above, so we shall just survey
it. We denote by L% (M), HE(M), X5"(R x M) the subspaces of L*(M),
H*(M), X**(R x M) which consist of G-invariant functions. For the sake
of simplicity, we shall focus on the case

1
q(u) = |u* + §U2 .

The general case follows from straightforward modifications. As in the proof
of Theorem 4.2.1, it is enough, for every s > sy, to show that there exists
b, b’ such that

0<b’<%<b<1—b’
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with the following estimates,
luruz]l xs—v < Cllurllxsolluzllxse s luasll xo-v < Cllualxsolluzllxso
[u?ll oo < Collullxsnllullixos s MulPllyo—v < Collullxssllulixes , o>,

where ui,uq,u are G -invariant. As before, we focus on the first set of
estimates. Thanks to a duality argument, these estimates are equivalent to

// uluzugdxdt‘g0||u1||Xs,by|uz||Xs,b||u?,y|Xs,bf,
RJM

// i ususdrdt
RJM

In this way, writing the solution of the Cauchy problem (4.2.21) using
the Duhamel formula

(4.2.24)
< Clluallxss luallxssllusll x -

u(t) = S(t)uo — ’13/0 S(t— 1) (Ju()]* + %U2(T)) dr, (4.2.25)

and applying Lemma 4.2.3, we obtain a contraction on X;’b proving a re-
sult of local existence of the solution to (4.2.21) on H*(M), s > s¢. Thus
the proof of this theorem is reduced to establishing the trilinear estimates
(4.2.24) for suitable s,b,b'. We just prove the first inequality in (4.2.24).
The proof of the second one is similar.

First we reformulate trilinear estimates (4.2.23) in the context of Bourgain
spaces.

Lemma 4.2.6. Let so € R. The following two statements are equivalent:

- For any f1, f2, f3 € LL(M) satisfying (4.2.22), estimate (4.2.23) holds.

- For any b > % and any ui,ug,us € Xg’b(R x M) satisfying
IME[N]-QN]-](U’J') = Uj, ] = 1,2,3, (4226)

one has

3
// (u1u2ﬂg)dxdt‘SC(min(Nl,Ng,Ng))SOHHUjHXo,b. (4.2.27)
RJM .

7j=1

Proof. The proof of this lemma follows lines of Lemma 4.2.1 above. First we
assume that w1, ug, us are supported for ¢ € [0, 1], and we select x € Cg°(R)
such that x = 1 on [0,1]. We set ug(t) = S(—t)u;(t). Using the Fourier
transform, we can write

// ’U,1U253d$dt‘
RJM

3
< C/ / / // X(t)eitTHS(t)ﬂg.(Tj)dmdt dridrodTs,
T1 4 T2 J T3 RJM jaie
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where 7 = (71 +79—73). Supposing for instance N; < Ny < N3 and applying
(4.2.23) we obtain that the right hand side is bounded by

oo oo 9]
<one [ [ [ ia el e 180 endn .
—00 J =00 J —0O0

We conclude the proof as in the proof of Lemma 4.2.1 in section 2, using
the Cauchy-Schwarz inequality in (71,79, 73), and finally decomposing each
uj by means of the partition of unity

=3 (D)
nez

where ¢ € C5°([0, 1]). O

Lemma 4.2.7. For every s' > s there ezist b such that 0 < b < % and,
for every G-invariant functions uy,us,us satisfying (4.2.26),

u1u2u;,»)d$dt‘ < C'min(Ny, Ng, N3)* H lluj || o - (4.2.28)
7=1

Proof. Following the same lines of the proof of Lemma 4.2.2, it is enough to

establish

3
u1u2u;,»)d:vdt‘ < C'min(Ny, No, N3) H

sl go g gy (4:2:29)

Then the lemma follows by interpolation with (4.2.27). Indeed, assuming
for instance N1 < Ny < N3, we apply the Holder inequality as follows,

(Uluzﬂz)dfﬁdt‘ < Cllurll s zoo (any) lu2ll Lo w2 (ary) 1wl L3 &, 22 (0r))
and using the Sobolev embedding we obtain

< C(N)? Nluall s, 2y vzl o, L2y lusll s, L2 (ary) -
By the Sobolev embedding in the time variable for function v(t) = S(—t)u(t),

we know that

lullzsge ooy < Nl go g v

and this completes the proof.
O

Let us sketch the last part of the proof of Theorem4.2.2. We decompose
u1, U, uz as follows:

uj = Z“j,N;v ujN; = 11— Ae[N]-,zN]-](Uj)-
N,



145

We introduce this decomposition in the left hand side of (4.2.24) and we
use Lemma 4.2.7. Supposing now for simplicity that N; < N», we obtain

that for any s’ > so we can find b’ such that 0 < b’ < } and
— s'—s N3 ’
urugtzdedt| < CZ(NI) N, vl o lluzll xser llus] s e
RJM N, 2
(4.2.30)

for any s > s’ > s¢. Notice that the summation over Ny can be performed via
a crude argument of summation of geometric series. As for the summation
over Ny, N3, following the same proof as in Section 4.2.1, we conclude by
observing that the main part of the series corresponds to the constraint
N3 < No. O

4.2.3 Conservation laws and global existence for the Hartree
nonlinearity

Next we prove that for an initial datum uy € H'(M), the local solution
of the Cauchy problem (4.1.1) obtained above can be extended to a global
solution u € C(R, H! (M)).

By the definition of uniform wellposedness, the lifespan T" of the local
solution v € C([0,T), H'(M)) depends only on the H' norm of the initial
datum. Thus, in order to prove that the solution can be extended to a global
one, it is sufficient to show that the H' norm of v remains bounded on any
finite interval [0,7"). This is a consequence of the following conservation
laws, which can be proved by means of the multipliers @ and wy,

/ fu(t, ) de = Qo ;
M

. (4.2.31)
[ 1Vt + 510 - 2P0 do = By
M

Remark 4.2.2. Notice that a similar argument can be applied in the case of
an attractive Hartree nonlinearity, at least when o > 1. Indeed, consider
the focusing Schrodinger equation

i+ Au = —(1 = 8)7(|uf*)u,

where the nonlinear term has the opposite sign. Computing as above, we
obtain the conservation of energy

1 _
190l ) = 5110 = A)2(u2)]25 = const,
but now the energy E(t) does not control the H' norm of u. However, we

can write

IVullf: < C+ CI(L = A)72(juf*) 2,
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and by Sobolev embedding we have

_ 1
11 = 2) "2 (ju) |22 < O JuPlFe = Clullza, e

DN =

so that we obtain, with p = 2¢,

1

a
IVull 2 < C + Cllullzs, ,T1Tw

==

We now use the Gagliardo-Nirenberg inequality (for d = 4)

d
—2)d

p—(p (p—2)%
wllf, < C(|wll,» [Vwll,, 72 + [lwl?,)

and we obtain
2—4(p—2 4(p—2
IVull 2 < OO+ [lull22) + Cllull22 P27 | wu| 1277,

Notice that, as in the defocusing case above, the L? norm of v is a conserved
quantity. If the power 4(p —2)/p is strictly smaller than 1, we infer that the
H' norm of 4 must remain bounded. In other words, we have proved global
existence provided
-2
1. 22201 = a>1l
p

O

4.2.4 Studying the global existence for the quadratic nonlin-
earity

Proposition 4.2.8. Let (M, g) be a four-dimensional Riemannian manifold
satisfying the assumptions of Theorem 4.2.2. There exists € > 0 and a
subspace X of C(R,H}(M)) such that, for every initial data ug € H5(M)
satisfying |luo|lgn < €, the Cauchy problem (4.1.2), where q(u) = (Reu)?,
has a unique global solution u € X.

Proof. By Theorem 4.2.2, we obtain that for an initial datum ug € H} (M),
there exists a local solution of the Cauchy problem

{ i0u + Au = (Rewu)?,
u(0,7) = up(z).

By the definition of uniform wellposedness, the lifespan 1" of the local solu-
tion u € C([0,T), H;(M)) only depends on a bound of the H' norm of the
initial datum. Thus, in order to prove that the solution can be extended to
a global one, it is sufficient to show that the H' norm of u remains bounded
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on any finite interval [0,7"). This is a consequence of the following conser-
vation laws and of a suitable assumption of smallness on the initial data.

Notice that

o (/Mu(t,x) d;v) = —i/M(Reu)2d:r,

/ Reu(t, x) dx = const.
M

from which

Moreover the following energy is conserved,
2 , 2 3
|Vu(t,z)|” + = (Reu(t,z))’ dz = Ej .
M 3
Consequently we can write

IVullZ. < Eo+ O‘ | Reuy

Since by Gagliardo-Nirenberg inequality we have

‘ /M(Reu)3d:v

and by the following inequality

< C|Reul2[|V(Rew)||72 + | (Rew)]l7:,

IReu||r2 < C"/ Reudz| + ||V(Rewu)| L2,
M

we deduce that

|Vul|2, < By + C <‘/M Reudzx

; ||w||Lz) IVl

Thanks to (4.2.32) we know that

‘/ Reudx
M

IVullZ: < EBo+ C (luollm + [[Vullz2) [Vl 7.

< Mluollzr(ary < Clluwoll g (ary,

thus we obtain

Assuming that
luoll 1 < &,

(4.2.32)

(4.2.33)

we infer, by a classical bootstrap argument, that ||Vu|| cannot blow up, as
well as ||Reul|;2. Using again the evolution law of the integral of u, this
implies that this integral cannot blow up, and completes the proof of the

proposition.

O
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Notice that the proof above extends without difficulty to q(u) = c(Re u)?,
for any real number c. If (M, g) satisfies the assumptions of Theorem 4.2.2,
we can now prove that the conclusions of Corollary 4.1.1 hold on M.

Proof. Let q(u) = au? +bu? +2a|u|? . The idea is to transform the equation
into an equivalent one using the change of unknown v = wv, with |w| = 1,
and then impose conditions on a,b such that the transformed equation is
of the special type corresponding to q(u) = c¢(Re u)? for which, thanks to
Proposition 4.2.8, we know that the solution is global. Thus we try to impose

q(wv) = cw(Re v)?

for some ¢ € R and some w with |w| = 1, and we obtain the polynomial
identity
cw
aw?v? + +bw’T% + 2alv|? = -0+ 7)%

Equating the coefficients of the two polynomials we obtain

and this is equivalent to

Conversely, we prove that if this condition is not satisfied, it is always pos-
sible to construct small energy solutions which blow up in a finite time. We
take as initial datum a constant in the form

up(z) =wyo,  yo ER\{0}, |w|=1,
and then the equation reduces to the ordinary differential equation
iug = q(u), u(0) = wyo.
Defining y(t) = u(t)/w, we see that y(t) is a solution of the equation
iwy'(t) = q(u) = y°q(w)
which can be written
y(t) = —igw)wy®,  y(0) =y €R

The solution can be written explicitly as

1

WO = T et
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and is not global if and only if ¢(w)w is purely imaginary. Thus to conclude
the proof it is sufficient to show that we can find an w such that

¢(w)@ = aw + bw® + 2aw  is purely imaginary (and not 0).

Writing @ = Ae’®, b = Be'?, w = ¢ with A, B > 0, this is equivalent to
finding a simple zero for the following function

f(0) =3Acos(a+ 0) + Bcos(f — 360).

Observe that the average of f vanishes. A point where the sign of f changes
cannot be a double zero unless it is a triple zero, and a straightforward
calculation shows that this corresponds exactly to the case A = B and
3a+ f = 2kw, namely % = b. Hence, if this condition is not satisfied, f has
a simple zero. This completes the proof.

O

4.3 Multilinear estimates

In this section we establish multilinear estimates, which, combined with
Theorems 4.2.1 and 4.2.2, yield Theorems 4.1.1 and 4.1.2. We recall that
S(t) = e'tA .

4.3.1 Quadrilinear estimates

This subsection is devoted to the proof of quadrilinear estimates (4.2.2) with
50 < 1 on arbitrary four-manifolds with o > 1/2, and on the sphere S* with
a > 0. In view of subsections 4.2.1 and 4.2.3, this will complete the proof
of Theorem 4.1.1.

Lemma 4.3.1. Let a > %, So = (% — a) and let (M,g) a compact four-
dimensional Riemannian manifold. Then there exists C' > 0 such that for
any f1, fo € L>(M) satisfying

L a=reven)(f1) = f1, L a=repnon (f2) = fo, (4.3.1)

one has the following bilinear estimate:

101 = A)7% (waua) 20,1y 0y < Cmin(N, L) || fullzzgan) | 2l 2o
(4.3.2)
with Uj (t) = S(t)f]

Proof. By symmetry, it is not restrictive to assume that N < L. The Sobolev
embedding implies

N —
_l’_
HilQ

_a 1
(1 = A)72 (uru2) |2 0,1y a0y < Cllurvall2((0,1),2e(an)), e
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and applying the Holdér inequality we obtain
(1 = A) "2 (wrug) |l 20,1y ) < C||U1||L2((071)7L§(M))||“2“L°°((0,1),L2(M))'

Thanks to the conservation of the L? norm we can bound the last factor with
the L? norm of f5; on the other hand, the L2L*“ term can be bounded using
the Strichartz inequality on compact manifolds established by Burq, Gérard,
Tzvetkov in [22] (see Theorem 1), which reads, in this particular case,

utllz2¢o,1), 10y < CN1/2||f1||L2(M

Combining this estimate with the Sobolev inequality, we obtain (4.3.2) as
claimed. O

Proposition 4.3.2. Let a > %, S0 > (% — a) and let (M, g) a compact four
dimensional Riemannian manifold. Then there exists C' > 0 such that for
any f17f27f3af4 € LQ(M) satzsfymg

L =nen, ong (i) = fiy 7 =1,2,3,4,

one has the following quadrilinear estimate for u;(t) = S(t)f;:

/ / ZtT A)_a(’u,1U2)’U,3U4d!L’dt (4 3 3)
Nla

s NN full e anll f2ll 2 an | 3l 2oy | fall 2 ar

where x € C°(R) is arbitrary and m(Ny, - -+, Ny) is the product of the small-
est two numbers among Ny, No, N3, Ny.

sup
TER

Proof. The proof of our quadrilinear estimate (4.3.3) when m(Ny,--- ,Ny) =
N1 N3 follows directly by the Cauchy-Schwarz inequality and Lemma 4.3.1.
In fact, assuming for instance that x is supported into [0, 1], we have

= sup

/ / el 1 — A)_a(ulﬂg)U3U4d$dt
TER

< O = A) 72 (ua2) 20,1y (1 = A) 72 (usTia) || £2 0,1y 1)
< C(m(N, -+, N full e an N2l 2 ) | f3l 2oy | fall 2

by applying (4.3.2). By symmetry, it remains to consider only the case

m(Nl,--- ,N4) = N1N2 .

By the self-adjointness of (1 —A), Holder’s inequality and Sobolev’s inequal-
ity we have

I < Clluatial (0,1, (a1 (1 = &)™ (usTa) | oo ((0,1),9 (1))

< C||U1H2“L1((0,1),qu (M))||U3ﬂ4||L°°((0,1),L1(M))7
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provided % > 1 — 5. Using again Holder’s inequality, we infer

1<C T il pzqoynow any LT Nekllioe o,y -
]:172 k:3,4

Conservation of energy implies that |lug||z~(0,1),22(m)) = [Ifkllz2ar)- On
the other hand by Sobolev embedding we have

2_1
||uj||L2((0,1),L2q’(M)) < Cqu “uj“LZ((O,l),L“(M))-

Now we can apply the above-mentioned Strichartz estimate of [22] to obtain

2_1
il 20,1y, 220 (aryy < CNF M fillz2anyy -

Since
2 1 S 3
Sp=——=->-—«
0 q 2 2 )
and sg can be arbitrarily close to % — a, the proof is complete. U

Remark 4.3.1. In this case, an iteration scheme for solving can be per-
formed as in [22], avoiding the use of Bourgain spaces, making in X7 =
c([o,T), HY) n L%([0,T), HY) .

On the four dimensional sphere, endowed with its standard metric, the pre-
cise knowledge of the spectrum pr = k(k + 3), & € N makes it possible
to improve our quadrilinear estimate. We proceed in several steps, starting
with an estimate on the product of two spherical harmonics.

Lemma 4.3.3. Let « €]0, %] and let so =1 — %. There ezists C' > 0 such
that for any H,, H; spherical harmonics on S* of degree n, 1 respectively, the

following bilinear estimate holds:

(1 = A)~ 2 (Hy H)) || p2(g4) < C(1+ min((n, )™ | Hal| 250 | Hill 25
(4.3.4)

Proof. Tt is not restrictive to assume that 1 < n < [. We shall adapt the
proof of multilinear estimates in [23],[25], using the approach described in
[26].
Writing
h=(nn+3)""2, h=>11+3)""?,

the equations satisfied by the eigenfunctions H,,, ﬁl read
W:AH, +H,=0, h2AH,+ H =0 .
In local coordinates, these are semiclassical equations, with principal symbol

p(x,8) =1 —g4(§,6) -
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We now decompose Hy, and H; using a microlocal partition of unity with
semi-classical cut-off of the form x(z,hD), x(x,hD) respectively. When

suppx (7, &) N{gz(§,§) = 1} =0,

i.e. in the "elliptic” case, the estimates are quite strong : we have, for all s,

i
11Dz *x(@, hDz) Hpll2(s1) < Csp B[ HnllL2(54), (4.3.5)

with similar estimates for H;. Consequently, it is sufficient to estimate
I(1 = &) 2 (x(2, hDy) Hy, X(2, hDa) Hi) || 1254y (4.3.6)
when cut-off functions x, ¥ are localized near the characteristic set

{91(575) = 1} :

Refining the partition of unity, we may assume that the supports of x, x are
contained in small neighborhoods of (m,w), (m,w) where m € M and w,w
are covectors such that

gm(w,w) = gm(&,&) =1.

Notice that functions v = x(z,hDy;)H, , @ = )?(:E,EDI)I% are compactly
supported and satisfy

p¥(z,hD)u = hF' , pw(x,ﬁD)ﬂ =hF ,

where |||z < ||Hpllz2 and [[F||2 < [ Hill 2.
Set gz (x, &) = (A(x)€, ). Choose any system (z1,...,z4) of linear coor-
dinates on R* such that

(A(m)w,dz1) #0 and (A(m)w,dz1) #0 .

Then, on the supports of x and ¥, one can factorize the symbol of the
equation as

p(fll',f) = 6($,€)(€1 - Q(l‘,f,)) ) p(a;,f) = é’(x,f)(& - a(mvgl))v

where e, ¢ are elliptic symbol while ¢, ¢ are real valued symbols. In other
words, we can reduce the equations for w,u to evolution equations with
respect to the variable z;. Notice that ¢ € R1 = R3, ie., the spatial
dimension of these evolution equations is 3. Moreover, since the second
fundamental form of the characteristic ellipsoid {¢ : ¢, (£,€) = 1} is non
degenerate, the Hessian of ¢,q with respect to the & variables does not
vanish on the supports of y, X respectively.

Therefore we can apply to this equation the (local) three-dimensional
Strichartz estimates (see Corollary 2.2 of [26] for more details). We conclude



153

that u satisfies the 3-dimensional semiclassical Strichartz estimates in the
following form:

_1 1
[ullze, po, < Ch77[|HyllL2 S ne|[Hallz2, (4.3.7)

for all (p, q) satisfying the admissibility condition

An identical argument is valid for u. In fact, for u we shall only need the
energy estimate B
il 12, < IR 2 (438

Finally, we estimate the product uu as follows. By the Sobolev inequality,

1

et ~ ~ «
(1= 2)7 (wa)z> < Clludfes, = =5+

N —

Applying the Holder inequality we obtain

10 = A)7z (wa)llee < Cllull |, alldllig e,

R
Noticing that ¢ < 2 and using the compactness of the support of u, we have

Jull , & <Cllull 4.
L «@

T1 ! L Rty

Applying the Strichartz estimate (4.3.7) with p = 2 and the Sobolev embed-
ding in the 7’ variables, we obtain

1_ 3a _3a
Jul < O3~ flull iz 1o, < Ot~ | Hyll 2. (4.3.9)

4
a

Lz (L3)

Combining with the L>°L? estimate (4.3.8) on 4, this completes the proof.
]

We now come to a quadrilinear estimate on spherical harmonics.
Lemma 4.3.4. Let a €]0, 3] and so = 1 — 32, There ezists C > 0 such that

for any HT(L]]‘.),j =1,---,4, spherical harmonics on S* of degree nj respec-

tively, the following quadrilinear estimate holds:

ni n2 n3 N4

4
/ (1—=A) *HYH)HS HY dv < C(1+ m((n)))* [T I1HD 1259
S4 7j=1 !

(4.3.10)
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Proof. By symmetry, it is sufficient to consider the two cases
m(ny,---,na) =ning 5 m(ny,-cc,ng) =ning .

In the first case, the proof follows directly by the Cauchy-Schwarz inequality
and Lemma 4.3.3. It remains to consider only the case m(ni,--- ,ng4) =
ning. We use the same idea as in Lemma 4.3.3 to decompose, if n; > 1,

each Hﬁjj) into a sum of terms of the form
uj = Xj(@, hiDe)HY) | hj = (nj(n; +3)7"*, j=1,2,3,4.

As before, each u; may be microlocalized either into the elliptic zone, in
which case we have much stronger semiclassical estimate (4.3.5), in partic-
ular an L bound, or near the characteristic set, and for these terms we
can use the Strichartz type estimate (4.3.7). Notice that the very special
case nj; = 0 can be included into the elliptic case. Thus we have several
possibilities to consider.

If at least two u;’s are microlocalized in the elliptic zone, then the quadri-
linear estimate holds trivially (with sy = 0) by a simple application of the
Cauchy-Schwarz inequality.

If w3 or uy is microlocalized in the elliptic zone, then, again by the
Cauchy- Schwarz inequality, the quadrilinear estimate is a consequence of
estimate (4.3.4) of Lemma 4.3.3, with « replaced by 2a.

It remains to deal with the cases when only u; or us is microlocalized in
the elliptic zone, and when all the u; ’s are microlocalized near the charac-
terictic set. In both cases, we shall make use of the following variant of the
Sobolev inequality.

Lemma 4.3.5. Let A be a pseudodifferential operator of order —2c on R*,
and let B be a bounded subset of R*. For any smooth function F on R* with
support in B, we have the estimate

A 15 1) < Ol o, (4.3.11)
provided % >1-2a/3.

Proof. The kernel K(z,y) of A admits an estimate like

C C
K(z,y)| < < . 4.3.12
KNS oy S Qo e - 3
The claim is then a consequence of Young’s inequality in variables z'. O

By the self-adjointness of (1 — A) the terms to estimate can be written
as follows:

I=

/84(u1u2) X (1 —A) “(usuq) dz| . (4.3.13)
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As in the proof of Lemma 4.3.3 we select a splitting z = (z1,z') of the
local coordinates such that us, ug, w4 are solutions of semiclassical evolution
equations, and therefore satisfy Strichartz estimates (4.3.7). Using the L
bound on wuq, we have
1 —
1< O laon Tzl (g 10 = A) 7 (usts) s,
and by Lemma 4.3.5 we obtain
I <CIHM |12 luzll s ) [usuallpge (z1,)
provided % >1-— 270‘ Holder’s inequality gives

1< O e lually sl oz Nl

and, applying estimate (4.3.8) on u3,us and estimate (4.3.7) with p =2 on

U9, we obtain
H Dllzsy

S

1 3
§ = max 5,1—? < sg ,

2a

with

since ¢ is arbitrary with %

Finally, we treat the case when all the factors are microlocalized near
the characteristic set. Once again, we select a splitting x = (z1,2') of the
local coordinates for which Strichartz estimates (4.3.7) are valid for each u;.
By Holder’s inequality and Lemma 4.3.5 we have

I< C||U1U2||Li,(LZ'I)||U3U4)||Lgol(L;,)

< Ollurlly gourlell s o Nl oz plleslls oz,

By estimates (4.3.7) with p = 2 on wu;,us and (4.3.8) on ug, u4, we conclude

4
I < C(ning)’® H |LZS4 ,
with
1 1 3 <
S =max | — - — S
9° 2q, ()

since ¢' is arbitrary with % < 270‘ This completes the proof. U
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Remark. [t is clear that Lemma 4.3.3 and Lemma 4.5.4 extend to Laplace
eigenfunctions on arbitrary compact four-manifolds. Moreover, a refinement
of the study of the elliptic case shows that, as in [23], [25], eigenfunctions
can be replaced by functions belonging to the range of spectral projectors of

the type 1p, pi1)(V—A).
We now come to the main result of this subsection.

Proposition 4.3.6. For every a > 0, for every sp > 1— ?ﬁTO‘, the quadrilinear
estimate (4.2.2) holds on S*.

Proof. Let fi,---, f4 be functions on S* satisfying the spectral localization
property
L i=aen, on, (i) = fin 7=12,3,4. (4.3.14)

This implies that one can expand
=Yg,
n;

where Hﬁjj) are spherical harmonics of degree n;, and where the sum on n;
bears on the domain
N;/2 <1+n; <2N; . (4.3.15)

Consequently, the corresponding solutions of the linear Schrédinger equation
are given by

uj(t) = S(1)f; =D _e ™I HID
nj
and we have to estimate the expression

Q(f17 U 7f4a7-) = /R/S4 X(t) eitT(l - A)_a(ulﬂg)’u?,ﬂ;ldfb‘dt
4
= > XQ_eni(ng +3) = 1) I(HY, - HY)

ni,,ng j=1

with e; = (=1)7 ! and

dz .

ny ot o Hng ny Hny JHng Hng

IHD, ... H®) = / (1= Ay (HOFD) goFY
S4

Appealing to Lemma 4.3.4, we have, with s = 1 — 3a/4,

4
HID) < Cm(Ny,- N [T IS e
j=1

|I(H(1)

ny ?
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Using the fast decay of x at infinity, we infer

4
|Q(f1a"'af47T)|S0m(N17"'aN4) Zl+|g| H’ n; ||L2

Lez A([7]+£) j=1
m(N17 U 7N4)S sup Z H “HT(L]]) “L2 )
kEZ A(k) j=1

where A(k) denotes the set of (ny,--- ,nq) satisfying (4.3.15) for j = 1,2,3,4

and
4

Zajnj(nj +3)=k.
j=1
Now we write
{17 2’ 37 4} = {a7 57 77 6}
with m(Ny,- -+, N4)) = NoNg, and we split the sum on A(k) as

QUf1 -+ fa, )| SNy, -+, Nu)*sup Y S(a) (4.3.16)
keZ =
where
= > NH 2| HD |2 5 S'(d)) = ||H7(zg)||L2||H7(1?||L2 ;
I'(a) I'(a')

I'(a) = {(na,ny) : (4.3.15) holds for j = oy, > emj(n; +3) = a},
j€{a}

I'(a) = {(ng,ns) : (4.3.15) holds for j = 8,5, > ejn;(n; +3) =d'}.
je{B.}

Now we appeal to the following elementary result of number theory (see e.g.
Lemma 3.2 in [24]).

Lemma 4.3.1. Let 0 € {£1}. For every ¢ > 0, there exists Ce such that,
given M € Z and a positive integer N,

#{(k1,ko) e N> : N <k <2N , k2 + ok3 = M} < C.N* .
A simple application of Lemma 4.3.1 implies, for every € > 0,

o )

sup #I'(a) < C.NE ; sup#IV(d’) < C:Nj ,
a a'



158

and consequently, by a repeated use of the Cauchy-Schwarz inequality,

> S(a) S'(k — a) < Cc (NaNp)*x
1/2 1/2

YD NHDNZNED 7 S>> =P N HD
¢ I'(a) )

a I'(k—a

4
< CE (NOcNﬂ)E H ||fj||L2 5
7=1

where, in the last estimate, we used the orthogonality of the Hy(iz.)’s as n;
varies. Coming back to (4.3.16), this completes the proof. O

Remark. Using the remark before the statement of this proposition, the
proof above extends easily to any compact four-dimensional Zoll manifold
(see [24] for more details).

4.3.2 Trilinear estimates on the sphere

In this subsection, we prove trilinear estimates (4.2.23) on S%, for every sq >
1/2, for zonal solutions of the Schrodinger equation. In view of subsections
2.2 and 2.4, this will complete the proof of Theorem 4.1.2 and of Corollary
4.1.1, by choosing for G the group of rotations which leave invariant a given
pole on S

First we recall the definition of zonal functions.

Definition 4.3.1. Let d > 2, and let us fix a pole on S We shall say
that a function on S¢ is a zonal function if it depends only on the geodesic
distance to the pole.

The zonal functions can be expressed in terms of zonal spherical harmonics
which in their turn can be expressed in terms of classical polynomials (see
e.g. [92]). As in [25], we can represent the normalized zonal spherical
harmonic Z, in the coordinate 6 (the geodesic distance of the point z to
our fixed pole) as follows:

d—1

Zy(a) = CGsint) ™5 {eosl(p+ )0+ 1+ UL

<f0<m-
psin @ =v=T

(4.3.17)
with «, 8 independent of p, and C uniformly bounded in p. On the other
hand, near the concentration points # = 0, 7 we can write

h<H e
=[O

|Zy(2)| < Cp*=,  6.¢[c/p,m—c/p. (4.3.18)

and ||Zp||L2(Sd) =1.
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With this notation, we have the following trilinear eigenfunction esti-
mates.

Lemma 4.3.7. There exists a constant C' > 0 such that the following tri-
linear estimate holds:

120 %01l 150y < C(min(p, ,1))"/2 . (4.3.19)

Proof. 1t is not restrictive to assume that p < ¢ <[. Moreover, by Cauchy-
Schwarz inequality it is sufficient to prove (4.3.19) in the special case g = [.
Then we have

12,2205ty = < [ 12,(0)12,(60)*sn0)" a0

where ¢ is some universal constant. We split the interval [0,n] into the
intervals I) = [0,¢/q|, I2 = [¢/q,¢/p], I3 = [¢/p,n/2] and Iy = 7,2, 7 — ¢/p],
Is = [r—c/p,m—c/q|, Is = [t —c/p, rr]. Clearly, by symmetry, it is sufficient
to estimate the integral on the first three intervals Iy, I, I5.

On I we can use (4.3.18) for both harmonics Z,,Z, and the simple
estimate sinf < 6, and we obtain

c/q c/q
/ |Z,| Z2 (sin0)*do < Cp*/?g? / 03do < Cp*2¢Pq* < Cp'/?
0 0

since g > p.
On the second interval I we use (4.3.17) for Z, and (4.3.18) for Z;:

c/p c/p 1 2
/ |Z,| 22 (5in0)%d0 < Cp3/2/ (1 + — ) do
¢/q ¢/q gsinf

and by the elementary inequality

1\’ C
1 < — 4.3.2
( +qsin9> _C+q202 (4.3.20)
we have immediately
c/p C
[ izlz oy < oy (f — 4 Cgse —p/c)) < op'l2.
c/q p q q

Finally, in the interval I3 we must use (4.3.17) for both harmonics:
/2 /2
2(ain )3 1
/ |Zp| Z4 (sin6)°do < C (1 + — > (1 +
¢/p ¢/p psinf

Using again (4.3.20), the inequality sinf > C8 on [0, 7/2], and the fact that
q > p, we have easily

1 1 \?
1+ — 1+ — (sinf) 32 < CO 32 4 Cp 3992,
psinf qsinf

2
) (sin @) ~3/2de.

gsin
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Then integrating on I3 we obtain

w/2
/ |Z,| 22 (sin0)3do < Cp'/*
c/p

and this concludes the proof. O

We now come to the main result of this subsection, which asserts that tri-
linear estimates (4.2.23) hold for every sg > 1/2 on M = S*in the particular
case of zonal Cauchy data.

Proposition 4.3.8. Let sy > % and x € Cg°(R). There exists C > 0 such
that for any f1, f2, f3 € L2(S*) are zonal functions and satisfying

1\/17A€[N]-,2N]-}(fj) =f;, 7=12,3, (4.3.21)

one has the following trilinear estimate for u;(t) = S(t)f;,

/ / x(t) €7 uy U2ﬂ3d$dt‘
R JS4

< C(min(Ny, No, N3))*°[| fill 2 soll foll L2 syl f3ll L2 (sy)-
(4.3.22)

sup
TER

Proof. The proof is very similar to the one of Proposition 4.3.6. We write

uj(t) =Y e M e;(ng) 2y,

nj

where n; is subject to the condition (4.3.15) and
S e (m) 2 ~ 5112 -
n;

Thus we can write the integral of the left hand-side of (4.3.22) as

3

S y(zgjnj(anrg)—T)cl(m)c?(ng)c?,(ng)/

ni,n2,n3 ]:1 S

\ Ly Ly Zinadx

where €7 = ¢ = 1 and ¢35 = —1. Using the fast decay of the Fourier
transform ¥ and the estimate of Lemma 4.3.7, we obtain

7] <C (min(Ny, Ny, N3))? Zﬁ > ler(ni)ea(na)es(ns)]

. 1
< (min(Ny, No, N3))2 sup E le1(n1)ca(ne)es(ns)| ,
keZ Ar
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where

3
A = {(n1,n9,n3) : (4.3.15) holds for j =1,2,3 ; Zejnj(nj +3)=k}.
j=1
Suppose for instance that min(Ny, Ny, N3) is N; or No. Introducing

Ag(ng) = {(n1,n2) : (n1,n2,n3) € A},

we specialize index ng in the above sum as

J ngsz|03(n3)| Z |1 (n1)ez(n2)

n3 (n1,m2)EAL(n3)

<cun (Shoo) (S0 T o)’

n3 ns (nl,nz)EAk(ng)

1

N

2

<C <Z|Cs(n3)|2> sup Z[#Ak(n3)] Z e (n1)]?[ea(n2)

n3 (n1,m2)EAL(n3)

To complete the proof, it remains to appeal once again to Lemma 4.3.1,
which yields the estimate

#A, 4(n3) < C5(min(Ny, Np))? |

for every 6 > 0. If N3 is min(Ny, No, N3), the proof is similar, by specializing
the sum with respect to nj, say. ]
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