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Abstra
t

The purpose of this thesis is to study the dispersive properties of the solu-

tions of the S
hr�odinger, wave and heat equations and their perturbations

with potential on Riemannian manifolds. Furthemore, we 
onsider a few ap-

pli
ations of these results to the 
orresponding nonlinear Cau
hy problems.

A �rst main question studied in the present thesis is: what part of the

dispersive properties is preserved if we perturb the equations with a potential

term of the form V (t; x)u or simply V (x)u? The importan
e of this question

is 
lear both from the point of view of the appli
ations, and as a �rst step

for the general 
ase of equations with variables 
oeÆ
ients.

In Chapter 2 we 
onsider the perturbed wave equation

u

tt

��u+ V (x)u = 0; n = 3: (0.0.1)

We show the dispersive estimates in the 
ase of a small potential in the Kato


lass, [74℄, and then we extend these results under the weaker assumption

that the potential belongs to a suitable Kato 
lass (see De�nition 2.2.1); the

positive part of the potential 
an be large. This result is almost optimal

results for the 
ase of large potential [38℄.

We 
onsider also the S
hr�odinger equation

1

i

u

t

��u+ V (t; x)u = 0; (0.0.2)

in arbitrary dimension n � 1. Instead of the stronger dispersive estimate,

our goal here is to prove only the Stri
hartz estimates. We give two quite

general results of this type.

In the �rst one, we dedu
e the 
omplete Stri
hartz estimates for the

solution of the S
hr�odinger equation (0.0.2) perturbed with a larger 
lass of

potentials satisfying V � jxj

�2

, via interpolation between the endpoint and

the energy estimate. These arguments are then extended to the 
ase of a

small time dependent potential V (t; x).

We study also the heat equation

u

t

��u+ V (t; x)u = 0; (0.0.3)

perturbed by a singular potential and we prove the existen
e of solutions,

the maximum prin
iple and the dispersive estimates.

5



6

In our se
ond result 
on
erning equation (0.0.2), we do not assume that

the potential is small.

We study the dispersive properties of the linear S
hr�odinger equation

with a time-dependent potential V (t; x). We show that an appropriate in-

tegrability 
ondition in spa
e and time on V , i.e. the boundedness of a

suitable L

r

t

L

s

x

norm, is suÆ
ient to prove the full set of Stri
hartz estimates.

We also 
onstru
t several 
ounterexamples whi
h show that our assumptions

are optimal, both for lo
al and for global Stri
hartz estimates, in the 
lass

of large unsigned potentials V 2 L

r

t

L

s

x

.

The next 
hapters of the thesis are dedi
ated to the following question:

do these te
hniques and ideas extend to more general equations on mani-

folds? We are interested in parti
ular to investigate the extensions of these

equations to more general Riemannian manifolds, and the in
uen
e of the


urvature on the dispersive properties.

In Chapter 3, we deal with the 
ase of non
ompa
t manifolds of nega-

tive 
urvature. In parti
ular, we study the S
hr�odinger equation perturbed

with a potential V 2 L

r

t

L

s

x

on the hyperboli
 spa
es H

n

, obtaining suitable

weighted Stri
hartz estimates with weights related to Bani
a's ([5℄). As an

appli
ation of these estimates, we prove the global existen
e of small solu-

tions to the semilinear perturbed S
hr�odinger equation on H

n

; the nonlinear

term may depend also on the spa
e variables, and it is allowed to in
rease

as jxj ! 1.

In this paper, we prove Stri
hartz estimates for radial S
hr�odinger and

wave equations on Damek-Ri

i spa
es and in parti
ular on symmetri
 spa
es

of non
ompa
t type and rank one, using the perturbative theory with po-

tentials. It is natural to expe
t that the 
urvature of the manifold non
om-

pa
t has some in
uen
e on the dispersive properties, indeed we obtain the

weighted Stri
hartz estimates for the perturbed Cau
hy problem.

Finally, the last Chapter 4 is devoted to the opposite situation of mani-

folds with positive 
urvature. We prove two new results about the Cau
hy

problem in the energy spa
e for nonlinear S
hr�odinger equations on four-

dimensional 
ompa
t manifolds. The �rst one 
on
erns global wellposed-

ness for Hartree-type nonlinearities and in
ludes approximations of 
ubi


NLS on the sphere. The se
ond one provides, in the 
ase of zonal data on

the sphere, lo
al wellposedness for quadrati
 nonlinearities as well as global

wellposedness for small energy data in the Hamiltonian 
ase. Both results

are based on new multilinear Stri
hartz-type estimates for the S
hr�odinger

group.
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Chapter 1

Introdu
tion

The main subje
t of this thesis is the study of the dispersive properties of

some fundamental equations of mathemati
al physi
s, su
h as the S
hr�odin-

ger equation

iu

t

+�u = 0;

the heat equation

u

t

��u = 0

and the wave equation

u

tt

��u = 0;

and their perturbations with a potential:

iu

t

+�u+ V (t; x)u = 0; u

t

��u+ V (t; x)u = 0;

u

tt

��u+ V (t; x)u = 0:

Moreover, we shall study the extensions of these equations to more general

Riemannian manifolds, and the in
uen
e of the 
urvature on the dispersive

properties of the solutions. We shall also 
onsider a few appli
ations of these

results to the 
orresponding nonlinear Cau
hy problems.

The notion \dispersive properties" whi
h we used above requires some

explanation. It is well-known that some evolution equations of some 
lassi
al

waves have �nite \speed of propagation". For instan
e, for the wave equation

signals travel with speed equal to one; this means that if the initial data have

support in a ball of radius R, the solution at time T has support in a larger

ball of radius R+ T . Thus the energy of the solution spreads over a region

that in
reases with time, and it is natural to expe
t that the size of the

solution de
reases a

ordingly. From a physi
al point of view, one 
an think

of the waves spreading on the surfa
e of a lake when we throw a stone: the


ir
les be
ome larger and larger, but the amplitude of the waves de
reases

until they disappear (this ni
e example is due to F.John). The traditional

terminology for this phenomenon is the de
ay of solutions as t!1.
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But it is also well known that a similar phenomenon o

urs also for

other equations, even if the speed of propagation is not �nite: the most

important examples are the S
hr�odinger and the heat equation, mentioned

above. For these equations it is very easy to prove the property, thanks

to the expli
it representation of the solutions; but it is also 
lear that the

me
hanism must be di�erent from the wave equation. For instan
e, if the

initial data have 
ompa
t support, the solutions of these equations at time T

do not have 
ompa
t support. In these 
ases, using the Fourier transform one


an see that the 
omponents of the solution with di�erent frequen
ies travel

at di�erent speeds. Then it is natural to think of a \
loud of parti
les" whi
h

have di�erent energies, and for this reason travel at di�erent speeds. This

pi
ture is probably at the origin of the modern terminology: in re
ent years,

instead of de
ay of solutions, one speaks of dispersion, and the property is


alled dispersive property, in order to unify the 
ases of �nite and in�nite

speed.

The study of these properties is of fundamental importan
e from several

points of view. First of all, there is essential phisi
al importan
e of the study

of asymptoti
 properties of the solutions: for instan
e, in s
attering theory

the most important problem is to determine the s
attered amplitude of the

waves after the intera
tion, but not the pre
ise me
hanism of the intera
tion.

Moreover, dispersive estimates have been used as a very useful tool in many

nonlinear problems; in parti
ular, for the semilinear S
hr�odinger and wave

equations, the modern theory of lo
al and global well posedness is based

essentially on these estimates. We mention among the others the results of

global existen
e with small data for semilinear perturbations, and the lo
al

existen
e of solutions of low regularity (due to von Wahl, Stri
hartz, John,

Pe
her, Brenner, Klainerman, Kapitanski, Shatah, Struwe, Kenig, Pon
e,

Vega, Bourgain, Tao and many others; see the referen
es [67℄, [68℄, [69℄,

[112℄, [62℄, [12℄, [13℄, [90℄, [70℄, [92℄, [81℄).

We must also mention that there is a very deep 
onne
tion between dis-

persive estimates and some fundamental results of harmoni
 analysis known

as restri
tion properties. The phenomenon 
an be des
ribed as follows: 
on-

sider a fun
tion f in L

2

(R

n

), and its Fourier transform

b

f . Then we ask if it

possible to restri
t

b

f to a hypersurfa
e S of dimension smaller than n, and

if we 
an estimate some norm of the restri
tion. In general

b

f is only L

2

, and

hen
e the restri
tion to S has no meaning sin
e S has measure zero. But if

we assume that f is in L

1

, then

b

f is bounded and 
ontinuous, and we 
an

de�ne the restri
tion of

b

f to S and also estimate the maximum of

b

f

�

�

�

S

with

the L

1

norm of f . This argument 
an be extended to more general L

p

spa
es

and surfa
es, and there are many deep open problems in this dire
tion.

Now, 
onsider for instan
e the solutions of the homogeneous wave or

S
hr�odinger equation. If we take the Fourier transform of the solution with

respe
t to spa
e and time, we obtain a measure with support on a hypersur-



11

fa
e (
one or hyperboloid). Then the dispersive estimates for the solution

imply 
orresponding estimates for these measures. In other words, disper-

sive properties imply restri
tion properties, and vi
eversa. This 
onne
tion

has been used in both dire
tions and has been intensively investigated in

re
ent years.

We now des
ribe our results in more details; �rst of all we re
all some

standard fa
ts. Consider �rst the n-dimensional S
hr�odinger equation, with

n � 1,

iu

t

+�u = 0; u(0; x) = f(x):

Sin
e the solution 
an be represented as

u(t; x) = e

it�

f(x) =

1

(4�it)

n=2

Z

e

i

jx�yj

2

4t

f(y)dy;

one obtains dire
tly the following de
ay estimate

je

it�

f(x)j � C t

�

n

2

kfk

L

1
: (1.0.1)

Noti
e that the solution of the heat equation

u

t

��u = 0; u(0; x) = f(x)

have a (formally) very similar representation, apart from an imaginary fa
tor

at the exponent:

u(t; x) = e

�t�

f(x) =

1

(4�t)

n=2

Z

e

�

jx�yj

2

4t

f(y)dy:

Then by the same method we obtain

je

�t�

f(x)j � C t

�

n

2

kfk

L

1
: (1.0.2)

The 
orresponding estimate for the wave equation is more deli
ate. Al-

though already known in some spe
ial 
ases, the �rst 
omplete analysis was

the 1971 paper of von Wahl (see [112℄), who proved that the solution to the

n-dimensional wave equation, n � 2

�u � (�

2

t

��)u = 0; u(0; x) = 0; u

t

(0; x) = f

satis�es the de
ay estimate

ju(t; x)j � C (1 + t)

�

n�1

2

kfk

W

N;1

for N = N(n) large enough and whereW

N;1

are the 
lassi
al Sobolev spa
es.

This estimate was improved, extended and re�ned by Brenner (who intro-

du
ed the use of Besov spa
es), Pe
her, Kapitanski, Ginibre and Velo, and
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others (see the referen
es [62℄, [51℄), and �nally the following optimal esti-

mate was obtained:

ju(t; x)j � C t

�

n�1

2

kfk

_

B

n�1

2

1;1

(R

n

)

: (1.0.3)

Here

_

B

s

p;q

(R

n

) is the homogeneous Besov spa
e de�ned by

kfk

q

_

B

s

p;q

(R

n

)

=

X

j2Z

2

jsq

k�

j

(

p

��)fk

q

L

p

(1.0.4)

where �

j

(r) = �

j

(jxj) is a Paley-Littlewood partition of unity, i.e., �

j

(r) =

�

0

(2

�j

r), �

0

(r) =  (r)� (r=2), with  (r) being a nonnegative fun
tion in

C

1

0

su
h that  (r) = 1 for r < 1 and  (r) = 0 for r > 2.

These estimates are now 
alled the L

1

� L

1

dispersive estimates.

Starting from the dispersive estimates, it is possible to dedu
e several

other spa
e-time estimates whi
h are generally 
alled Stri
hartz estimates.

A
tually, the estimate originally proved by Stri
hartz was only a spe
ial


ase; his method of proof was based on te
hniques of harmoni
 analysis (e.g.

Stein interpolation theorem). On the other hand, by re�ning the te
hnique

of Brenner and using some subtle fun
tional analysis arguments, Ginibre

and Velo [51℄ obtained the 
omplete set of estimates, with the ex
lusion of

some ex
eptional 
ases (the endpoint 
ases); the gap was �nally 
losed by

Keel and Tao [66℄ who gave the �nal form of the estimates.

For the S
hr�odinger equation on R

n

, the Stri
hartz estimates 
an be

written in the following form:

ke

it�

fk

L

p

(I;L

q

(R

n

))

� kfk

L

2

(R

n

)

(1.0.5)

for any f 2 L

2

, any (bounded or unbounded) time interval I � R, and for

all sharp

n

2

-admissible 
ouples (p; q):

1

p

+

n

2q

=

n

4

; p; q � 2 and (p; q) 6= (2;1): (1.0.6)

The 
ase (p; q) = (2;

2n

n�2

) is 
alled the endpoint; estimate (1.0.5) is true

also at the endpoint for n � 3. When n = 2 the endpoint is exa
tly

(p; q) = (2;1); in this 
ase the estimate is false in general. The equiva-

lent nonhomogeneous form of (1.0.5) is













Z

t

0

e

i(t�s)�

F (s; x)ds













L

p

(I;L

q

(R

n

))

� CkFk

L

~p

0

(I;L

~q

0

(R

n

))

(1.0.7)

for all (p; q) and (~p; ~q) admissible, ~p

0

and ~q

0

being dual to ~p, ~q respe
tively.

We 
onsider now the 
ase of the wave equation. The Stri
hartz estimates

for the wave equation on R

n

�

2

t

u��u = F (t; x); u(0; x) = u

0

(x); �

t

u(0; x) = u

1

(x); (1.0.8)
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under the assumption that the dimensional analysis (or "gap") 
ondition

1

p

+

n

q

=

n

2

� 
 =

1

~p

0

+

n

~q

0

� 2; (1.0.9)

holds, are the following

kuk

L

p

t

L

q

x

� C

�

ku

0

k

_

H




+ ku

1

k

_

H


�1

+ kFk

L

~p

0

t

L

~q

0

x

�

; (1.0.10)

for any data u

0

2

_

H




, u

1

2

_

H


�1

, F 2 L

~p

0

I

L

~q

0

, any (bounded or unbounded)

time interval I � R, and for all

n�1

2

-admissible 
ouples (p; q), (~p; ~q), i.e. su
h

that

1

p

+

n� 1

2q

�

n� 1

4

; p 2℄2;1℄ and q 2 [2;

2(n� 1)

n� 3

�

; n � 3: (1.0.11)

Estimate (1.0.10) is true also at the endpoint (p; q) = (2;

2(n�1)

n�3

) for n � 4,

but is false when n = 3.

As mentioned above, one of the most important appli
ations of these

estimates is to nonlinear evolution equations, in parti
ular semilinear equa-

tions of the form

(i�

t

�H)u = F (u); u(0; x) = f(x)

(to �x the ideas, we 
onsider the 
ase of the S
hr�odinger equation). The

usual way to prove lo
al existen
e for this type of equations is a 
ontra
tion

mapping method. More pre
isely, one 
onsiders �rst the linear map �: G 7!

u, where u is the solution of the linear equation

(i�

t

�H)u = G; u(0; x) = f(x):

By suitable linear estimates, whi
h in the 
lassi
al results are energy esti-

mates, one proves that � is bounded between two suitable Bana
h spa
es,

� : Y

T

! X

T

; the index T refers to the fa
t that we 
onsider solutions

de�ned on a bounded interval of time 0 � t � T . Sin
e � is a linear map-

ping, it is a
tually Lips
hitz 
ontinuous, and the Lips
hitz 
onstant (in many


ases) depends on T and is small when T is small. In other words, � is a


ontra
tion for small times. Now 
onsider the nonlinear term F (u). If we


an prove that the F (u) takes X

T

to Y

T

and is also Lips
hitz 
ontinuous

between these spa
es, in other words if F (u) satis�es a nonlinear estimate

of the form

kF (u)� F (v)k

Y

T

� �(kuk

X

T

)ku� vk

X

T

then the 
omposition �(F (u)) is a 
ontra
tion on X

T

for small times. The

�xed point is a lo
al solution of the Cau
hy problem 
onsidered.

In many situation, the linear estimate 
an be improved using the Stri
hartz

estimates; this 
an be used for instan
e to obtain the lo
al well posedness

for solutions with low regularity.
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Moreover, using Stri
hartz or more general spa
e-time estimates, this

method 
an be applied also for large times; the 
ontra
tion property of the

nonlinear term is now obtained by assuming that the initial data are small.

We mention that these te
hniques are not suÆ
ient to handle more gen-

eral nonlinear terms, for instan
e 
ontaining derivatives. For the nonlinear

S
hr�odinger equation, this more diÆ
ult problem was studied by Bourgain,

Kenig-Pon
e-Vega and others ([12℄, [13℄, [67℄, [68℄), using more re�ned meth-

ods, in
luding smoothing estimates, lo
al Morawetz estimates, and suitable

modi�ed Sobolev spa
es adapted to the stru
ture of the equation (whi
h

are now 
alled Bourgain spa
es). For the nonlinear wave equation and re-

lated equations and systems of mathmati
al physi
s, in
luding Yang-Mills,

Maxwell-Klein-Gordon and others, Klainerman and his group have applied

analogous method to prove deli
ate results of lo
al well posedness in low

regularity spa
es.

We must also mention the beautiful theory developed by Burq, G�erard

and Tzvetkov (see [22℄, [24℄, [25℄), 
on
erning the nonlinear S
hr�odinger

equation on 
ompa
t manifolds.

A �rst main question studied in the present thesis is: what part of the

dispersive properties is preserved if we perturb the equations with a potential

term of the form V (t; x)u or simply V (x)u? The importan
e of this question

is 
lear both from the point of view of the appli
ations, and as a �rst step

to the general 
ase of equations with variables 
oeÆ
ients.

Noti
e that it is easy to destroy the dispersive properties by a potential

perturbation. For instan
e, if we add to �� a negative potential term V (x)u,

V < 0, it is well known that the operator ��+V (x) has eigenfun
tions u(x)

for positive eigenvalues, provided V is large enough; then it is suÆ
ient to


onsider the 
orresponding standing wave, of the form e

i�t

u(x), to produ
e

a solution of the evolution equation with a norm 
onstant in time. Thus we

see that the potential V must satisfy suitable assumptions.

In parti
ular for the S
hr�odinger equation perturbed with a potential

independent of time, this problem has been studied by many authors. A

basi
 general results was obtained by Journ�e, So�er and Sogge [60℄ who

proved that the dispersive estimate is still true provided the potential is

nonnegative and belongs to the S
hwartz 
lass. This assumption has been

relaxed and the result re�ned by many authors, in parti
ular we mentions

Yajima, Rodnianski, S
hlag and Goldberg ([108℄, [88℄, [52℄). Noti
e that the

main problem here is to �nd minimal assumptions on the potential V (x)

whi
h guarantee that the dispersive estimate is true; in dimension n = 1; 2; 3

this program has almost been 
ompleted, while in higher dimension it is still

not 
lear what are the minimal assumptions.

Mu
h less is known for potentials V (t; x) whi
h depend also on time.

In general one must assume that the potential is small in a suitable norm.
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Rodnianski and S
hlag proved the dispersive estimate for the equation

1

i

u

t

��u+ V (t; x)u = 0; (1.0.12)

provided the spa
e dimension is n = 3 and V satis�es

sup

t

kV (t; �)k

L

3=2

(R

3

)

+ sup

x

Z

R

3

Z

R

jV (�̂ ; x)j

jx� yj

d�dy < �;

� small enough. Here V (�̂ ; x) is the Fourier transform of V with respe
t to

time.

In Chapter 2 we 
onsider equation (1.0.12) in general dimension n � 1.

Instead of the stronger dispersive estimate, our goal here is to prove only

the Stri
hartz estimates. We give two quite general results of this type.

In the �rst one, we prove that the Stri
hartz estimates hold for (1.0.12),

n � 1, under the assumption that the norm

sup

t2R

kV (t; �)k

L

(

n

2

;1)

< �

is small enough. Here L

(

n

2

;1)

is the weak Lebesgue (or Lorentz) spa
e.

Noti
e that, even in the spe
ial 
ase n = 3, this assumption is mu
h weaker

that Rodniaski and S
hlag's; indeed, the Lorentz spa
e L

(

3

2

;1)


ontains the

Lebesgue spa
e L

3

2

stri
tly, and we make no assumption 
on
erning the norm

of the Fourier transform of V .

In our se
ond result 
on
erning equation (1.0.12), we do not assume that

the potential is small. Instead, we repla
e this by a 
ondition of \smallness

at in�nity", i.e., integrability, of the following form

kV k

L

r

(R;L

s

(R

n

))

<1

where the indi
es satisfy

1

r

+

n

2s

= 1: (1.0.13)

We further stress that the potential V 
an be large and also negative. Under

these 
onditions, we prove that the Stri
hartz estimates are valid for any

dimension n � 1. Moreover, by a suitable 
lass of 
ounterexamples, we

prove that our assumption (1.0.13) is ne
essary for the Stri
hartz estimates

to hold, at least in the 
lass of potentials V 2 L

r

L

s

.

In Chapter 2 we 
onsider also the perturbed wave equation

u

tt

��u+ V (x)u = 0; n � 2: (1.0.14)

For this equation, Beals and Strauss proved the dispersive estimate provided

the potential is nonnegative (or small) and in the S
hwarz 
lass ([7℄, [8℄).

As for the S
hr�odinger equation, also in this 
ase many authors have tried
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to relax the assumptions on V , in
luding Yajima, Cu

agna, Georgiev and

Vis
iglia ([108℄, [32℄, [44℄). We 
onsider the spe
ial 
ase of dimension n = 3,

for whi
h we have obtained a �rst result in the 
ase of a small potential

in the Kato 
lass in [74℄, and then we extended the results to the 
ase of

a large potential, an almost optimal result in [38℄. Indeed, we 
an prove

the dispersive estimate under the quite weak assumption that the potential

belongs to a suitable Kato 
lass (see De�nition 2.2.1); the positive part of the

potential 
an be large. When the potential is large we have the additional

problem of resonan
es and eigenvalues, and this makes the proof of the de
ay

properties mu
h harder.

The next 
hapters of the thesis are dedi
ated to the following ques-

tion: do these te
hniques and ideas extend to more general equations on

manifolds? We are interested in parti
ular to the study of the dispersive

properties of some evolution equations on 
urved manifolds.

We begin by studying, in Chapter 3, the 
ase of non
ompa
t manifolds

of negative 
urvature. In this 
ase it is natural to expe
t that the dispersive

properties should be better than the ones in the 
at 
ase, sin
e the solutions

have more \room" to disperse.

We re
all that the asymptoti
 properties of evolution equations on non-


ompa
t manifolds have been studied only very re
ently. Bani
a [5℄ 
on-

sidered the 
onstant negative 
urvature 
ase and studied the S
hr�odinger

equation on the hyperboli
 spa
e H

n

. In dimension n = 3 she obtained a

dispersive estimate with the same rate of de
ay t

�1

as in the 
at 
ase; how-

ever the L

1

and L

1

norms are repla
ed by suitable weighted norms, and

this shows that the 
urvature improves the dispersion at spa
e in�nity.

In the �rst part of Chapter 3 we apply this result to the S
hr�odinger

equation on H

n

perturbed with a potential V 2 L

r

t

L

s

x

; as expe
ted, we ob-

tain suitable weighted Stri
hartz estimates with weights related to Bani
a's.

As an appli
ation of these estimates, we prove the global existen
e of small

solutions to the semilinear perturbed S
hr�odinger equation on H

n

; the non-

linear term may depend also on the spa
e variables, and it is allowed to

in
rease as jxj ! 1.

In the se
ond part of Chapter 3 we 
onsider also a more general 
lass of

non
ompa
t manifolds, whi
h are frequently 
alled the Damek-Ri

i spa
es,

also known as Harmoni
 AN groups; these spa
es have been studied by sev-

eral authors in the past 15 years ([4℄, [89℄, [11℄, [10℄, [29℄, [30℄, [33℄, [35℄, [36℄,

[87℄, [100℄ and others). As Riemannian manifolds, these solvable Lie groups

in
lude all symmetri
 spa
es of non
ompa
t type and rank one, namely the

hyperboli
 spa
es H

n

(R), H

n

(C ), H

n

(H ), H

2

(O ), but most of them are not

symmetri
, thus providing numerous 
ounterexemples to the Lin
hnerowi
z


onje
ture [35℄. This was impli
itely formulated in 1944 by Lin
hnerowi
z,

who showed that every harmoni
 manifold of dimension at most 4 is a sym-

metri
 spa
e, leaving open the question, if this assertion remains true in

every dimension. Though in 1990, Szabo proved it is true for any simply
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onne
ted 
ompa
t harmoni
 manifold ([99℄), in 1992, Ewa Damek and Ful-

vio Ri

i found a large 
lass of non-
ompa
t harmoni
 manifolds whi
h are

not symmetri
 spa
es. More details on Damek-Ri

i spa
es are 
ontained in

the se
tion 3.4.1.

We restri
t to the radial 
ase, in whi
h the Lapla
e operator admits

a expli
it des
ription and 
an be redu
e to the Ja
obi operator. Then we

prove, both for the S
hr�odinger and for the wave equation, suitable weighted

Stri
hartz estimates with weights depending on the parameters of the man-

ifold. In the spe
ial 
ase of the three-dimensional hyperboli
 spa
e H

3

our

method allows us to reobtain Bani
a's dispersive estimate by a very simple

proof.

The idea of our proof is to transform the equation into a new perturbed

one with a suitable potential V on R

n

; then, using the results of the pertur-

bative theory of Burq, Plan
hon, Stalker and Tahvildar-Zadeh [19℄, we 
an

obtain the Stri
hartz estimates. More pre
isely, the radial operator ��

M


an be redu
ed to an operator of the form ��+

e

V , where the potential

e

V

has a 
riti
al de
ay � jxj

�2

and 
an be treated by the methods of [21℄.

It is interesting to note that we obtain the results on these non
ompa
t

manifolds as appli
ation of the perturbative theory on R

n

, thus avoiding the

diÆ
ulties 
aused by the geometry of these spa
es.

Our �rst result 
on
erns the S
hr�odinger equation on S; we 
an prove

the following weighted Stri
hartz estimates

kw

q

uk

L

p

(R;L

y

(S))

� Ckw

2

u

0

k

L

2

(S)

+Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

;

with the weight

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(
osh r)

k

2

(1�

2

q

)

:

Also for the wave equation on S we are able to prove the following

weighted Stri
hartz estimates

kw

q

uk

L

p

(R;L

q

(S))

� C










u

0

�










H




(S)

+ C










u

1

�










H


�1

(S)

+Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

;

with the weights

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(
osh r)

k

2

(1�

2

q

)

;

and

�(r) = r

�+

1

2

(sinh r)

�(�+

1

2

)

(
osh r)

�(�+

1

2

)

:

Finally, the last Chapter 4 is devoted to the opposite situation of mani-

folds with positive 
urvature. In 
ontrast with the negative 
urvature 
ase,
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the positive 
urvature tends to destroy the de
ay properties of the equation,

and in general the results both from the point of view of de
ay and regular-

ity are worse than in the 
at 
ase. More pre
isely, we study the nonlinear

S
hr�odinger equation on the four dimensional sphere S

4

, or, more gener-

ally, a four dimensional 
ompa
t manifold M . In this situation, the 
ubi


equation

iu

t

+�

M

u = (juj

2

)u;

is 
riti
al, and well posedness barely fails. However, if we introdu
e a slightly

regularizing operator as follows

iu

t

+�

M

u = ((1 ��)

��

juj

2

)u; � > 0; (1.0.15)

then the situation is greatly improved. Noti
e that (1.0.15) 
an be regarded

as a natural generalization of the 
lassi
al Hartree equation

iu

t

+�u =

�

jxj

�


� juj

2

�

u:

We 
onsider (1.0.15) both on a general four-dimensional 
ompa
t manifold

and on the sphere S

4

. In both 
ases we obtain the global well posedness in

the energy spa
e, provided � > 1=2 in the general 
ase and � > 0 in the


ase of the sphere. The main tool here is a 
areful appli
ation of suitable

multilinear estimates, adapted to the 
ase of a 
ompa
t manifold. These

estimates are new and they are 
lose to the restri
tion method of Bourgain.

In order to go below the 
ubi
 powers, but using the same multilinear

te
hniques we are led to deal with the following quadrati
 equations on the

sphere S

4

:

i�

t

u+�u = q(u);

where q(u) is a homogeneous quadrati
 polynomial in u; u, i.e.,

q(u) = au

2

+ bu

2

+ 
juj

2

:

Noti
e that a sub
lass of these equations 
onsists of Hamiltonian equations

q(u) =

�V

�u

where V is a real-valued homogeneous polynomial of degree 3 in u; u; with

the above notation, this 
orresponds to 
 = 2a. The advantage of Hamilto-

nian equations is the 
onservation of energy

E =

1

2

Z

M

jruj

2

dx+

Z

M

jV (u) dx = 
onst:

For instan
e we have

q(u) = juj

2

+

1

2

u

2

=) V (u) =

1

2

juj

2

(u+ u):
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Con
erning the lo
al existen
e, we are able to prove a well posendess result

below the energy norm, and pre
isely in H

s

for any s > 1=2, provided we

assume that the data are \radial", whi
h in the 
ase of the sphere be
omes

the assumtpion of zonal initial data.

On the other hand, a general global existen
e result with small data

meets essential diÆ
ulties. Indeed, the 
onservation of energy is not suÆ-


ient to prevent the blow up; we 
onstru
t expli
it (and easy) examples of

this phenomenon. However, the possibility of 
onstru
ting these blow up

solutions is 
onne
ted with an algebrai
 
ondition on the quadrati
 polyno-

mial q; we are able to 
hara
terize 
ompletely the terms whi
h give rise to

blow up, and for the other 
ases we 
an prove a result of global existen
e

with small (zonal) data in the energy spa
e H

1

.

The results of my thesis are 
ontained in the following papers ([74℄, [38℄,

[75℄, [39℄,[76℄, [77℄, [47℄):

V.Pierfeli
e; De
ay estimate for the wave equation with a small po-

tential, to appear on NoDEA.

P. D'An
ona, V. Pierfeli
e; On the wave equation with a large

rough potential to appear on Journal of Fun
t. Anal.

V. Pierfeli
e; Stri
hartz estimates for the S
hr�odinger and heat equa-

tions perturbed with singular and time dependent potentials. Preprint 2004.

P. D'An
ona, V. Pierfeli
e, N. Vis
iglia; Some remarks on the

S
hr�odinger equation with a potential in L

r

t

L

s

x

to appear to Mathematis
he

Annalen.

V. Pierfeli
e; Weighted Stri
hartz estimates for the radial perturbed

S
hr�odinger equation on the hyperboli
 spa
e. Preprint 2004.

V. Pierfeli
e; Weighted Stri
hartz estimates for the S
hr�odinger and

wave equations on Damek-Ri

i spa
es. Preprint 2005.

P. G

�

erard, V. Pierfeli
e; Nonlinear S
h�odinger equation on four-

dimensional 
ompa
t manifolds. Preprint 2005.



Chapter 2

Dispersive equations with

potential perturbations on


at manifolds

2.1 Introdu
tion

In this 
hapter we study the dispersive properties of several perturbed evo-

lution equations (wave, S
hr�odinger, heat) in the absen
e of 
urvature, i.e.,

on R

n

. The perturbations we 
onsider are of potential type, both depending

and not depending on time.

For the three dimensional wave equation

�u+ V (x) = 0; n = 3

the potential will be independent of time and very rough: more pre
isely

V (x) belongs to the Kato 
lass (see De�nition 2.2.1). We shall �rst 
onsider

the 
ase of a small potential, for whi
h the proofs are simpler, and then we

shall extend the results to the 
ase of a large potential in the Kato 
lass.

When the potential is large we have the additional problem of resonan
es

and eigenvalues, and this makes the proof of the de
ay properties mu
h

harder. In both 
ases we shall prove the dispersive estimate

ju(t; x)j �

C

t

for a suitable 
onstant C depending on the initial data. These results have

been published in the papers [74℄ and [38℄.

Several works have investigated the Cau
hy problem for the wave equa-

tion perturbed with a potential and the dispersive estimate for it. In [8℄ the

potential satis�es (essentially) the following de
ay assumption:

jV (x)j �

C

jxj

4+Æ

; jxj � 1;

20
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for some C; Æ > 0, moreover V must be smooth. Under this 
ondition the

authors proved L

p

� L

p

0

de
ay estimates but not the dispersive estimate,

whi
h was obtained by the same methods and under similar assumptions in

[7℄. These works treat also the 
ase of dimension n � 3.

In [32℄ (only for the 
ase of spa
e dimension 3) the previous assumption

is weakened and the de
ay required at in�nity for the C

2

potential V is the

following one:

jD

�

V (x)j �

C

jxj

3+Æ

; j�j � 2:

For general dimension n, the best results are due to Yajima, who, in a

series of papers (see e.g. [106℄, [107℄), proved the L

p

boundedness of the

wave operator intertwining the free with the perturbed operator; as a 
onse-

quen
e he obtains dispersive estimates for a variety of equations, in
luding

the wave equation. We should also mention that the Stri
hartz estimates


an be proved independently of the dispersive estimates, under quite general

assumptions on the perturbed operator; for a ni
e proof see [21℄; see also

[20℄ and [27℄.

In the spe
ial 
ase of dimension n = 3, Georgiev and Vis
iglia [44℄ were

able to prove the dispersive estimate for potentials of H�older 
lass V (x) 2

C

�

(R

3

n 0), � 2℄0; 1[, satisfying for some " > 0

0 � V (x) �

C

jxj

2+"

+ jxj

2�"

: (2.1.1)

One sees that the potential V (x) is bounded by

V (x) �

C

jxj

2+"

if jxj � 1,

and by

V (x) �

C

jxj

2�"

if jxj � 1.

The last estimate shows that V admits a singularity su
h that it is not in

L

2

lo


(R

3

) (when " <

1

2

). In fa
t one has V 2 L

3=2�Æ

\ L

3=2+Æ

for Æ small

(0 < Æ < 3"=4).

Noti
e that the spa
e of fun
tions with bounded Kato norm 
ontains

L

3=2;1

sin
e

kV k

K

� CkV k

L

3=2;1

by the Hardy-Sobolev inequality. Thus from the point of view of regularity

assumption

kV k

K

<1 (2.1.2)

is weaker than (2.1.1).
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The 
riti
al behavior for the potential is 
learly V � jxj

�2

. The family

of radial potentials

V (x) =

a

jxj

2

; where a > �

(n� 2)

2

4

; n � 2;

is studied in the papers [78℄ and [19℄. More pre
isely, in the �rst paper

one shows that in the radial 
ase, i.e. when the initial data are radially

symmetri
, the solution to the perturbed wave equation satis�es the gener-

alized spa
e-time Stri
hartz estimates (1.0.10) but not the dispersive esti-

mate (1.0.3), as it is shown by suitable 
ounterexamples. Sin
e their proof

was based on estimates for the ellipti
 operator P

a

:= ��+

a

jxj

2

; the 
orre-

sponding Stri
hartz estimates hold also for the S
hr�odinger equation. In the

se
ond paper these results are extended to general non radial initial data.

Noti
e that the inverse square potential belongs to the weak L

3=2

w

' L

3=2;1

Lorentz spa
e.

Thus it is natural to ask what are the weakest assumptions on the po-

tential that imply the dispersive estimate. In se
tion 2.3 we prove that it

is suÆ
ient to assume that V belongs to a suitable Kato 
lass of potentials,

and no smoothness at all is required. The proof of this result is quite lenghty

and diÆ
ult. For this reason, we de
ided to treat in se
tion 2.2 the spe
ial


ase of a small potential satisfying the 
ondition

kV k

K

< 4�: (2.1.3)

In this 
ase the proof is easier to follows sin
e it is based on a Neumann

development of the perturbed resolvent.

For the S
hr�odinger equation

iu

t

��u+ V (t; x)u = 0; n � 2 (2.1.4)

we shall investigate the 
ase of time dependent potentials. In this 
ase, for

large potentials it is known that in general there is no de
ay.

In a 
lassi
al paper, Journ�e, So�er and Sogge ([60℄) proved the standard

dispersive estimate

ju(t; x)j � Ct

�

n

2

ku(0; �)k

L

1 (2.1.5)

provided the time independent potential V (x) is suÆ
iently smooth and

de
aying at in�nity, and 0 is not a resonan
e. This result was improved

by several authors, in the dire
tion of requiring less regularity and de
ay

of V (x). It appears that the limiting behaviour is V � jxj

�2

, or more

generally V 2 L

n=2

; in dimension three Goldberg [52℄ re
ently proved that

(2.1.5) holds provided V 2 L

3=2+

\L

1

, and this appears to be nearly optimal.

The situation when the potential V (t; x) depends also on time is mu
h

more diÆ
ult, and almost 
ompletely open. In dimension three Rodnianski
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and S
hlag [88℄ were able to prove the dispersive estimate for potentials

V (t; x) su
h that the norm

sup

t2R

kV (t; �)k

L

3=2

+ sup

x2R

3

Z

R

3

Z

1

�1

jV (�̂ ; x)j

jx� yj

d� dx

is small enough, where V (�̂ ; x) is the Fourier transform with respe
t to t of

V (t; x). The 
ases of higher dimensions or large potentials are still open.

From all the above results it appears that V 2 L

n=2

or V � jxj

�2

are

both reasonable 
andidates for the limiting behaviour of the potential. In

se
tion 2.4 we unify these 
onditions and we go one step further; indeed, we


onsider potentials belonging to the weak Lebesgue (Lorentz) spa
e L

(

n

2

;1)

.

Sin
e our results are based on perturbative methods we need to impose a

smallness 
ondition, however with the advantage that we 
an treat also time

dependent potentials V (t; x).

More pre
isely, we 
an prove the 
omplete Stri
hartz estimates for (2.1.4)

when the real valued potential V = V (t; x) satis�es

sup

t2R

kV (t; �)k

L

(

n

2

;1)

� C

0

is small enough (2.1.6)

(see Theorem 4.2.24 below; see also [9℄ for more details on Lorentz spa
es).

When the potential does not depend on time we 
an 
ompute the 
onstant

more a

urately: the same result holds provided

kV (�)k

L

(

n

2

;1)

<

2n

C

s

(n� 2)

; (2.1.7)

where C

s

is the Stri
hartz 
onstant for the unperturbed equation (see The-

orem ?? below) . We mention that the 
ase of dimension n = 3 and of

a potential V = V (x) independent of time has been 
onsidered earlier by

Georgiev and Ivanov in [43℄.

For the heat equation the results are stronger, as natural. Indeed, in

Theorem ?? we 
onsider a real valued potential V (x) 2 L

(

n

2

;1)

, whi
h we

split into positive and negative part V (x) = V

+

(x) � V

�

(x); V

�

� 0, and

we assume that the negative part satis�es

kV

�

k

L

(

n

2

;1)

� C

0

<

2n

C

s

(n� 2)

: (2.1.8)

Under this 
ondition we 
an prove that the maximum prin
iple holds, and as

a 
onsequen
e we dedu
e the full Stri
hartz estimates. When the potential

is nonnegative, we 
an also prove the stronger L

1

� L

1

estimate (2.1.5)

(Proposition 5).

Finally, we study equation (2.1.4) when the potential V (t; x) is large but

satis�es an integrability 
ondition of the form

V 2 L

r

t

L

s

x

;

1

r

+

n

2s

= 1
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and again we prove the 
omplete Stri
hartz estimates in all dimensions. We

also show that if the potential is in V 2 L

r

t

L

s

x

but

1

r

+

n

2s

6= 1, the Stri
hartz

estimates are not true. These results have been published in the papers [75℄

and [39℄.

2.2 The wave equation with a small rough poten-

tial

In this se
tion, we prove a dispersive L

1

de
ay estimate for the wave equa-

tion perturbed with a small non smooth potential belonging to Kato 
lass

in the 
ase three dimensional. Noti
e that from this estimate, following [66℄,

one 
an obtain the 
omplete set of spa
e-time estimates as above. In or-

der to introdu
e our assumption on the potential V we re
all the following


lassi
al de�nition:

De�nition 2.2.1. The measurable fun
tion V (x) on R

n

, n � 3, is said to

belong to the Kato 
lass if

lim

r#0

sup

x2R

n

Z

jx�yj<r

jV (y)j

jx� yj

n�2

dy = 0: (2.2.1)

Moreover, the Kato norm of V (x) is de�ned as

kV k

K

= sup

x2R

n

Z

R

n

jV (y)j

jx� yj

n�2

dy: (2.2.2)

For n = 2 the kernel jx� yj

2�n

is repla
ed by log(jx� yj

�1

).

The two notions are of 
ourse related (e.g., a 
ompa
tly supported fun
-

tion of Kato 
lass has a �nite Kato norm, see Lemma 2.3.11 in Se
tion

2.3).

Remark 2.2.1. The relevan
e of the Kato 
lass in the study of S
hr�odinger

operators is well known; full light on its importan
e was shed in Simon

[91℄ and Aizenmann and Simon [2℄. The stronger norm (2.2.2) was used by

Rodnianski and S
hlag [88℄ who proved the dispersive estimate for the three

dimensional S
hr�odinger equation with a potential having both the Kato

and the Rollnik norms small.

We 
an now state the main result of this se
tion. Consider the Cau
hy

problem

8

>

<

>

:

2u+ V (x)u = 0; t � 0; x 2 R

3

;

u(0; x) = 0;

u

t

(0; x) = f(x);

(2.2.3)

then we have:
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Theorem 2.2.1. Assume that V is a real-valued, measurable fun
tion on

R

3

su
h that

kV k

K

< 4�; (2.2.4)

then the solution u(t; x) of (2.2.3) satis�es the dispersive estimate

ku(t; �)k

L

1

(R

3

)

�

C

t

kfk

B

1

1;1

(R

3

)

: (2.2.5)

Remark 2.2.1. It is natural to expe
t that the estimate (2.2.5) holds with the

homogeneous Besov spa
es

_

B

1

1;1

(R

3

) instead of B

1

1;1

(R

3

). Indeed, in the next

se
tion we shall show that this 
an be obtained by a mu
h more 
omplex

proof; the interest of (2.2.5) is mainly in the simpli
ity of the arguments

used.

2.2.1 Properties of perturbed operator

We denote by H

0

the Lapla
e operator �� as a self-adjoint operator on

L

2

(R

3

) with dense domain H

2

(R

3

). In this se
tion we shall only 
onsider

the 
ase of a small potential, sin
e the proofs are simpler; but the following

lemma 
an be extended also to potentials with a large positive part, as we

shall show in the next se
tion. Thus we have:

Lemma 2.2.1. Let V be a real-valued fun
tion on R

3

su
h that

kV k

K

< 4�: (2.2.6)

Then there exists a unique non-negative self-adjoint operator ��

V

= ��+

V with D(��

V

) = H

2

(R

3

) su
h that

('; (��+ V ) )

L

2

= (';�� )

L

2

+ (V ';  )

L

2

; 8 '; 2 H

2

(R

3

): (2.2.7)

Proof. To prove this fa
t we 
an use the KLMN Theorem (see [83℄ Theorem

10.17), and it is suÆ
ient to verify the following estimate

Z

R

3

jV (x)jj'(x)j

2

dx � a

Z

R

3

jr'(x)j

2

dx+ bk'k

2

L

2

(R

3

)

(2.2.8)

for some 
onstants a < 1; b > 0. We 
an rewrite (2.2.8) as follows

j(V '; ')

L

2
j � a(';��')

L

2
+ bk'k

2

L

2

= a
















�

H

0

+

b

a

�

1

2

'
















2

L

2

:

Writing g =

�

H

0

+

b

a

�

1

2

', we see that we need only to prove the following

inequality
















jV j

1

2

�

H

0

+

b

a

�

�

1

2

g
















L

2

� akgk

L

2 ;
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for some 1 > a > 0; b > 0.

Now 
onsider the operator T = jV j

1

2

�

H

0

+

b

a

�

�

1

2

and its adjoint

T

�

=

�

H

0

+

b

a

�

�

1

2

jV j

1

2

:

We must prove that

kTT

�

k

L

2

!L

2
= a < 1: (2.2.9)

Using the expli
it representation of resolvent in R

3

:

�

H

0

+

b

a

�

�1

' =

1

4�

Z

R

3

e

�

q

b

a

jx�yj

jx� yj

f(y)dy; (2.2.10)

we 
an write

kTT

�

'k

2

L

2

=
















jV j

1

2

�

H

0

+

b

a

�

�1

jV j

1

2

'
















2

L

2

=

=

1

(4�)

2

Z

R

3

jV (x)j

�

�

�

�

�

�

Z

R

3

e

�

q

b

a

jx�yj

jx� yj

jV (y)j

1

2

j'(y)jdy

�

�

�

�

�

�

2

dx

and using the Cau
hy-S
hwartz inequality we have

�

1

(4�)

2

Z

jV (x)j

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

jV (y)jdy

1

A

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

j'(y)j

2

dy

1

A

dx

�

1

(4�)

2

Z

jV (x)j

�

Z

jV (y)j

jx� yj

dy

��

Z

j'(y)j

2

jx� yj

dy

�

dx

whi
h by the de�nition of Kato norm kV k

K

we 
an estimate as follows

�

kV k

K

(4�)

2

ZZ

jV (x)j

jx� yj

j'(y)j

2

dydx �

kV k

2

K

(4�)

2

k'k

2

L

2

:

Therefore we have

kTT

�

k

L

2 =

kV k

K

(4�)

� a < 1 (2.2.11)

by the assumption (2.2.6). Thus we have proved that ��+V is a self-adjoint

operator with domainH

2

(R

3

). Noti
e that we have proved inequality (2.2.8)

for all b > 0.

Now we prove that ��+ V is a positive operator. Indeed

((��+ V )';')

L

2

= (��';')

L

2

+ (V '; ')

L

2

� kr'k

2

L

2

� j(V '; ')

L

2
j
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using inequality (2.2.8) we have

� (1� a)kr'k

2

L

2

� bk'k

2

L

2

� �bk'k

2

L

2

for every b > 0, and this implies that

((��+ V )';')

L

2

� 0: (2.2.12)

2.2.2 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1 is based on the representation formula (see [110℄)

for fun
tions of the self-adjoint operators H:

�(H)f = L

2

� lim

"!0

1

2�i

Z

1

0

�(�)[R

V

(�+ i")�R

V

(�� i")℄fd�; (2.2.13)

valid at least for all f 2 C

1

0

(R

3

). Consider the following Cau
hy problem

8

>

<

>

:

2u+ V (x)u = 0; t � 0; x 2 R

3

;

u(0; x) = 0;

u

t

(0; x) = '

j

(

p

��

V

)f(x):

(2.2.14)

Here '

j

, j = 0; 1; : : : is a standard non homogeneous Paley-Littlewood par-

tition of unity; we re
all that '

j

(�) = '

0

(2

�j

�) and that

 

0

+

X

j�0

'

j

= 1

for a suitable  

0

2 C

1

0

(R

3

).

Then the solution of (2.2.14) 
an be expressed as

u(t; x) = U

V

(t)'

j

(

p

��

V

)f; (2.2.15)

where

U

V

(t) =

sin(t

p

��

V

)

p

��

V

:

Sin
e ��

V

is a self-adjoint operator we 
an write the solution using the

spe
tral representation (2.2.13), i.e.

u(t; x) = L

2

� lim

"!0

1

2�i

Z

1

0

'

j

(

p

�)

sin t

p

�

p

�

[R

V

(�+ i")�R

V

(�� i")℄fd�:

The main point in the proof of Theorem 2.2.1 are the following L

1

�L

1

estimates of the resolvent R

V

(�� i0) and its square:
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Proposition 2.2.2. Assume that the potential V satis�es

kV k

K

4�

< 1: (2.2.16)

Then for any � 2 R

+

; " > 0 we have the following estimates:

k[R

V

(�+ i")�R

V

(�� i")℄fk

L

1

� C

V

p

�

"

2�

kfk

L

1
; (2.2.17)

k[R

V

(�+ i")

2

�R

V

(�� i")

2

℄fk

L

1

�

C

V

8�

p

�

"

kfk

L

1
; (2.2.18)

where C

V

=

�

1�

kV k

K

4�

�

�2

and

�

"

=

�+ (�

2

+ "

2

)

1=2

2

> 0:

Before proving Proposition 2.2.2, we show how from it the dispersive

estimate follows easily. De�ne

u

"

(t; x) =

Z

1

0

'

j

(

p

�)

(��

�


os

p

�t)

t

[R

V

(�+ i")�R

V

(�� i")℄fd�;

so that for all t > 0

u

"

(t; �)! u(t; �) in L

2

;

integrating by parts we have

u

"

=

1

t

Z

1

0

�

�

�

'

j

(

p

�)[R

V

(�+ i") �R

V

(�� i")℄f

�

(
os

p

�t)d�:

By the properties of the Paley-Littlewood de
omposition and using the fol-

lowing relation

�

�

[R

V

(�+ i")�R

V

(�� i")℄ = R

V

(�+ i")

2

�R

V

(�� i")

2

; (2.2.19)

we obtain

ju

"

j �

1

t

Z

1

0

j�

�

'

0

j

(

p

�)jj[R

V

(�+ i") �R

V

(�� i")℄f jd�+

+

1

t

Z

1

0

'

j

(

p

�)j[R

V

(�+ i")

2

�R

V

(�� i")

2

℄f jd�:

Then applying Proposition 2.2.2 and the elementary inequalities

p

� �

p

�

"

�

p

�+

p

"

we obtain, sin
e '

j

(

p

�) = '

0

(2

�j

p

�),

ju

"

j � C

0

C

V

t

Z

1

0

h

2

�j

j'

0

0

(2

�j

p

�)j(

p

�+

p

") + j'

0

(2

�j

p

�)j

i

d�

p

�
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and after the 
hange of variables � = 2

�j

p

� we obtain

ku

"

(t; �)k

L

1

�

�

1�

kV k

K

4�

�

�2

C

1

2

j

+

p

"

t

kfk

L

1
; (2.2.20)

for some 
onstant C

1

independent of j and ". If now we let " ! 0, and we

remark that u

"

! u in L

2

implies the 
onvergen
e a.e. for a subsequen
e,

we obtain

ku(t; �)k

L

1

�

�

1�

kV k

K

4�

�

�2

C

1

2

j

t

kfk

L

1
: (2.2.21)

The estimate for the term 
orresponding to  

0

is identi
al.

Now we use a standard tri
k: writing for j � 1

e'

j

= '

j�1

+ '

j

+ '

j+1

we have that e'

j

, j = 0; 1; 2; : : : is another Paley-Littlewood de
omposition

with the property that '

j

� e'

j

� '

j

. Hen
e the Cau
hy problem (2.2.14) is

identi
al to the problem

8

>

<

>

:

2u+ V (x)u = 0; t � 0; x 2 R

3

;

u(0; x) = 0;

u

t

(0; x) = e'

j

(

p

��

V

)'

j

(

p

��

V

)f(x)

(2.2.22)

and estimate (2.2.21) gives also

ku(t; �)k

L

1

� C

V

2

j

t

k'

j

(

p

��

V

)fk

L

1
: (2.2.23)

If we now 
onsider the original Cau
hy problem (2.2.3) we obtain by linear-

ity, after summation over j,

ku(t; �)k

L

1

�

C

V

t

kfk

B

1

1;1

(V )

; (2.2.24)

kfk

B

1

1;1

(V )

�

0

�

k 

0

(

p

��

V

)fk

L

1
+

1

X

j=0

2

j

k'

j

(

p

��

V

)fk

L

1

1

A

where the last equality is the de�nition of the perturbed Besov normB

1

1;1

(V ).

The �nal step in the proof of Theorem 1 is the inequality

kfk

B

1

1;1

(V )

� Ckfk

B

1

1;1

(R

3

)

to estimate with the standard Besov norms. This step will be 
ompleted in

Se
tion 2.2.
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We now go ba
k to the proof of Proposition 2.2.2. We split the proof

into a few lemmas. An essential tool will be the expli
it representation of

the free resolvent R

0

(see [83℄ p 58):

R

0

(�

2

)g = (��� �

2

)

�1

g =

(

1

4�

R

R

3

e

i�jx�yj

jx�yj

g(y)dy; Im � > 0;

1

4�

R

R

3

e

�i�jx�yj

jx�yj

g(y)dy; Im � < 0:

(2.2.25)

By elementary 
omputations we obtain that for any � 2 R and " > 0

R

0

(�� i")g(x) =

1

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

g(y)dy; (2.2.26)

where

�

"

=

�+ (�

2

+ "

2

)

1=2

2

> 0: (2.2.27)

Moreover by the resolvent identity

d

dz

R

0

(z) = R

2

0

(z);

we 
an represent also the square of the resolvent:

R

0

(�� i")

2

g =

1

8�

�

�

p

�

"

+ i

"

2

p

�

"

�

�1

Z

e

�

�i

p

�

"

�

"

2

p

�

"

�

jx�yj

g(y)dy:

(2.2.28)

It is easy to derive from (2.2.26) the inequality

jR

0

(�� i")g(x)j �

1

4�

Z

R

3

jg(y)j

jx� yj

dy; (2.2.29)

whi
h is true for all �; ". On the positive real axis the following well known

representation holds: for any � � 0,

R

0

(�� i0)g(x) =

1

4�

Z

R

3

e

�i

p

�jx�yj

jx� yj

g(y)dy; (2.2.30)

while on the negative real axis we have (now we are outside the spe
trum)

R

0

(��)g(x) =

1

4�

Z

R

3

e

�

p

� jx�yj

jx� yj

g(y)dy; � � 0: (2.2.31)

Then we have:

Lemma 2.2.3. For any � 2 R

+

, " � 0 the operators R

0

(�+ i")�R

0

(�� i")

are bounded operators in L(L

1

;L

1

) satisfying

k[R

0

(�+ i")�R

0

(�� i")℄fk

L

1

�

p

�

"

2�

kfk

L

1
: (2.2.32)
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A similar property holds for the operators R

0

(��i")

2

whi
h satisfy for � 2 R,

" � 0 the estimate

kR

0

(�� i")

2

fk

L

1

�

1

8�

p

�

"

kfk

L

1 : (2.2.33)

Finally, for any measurable fun
tion V (x) with kV k

K

< 1, the operators

V R

0

(�� i") are bounded on L

1

, the operators R

0

(�� i")V are bounded on

L

1

, and we have for all � 2 R, " � 0

kR

0

(�� i")V fk

L

1

�

kV k

K

4�

kfk

L

1

(2.2.34)

and

kV R

0

(�� i")fk

L

1
�

kV k

K

4�

kfk

L

1
(2.2.35)

Proof. The estimates (2.2.32) and (2.2.33) follow easily from (2.2.25), (2.2.26),

(2.2.29).

Using (2.2.29) we obtain immediately

jR

0

(z)V (x)f(x)j �

1

4�

Z

R

3

jV (y)j

jx� yj

jf(y)jdy;

and hen
e

kR

0

(z)V fk

L

1

�

1

4�

sup

x2R

3

Z

R

3

V (y)

jx� yj

dykfk

L

1

=

kV k

K

4�

kfk

L

1

:

In a similar way, using the expli
it representation of resolvent R

0

we have

kV R

0

fk

L

1
�

1

4�

Z

R

3

�

�

�

�

V (x)

Z

R

3

jf(y)j

jx� yj

dy

�

�

�

�

dx =

1

4�

Z Z

R

3

jV (x)f(y)j

jx� yj

dxdy �

kV k

K

4�

kfk

L

1 :

(2.2.36)

Lemma 2.2.4. Let � 2 R, " � 0. Assume that the potential V is a real-

valued, measurable fun
tion on R

3

su
h that

kV k

K

4�

< 1: (2.2.37)

Then the operator I+R

0

(�� i")V belongs to L(L

1

;L

1

) and has an inverse

satisfying

k(I +R

0

(�� i")V )

�1

k

L

1

!L

1

�

�

1�

kV k

K

4�

�

�1

; (2.2.38)
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analogously we have

k(I + V R

0

(�� i"))

�1

k

L

1

!L

1
�

�

1�

kV k

K

4�

�

�1

: (2.2.39)

Moreover for � 2 R, " > 0 the operator I�V R

V

(��i") belongs to L(L

1

;L

1

)

with norm bounded by

kI � V R

V

(�� i")k

L

1

!L

1 �

�

1�

kV k

K

4�

�

�1

: (2.2.40)

Proof. Sin
e

kV k

K

4�

< 1 by assumption, by (2.2.34) the operator (I + R

0

V )

is invertible and the Neumann series

(I +R

0

V )

�1

=

1

X

k=0

(�1)

k

(R

0

V )

k


onverges in L(L

1

;L

1

). In 
on
lusion we have

k(I +R

0

V )

�1

k

L

1

!L

1

�

1

1�

kV k

K

4�

:

In a similar way, sin
e

kV k

K

4�

< 1 by assumption, by (2.2.35) the operator

(I + V R

0

) is invertible and the Neumann series

(I + V R

0

)

�1

=

1

X

k=0

(�1)

k

(V R

0

)

k


onverges in L(L

1

;L

1

). Then we have

k(I + V R

0

(z))

�1

k

L

1

!L

1
�

1

1�

kV k

K

4�

:

Finally re
alling the resolvent identity

R

0

(z) = R

V

(I + V R

0

);

sin
e (I + V R

0

) is invertible in L

1

as proved above, we 
an write

(I � V R

V

) = (I � V R

0

(I + V R

0

)

�1

);

and (2.2.39) implies that (I � V R

V

) : L

1

! L

1

with norm

k(I � V R

V

)k

L

1

!L

1 �

1

1�

kV k

K

4�

: (2.2.41)

This 
on
ludes the proof of the Lemma.
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Lemma 2.2.5. Assume V satis�es (2.2.37). Then for all z = � + i" with

� 2 R, " > 0 the following identity holds:

R

V

(z)�R

V

(�z) = (I +R

0

(�z)V )

�1

[R

0

(z)�R

0

(�z)℄(I � V R

V

(z)) (2.2.42)

and de�nes a bounded operator in L(L

1

;L

1

). Moreover, we have the esti-

mate

k[R

V

(�+ i")�R

V

(�� i")℄gk

L

1

� C

V

p

�

"

kgk

L

1
(2.2.43)

where C

V

= (1� kV k

K

=(4�))

�2

.

Proof. Thanks to Lemma 2.2.4, we 
an write the following identities for the

resolvent operator R

V

R

V

(z) = (I +R

0

(z)V )

�1

R

0

(z); (2.2.44)

R

V

(z) = R

0

(z)(I + V R

0

(z))

�1

; (2.2.45)

R

V

(z) = R

0

(z)(I � V R

V

(z)): (2.2.46)

Then we 
an write

R

V

(z)�R

V

(�z) = R

0

(z)�R

0

(�z)�R

0

(z)V R

V

(z) +R

0

(�z)V R

V

(�z);

adding and subtra
ting R

0

(�z)V R

V

(z), and fa
torizing leads to

= (R

0

(z)�R

0

(�z))� (R

0

(z)�R

0

(�z)) V R

V

(z)�R

0

(�z)V (R

V

(z)�R

V

(�z))

when
e (2.2.42) follows easily. The bound of this operator is an obvious


onsequen
e of Lemmas 2.2.3 and 2.2.4.

We have proved the �rst half of Proposition 2.2.2. The se
ond part is a


onsequen
e of the following Lemma:

Lemma 2.2.6. Assume V satis�es (2.2.37). Then for all � 2 R, " > 0 the

following identity holds:

R

V

(�� i")

2

= (I+R

0

(�� i")V )

�1

R

0

(�� i")

2

(I+V R

0

(�� i"))

�1

(2.2.47)

and de�nes a bounded operator in L(L

1

;L

1

). Moreover, we have the esti-

mate

kR

V

(�� i")

2

gk

L

1

�

C

V

8�

p

�

"

kgk

L

1
(2.2.48)

where C

V

= (1� kV k

K

=(4�))

�2

.

Proof. The proof is analogous to the proof of the Lemma 2.2.5, and fol-

lows from the identities (2.2.44), (2.2.45), and from the properties proved in

Lemma 2.2.3
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2.2.3 The equivalen
e B

1

1;1

(V ) ' B

1

1;1

(R

3

)

The main purpose of this se
tion is to prove the equivalen
e between non

homogeneous, perturbed Besov spa
es and non homogeneous 
lassi
 Besov

spa
es. This fa
t 
on
ludes the proof of Theorem 2.2.1, be
ause it implies

that from (2.2.24) we obtain the following dispersive estimate

ku(t; �)k

L

1

� C

C

V

t

kfk

B

1

1;1

(R

3

)

; (2.2.49)

where C

V

= (1�

kV k

K

4�

)

�2

.

Now we re
all the de�nition of the 
lassi
al non homogeneous Besov

spa
es.

De�nition 2.2.1. Let '

j

, j = 0; 1; : : : be a standard non homogeneous

Paley-Littlewood partition of unity; we re
all that '

j

(�) = '

0

(2

�j

�) and

that

supp '

0

= f� : 2

�1

� j�j � 2g su
h that '

0

(�) > 0 for 2

�1

� j�j � 2:

 

0

+

X

j�0

'

j

= 1;

for a suitable  

0

2 C

1

0

(R

3

). The non homogeneous Besov spa
es B

s

p;q

are

de�ned by

B

s

p;q

= fu : u 2 S

0

; kuk

B

s

p;q

<1g; (2.2.50)

with the norm

kuk

B

s

p;q

= k 

0

(D)uk

L

p

+

0

�

1

X

j=0

2

sjq

k'

j

(D)uk

q

L

p

1

A

1

q

; (2.2.51)

where D =

p

��, and s 2 R; 1 � p; q �1.

Clearly, B

s

p;q

are normed linear spa
es with norms k � k

B

s

p;q

. Moreover,

they are 
omplete and therefore Bana
h spa
es.

In a similar way, we 
an de�ne non homogeneous perturbed Besov spa
es

as

B

s

p;q

(V ) = fu : u 2 S

0

; kuk

B

s

p;q

(V )

<1g; (2.2.52)

with the norm

kuk

B

s

p;q

(V )

= k 

0

(D

V

)uk

L

p

+

0

�

1

X

j=0

2

sjq

k'

j

(D

V

)uk

q

L

p

1

A

1

q

; (2.2.53)

where D

V

=

p

��

V

�

p

��+ V , and s 2 R; 1 � p; q � 1.

Now we see the following
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Theorem 2.2.2. Assume that the potential V satis�es (2.2.37). Then the

following equivalen
e holds:

B

1

1;1

(V ) ' B

1

1;1

(R

3

); (2.2.54)

i.e.

kfk

B

1

1;1

(V )

' kfk

B

1

1;1

(R

3

)

: (2.2.55)

To prove Theorem 2.2.2 we need some Lemmas. In the following we shall

use the operator

(��)

�1

f = R

0

(0)f =

1

4�

Z

f(y)

jx� yj

dy

whi
h satis�es the identity

I = (��)R

0

(0) = R

0

(0)(��)

(see standard referen
es) and, writing ��

V

= ��+ V , the operator

(��

V

)

�1

= R

V

(0) = R

0

(0)(I + V R

0

(0))

�1

= (I +R

0

(0)V )

�1

R

0

(0)

whi
h satis�es the analogous identities

R

V

(0)(��

V

) = R

V

(0)(��+ V ) = (I +R

0

(0)V )

�1

R

0

(0)(��+ V ) = I

and

(��

V

)R

V

(0) = I:

Moreover we re
all that the operator V R

0

(0) is bounded on L

1

sin
e

kV R

0

(0)fk

L

1 �

1

4�

ZZ

jV (y)j

jx� yj

jf(y)jdydx �

1

4�

kV k

K

kfk

L

1 ;

and its dual R

0

(0)V is bounded on L

1

with the same norm. Thus also

V R

V

(0) and R

V

(0)V given by

V R

V

(0) = V R

0

(0)(I + V R

0

(0))

�1

; R

V

(0)V = (I +R

0

(0)V )

�1

R

0

(0)V

are bounded on L

1

and L

1

respe
tively, with norms

kV R

V

(0)k = kR

V

(0)V k �

kV k

K

4�

�

1�

kV k

K

4�

�

�1

:

Now we pro
eed as Theorem 7.1 in [44℄.
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Lemma 2.2.7. Let '

j

, j = 0; 1; : : : be a standard non homogeneous Paley-

Littlewood partition of unity, and let V satisfy (2.2.37). Then the following

inequalities hold for all p 2 [1;1℄

k'

j

(

p

��

V

)(��

V

)

�1

k

L

p

!L

p

� C2

�2j

; j � 0; (2.2.56)

k'

j

(

p

��

V

)(��

V

)k

L

p

!L

p

� C2

2j

; j � 0; (2.2.57)

k 

0

(

p

��

V

)k

L

p

!L

p

+ k 

0

(

p

��

V

)(��

V

)k

L

p

!L

p

� C; (2.2.58)

k'

j

(

p

��

V

)k

L

p

!L

p

� C; j � 0 (2.2.59)

We noti
e that (2.2.56), (2.2.57), (2.2.58) hold also if we 
onsider the

Lapla
e operator �� instead of ��

V

(take V = 0).

Proof. Consider

g(��) = '

0

(

p

��)�

�1

�

�1

;

where '

0

(

p

�) 2 C

1




. Sin
e our potential belongs to the Kato 
lass and ��

V

is a non-negative operator we 
an apply Theorem 2.1 in [58℄ and obtain the

following estimate

kg((��

V

)�)k

L

p

!L

p

� C;

where C is a 
onstant independent of � 2℄0; 1℄. Thus we have

k'

0

(�

p

(��

V

)

�1

)(��

V

)

�1

k

L

p

!L

p

� C�; � 2℄0; 1℄;

we 
an 
hoose � = 2

�2j

; j � 0, and we known that '

j

(

p

�) = '

0

(2

�j

p

�),

so this proves the �rst inequality of the Lemma.

As above, we 
onsider now

g(��) = '

0

(

p

��)��;

and we apply to it again Theorem 2.1 in Nakamura-Jensen. If we 
hoose

� = 2

2j

; j � 0 we obtain the se
ond inequality

k'

j

(

p

��

V

)(��

V

)k

L

p

!L

p

� C2

2j

; j � 0:

Finally, in a similar way 
hoosing

g(�) =  

0

(

p

�) with � = 1

or

g(�) =  

0

(

p

�)� with � = 1

or

g(��) = '

0

(

p

��)�

�1

;

we prove the last two inequalities.
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Lemma 2.2.8. Under the same assumptions as in the pre
eding Lemma we

have

k'

j

(

p

��

V

)'

k

(

p

��)k

L

1

!L

1
� C2

�2j+2k

; 8 j; k � 0: (2.2.60)

Proof. We 
an write '

j

(

p

��

V

)'

k

(

p

��) as

'

j

(

p

��

V

)(��

V

)

�1

(��

V

)'

k

(

p

��) =

= '

j

(

p

��

V

)(��

V

)

�1

(��)'

k

(

p

��)+

+ '

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��):

Using (2.2.56) and (2.2.57) it is easy to see that we have the following

k'

j

(

p

��

V

)(��

V

)

�1

(��)'

k

(

p

��)k

L

1

!L

1
� C2

�2j+2k

; j; k � 0:

(2.2.61)

Moreover we 
an write

'

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��) =

= '

j

(

p

��

V

)(��

V

)

�1

V R

0

(0)(��)'

k

(

p

��);

and we 
an apply to it (2.2.56):

k'

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��)k

L

1

!L

1
�

� C2

�2j

kV R

0

(0)k

L

1

!L

1
k(��)'

k

(

p

��)k

L

1

!L

1
:

by (2.2.57) in Lemma 2.2.7 we obtain

k'

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��)k

L

1

!L

1
� C2

�2j

kV k

K

4�

2

2k

; 8 j; k � 0

and this 
on
ludes the proof.

Now we see the proof of Theorem 2.2.2. The �rst step is to prove the

following inequality

kfk

B

1

1;1

(V )

� Ckfk

B

1

1;1

(R

3

)

: (2.2.62)

By the de�nition of non homogeneous perturbed Besov spa
es we have,

writing for brevity

D

V

=

p

��

V

; D =

p

��

kfk

B

1

1;1

(V )

= k 

0

(D

V

)fk

L

1
+

1

X

j=0

2

j

k'

j

(D

V

)fk

L

1
: (2.2.63)
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We know that

 

0

(D) +

X

k�0

'

k

(D) = 1;

and thus we have

kfk

B

1

1;1

(V )

� k 

0

(D

V

) 

0

(D)fk

L

1
+

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1
+

+

1

X

j=0

2

j

k'

j

(D

V

) 

0

(D)fk

L

1 +

X

j;k�0

2

j

k'

j

(D

V

)'

k

(D)fk

L

1 :

Now we estimate separately the four terms.

Applying to the �rst term the (2.2.58) we obtain that  

0

(D

V

) is bounded

on L

1

so that

k 

0

(D

V

) 

0

(D)fk

L

1
� Ckfk

L

1
(2.2.64)

and sin
e

kfk

L

1 � k 

0

(D)fk

L

1 +

X

j�0

k'

j

(D)fk

L

1 ;

this is smaller than kfk

B

1

1;1

(R

3

)

.

In the same way we have for the se
ond term

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1 � C

1

X

k=0

k'

k

(D)fk

L

1 � Ckfk

B

1

1;1

(R

3

)

For the third term we 
an write

1

X

j=0

2

j

k'

j

(D

V

) 

0

(D)fk

L

1
=

1

X

j=0

2

j

k'

j

(D

V

)(��

V

)

�1

(��

V

) 

0

(D)fk

L

1

and from (2.2.56) in Lemma 2.2.2 we have

� C

X

j�0

2

�j

k(��

V

) 

0

(D)fk

L

1 = Ck(��

V

) 

0

(D)fk

L

1 �

� Ck(��) 

0

(D)fk

L

1
+ CkV  

0

(D)fk

L

1
;

by our assumption on the potential we have

kV  

0

(D)fk

L

1
= kV R

0

(0)(��) 

0

(D)fk

L

1
�

kV k

K

4�

k(��) 

0

(D)fk

L

1

and sin
e (��) 

0

(D) is bounded in L

1

by (2.2.58), the third term is bounded

by

1

X

j=0

2

j

k'

j

(D

V

) 

0

(D)fk

L

1
� C

2

kfk

L

1
: (2.2.65)
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Finally, we divide the fourth term in the 
ases j � k and j > k:

X

j;k�0

2

j

k'

j

(D

V

)'

k

(D)fk

L

1
=

X

j�k

+

X

j>k

for j � k we use the fa
t that '

j

(D

V

) are bounded on L

1

with uniform

norm by (2.2.59) and we obtain

X

j�k

�

X

k�0

k'

k

(D)fk

L

1

X

0�j�k

2

j

= 2

X

k�0

2

k

k'

k

(D)fk

L

1
:

For j > k, we know that '

j

= '

j

f'

j

and we have

X

j>k

2

j

k'

j

(D

V

)'

k

(D)fk

L

1
=

X

j>k

2

j

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1
;

now applying to the last term the Lemma 2.2.8 we have

X

j>k

2

j

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1
�

X

j>k

C2

k�j

2

k

kf'

k

fk

L

1

and sin
e

P

j>k

2

k�j

< 1 we have

X

j;k�0

2

j

k'

j

(D

V

)'

k

(D)fk

L

1
� C

X

k�0

2

k

k

^

'

k

(D)fk

L

1
: (2.2.66)

In 
on
lusion, we obtain

kfk

B

1

1;1

(V )

� Ckfk

L

1
+ C

X

k�0

2

k

k

^

'

k

(D)fk

L

1
� kfk

B

1

1;1

(R

3

)

: (2.2.67)

The se
ond step is to prove the following inequality

kfk

B

1

1;1

(R

3

)

� kfk

B

1

1;1

(V )

; (2.2.68)

this is 
ompletely analogous to �rst step, and so the proof is 
on
luded.

2.3 The wave equation with a large rough poten-

tial

We 
onsider now the 
ase of the wave equation

�

1+n

u+ V (x)u = 0; u(0; x) = 0; u

t

(0; x) = f(x); (2.3.1)

perturbed by a large potential in the Kato 
lass.

The main new diÆ
ulty is the possibility that the operator ��+ V (x)

has eigenvalues or resonan
es.
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As it is well known, the presen
e of eigenvalues or resonan
es 
an in
uen-


e the de
ay properties of the solutions. The standard way out of this

diÆ
ulty is to assume that no resonan
es are present on the positive real

axis, and in many 
ases this redu
es to assuming that 0 is not a resonan
e.

In our �rst result this assumption takes the following form. We denote as

usual by R

0

(z) = (�z��)

�1

the resolvent operator of ��, and by R

0

(��i0)

the limits lim

"#0

R(�� i") at a point � � 0. Then we assume that

The integral equation f + R

0

(� + i0)V f = 0 has no nontrivial

bounded solution for any � � 0,

or, equivalently,

f +

1

4�

Z

R

3

e

i

p

�jx�yj

jx� yj

V (y)f(y)dy = 0; f 2 L

1

; � � 0 =) f � 0:

(2.3.2)

In several 
ases this assumption 
an be drasti
ally weakened, as dis
ussed

below.

We 
an now state the �rst result of the se
tion:

Theorem 2.3.1. Let V = V

1

+ V

2

be a real valued potential of Kato 
lass.

Assume that:

i) V

1

is 
ompa
tly supported and has a bounded Kato norm;

ii) V

2

has a small Kato norm and pre
isely

kV

2

k

K

�

�

1 +

1

4�

kV

1

k

K

�

< 4�; (2.3.3)

iii) the negative part V

�

= maxf�V; 0g satis�es

kV

�

k

K

< 2�; (2.3.4)

iv) the non resonant 
ondition (2.3.2) holds for all � � 0.

Then any solution u(t; x) to problem (2.3.1) satis�es the dispersive estimate

ku(t; �)k

L

1

� C t

�1

kfk

_

B

1

1;1

(R

3

)

: (2.3.5)

We give some 
omments on the above assumptions.

Remark 2.3.1. Condition (2.3.3) 
an be intepreted as a smallness at in�nity

of V , and is satis�ed by quite a large 
lass of potentials. For instan
e,

assume that V belongs to the Lorentz spa
e L

3=2;1

(R

3

). By the extended

Young inequality we have

kfk

K

� 


0

kfk

L

3=2;1

for some universal 
onstant 


0

. Thus we see that V has a bounded Kato

norm, and a similar argument shows that V also belongs to the Kato 
lass.
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Moreover, if �(x) is the 
hara
teristi
 fun
tion of the ball fjxj < 1g, we 
an

de
ompose V as follows: for any R > 0,

V = V

1

+ V

2

; V

1

= �(x=R)V; V

2

= (1� �(x=R))V:

Noti
e that

kV

2

k

K

� 


0

kV

2

k

L

3=2;1

! 0 as R! +1;

on the other hand,

kV

1

k

K

� 


0

kV

1

k

L

3=2;1

� 


0

kV k

L

3=2;1

independently of R, and hen
e

kV

2

k

K

�

�

1 +

1

4�

kV

1

k

K

�

! 0 as R! +1:

In other words, assumptions (i) and (ii) are automati
ally satis�ed by any

potential in L

3=2;1

. We 
an sum up this argument in the following Corollary:

Corollary 2.3.2. Assume the real valued potential V belongs to L

3=2;1

with

kV

�

k

K

< 2� and satis�es the non resonant 
ondition (2.3.2). Then the

same 
on
lusion of Theorem 2.3.1 holds.

In parti
ular, this applies to potentials belonging to L

3=2�Æ

(R

3

)\L

3=2+Æ

(R

3

)

for some Æ > 0, in view of the embedding

L

3=2�Æ

(R

3

) \ L

3=2+Æ

(R

3

) � L

3=2;1

(R

3

):

This 
overs the potentials satisfying (2.1.1), as remarked above.

It is interesting to 
ompare this to the results of Burq et al. [20℄, [21℄


on
erning the inverse square potential; in the s
ale of Lorentz spa
es we


an say that the dispersive estimate holds when V 2 L

3=2;1

but not when

V 2 L

3=2;1

. It is not 
lear what 
an be said for potentials of Lorentz 
lass

L

3=2;q

with 1 < q <1, and in parti
ular for L

3=2

= L

3=2;3=2

.

Remark 2.3.2. It is a problem of independent interest to �nd 
onditions on

the potential V whi
h ensure that no resonan
es in the sense of (2.3.2) o

ur

on the positive real axis. A well known result in this dire
tion was proved

in [3℄ (see in parti
ular Appendi
es 2 and 3). We brie
y re
all two spe
ial


ases whi
h 
an be applied here (V is always real valued):

Proposition 2.3.3. (Alsholm-S
hmidt) Let n = 3. Assume that V 2 L

2

lo


and

that, for some C;R; � > 0, one has jV (x)j � Cjxj

�2��

for jxj > R. Then

property (2.3.2) holds for all � > 0.

Proposition 2.3.4. (Alsholm-S
hmidt) Let n = 3. Assume that, for some

C;R; � > 0, one has jV (x)j � Cjxj

�1��

for jxj > R. Moreover, assume that

either V 2 L

1

\ L

2

or hxi

1=2+�

V 2 L

2

. Then property (2.3.2) holds for all

� > 0.
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Noti
e that the results of [3℄ do not apply to the potentials like (2.1.1)

sin
e the singularity jxj

�2+�

is not L

2

lo


; however, in order to apply e.g.

Proposition 2.3.3, it is suÆ
ient to assume that

jV (x)j �

C

jxj

2+"

+ jxj

3=2�"

: (2.3.6)

When V satis�es (2.3.6), (iii) of Theorem 2.3.1, and � = 0 is not a resonan
e

(in the sense of (2.3.2)), then the dispersive estimate is true.

We further stress that the above propositions do not rule out the pos-

sibility of a resonan
e at � = 0. This 
ase 
an be ex
luded (at least in the

sense of (2.3.2)) if one requires a stronger de
ay at in�nity of the potential;

as an example, we 
an prove the following

Theorem 2.3.5. Let V

1

be a nonnegative L

2

fun
tion su
h that V

1

(x) �

Cjxj

�3�Æ

(Æ > 0) for large x. Then there exists a 
onstant �(V

1

) > 0 su
h

that: for all real valued fun
tions V

2

of Kato 
lass with

kV

2

k

K

< �(V

1

) (2.3.7)

and for V = V

1

+ V

2

, the solution u(t; x) of problem (2.3.1) satis�es the

dispersive estimate (2.3.5).

In essen
e, this result states that the dispersive estimate holds (without

additional assumptions on the resonan
es) for all nonnegative potentials de-


aying faster than jxj

�3

and for all \small enough" perturbations thereof;

however, it does not give a measure of the smallness of admissible pertur-

bations. For this, we must use Theorem 2.3.1 whi
h requires the additional

assumption (2.3.2).

Remark 2.3.3. In Se
tion 2.3.6 we prove the equivalen
e of the standard

homogeneous Besov norms with the perturbed ones, i.e., generated by the

operator ��+ V :

_

B

s

1;q

(R

n

)

�

=

_

B

s

1;q

(V ); 0 < s < 2; 1 � q � 1; n � 3

for all potentials V = V

+

� V

�

with V

�

� 0 and

kV

+

k

K

<1; kV

�

k

K

< �

n=2

=�

�

n

2

� 1

�

(2.3.8)

(see Theorem 2.3.23). For this result, a suitable extension of some lemmas

in [58℄-[59℄ was needed, whi
h in turn required an improvement in Simon's

estimates for the S
hr�odinger semigroup [91℄. Indeed, in Proposition 2.3.18

we prove that the semigroup e

t(��V )

has an integral kernel k(t; x; y) su
h

that (n � 3)

jk(t; x; y)j �

(2�t)

�n=2

1� 2kV

�

k

K

=


n

e

�jx�yj

2

=8t

(2.3.9)
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and satis�es the estimate

ke

�tH

k

L(L

p

;L

q

)

�

(2�t)

�


(1� kV

�

k

K

=


n

)

2

; 
 =

n

2

�

1

p

�

1

q

�

: (2.3.10)

Thus, as a byprodu
t of our proof we obtain the following paraboli
 disper-

sive estimate (see Proposition 2.3.18):

Theorem 2.3.6. Let n � 3, assume the potential V (x) is of Kato 
lass, has

a �nite Kato norm and its negative part V

�

satis�es

kV

�

k

K

< 2�

n=2

=�

�

n

2

� 1

�

(2.3.11)

Then the solution u(t; x) to the perturbed heat equation

u

t

��u+ V (x)u = 0; u(0; x) = f(x) (2.3.12)

satis�es the dispersive estimate

ku(t; �)k

L

q

� Ct

n

2

�

1

q

�

1

p

�

kfk

L

p

;

1

p

+

1

q

= 1; q 2 [2;1℄: (2.3.13)

Remark 2.3.4. As noti
ed in [44℄, in dimension n = 3 the spe
tral repre-

sentation of the solution and an integration by parts are suÆ
ient to prove

the dispersive estimate, provided suitable L

1

� L

1

estimates for the spe
-

tral measure are available. Here we follow a similar line of proof; however,

we prefer to apply the spe
tral theorem outside the real axis and to prove

estimates whi
h are uniform in the imaginary part of the parameter. This

approa
h does not require to extend the limiting absorption prin
iple to the

perturbed operator, as it would be ne
essary when working on the real axis.

See also the previous work [76℄ where the 
ase of potentials with a small

Kato norm was 
onsidered.

2.3.1 Properties of the free resolvent

We have already studied the properties of the free resolvent in the last

se
tion; here we review and expand those results in a more systemati
 way.

We start from the representation of R

0

(z) = (�� � z)

�1

in R

3

(see

e.g. [88℄):

R

0

(�

2

)g(x) = (��� �

2

)

�1

g =

8

>

>

>

>

>

<

>

>

>

>

>

:

1

4�

Z

R

3

e

i�jx�yj

jx� yj

g(y)dy for Im � > 0

1

4�

Z

R

3

e

�i�jx�yj

jx� yj

g(y)dy for Im � < 0.

(2.3.14)
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By elementary 
omputations we obtain that for any � 2 R and " > 0

R

0

(�� i")g(x) =

1

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

g(y)dy (2.3.15)

where

�

"

=

�+ (�

2

+ "

2

)

1=2

2

> 0: (2.3.16)

These formulas de�ne bounded operators on L

2

, provided " > 0 or � < 0.

When approa
hing the positive real axis, i.e., as " # 0, this property fails;

however if we 
onsider the limit operators for � � 0

R

0

(�� i0)g(x) =

1

4�

Z

e

�i

p

�jx�yj

jx� yj

g(y)dy (2.3.17)

then the limiting absorption prin
iple ensures that R

0

(�� i0) are bounded

from the weighted spa
e L

2

(hxi

s

dx) to L

2

(hxi

�s

dx) for any s > 1, and

a
tually R

0

(�� i")! R

0

(�� i0) in the operator norm (see e.g. [1℄, [57℄).

For negative � the estimates are of 
ourse mu
h stronger sin
e we are in

the resolvent set of ��. Using

0 < �

"

<

"

2

;

"

2

p

�

"

�

p

j�j for all � < 0

we have from (2.3.15), for all � < 0, " � 0

jR

0

(�� i")g(x)j �

1

4�

Z

e

�

p

j�jjx�yj

jx� yj

jg(y)jdy (2.3.18)

and a
tually for � < 0, " = 0

R

0

(�� i0)g(x) =

1

4�

Z

e

�

p

j�jjx�yj

jx� yj

g(y)dy:

We 
olle
t here some immediate 
onsequen
es of the above representa-

tions whi
h will be used in the following. Sin
e

[R

0

(�+ i")�R

0

(�� i")℄g =

i

2�

Z

sin(

p

�

"

jx� yj)

jx� yj

e

�"jx�yj=2

p

�

"

g(y)dy

(2.3.19)

we 
an write for all � 2 R and " � 0

k[R

0

(�+ i")�R

0

(�� i")℄gk

L

1

�

p

�

"

2�

kgk

L

1
: (2.3.20)

Re
alling De�nition 2.2.1, a straightforward 
omputation shows that

kR

0

(�� i")V gk

L

1

�

1

4�

kV k

K

kgk

L

1

8� 2 R; " � 0 (2.3.21)
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for any measurable fun
tion V (x), and in a similar way

kV R

0

(�� i")gk

L

1
�

1

4�

kV k

K

kgk

L

1
8� 2 R; " � 0: (2.3.22)

Of 
ourse for negative � we have better estimates:

Lemma 2.3.7. Assume V is of Kato 
lass and has a �nite Kato norm.

Then for all Æ > 0 there exists C

Æ

> 0 su
h that

kR

0

(�� i")V gk

L

1

�

 

Æ + C

Æ

kV k

K

p

j�j

!

kgk

L

1

8� < 0; " � 0 (2.3.23)

and

kV R

0

(�� i")gk

L

1
�

 

Æ + C

Æ

kV k

K

p

j�j

!

kgk

L

1
8� < 0; " � 0: (2.3.24)

Proof. By (2.3.18) we have

jR

0

(�� i")V g(x)j �

1

4�

Z

jV (y)j

jx� yj

jg(y)je

�

p

j�jjx�yj

dy:

Now for any r > 0 we 
an split the integral in two zones jx � yj < r and

� r; for the �rst pie
e we have

1

4�

Z

jx�yj<r

jV (y)j

jx� yj

jg(y)je

�

p

j�jjx�yj

dy �

1

4�

Z

jx�yj<r

jV (y)j

jx� yj

dykgk

L

1

and this 
an be made smaller than Ækgk

L

1

by the de�nition of Kato 
lass

(2.2.1), provided we 
hoose r < r(Æ). With this 
hoi
e we 
an estimate the

se
ond pie
e as follows

1

4�

Z

jx�yj�r(Æ)

jV (y)j

jx� yj

jg(y)je

�

p

j�jjx�yj

dy �

kgk

L

1

4�r(Æ)

p

j�j

Z

jV (y)j

jx� yj

dy

where we have used the inequality e

�a

� 1=a, and this proves (2.3.23).

Estimate (2.3.24) follows by duality.

We shall also need estimates for the square of the resolvent R

0

(�� i")

2

.

Sin
e by the resolvent identity

d

dz

R

0

(z) = R

2

0

(z);

we have the expli
it representations

R

0

(�� i")

2

g =

1

8�

�

�

p

�

"

+ i

"

2

p

�

"

�

�1

Z

e

�

�i

p

�

"

�

"

2

p

�

"

�

jx�yj

g(y)dy

(2.3.25)
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and

R

0

(�� i0)

2

g = �

1

8�

p

�

Z

e

�i

p

�jx�yj

g(y)dy: (2.3.26)

From these relations we obtain immediately the estimate, valid for all � 2 R

and " � 0 with (�; ") 6= (0; 0)

kR

0

(�� i")

2

gk

L

1

�

1

8�

p

�

"

kgk

L

1
: (2.3.27)

2.3.2 The perturbed operator for large potentials

In Se
tion 2.2.1 we proved the selfadjointness of the operator ��+V (x) for

a real valued small potential in the Kato 
lass. We show here that the same

result 
an be proved also when the positive part of the potential is large, by

a slightly more involved argument. More pre
isely we have:

Lemma 2.3.8. Let V = V

+

� V

�

with V

�

� 0 be a measurable fun
tion on

R

3

satisfying

V

+

is of Kato 
lass, kV

�

k

K

< 4�: (2.3.28)

Then the operator ��+V de�ned on C

1

0

(R

n

) extends to a unique nonneg-

ative self-adjoint operator H = ��+ V with domain D(H) = H

2

(R

3

) su
h

that

( ;H )

L

2

= ( ;�� )

L

2

+ ( ; V  )

L

2

� 0 8  2 H

2

(R

3

): (2.3.29)

Proof. We shall use the KLMN Theorem (see [91℄, Vol.II, Theorem 10.17).

Thus it is suÆ
ient to verify the following inequality:

Z

R

3

jV (x)jj'(x)j

2

dx � a

Z

R

3

jr'(x)j

2

dx+ bk'k

2

L

2

(R

3

)

(2.3.30)

for some 
onstants a < 1; b 2 R and for all test fun
tions ' (when
e the

same inequality is true for all ' 2 H

1

whi
h is the domain of the form

�(�';')).

First of all we prove that for some a 2 ℄0; 1[ and for all b > 0

Z

R

3

V

�

(x)j'(x)j

2

dx � akr'k

2

L

2

(R

3

)

+ bk'k

2

L

2

(R

3

)

: (2.3.31)

This is equivalent to

j(V

�

';')

L

2
j � a(';��')

L

2
+ bk'k

2

L

2

= a
















�

H

0

+

b

a

�

1

2

'
















2

L

2

;

where H

0

= �� is the selfadjoint operator with domain H

2

(R

3

). Thus,

writing g =

�

H

0

+

b

a

�

1

2

', the inequality to be proved takes the form
















jV

�

j

1

2

�

H

0

+

b

a

�

�

1

2

g
















L

2

� akgk

L

2 ;
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for some 1 > a > 0 and all b > 0; and this is equivalent to prove that

kTT

�

k

L

2

!L

2
= a

2

< 1 (2.3.32)

where we introdu
ed the operator T = jV

�

j

1

2

�

H

0

+

b

a

�

�

1

2

and its adjoint

T

�

=

�

H

0

+

b

a

�

�

1

2

jV

�

j

1

2

:

Using the expli
it representation

�

H

0

+

b

a

�

�1

' =

1

4�

Z

R

3

e

�

q

b

a

jx�yj

jx� yj

'(y)dy

we 
an write

kTT

�

'k

2

L

2

=
















jV

�

j

1

2

�

H

0

+

b

a

�

�1

jV

�

j

1

2

'
















2

L

2

=

=

1

(4�)

2

Z

jV

�

(x)j

�

�

�

�

�

�

Z

e

�

q

b

a

jx�yj

jx� yj

jV

�

(y)j

1

2

j'(y)jdy

�

�

�

�

�

�

2

dx

and by the Cau
hy-S
hwartz inequality we have

�

1

(4�)

2

Z

jV

�

(x)j

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

jV

�

(y)jdy

1

A

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

j'(y)j

2

dy

1

A

dx:

Now by de�nition of Kato norm we have (for all x and any a; b > 0)

Z

e

�

q

b

a

jx�yj

jx� yj

jV

�

(y)jdy �

Z

jV

�

(y)j

jx� yj

dy � kV

�

k

K

(2.3.33)

whi
h implies

kTT

�

'k

2

L

2

�

kV

�

k

K

(4�)

2

Z Z

jV

�

(x)j

e

�

q

b

a

jx�yj

jx� yj

j'(y)j

2

dydx:

Using again (2.3.33) we obtain

kTT

�

'k

2

L

2

�

kV

�

k

2

K

(4�)

2

k'k

2

L

2

whi
h means

kTT

�

k

L

2

!L

2
�

kV

�

k

K

4�

� a < 1 (2.3.34)
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by assumption (2.3.28), and this proves (2.3.31)

To 
on
lude the proof it is suÆ
ient to show that for all test fun
tions

', for all a > 0 and for some b = b(a) 2 R

Z

R

3

V

+

(x)j'(x)j

2

dx � akr'k

2

L

2

(R

3

)

+ bk'k

2

L

2

(R

3

)

(2.3.35)

The proof is almost identi
al to the above one; the only di�eren
e appears

in estimate (2.3.33) where we split the integral as follows

Z

e

�

q

b

a

jx�yj

jx� yj

jV

+

(y)jdy =

Z

jx�yj<r

+

Z

jx�yj�r

for arbitrary r > 0. Fix now Æ > 0; if we 
hoose r > 0 small enough, the

�rst integral 
an be made smaller than Æ by assumption (2.3.28); on the

other hand, with r 
hosen, the se
ond integral 
an be made smaller than Æ

by 
hoosing b large enough. In 
on
lusion we have

Z

e

�

q

b

a

jx�yj

jx� yj

jV

+

(y)jdy � 2Æ

provided b in (2.3.35) is large enough.

Inequality (2.3.30) is now a trivial 
onsequen
e of (2.3.31) and (2.3.35);

thus the assumptions of the KLMN theorem are satis�ed and we 
an 
on-

stru
t H = �� + V as a selfadjoint operator on H

2

. To 
he
k that it is

positive, we write

((��+ V )';')

L

2

= (��';')

L

2

+ (V '; ')

L

2

� kr'k

2

L

2

� j(V

�

';')

L

2
j;

by inequality (2.3.31) we may 
ontinue

� (1� a)kr'k

2

L

2

� bk'k

2

L

2

� �bk'k

2

L

2

for every b > 0, and this implies

((��+ V )';')

L

2

� 0: (2.3.36)

Remark 2.3.5. The above proof 
an be easily extended to general dimension

n � 3. Indeed, the kernel K

M

(x) of (��+M)

�1

for M > 0 satis�es

jK(x)j �

1

�

n

jxj

n�2

; lim

M!+1

sup

jxj>r

e

jxj

K(x) = 0 (2.3.37)

for ea
h �xed r > 0 (see e.g. [91℄, p.454), and these are exa
tly the properties

we used in the above proof. Moreover, the 
onstant �

n

is well known and is

equal to

�

n

= 4�

n=2

=�

�

n

2

� 1

�

:
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Thus we see that the result of Lemma 2.3.8 is true for all n � 3, provided

the negative part of V satis�es

kV

�

k

K

< 4�

n=2

=�

�

n

2

� 1

�

: (2.3.38)

2.3.3 Spe
tral 
al
ulus for the perturbed operator

Lemma 2.3.8 allows us to apply the spe
tral theorem and hen
e to use the

fun
tional 
al
ulus for H = ��+V , i.e., given any fun
tion �(�) 
ontinuous

and bounded on R, we 
an de�ne the operator �(H) on L

2

as

�(H)f =

1

2�i

� L

2

� lim

"#0

Z

�(�)[R

V

(�+ i")�R

V

(�� i")℄fd� (2.3.39)

where

R

V

(z) = (��+ V � z)

�1

is the resolvent operator for H (see e.g. Vol. II of [101℄). When the limit

absorption prin
iple is satis�ed, one 
an de�ne the limit operators R

V

(��i0)

and take the limit in the spe
tral formula as " ! 0. Instead, here we shall

use formula (2.3.39) ex
lusively, sin
e our estimates will always be uniform

in the parameter " > 0.

For z outside the positive real axis we have the well known identities

R

0

(z) = (I +R

0

(z)V )R

V

(z) = R

V

(z) (I + V R

0

(z)) ; (2.3.40)

and a standard way to represent R

V

(z) in terms of R

0

(z) is to 
onstru
t

the inverse operators (I +R

0

(z)V )

�1

. This is the 
ontent of the following

proposition, whi
h is the 
ru
ial result of the paper. In the following we

shall 
onsider in detail the 
ase of dimension 3 alone, but all the results

in this se
tion 
an be extended to general dimension n � 2 by suitable

modi�
ations in the proofs.

Proposition 2.3.9. Under the assumptions of Theorem 2.3.1 (or Theo-

rem 2.3.5) there exists "

0

> 0 su
h that the bounded operators I + R

0

(� �

i")V : L

1

! L

1

are invertible for all � 2 R, 0 � " � "

0

with a uniform

bound

k(I +R

0

(�� i")V )

�1

k

L(L

1

;L

1

)

� C for all � 2 R; 0 � " � "

0

: (2.3.41)

We need a few lemmas. First of all we re
all the standard L

2

weighted

estimate of the free resolvent (see e.g. [1℄ or Vol.II of [57℄; see also [6℄):

Lemma 2.3.10. For all � > 0 and " � 0, the free resolvent R

0

(� �

i") is a bounded operator from the weighted L

2

(hxi

2s

dx) to the weighted

L

2

(hxi

�2s

dx) spa
e for any s > 1=2; moreover the following estimate holds

with a 
onstant C = C(s) independent of ", �:

khxi

�s

R

0

(�� i")fk

L

2
�

C

p

�

khxi

s

fk

L

2
: (2.3.42)
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The following is an elementary but useful property of Kato 
lass fun
-

tions:

Lemma 2.3.11. A 
ompa
tly supported fun
tion of Kato 
lass has a �nite

Kato norm.

Proof. Let V (x) be of Kato 
lass with support 
ontained in a ball B(0; R) �

R

3

. Then by de�nition we have the uniform bound

Z

jx�yj�1

jV (y)jdy �

Z

jx�yj�1

jV (y)j

jx� yj

dy � C

0

for some C

0

independent of x; thus, 
overing the support of V with a �nite

number of balls of radius 1, we see that V 2 L

1

. Hen
e we 
an write

Z

jV (y)j

jx� yj

dy �

Z

jx�yj�1

jV (y)j

jx� yj

dy +

Z

jx�yj�1

jV (y)j

jx� yj

dy � C

0

+ kV k

L

1

and this 
on
ludes the proof.

The next lemma is sligthly modi�ed from [91℄:

Lemma 2.3.12. If V (x) is a 
ompa
tly supported fun
tion in the Kato


lass, then there exists a sequen
e of fun
tions V

"

2 C

1

0

(R

3

) su
h that kV

"

�

V k

K

! 0 and suppV

"

# suppV as " ! 0. When V � 0, the fun
tions V

"


an be taken nonnegative too.

Proof. By the pre
eding lemma V has a �nite Kato norm, and 
learly it

belongs to L

1

. Consider now a sequen
e of nonnegative radial molli�ers,

i.e., let �(x) 2 C

1

0

(R

3

) be a nonnegative radial fun
tion with support in the

ball fjxj � 1g su
h that

R

�(x)dx = 1, and set �

"

(x) = "

�3

�(x="). Then we

have the following standard properties of the Newton potential 1=jxj:

1

jxj

� �

"

�

1

jxj

for jxj � "; (2.3.43)

1

jxj

� �

"

�

1

jxj

for all jxj 6= 0: (2.3.44)

De�ne now V

"

= V � �

"

; for �xed x we have

�

�

�

�

Z

V (y)

jx� yj

dy �

Z

V

"

(z)

jx� zj

dz

�

�

�

�

=

�

�

�

�

Z

V (y)

�

1

jx� yj

�

Z

�

"

(z � y)

jy � zj

dz

�

dy

�

�

�

�

and sin
e by (2.3.44) the term in bra
kets is positive,

�

Z

jV (y)j

�

1

jx� yj

�

Z

�

"

(z � y)

jy � zj

dz

�

dy �

Z

jx�yj<"

jV (y)j

jx� yj

dy
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where in the last step we used (2.3.43). Taking the supremum in x, we

obtain

kV

"

� V k

K

� sup

x2R

3

Z

jx�yj<"

jV (y)j

jx� yj

dy

and re
alling De�nition 2.2.1 we 
on
lude that kV

"

� V k

K

! 0. Finally,

the support of V

"

is 
ontained in the set of points at distan
e � " from the

support of V , and 
learly V � 0 implies V

"

� 0.

We prove now a property of the squared operator (R

0

V )

2

:

Lemma 2.3.13. Let V be a 
ompa
tly supported fun
tion in the Kato 
lass.

Then for all � > 0, " � 0 and Æ > 0 there exists a 
onstant C

Æ

depending

only on Æ su
h that

kR

0

(�� i")V R

0

(�� i")V fk

L

1

�

�

Æ +

C

Æ

p

�

�

kfk

L

1

: (2.3.45)

Proof. By the maximum (Phragm�en-Lindel�of) prin
iple, sin
e R

0

(z) is holo-

morphi
, it is suÆ
ient to prove the estimate for " = 0, i.e., for the operators

R

0

(� � i0). If we approximate V by the sequen
e of test fun
tions V

"


on-

stru
ted in Lemma 2.3.12, we 
an write

R

0

(�� i0)V R

0

(�� i0)V = R

0

(V � V

"

)R

0

V +R

0

V

"

R

0

(V � V

"

) +R

0

V

"

R

0

V

"

and using estimate (2.3.21) we obtain

kR

0

V R

0

V fk

L

1

� (2�)

�1

kV k

K

� kV � V

"

k

K

� kfk

L

1

+ kR

0

V

"

R

0

V

"

fk

L

1

:

(2.3.46)

We 
an 
hoose " = "(Æ) so small that

(2�)

�1

kV k

K

� kV � V

"

k

K

�

1

2

Æ;

and hen
e it suÆ
ient to prove (2.3.45) with V repla
ed by V

"

. Now we have

jR

0

V

"

R

0

V

"

f(x)j �

Z

jx�yj<r

jV

"

j

jx� yj

dykR

0

V

"

fk

L

1

+

Z

jx�yj�r

jV

"

R

0

V

"

f j

jx� yj

dy;

the �rst term 
learly satis�es

Z

jx�yj<r

jV

"

j

jx� yj

dy � C

Z

jx�yj<r

dy

jx� yj

= �(r)! 0

sin
e V

"

is bounded, so that we �nd for all r > 0

jR

0

V

"

R

0

V

"

f(x)j � �(r)kV k

K

kfk

L

1

+

1

r

kV

"

R

0

V

"

fk

L

1
(2.3.47)
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where in the last step we used the property

Z

jV

"

j

jx� yj

dy �

Z

jV j

jx� yj

dy

already used in the 
ourse of the proof of Lemma 2.3.12. In order to estimate

the se
ond term in (2.3.47), we may write for some s > 1=2

kV

"

R

0

V

"

fk

L

1
� khxi

s

V

"

k

L

2
khxi

�s

R

0

V

"

fk

L

2

and applying Lemma 2.3.10 we get

�

C

p

�

khxi

s

V

"

k

2

L

2

kfk

L

1

�

C

1

p

�

kfk

L

1

sin
e V

"

is in C

1

0

. Coming ba
k to (2.3.47), we obtain

jR

0

V

"

R

0

V

"

f(x)j �

�

�(r)kV k

K

kfk

L

1

+

C

1

r

1

p

�

�

kfk

L

1

when
e (2.3.45) follows.

We prove now a fundamental 
ompa
tness property:

Lemma 2.3.14. Let V be a 
ompa
tly supported fun
tion in the Kato 
lass.

Then for all � 2 R, " � 0 the operator R

0

(� � i")V : L

1

! L

1

and the

operator V R

0

(��i") : L

1

! L

1

are 
ompa
t operators. Moreover, if f 2 L

1

then the fun
tion R

0

(�� i")V f satis�es

jR

0

(�� i")V f j �

C

hxi

(2.3.48)

for some C > 0, and hen
e in parti
ular R

0

(� � i")V f 2 L

2

(hxi

�2s

dx) for

all s > 1=2 and �; " � 0.

Proof. If the support of V is 
ontained in the ball fjxj � Mg, we see that,

for all jxj > 2M and y in the support of V , we have jx�yj � jxj�M � jxj=2.

Thus by the expli
it representation of R

0

we get

jR

0

V f(x)j �

Z

jV (y)f(y)j

jx� yj

dy �

2

jxj

Z

jV f jdy for jxj � 2M

and re
alling that V 2 L

1

we obtain the inequality

jR

0

V f(x)j �

2

jxj

kV k

L

1
kfk

L

1

for jxj � 2M: (2.3.49)

From (2.3.49) and the usual estimate

jR

0

V f(x)j �

kV k

K

4�

kfk

L

1

:
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we easily dedu
e the �nal statement (2.3.48) and that R

0

V f 2 L

2

(hxi

�2s

dx)

for all bounded f and s > 1=2.

In order to prove the 
ompa
tness property, we may assume that V is

a smooth fun
tion with 
ompa
t support. Indeed, by Lemma 2.3.12, V 
an

be approximated in the Kato norm by test fun
tions V

"

, so that R

0

V is the

limit of the sequen
e of operators R

0

V

"

in the L(L

1

;L

1

) norm, sin
e

kR

0

V

"

�R

0

V k

L(L

1

;L

1

)

�

1

4�

kV

"

� V k

K

:

Thus the 
ompa
tness of R

0

V follows from the 
ompa
tness of R

0

V

"

. A

similar argument holds for V R

0

. From now on, we shall assume that V 2

C

1

0

.

Let f

j

be a bounded sequen
e in L

1

; writing

r

x

R

0

V f(x) =

1

4�

Z

V (y)f(y)r

x

 

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

!

dy

we immediately obtain a bound for krR

0

V f

j

k

L

1

, uniform in j (re
all that

V now is smooth and 
ompa
tly supported). Thus an appli
ation of the

As
oli-Arzel�a theorem shows that the sequen
e R

0

V f

j

is pre
ompa
t in the

L

1

norm on any bounded set in R

3

. Using this 
ompa
tness property for

small x and again inequality (2.3.49) for large x, by a diagonal pro
edure

we obtain that R

0

V f

j

has a uniformly 
onvergent subsequen
e on the whole

R

3

.

To prove the 
ompa
tness of V R

0

we write it as V R

0

= A

r

+B

r

where

A

r

g(x) =

V (x)

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

�

r

(x� y)g(y)dy (2.3.50)

B

r

g(x) =

V (x)

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

(1� �

r

(x� y))g(y)dy; (2.3.51)

here �

r

(y) = �(y=r) is a 
uto� fun
tion equal to 1 for x near the origin and

vanishing for large x. It is easy to show that B

r

is a 
ompa
t operator on

L

1

; indeed, it is a bounded operator from L

1

to W

1;1

(
) for 
 any bounded

open set 
ontaining the support of V , whileW

1;1

(
) is 
ompa
tly embedded

in L

1

(R

3

) by the Relli
h-Kondra
hov Theorem. Sin
e kA

r

k

L(L

1

;L

1

)

! 0 as

r ! 0, we regard as above V R

0

as the uniform limit of 
ompa
t operators,

and this 
on
ludes the proof.

The following version of the same lemma will be useful later on:

Lemma 2.3.15. Assume V satis�es the inequality jV (x)j � Chxi

�3�Æ

for

some C; Æ > 0. Then all the 
on
lusions of Lemma 2.3.14 remain true.
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Proof. The estimate follows immediately from the standard inequality

Z

dy

hyi

3+Æ

jx� yj

�

C

hxi

(see e.g. Appendix 2 of [2℄). The 
ompa
tness property is proved as above

using the As
oli-Arzel�a Theorem.

We are now ready to prove the main proposition of this se
tion.

Proof. (of Proposition 2.3.9). The inversion of I + R

0

(z)V : L

1

! L

1

is

quite easy when <z << 0. Indeed, Lemma 2.3.7 states that for all Æ > 0

there exists a 
onstant C

Æ

> 0 su
h that

kR

0

(�� i")V k

L(L

1

;L

1

)

� Æ + C

Æ

kV k

K

p

j�j

; 8� < 0; " � 0:

Hen
e, in parti
ular, for � < �Æ

2

(C

Æ

kV k

K

)

�2

we have kR

0

(��i")V k

L(L

1

;L

1

)

<

2Æ, and this means that the norm kR

0

(� � i")V k

L(L

1

;L

1

)

tends to 0 for

�! �1, uniformly in ". Thus I +R

0

(�� i")V 
an be inverted by expan-

sion in Neumann series for any " � 0 and any � < �M provided M > 0 is

large enough, and the L(L

1

;L

1

) norm of the inverse operator is bounded

by a 
onstant depending only on M (and V ).

We now 
onsider the 
ase <z >> 0. Let V = V

1

+ V

2

be as in Theorem

2.3.1, and write for brevity

T = R

0

(z)V

1

; S = R

0

(z)V

2

:

We �rst noti
e that I + S 
an be inverted for all z 2 C , with bounded

inverse; indeed, by (2.3.21) the norm of S : L

1

! L

1

is bounded by

kV

2

k

K

=(4�), whi
h is stri
tly smaller than 1 by assumption (2.3.3), and

the result follows again by a straightforward Neumann series expansion. We

thus get for all z

k(I + S)

�1

k

L(L

1

;L

1

)

� (1� kV

2

k

K

=(4�))

�1

: (2.3.52)

We then invert I + T for large � = <z. Lemma 2.3.13 ensures that

kT

2

k

L(L

1

;L

1

)

! 0 as � ! 1. This implies that for any Æ 2℄0; 1[ we 
an

�nd �

Æ

su
h that for all <z � �

Æ

, I � T

2

is invertible with norm

k(I � T

2

)

�1

k

L(L

1

;L

1

)

�

1

1� Æ

: (2.3.53)

Sin
e I � T has norm in L(L

1

;L

1

) bounded by 1+ (4�)

�1

kV

1

k

K

indepen-

dently of z and

(I � T )(I � T

2

)

�1

= (I + T )

�1

;
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we 
on
lude that also I + T is invertible for any <z � �

Æ

, with bound

k(I + T )

�1

k

L(L

1

;L

1

)

�

1

1� Æ

(1 + kV

1

k

K

=(4�)): (2.3.54)

Consider now for <z � �

Æ

the operator

S(I + T )

�1

;

by the usual bound kSk

L(L

1

;L

1

)

� kV

2

k

K

=(4�) and by (2.3.54) we obtain

kS(I + T )

�1

k

L(L

1

;L

1

)

�

1

4�

kV

2

k

K

1

1� Æ

�

1 +

kV

1

k

4�

�

=

�

1� Æ

where the 
onstant �, re
alling the main assumption (2.3.3), satis�es

� �

1

4�

kV

2

k

K

�

1 +

kV

1

k

4�

�

< 1:

Hen
e we see that

kS(I + T )

�1

k

L(L

1

;L

1

)

�

�

1� Æ

< 1

provided Æ < 1��, i.e., provided �

Æ

is large enough. Thus, 
hoosing a value

of �

Æ

large enough, we have that for <z � �

Æ

the operator

I + S(I + T )

�1

is invertible. Finally, writing

(I + S + T )

�1

= (I + T )

�1

(I + S(I + T )

�1

)

�1

;

we see that I + S + T = I +R

0

V is invertible with the bound

k(I +R

0

(z)V )

�1

k

L(L

1

;L

1

)

�

�

1 +

kV

1

k

4�

�

1

1� �� Æ

(2.3.55)

for <z � �

Æ

.

It remains to invert I + S + T for �M � <z � �

Æ

, 0 � =z � "

0

(or

0 � =z � �"

0

), with a uniform bound. To this end we shall apply Fredholm

theory; noti
e that the standard analyti
 Fredholm theory 
annot be applied

dire
tly sin
e we are not in the usual Hilbert framework but we are working

in L

1

instead. We pro
eed in two slightly di�erent ways a

ording to the

set of available assumptions.
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2.3.4 Case A: assumptions of Theorem 2.3.1

The �rst step is to prove that I + S + T : L

1

! L

1

is inje
tive. A general

argument shows that this is always the 
ase when z is outside the positive

real axis [0;+1[, provided V = V

1

+ V

2

satis�es (i), (ii) of Theorem 2.3.1.

To see this, we approximate V

1

with a sequen
e of nonnegative test fun
tions

V

Æ

in su
h a way that kV

1

� V

Æ

k

K

! 0 (see Lemma 2.3.12); thus we 
an

de
ompose V as

V = V

Æ

+W

Æ

; 0 � V

Æ

2 C

1

0

; kW

Æ

k

K

= kV

2

+ V

1

� V

Æ

k

K

< 4�

for Æ small enough. Assume now that the bounded fun
tion g satis�es the

integral equation

(I +R

0

(z)V )g = 0; z 62 R

+

;

we shall prove that g = 0. Indeed, we 
an rewrite the equation as follows:

(I +R

0

(z)W

Æ

)g = �R

0

(z)V

Æ

g 2 L

1

:

Now, R

0

(z)W

Æ

has norm < 1 as a bounded operator on L

1

, hen
e we 
an

invert I +R

0

(z)W

Æ

and we obtain

g = �(I +R

0

(z)W

Æ

)

�1

R

0

(z)V

Æ

g:

Note that

(I +R

0

(z)W

Æ

)

�1

R

0

(z) = (�z ��+W

Æ

)

�1

is exa
tly the resolvent operator of �� + W

Æ

, at a point z outside the

spe
trum. Moreover, V

Æ

g is in L

2

, hen
e g = (�z��+W

Æ

)

�1

V

Æ

g is in H

2

;

sin
e

(�z ��+ V )g = 0; z 62 R

+

we 
on
lude that g � 0 as 
laimed.

When z 2 [0;+1[, assumption (iv) of Theorem 2.3.1 means exa
tly that

I + S + T is inje
tive on L

1

, thus we have nothing to prove in this 
ase,

and we obtain that I + S + T is inje
tive for all values of z 2 C .

The se
ond step is to prove that I + S + T is invertible. Re
alling that

I + S is invertible for all z, we 
an write

I + S + T = (I + T (I + S)

�1

)(I + S)

whi
h implies that I + T (I + S)

�1

is also inje
tive for all z. But T , and

hen
e T (I + S)

�1

are 
ompa
t operators on L

1

, thanks to Lemma 2.3.14.

By Fredholm theory this implies that I + T (I + S)

�1

is invertible, and in


on
lusion I + S + T is invertible too and the following identity holds:

(I + S + T )

�1

= (I + S)

�1

(I + T (I + S)

�1

)

�1

: (2.3.56)

The last step is to prove a uniform bound on (I + S + T )

�1

. This is the


ontent of the following lemma, whi
h is our L

1

repla
ement for the usual

analyti
 Fredholm theory in the Hilbert spa
es L

2

(hxi

s

dx).
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Lemma 2.3.16. Assume V = V

1

+V

2

, with V

1


ompa
tly supported, kV

1

k

K

<

+1, and kV

2

k

K

< 4�. If the operator I +R

0

(z)V : L

1

! L

1

is invertible

for all z in a 
ompa
t set D � C

+

= f<z � 0g (or D � C

�

), then

sup

z2D

k(I +R

0

(z)V )

�1

k

L(L

1

;L

1

)

<1:

Proof. We write as before

T = R

0

(z)V

1

; S = R

0

(z)V

2

(2.3.57)

and when z

n

is a sequen
e of points in C we shall also write

T

n

= R

0

(z

n

)V

1

; S

n

= R

0

(z

n

)V

2

(2.3.58)

Moreover, we shall denote by L

1

K

the spa
e of bounded 
ompa
tly supported

fun
tions, and by L

1

0

its 
losure in L

1

; in other words L

1

0

is the spa
e of

bounded fun
tions vanishing at in�nity, with the uniform norm.

The proof 
onsists in several steps.

Step 1: S is a bounded operator from L

1

0

into itself. Indeed, given any

� 2 L

1

0

, de
ompose it as

� = �

M

+  

M

; �

M

= � � 1

fjxj<Mg

where 1

fjxj<Mg

is the 
hara
teristi
 fun
tion of the ball fjxj < Mg. As in

the proof of Lemma 2.3.14, we have immediately

jS�

M

(x)j �

C

jxj

kV

2

k

L

1

(jyj�M)

for jxj > 2M: (2.3.59)

On the other hand,

kS 

M

k

L

1

� Ck 

M

k

L

1

! 0 for M ! +1 (2.3.60)

sin
e � vanishes at in�nity. Then, given any Æ > 0, we may 
hoose M =M

Æ

su
h that k 

M

k

L

1

< Æ; from (2.3.59) we obtain

jS�(x)j � jS�

M

(x)j+ jS 

M

(x)j �

kV

2

k

L

1

jxj

+ Æ for jxj > 2M

Æ

and this implies S� 2 L

1

0

.

Step 2: If D 3 z

n

! z and � 2 L

1

0

, then S

n

� ! S� uniformly on R

n

(with the notations (2.3.58)). To prove this, we noti
e that

je

iw

n

jx�yj

� e

iwjx�yj

j

jx� yj

j � Cjw

n

� wj

provided w

n

; w stay in a 
ompa
t subset of C ; from this, it easily follows

that

j(R

0

(z

n

)�R

0

(z)f j � C(D) � jz

1=2

� z

1=2

n

j � kfk

L

1
(2.3.61)
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with the determination (�e

i�

)

1=2

=

p

�e

i�=2

. Now, let � 2 L

1

0

; to prove that

S

n

� = R

0

(z

n

)V

2

� 
onverges to S� = R

0

(z)V

2

� uniformly, we de
ompose

� = �

M

+  

M

as in Step 1 and write

jS

n

�(x)� S�(x)j � jS

n

�

M

(x)� S�

M

(x)j+ jS

n

 

M

(x)� S 

M

(x)j:

The se
ond term is bounded by

jS

n

 

M

(x)� S 

M

(x)j � kV

2

k

K

k 

M

k

L

1

whi
h 
an be made smaller than Æ > 0 providedM >M

Æ

, as in the pre
eding

step. To the �rst term we apply (2.3.61) and we obtain

jS

n

�

M

(x)� S�

M

(x)j � C(D) � jz

1=2

n

� z

1=2

j � kV

2

k

L

1

(jyj�M)

k�

M

k

L

1

when
e we see that this term tends uniformly to 0 for ea
h �xed M , when

z

n

! z, z

n

; z 2 D, and this proves the 
laim.

Note that in Steps 1 and 2 we did not use the assumption kV

2

k

K

< 4�;

both properties are true for potentials of arbitrary (but bounded) Kato

norm; in parti
ular, they hold for T; T

n

.

Step 3: If D 3 z

n

! z, � 2 L

1

0

and k � 1, then S

k

n

�! S

k

� uniformly

on R

n

(where S

k

n

; S

k

are the k-th powers of the operators de�ned in (2.3.57),

(2.3.58)). It is suÆ
ient to write

S

k

n

� S

k

=

k

X

j=1

S

j�1

n

(S

n

� S)S

k�j

and prove the 
onvergen
e of ea
h term separately. Indeed, S

k�j

� is a

�xed element of L

1

0

by Step 1, hen
e (S

n

� S)S

k�j

� ! 0 uniformly by

Step 2, and remarking that S

j

n

are bounded operators on L

1

with norm

kS

j

n

k � kS

n

k

j

< 1, we 
on
lude that S

j

n

(S

n

� S)S

k�j

� ! 0 uniformly, as


laimed.

Step 4: IfD 3 z

n

! z and � 2 L

1

0

, then (I+S

n

)

�1

� tends to (I+S)

�1

�

uniformly on R

n

. To prove this, note that 
an write for any N � 1

(I + S

n

)

�1

� (I + S)

�1

=

N

X

k=1

(�1)

k

(S

k

n

� S

k

) +

1

X

k=N+1

(�1)

k

(S

k

n

� S

k

);

the se
ond sum 
an be estimated in the norm of bounded operators on L

1

as follows
















1

X

k=N+1

(�1)

k

(S

k

n

� S

k

)
















�

kS

n

k

N+1

1� kS

n

k

+

kSk

N+1

1 � kSk

whi
h is smaller than Æ for N � N

Æ

large enough; on the other hand, we 
an

apply Step 3 to the terms S

k

n

� S

k

for k = 1; : : : ; N , and this 
on
ludes the

proof of this step.
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Step 5: Con
lusion of the proof. We know already that (I + S)

�1

is

well de�ned with bounded operator norm for all z, hen
e by the identity

I + T + S = (I + S)(I + (I + S)

�1

T )

we see that it is suÆ
ient to bound the operator norm of (I+(I+S)

�1

T )

�1

for z 2 D. By the uniform boundedness prin
iple, our 
laim redu
es to the

following: given any sequen
e z

n

in D, whi
h 
an be assumed to 
onverge

to z 2 D, we have that for all � 2 L

1

there exists 
(�) > 0 su
h that, for

all n,

k(I + (I + S

n

)

�1

T

n

)

�1

�k � 
(�) (2.3.62)

(just take any sequen
e z

n

su
h that the norm in (2.3.62) 
onverges to the

supremum over D). We use again the notations (2.3.57), (2.3.58).

Indeed, assume by 
ontradi
tion that there exists � 2 L

1

su
h that

k(I + (I + S

n

)

�1

T

n

)

�1

�k ! 1 as z

n

! z (2.3.63)

and 
onsider the renormalized fun
tions

 

n

=

(I + (I + S

n

)

�1

T

n

)

�1

�

k(I + (I + S

n

)

�1

T

n

)

�1

�k

L

1

:

Clearly we have

k 

n

k

L

1

= 1; (I + (I + S

n

)

�1

T

n

) 

n

! 0 in L

1

. (2.3.64)

We have also kT

n

� Tk ! 0, sin
e using again (2.3.61)

j(T

n

� T )�j � C(D) � jz

1=2

n

� z

1=2

j � kV

1

k

L

1
k�k

L

1

:

This and (2.3.64) imply

k 

n

k

L

1

= 1; (I + (I + S

n

)

�1

T ) 

n

! 0 in L

1

. (2.3.65)

Now, by Lemma 2.3.14, we know that T is a 
ompa
t operator on L

1

and the

image of T is 
ontained in L

1

0

(see (2.3.48)), hen
e by possibly extra
ting

a subsequen
e we obtain that T 

n


onverges uniformly to some fun
tion

� 2 L

1

0

. Now we 
an write

(I + S

n

)

�1

T 

n

= (I + S

n

)

�1

(T 

n

� �) + (I + S

n

)

�1

�;

sin
e k(I+S

n

)

�1

k < C independent of n, the �rst term 
onverges uniformly

to 0, and by Step 4 we obtain that

(I + S

n

)

�1

T 

n

! (I + S)

�1

�

uniformly. By (2.3.65), this implies the uniform 
onvergen
e

 

n

! �(I + S)

�1

� =:  ;
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noti
e in parti
ular that k k

L

1

= 1. Summing up, we have proved that

 

n

!  � �(I + S)

�1

�; T 

n

! � � T 

and this implies

 + (I + S)

�1

T = 0 i.e. (I + S + T ) = 0

whi
h is absurd sin
e I + T + S is invertible and k k

L

1

= 1.

2.3.5 Case B: assumptions of Theorem 2.3.5

We note that a potential V satisfying the new assumptions 
an be split as

V = V

0

1

+ V

0

2

with V

0

1

; V

0

2

as in (i), (ii) of Theorem 2.3.1 (take V

0

1

= V for

jxj < R and 0 outside, with R large enough). Thus, for z 62 [0; �

Æ

℄ the same

arguments as in Case A apply; also Lemma 2.3.16 
an still be used. Hen
e

it is suÆ
ient to prove that I+R

0

(z)V is invertible for z 2 [0; �

Æ

℄ under the

new assumptions.

Sin
e V

1

ful�lls the 
onditions of both Propositions 2.3.3 and 2.3.4, we

see that the operators I +R

0

(�� i0)V

1

are inje
tive on L

1

for all � > 0.

We now prove inje
tivity also at � = 0. Thus, let the bounded fun
tion

f satisfy

f(x) +

Z

V

1

(y)f(y)

jx� yj

dy = 0; (2.3.66)

in parti
ular, f is a weak solution of

�f = V

1

f 2 L

2

=) f 2 H

2

:

Now, if V

1

(x) < Chxi

�3�Æ

for jxj > M , we have immediately, for all jxj >

2M ,

jf(x)j � kV

1

k

L

1

(jxj<M)

kfk

L

1

C

jxj

+ Ckfk

L

1

Z

dy

hyi

3+Æ

jx� yj

�

C

jxj

(see Lemma 2.3.15 above). Di�erentiating (2.3.66) we see that rf satis�es

an analogous integral equation

rf(x) +

Z

V

1

(y)f(y)r

x

1

jx� yj

dy = 0

whi
h implies

jrf(x)j � Ckfk

L

1

Z

jV

1

(y)j

jx� yj

2

dy:

Pro
eeding as above, we 
an write for jxj > 2M

jrf(x)j � kV

1

k

L

1

(jxj<M)

kfk

L

1

C

jxj

2

+ Ckfk

L

1

Z

dy

hyi

3+Æ

jx� yj

2

�

C

jxj

2
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thanks to the standard inequality (see [2℄)

Z

dy

hyi

3+Æ

jx� yj

2

�

C

hxi

2

;

Thus we have proved that for all jxj > 2M

jf(x)j �

C

jxj

; jrf(x)j �

C

jxj

2

: (2.3.67)

Now a standard 
uto� tri
k 
an be applied (see the Appendix of [51℄): let

� 2 C

1

0

equal to 0 for jxj > 2 and equal to 1 for jxj < 1, 
onsider the

identity

Z

�

jrf j

2

+ V

1

jf j

2

�

�

�

y

R

�

dy = �

1

R

Z

R�jyj�2R

r�

�

y

R

�

� rf � fdy

and apply the estimates (2.3.67) to the right hand member, for R large

enough. We obtain

Z

�

jrf j

2

+ V

1

jf j

2

�

�

�

y

R

�

dy �

C

R

and taking the limit as R ! 1 we 
on
lude that f � 0, i.e., 0 is not a

resonan
e.

Writing as before T = R

0

(z)V

1

, we have just proved that I+T is inje
tive

on L

1

for z 2 [0; �

Æ

℄. Now we remark that we 
an split V

1

= V

0

1

+ V

00

1

as

the sum of a 
ompa
tly supported fun
tion V

0

1

2 L

2

, hen
e with bounded

Kato norm, and a fun
tion V

00

1

< Chxi

�3�Æ

. The 
orresponding operators

T = T

0

+ T

00

are 
ompa
t on L

1

by Lemmas 2.3.14, 2.3.15 respe
tively,

hen
e T is 
ompa
t and by Fredholm theory we 
an 
on
lude that I + T is

invertible for all z 2 [0; �

Æ

℄. Then Lemma 2.3.16 ensures that the operator

norm (I + T )

�1

is bounded by some 
onstant C

0

uniform on z 2 [0; �

Æ

℄.

Now, writing

I + T + S = (I + T )(I + (I + T )

�1

S)

we see that in order to invert I+T+S it is suÆ
ient to invert I+(I+T )

�1

S;

sin
e

k(I + T )

�1

Sk � k(I + T )

�1

k �

kV

2

k

K

4�

� C

0

kV

2

k

K

4�

this 
an be a
hieved by a Neumann expansion as soon as the Kato norm of

V

2

is small enough, i.e.,

kV

2

k

K

<

4�

C

0

=: �(V

1

):

This is exa
tly assumption (2.3.7).

Thus we have proved that I + S + T is invertible for all 
omplex z, and

a last appli
ation of Lemma 2.3.16 
on
ludes the proof of Case B.
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We 
an now draw some 
onsequen
es whi
h shall be used in the following.

Corollary 2.3.17. Under the assumptions of Theorem 2.3.1 (or Theorem

2.3.5) there exists "

0

> 0 su
h that the bounded operators I + V R

0

(� �

i") : L

1

! L

1

are invertible for all � 2 R, 0 � " � "

0

with uniform bound

k(I + V R

0

(�� i"))

�1

k

L(L

1

;L

1

)

� C for all � 2 R; 0 � " � "

0

: (2.3.68)

Proof. The operators I + V R

0

are one to one on L

1

by duality, sin
e by

Proposition 2.3.9 the operators I+R

0

V are onto. They are onto by Fredholm

theory, sin
e V R

0

are 
ompa
t operators on L

1

by Lemma 2.3.14. Finally,

the bound on the inverse also follows by duality and the bound (2.3.41);

indeed, (L

1

)

0

= L

1

and hen
e

k(I + V R

0

)fk

L

1
= sup

khk

L

1
=1

Z

h(I + V R

0

)fdx = sup

khk

L

1
=1

Z

f(I +R

0

V )hdx:

As a 
onsequen
e of (2.3.40) and of Proposition 2.3.9, Corollary 2.3.17

we 
an write the standard representation formulas:

R

V

(z) = (I +R

0

V )

�1

R

0

(z) = R

0

(z)(I + V R

0

)

�1

: (2.3.69)

By 
ombining these relations we easily obtain the identity

R

V

(�+ i") �R

V

(�� i") =

= (I +R

0

(�� i")V )

�1

(R

0

(�+ i")�R

0

(�� i"))(I + V R

0

(�+ i"))

�1

(2.3.70)

for all � 2 R, " 2℄0; "

0

℄. Then by the bounds (2.3.20) and (2.3.41), (2.3.68)

we obtain

k[R

V

(�+ i") �R

V

(�� i")℄gk

L

1

� C

p

�

"

kgk

L

1
: (2.3.71)

for all � 2 R, " 2℄0; "

0

℄.

Moreover from (2.3.69) we get

R

V

(�� i")

2

= (I+R

0

(�� i")V )

�1

R

0

(�� i")

2

(I+V R

0

(�� i"))

�1

(2.3.72)

and re
alling (2.3.27) we obtain

kR

V

(�� i")

2

gk

L

1

�

C

p

�

"

kgk

L

1
(2.3.73)

for all � 2 R, " 2℄0; "

0

℄.
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2.3.6 Equivalen
e of Besov norms

This se
tion is devoted to prove the equivalen
e of perturbed and standard

Besov spa
es

_

B

s

1;q

(R

3

)

�

=

_

B

s

1;q

(V ) (2.3.74)

whi
h holds for 0 < s < 2 and 1 � q � 1 under our assumptions. An

analogous property holds also for non homogeneous spa
es.

We begin by adapting to our situation a result of Simon [91℄ (whose

proof we follow 
losely). Hoping that estimates (2.3.77) and (2.3.79) may

be of independent interest, we shall give the proof for general dimension

n. If the negative part of the potential is in the Kato 
lass but not small,

by Theorem B.1.1 of [91℄ the semigroup is still bounded, but its norm may

in
rease exponentially as t!1.

Proposition 2.3.18. Assume the potential V = V

+

� V

�

on R

n

, n � 3,

V

�

� 0, satis�es

V

+

is of Kato 
lass (2.3.75)

and

kV

�

k

K

< 


n

� 2�

n=2

=�

�

n

2

� 1

�

(2.3.76)

and 
onsider the selfadjoint operator H = ��+ V . Then for all t > 0 and

1 � p � q � 1 the semigroup e

�tH

is bounded from L

p

to L

q

with norm

ke

�tH

k

L(L

p

;L

q

)

�

(2�t)

�


(1� kV

�

k

K

=


n

)

2

; 
 =

n

2

�

1

p

�

1

q

�

: (2.3.77)

Moreover, under the stronger assumption

kV

�

k

K

<

1

2




n

(2.3.78)

e

�tH

is an integral operator with kernel k(t; x; y) satisfying

jk(t; x; y)j �

(2�t)

�n=2

1� 2kV

�

k

K

=


n

e

�jx�yj

2

=8t

: (2.3.79)

Proof. In the following we shall use the more 
onvenient notations

H = �

1

2

� + V; H

0

= �

1

2

�; (2.3.80)

thus in the �nal step it will be ne
essary to substitute t! 2t and V ! V=2

in order to obtain the 
orre
t estimates.

The fundamental tool will be the Feynman-Ka�
 formula

(e

�tH

f)(x) = E

x

�

exp

�

�

Z

t

0

V (b(s))ds

�

f(b(t))

�

(2.3.81)
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whi
h is valid under mu
h more general assumptions (see e.g. [111℄). Here

E

x

is the integral over the path spa
e 
 with respe
t to the Wiener measure

�

x

, x 2 R

n

, while b(t) represents a generi
 path (brownian motion). We

shall not need the full power of the theory but only a few basi
 fa
ts:

i) Given a non negative fun
tion G(x) on R

n

we have the identity

E

x

�

Z

t

0

G(b(s))ds

�

=

Z

Q

t

(x� y)G(y)dy (2.3.82)

where Q

t

(x) is the fun
tion

Q

t

(x) =

Z

t

0

(2�s)

�n=2

e

�jxj

2

=2s

ds: (2.3.83)

It is easy to see by res
aling that

Z

1

0

(2�s)

�n=2

e

�jxj

2

=2s

ds =

Z

1

0

�

n

2

�2

e

��

d�

jxj

2�n

2�

n=2

= �

�

n

2

� 1

�

jxj

2�n

2�

n=2

so that by de�nition of 


n

(see (2.3.76))

Q

t

(x) �

1




n

jxj

n�2

(2.3.84)

and by (2.3.82)

E

x

�

Z

t

0

G(b(s))ds

�

�

1




n

kGk

K

: (2.3.85)

ii) Khasminskii's lemma ([65℄; B.1.2 in [91℄): if G(x) is a non negative

fun
tion on R

n

su
h that for some t

� � sup

x

E

x

�

Z

t

0

G(b(s))ds

�

< 1; (2.3.86)

then

sup

x

E

x

�

exp

�

Z

t

0

G(b(s))ds

��

�

1

1� �

: (2.3.87)

An immediate appli
ation is the following: if V

�

satis�es

kV

�

k

K

< 


n

we have

� � sup

x

E

x

�

Z

t

0

V

�

(b(s))ds

�

�

1




n

kV

�

k

K

< 1

by (2.3.85), so that

sup

x

E

x

�

exp

�

Z

t

0

V

�

(b(s))ds

��

�

1

1� kV

�

k

K

=


n

: (2.3.88)
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These simple fa
ts gives us the �rst L

1

�L

1

estimate for the semigroup.

Indeed, by the Feynman-Ka�
 formula we have

ke

�tH

fk

L

1

= sup

x2R

n

E

x

�

exp

�

�

Z

t

0

V (b(s))ds

�

f(b(t))

�

�

� kfk

L

1

E

x

�

exp

�

�

Z

t

0

jV

�

(b(s))jds

��

�

kfk

L

1

1� kV

�

k

K

=


n

: (2.3.89)

The se
ond step is a L

2

� L

1

estimate. By the Feynman-Ka�
 formula

and the S
hwarz inequality

je

�tH

f(x)j � E

x

�

exp

�

�2

Z

t

0

V

�

(b(s))ds

��

1=2

E

x

(jf(b(t))j)

1=2

�

�

h

(e

�t(H

0

+2V )

1)(x)

i

1=2

�

e

�tH

0

jf j

2

�

1=2

(2.3.90)

where in the last step we used again the formula; now e

�tH

0

is the standard

heat kernel whi
h has norm (2�t)

�n=2

as an L

1

�L

1

operator, while we 
an

apply estimate (2.3.89) to the operator e

�t(H

0

+2V )

. We thus obtain

je

�tH

f(x)j �

k1k

L

1

1� 2kV

�

k

K

=


n

(2�t)

�n=4

kfk

L

2

whi
h implies

ke

�tH

fk

L

1

�

(2�t)

�n=4

1� 2kV

�

k

K

=


n

kfk

L

2
; (2.3.91)

provided

kV

�

k

K

<




n

2

:

By duality, sin
e e

�tH

is selfadjoint, we obtain the L

2

� L

1

estimate

ke

�tH

fk

L

2 �

(2�t)

�n=4

1� 2kV

�

k

K

=


n

kfk

L

1 ; (2.3.92)

using the semigroup property we 
an write

e

�tH

f = e

�

t

2

H

e

�

t

2

H

f

and applying (2.3.91) �rst, then (2.3.92) we obtain

ke

�tH

fk

L

1

�

(�t)

�n=2

(1� 2kV

�

k

K

=


n

)

2

kfk

L

1
: (2.3.93)

Now re
alling (2.3.89), by duality and interpolation we obtain

ke

�tH

fk

L

p

�

(�t)

�


(1� 2kV

�

k

K

=


n

)

2

kfk

L

q
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(the 
onstant 
ould be slightly but not essentially improved) with 
 as in

the statement. The 
hange t! 2t, V ! V=2 gives (2.3.77).

Let now g(x); h(x) be bounded fun
tions; the same argument as in

(2.3.90) gives

je

�tH

h(x)j �

h

(e

�t(H

0

+2V )

jhj)(x)

i

1=2

�

e

�tH

0

jhj(x)

�

1=2

and multiplying by g(x) and taking the sup we get

kge

�tH

hk

L

1

� kge

�t(H

0

+2V )

jhjk

1=2

L

1

kge

�tH

0

jhjk

1=2

L

1

: (2.3.94)

We 
hoose

g = �

K

1

; h = f�

K

2

where f(x) is a bounded fun
tion while �

K

1

; �

K

2

are the 
hara
teristi
 fun
-

tions of two disjoint 
ompa
t sets K

1

;K

2

. We may estimate the �rst fa
tor

in (2.3.94) using (2.3.93) as follows

kge

�t(H

0

+2V )

jhjk

L

1

� ke

�t(H

0

+2V )

jhjk

L

1

�

(�t)

�n=2

(1� 4kV

�

k

K

=


n

)

2

kf�

K

2

k

L

1

while for the se
ond we may use the expli
it kernel of e

�tH

0

i.e.,

(2�t)

�n=2

exp(�jx� yj

2

=2t)

and we obtain

kge

�tH

0

jhjk

L

1

� (2�t)

�n=2

exp(�d

2

=2t)kf�

K

2

k

L

1
; d = dist(K

1

;K

2

):

In 
on
lusion we have

k�

K

1

e

�tH

f�

K

2

k

L

1

�

(�t)

�n=2

e

�d

2

=4t

1� 4kV

�

k

K

=


n

kf�

K

2

k

L

1
; d = dist(K

1

;K

2

):

(2.3.95)

By the Dunford-Pettis Theorem (see Tr�eves [105℄ and A.1.1-A.1.2 in [91℄),

this implies at on
e that e

�tH

has an integral kernel representation, with

kernel

k(t; x; y) =

(�t)

�n=2

1� 4kV

�

k

K

=


n

e

�jx�yj

2

=4t

and this 
on
ludes the proof (after res
aling ba
k t! 2t, V ! V=2).

We shall now use the above kernel representation of the semigroup to

improve a result due to Jensen and Nakamura (Theorem 2.1 in [58℄):
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Proposition 2.3.19. Assume the Kato 
lass potential V = V

+

�V

�

on R

n

,

n � 3, V

�

� 0, satis�es

kV

+

k

K

<1 (2.3.96)

and

kV

�

k

K

<

1

2




n

� �

n=2

=�

�

n

2

� 1

�

(2.3.97)

and 
onsider the selfadjoint operator H = ��+V . Then for any g 2 C

1

0

(R)

and any � > 0 the operator g(�H) is bounded on L

p

(R

n

), 1 � p � 1, with

norm independent of �:

kg(�H)k

L(L

p

;L

p

)

� C(p; n; g; V ): (2.3.98)

The same property holds for the res
aled operators

kg(H

�

)k

L(L

p

;L

p

)

� C(p; n; g; V ); (2.3.99)

where H

�

= ��+ �V (

p

�x).

Proof. The proof for �xed � is 
ontained in [59℄. In [58℄, Theorem 2.1, the

result was extended to the uniform estimate (2.3.98) for 0 < � � 1, under

assumptions on the potential weaker than ours. Following that proof, in

order to extend the result to � � 1 it will be suÆ
ient to prove that a

few estimates are uniform in � � 1. More pre
isely, 
onsider the res
aled

potential

V

�

(x) = �V (

p

�x); (2.3.100)

noti
e that the Kato norm is invariant under this transformation:

kV

�

k

K

� kV k

K

: (2.3.101)

Consider the operator

H

�

= ��+ V

�

: (2.3.102)

We pro
eed exa
tly as in the proof of Theorem 2.1 in [58℄; as remarked there,

(2.3.98) is a 
onsequen
e of (2.3.99). Thus we are redu
ed to prove that

kg(H

�

)k

L(L

p

;L

p

)

� C (2.3.103)

uniformly in �, and this amounts to prove three estimates uniformly in �:

i) a pointwise estimate for the kernel of e

�tH

�

,

ii) an L

2

� L

2

estimate for the operator (H

�

+M)

�1=2

, M > 0 a �xed


onstant (we 
an take M = 1 here),

iii) an L

2

� L

2

estimate for the operator �

x

(H

�

+M)

�1=2

.

Step i) follows dire
tly from estimate (2.3.79)

jk

�

(t; x; y)j �

(2�t)

�n=2

1� 2kV

�

�

k

K

=


n

e

�jx�yj

2

=4t

: (2.3.104)
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whi
h is uniform in � > 0 sin
e by (2.3.100)

kV

�

�

k

K

� kV

�

k

K

does not depend on �.

Step ii) is trivial sin
e k(H

�

+M)

�1=2

k

L(L

2

;L

2

)

�M

�1=2

. To get iii), we

must prove that

k�

x

(H

�

+M)

�1=2

fk

L

2
� Ckfk

L

2

or equivalently

kgk

_

H

1

� Ck(H

�

+M)

1=2

gk

L

2 (2.3.105)

for some C independent of � > 0. We rewrite (2.3.105) as

C

�1

kgk

_

H

1

� (��g; g) + (V

�

g; g) +Mkgk

2

L

2

: (2.3.106)

Clearly (2.3.106) is implied by

j(V

�

�

g; g)j � �kgk

_

H

1

+Mkgk

2

L

2

; � < 1; � independent of �. (2.3.107)

Now re
all (2.3.31), where we proved the inequality in dimension n = 3: for

all b > 0

j(V

2

';')j � a(��';') + bk'k

L

2
(2.3.108)

where by (2.3.34)

a

2

=

kV

2

k

K

4�

: (2.3.109)

We 
an now apply (2.3.108), (2.3.109) to V

�

�

whose Kato norm is indepen-

dent of �:

a

2

=

kV

�

�

k

K

4�

=

kV

�

k

K

4�

<




3

8�

=

1

4

by (2.3.97), and this 
on
ludes the proof of iii) in dimension n = 3.

The proof for n � 3 is identi
al; it is suÆ
ient to use again (2.3.31),

(2.3.34) whi
h are still true for general dimension n, as noti
ed in Remark

2.3.5.

The following 
onsequen
e will be useful:

Corollary 2.3.20. Assume V satis�es the assumptions of Proposition 2.3.19,

let H

�

= �� + �V (

p

�x), H

0

= ��, and let '

j

(s) = '

0

(2

�j

s),  

j

(s) =

 

0

(2

�j

s) be two homogeneous Paley-Littlewood partitions of unity, j 2 Z.

Then we have the estimates: for all j; k 2 Z,

k'

j

(

p

H

�

) 

k

(

p

H

0

)k

L(L

1

;L

1

)

� C2

�2j+2k

(2.3.110)

with a 
onstant C independent of j; k and of � > 0. The same estimates

hold inter
hanging H

0

and H

�

.
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Proof. We �rst note two 
onsequen
es of (2.3.98): for all j, with a 
onstant

independent of j,

k'

j

(

p

H

�

)H

�

k

L(L

p

;L

p

)

� C2

2j

; k'

j

(

p

H

�

)H

�1

�

k

L(L

p

;L

p

)

� C2

�2j

(2.3.111)

and the analogous ones for H

0

instead of H (indeed, the 
ase V = 0 is a

spe
ial 
ase of (2.3.111)). The �rst one follows by 
hoosing

g(s) = '

0

(

p

s)s =) g(2

�2j

H

�

) = '

j

(

p

H

�

)2

�2j

H

�

;

the se
ond one follows by

g(s) = '

0

(

p

s)s

�1

=) g(2

�2j

H

�

) = '

j

(

p

H

�

)2

2j

H

�1

�

:

Then we 
an write

'

j

(

p

H

�

) 

k

(

p

H

0

) = '

j

(

p

H

�

)H

�1

�

H

�

 

k

(

p

H

0

) =

= '

j

(

p

H

�

)H

�1

�

H

0

 

k

(

p

H

0

) + '

j

(

p

H

�

)H

�1

�

V

�

 

k

(

p

H

0

):

The �rst term 
an be estimated immediately using (2.3.111):

k'

j

(

p

H

�

)H

�1

�

H

0

 

k

(

p

H

0

)k

L(L

p

;L

p

)

� C2

�2j+2k

;

for the se
ond one we may write

k'

j

(

p

H

�

)H

�1

�

V

�

 

k

(

p

H

0

)k

L(L

p

;L

p

)

� C2

�2j

kV

�

 

k

(

p

H

0

)k

L(L

p

;L

p

)

and sin
e

V

�

 

k

(

p

H

0

) = V

�

R

0

(0)H

0

 

k

(

p

H

0

);

re
alling that V

�

R

0

is a bounded operator on L

1

(with norm proportional

to the Kato norm of V

�

whi
h does not depend on �) and applying again

(2.3.111) we obtain (2.3.110).

For higher dimension n > 3 the proof is identi
al; only in the last step

we need the estimate

kV R

0

(0)fk

L

1
� CkV k

K

kfk

L

1

whi
h is true for any n. Indeed, R

0

(0) apart from a 
onstant is the 
on-

volution with the kernel jxj

2�n

, and this gives immediately that R

0

(0)V is

bounded on L

1

with norm CkV k

K

. By duality we dedu
e that V R

0

(0) is

a bounded operator on L

1

with the same norm.

Using Corollary 2.3.20 we 
an show the equivalen
e of non homogeneous

Besov spa
es B

s

1;q

(V ) with the standard ones, and later on we shall prove

the more deli
ate result 
on
erning the homogeneous 
ase. We re
all the
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pre
ise de�nition: given a homogeneous Paley-Littlewood partition of unity

'

j

(s) = '

0

(2

�j

s), j 2 Z, we set for p 2 [1;1℄, q 2 [1;1[, s 2 R

kfk

_

B

s

p;q

(V )

=

0

�

X

j2Z

2

jsq

k'

j

(

p

H)fk

q

L

p

1

A

1=q

with obvious modi�
ation when q = 1. On the other hand, if we 
onsider

a non homogeneous Paley-Littlewood partition of unity, i.e., '

j

as above for

j � 0, and we set

 

0

= 1�

X

j�0

'

j

we have  

0

2 C

1

0

(R

n

), and we 
an de�ne the non homogeneous Besov norm

as

kfk

B

s

p;q

(V )

=

0

�

k 

0

(

p

H)fk

q

L

p

+

X

j�0

2

jsq

k'

j

(

p

H)fk

q

L

p

1

A

1=q

When V = 0 we obtain the 
lassi
al Besov spa
es, whi
h we denote simply

by

_

B

s

p;q

and B

s

p;q

.

Theorem 2.3.21. Assume the Kato 
lass potential V = V

+

� V

�

on R

n

,

n � 3, V

�

� 0, satis�es

kV

+

k

K

<1 (2.3.112)

and

kV

�

k

K

<

1

2




n

� �

n=2

=�

�

n

2

� 1

�

(2.3.113)

Then we have the equivalen
e of norms

kfk

B

s

1;q

(V )

�

=

kfk

B

s

1;q

(2.3.114)

for all q 2 [1;1℄, 0 � s < 2. Moreover, for the res
aled potentials

V

�

(x) = �V (

p

�x) (2.3.115)

we have the uniform estimates

C

�1

kfk

B

s

1;q

� kfk

B

s

1;q

(V

�

)

� Ckfk

B

s

1;q

(2.3.116)

with a 
onstant C independent of � > 0.

Remark 2.3.6. In order to improve the result and 
onsider higher values of

s � 2 stronger smoothness assumptions on the of the potential V are ne
es-

sary; we shall not pursue this problem here. Also, to prove the equivalen
e

of Besov spa
es B

s

p;q

for p 6= 1, one should prove di�erent bounds for the op-

erator V R

0

on L

p

; this is possible but quite te
hni
al and we limit ourselves

to the 
ase p = 1 whi
h is our main interest here.
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Proof. We shall limit ourselves to the 
ase q = 1 and we shall only prove

the inequality

kfk

B

s

1;1

(V

�

)

� Ckfk

B

s

1;1

; (2.3.117)

the proof of the reverse inequality and of the 
ases 1 < q � 1 are 
ompletely

analogous.

In the following we shall drop the index � sin
e all the estimates we use

(from Proposition 2.3.19 and Corollary 2.3.20) have 
onstants independent

of � > 0.

Using the notations

D

V

=

p

H; D =

p

H

0

we have

kfk

B

s

1;1

(V )

= k 

0

(D

V

)fk

L

1
+

1

X

j=0

2

js

k'

j

(D

V

)fk

L

1
: (2.3.118)

Using

1 =  

0

(D) +

X

k�0

'

k

(D);

we have

kfk

B

s

1;1

(V )

� k 

0

(D

V

) 

0

(D)fk

L

1
+

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1
+

+

1

X

j=0

2

js

k'

j

(D

V

) 

0

(D)fk

L

1
+

X

j;k�0

2

js

k'

j

(D

V

)'

k

(D)fk

L

1
=

= I + II + III + IV:

We estimate separately the four terms.

Sin
e by (2.3.99)  

0

(D

V

) is bounded on L

1

, we have for the �rst term

I = k 

0

(D

V

) 

0

(D)fk

L

1
� Ckfk

L

1
(2.3.119)

and sin
e

kfk

L

1
� k 

0

(D)fk

L

1
+

X

j�0

k'

j

(D)fk

L

1

this is smaller than Ckfk

B

s

1;1

.

The same argument gives for the se
ond term

II =

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1
� C

1

X

k=0

k'

k

(D)fk

L

1
� Ckfk

B

s

1;1
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As to the third term, we 
an write

1

X

j=0

2

js

k'

j

(D

V

) 

0

(D)fk

L

1
=

1

X

j=0

2

js

k'

j

(D

V

)(��

V

)

�1

(��

V

) 

0

(D)fk

L

1

and re
alling (2.3.111) used in the proof of the 
orollary we have (for s < 2)

III � C

X

j�0

2

�j(2�s)

k(��

V

) 

0

(D)fk

L

1
= Ck(��

V

) 

0

(D)fk

L

1
�

� Ck(��) 

0

(D)fk

L

1
+ CkV  

0

(D)fk

L

1
:

Now we have

kV  

0

(D)fk

L

1 = kV R

0

(0)(��) 

0

(D)fk

L

1 � CkV k

K

k(��) 

0

(D)fk

L

1

and sin
e (��) 

0

(D) is bounded in L

1

by (2.3.99), we 
on
lude that

III � C

2

kfk

L

1
� C

3

kfk

B

s

1;1

(2.3.120)

as for the �rst term.

Finally, we split the fourth term in the two sums for j � k and j > k:

IV =

X

j;k�0

2

js

k'

j

(D

V

)'

k

(D)fk

L

1
=

X

j�k

+

X

j>k

:

For j � k we use the fa
t that '

j

(D

V

) are bounded on L

1

with uniform

norm by (2.3.99) and hen
e

X

j�k

� C

X

k�0

k'

k

(D)fk

L

1

X

0�j�k

2

js

= 2C

X

k�0

2

ks

k'

k

(D)fk

L

1 :

For j > k, we write '

j

= '

j

('

j�1

+ '

j

+ '

j+1

) = '

j

f'

j

and we have

X

j>k

2

js

k'

j

(D

V

)'

k

(D)fk

L

1 =

X

j>k

2

js

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1 ;

now by the 
orollary we obtain

X

j>k

2

js

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1
�

X

j>k

C2

(k�j)(2�s)

2

ks

kf'

k

fk

L

1

and sin
e

P

j>k

2

(k�j)(2�s)

< 1 we have

IV =

X

j;k�0

2

js

k'

j

(D

V

)'

k

(D)fk

L

1
� C

X

k�0

2

k

k

^

'

k

(D)fk

L

1
� Ckfk

B

1

1;1

(R

3

)

:

(2.3.121)

and this 
on
ludes the proof.
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We shall �nally show that the pre
eding result implies the equivalen
e

also for homogeneous Besov spa
es. Indeed, the uniformity of estimates

(2.3.116) makes it possible to apply a res
aling argument, using the following

lemma:

Lemma 2.3.22. Let s 2 R, p; q;2 [1;1℄. The homogeneous

_

B

s

p;q

(V ) norm

has the following res
aling property with respe
t to s
aling (S

�

f)(x) = f(�x):

kS

�

fk

_

B

s

p;q

(V )

= �

s�

n

p

kfk

_

B

s

p;q

(V

�

�2

)

(2.3.122)

provided � = 2

k

for some k 2 Z.

Remark 2.3.7. A similar property holds also for any positive �, with equality

repla
ed by equivalen
e of norms, however (2.3.122) will be suÆ
ient for our

purposes.

Proof. From the identity

(��+ V (x))S

�

f(x) = �

2

S

�

(��+ �

�2

V (x=�))f(x)

we obtain the rule

�

V

S

�

= �

2

S

�

�

V

�

�2

with the usual notations

�

V

= �+ V; V

�

= �V (

p

�x):

This implies

g(��

V

)S

�

= S

�

g(��

2

�

V

�

�2

)

and in parti
ular for the fun
tions �

j

(s) = �

0

(2

�j

s), writing as usual D

V

=

p

��

V

,

�

j

(D

V

)S

�

= �

0

(2

�j

D

V

)S

�

= S

�

�

0

(2

�j

�D

V

�

�2

):

With the spe
ial 
hoi
e � = 2

k

this 
an be written

�

j

(D

V

)S

2

k

= S

2

k

�

j�k

(D

V

2

�2k

):

Hen
e we have the identity, for � = 2

k

,

kS

�

k

q

_

B

s

p;q

=

X

j2Z

2

jsq

k�

j

(D

V

)S

�

fk

q

L

p

=

X

j2Z

2

jsq

2

�knq=p

kS

�

�

j�k

(D

V

2

�2k

)fk

q

L

p

sin
e L

p

res
ales as �

�n=p

; writing 2

jsq

2

knq=p

= 2

k(s�n=p)q

2

(j+k)sq

and shift-

ing the sum j + k ! j we 
on
lude the proof.

Thus we arrive at the �nal result of this se
tion:
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Theorem 2.3.23. Assume the Kato 
lass potential V = V

+

� V

�

on R

n

,

n � 3, V

�

� 0, satis�es

kV

+

k

K

<1 (2.3.123)

and

kV

�

k

K

<

1

2




n

� �

n=2

=�

�

n

2

� 1

�

(2.3.124)

Then we have the equivalen
e of norms

kfk

_

B

s

1;q

(V )

�

=

kfk

_

B

s

1;q

(2.3.125)

for all q 2 [1;1℄, 0 < s < 2. Moreover, for the res
aled potentials

V

�

(x) = �V (

p

�x)

we have the uniform estimates

C

�1

kfk

_

B

s

1;q

� kfk

_

B

s

1;q

(V

�

)

� Ckfk

_

B

s

1;q

(2.3.126)

with a 
onstant C independent of � > 0.

Proof. We shall 
onsider in detail the 
ase q = 1 only, the remaining 
ases

being 
ompletely analogous.

We already know that (2.3.126) holds for dotless Besov spa
es. Now we

need to prove the following inequalities

C

�1

kfk

_

B

s

1;1

(V

�

)

� kfk

B

s

1;1

(V

�

)

� Ckfk

_

B

s

1;1

(V

�

)

+ Ckfk

_

B

0

1;1

(V

�

)

(2.3.127)

with a 
onstant C independent of � > 0.

First of all we prove that (D =

p

��, D

V

�

=

p

��

V

�

)

X

j<�1

2

js

k'

j

(D

V

�

)fk

L

1
� Ck 

0

(D

V

�

)fk

L

1
: (2.3.128)

We noti
e that  

0

is equal to 1 on the support of '

j

for j < �1. Hen
e

'

j

= '

j

 

0

for j < �1 and we 
an write

k'

j

(D

V

�

)fk

L

1
= k'

j

(D

V

�

) 

0

(D

V

�

)fk

L

1
� Ck 

0

(D

V

�

)fk

L

1
:

(we have used the uniform estimates (2.3.98)-(2.3.99)). Thus (2.3.128) fol-

lows, provided s > 0 so that

P

j<�1

2

js

is 
onvergent.

The term for j = �1 is estimated in a simple way ('

�1

= '

�1

( 

0

+'

1

))

k'

�1

(D

V

�

)fk

L

1 � k'

�1

(D

V

�

) 

0

(D

V

�

)fk

L

1 + k'

�1

(D

V

�

)'

1

(D

V

�

)fk

L

1 �

� Ck 

0

(D

V

�

)fk

L

1
+ Ck'

1

(D

V

�

)fk

L

1
: (2.3.129)

Clearly, (2.3.128) and (2.3.129) imply immediately the �rst inequality (2.3.127).
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The se
ond inequality in (2.3.127) is easier: it is suÆ
ient to prove that

k 

0

(D

V

�

)fk

L

1
� C

X

j�1

k'

j

(D

V

�

)fk

L

1

whi
h follows from  

0

=  

0

�

P

j�1

'

j

, the triangle inequality, and the bound-

edness of  

0

(D

V

�

) on L

1

with uniform norm. This give (2.3.127). Noti
e

that all the 
onstants appearing in the above inequalities are uniform in

� > 0.

By (2.3.127) and the equivalen
e (2.3.116) we 
an write for 0 < s < 2

kfk

_

B

s

1;1

� Ckfk

B

s

1;1

� Ckfk

B

s

1;1

(V

�

)

� Ckfk

_

B

s

1;1

(V

�

)

+ Ckfk

_

B

0

1;1

(V

�

)

:

If we apply this inequality to a res
aled fun
tion S

2

k

f and re
all Lemma

2.3.22, we obtain for all k 2 Z

2

k(s�n)

kfk

_

B

s

1;1

� C2

k(s�n)

kfk

_

B

s

1;1

(V

�2

�2k

)

+ C2

�kn

kfk

_

B

0

1;1

(V

�2

�2k

)

with 
onstants independent of k; �; we 
an now 
hoose � = 2

2k


, divide by

2

k(s�n)

and let k ! +1 to obtain

kfk

_

B

s

1;1

� Ckfk

_

B

s

1;1

(V




)

whi
h is the �rst part of the thesis. The reverse inequality is proved in the

same way.

2.3.7 Con
lusion of the proof

By the spe
tral 
al
ulus for H = ��+ V , given any bounded 
ontinuous

fun
tion �(s) on R, we 
an represent the operator �(H) on L

2

as

�(H)f =

1

2�i

� L

2

� lim

"!0

Z

�(�)[R

V

(�+ i")�R

V

(�� i")℄fd�: (2.3.130)

If � =  

0

is the derivative of a C

1


ompa
tly supported fun
tion we 
an

integrate by parts obtaining the equivalent form

�(H)f =

i

2�

� L

2

� lim

"!0

Z

 (�)[R

V

(�+ i")

2

�R

V

(�� i")

2

℄fd�: (2.3.131)

Now, �x a smooth fun
tion  (s) with 
ompa
t support in ℄0;+1[ and


onsider the Cau
hy problem

�

�u+ V (x)u = 0; t � 0; x 2 R

3

u(0; t) = 0; u

t

(0; x) =  (H)g

(2.3.132)

for some smooth g. Then the solution u 
an be represented as

u(t; �) = L

2

� lim

"!0

u

"

(t; �)
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where

u

"

(t; x) =

1

2�i

Z

1

0

sin(t

p

�)

p

�

 (�)[R

V

(�+ i")�R

V

(�� i")℄gd� (2.3.133)

or equivalently, after integration by parts,

u

"

(t; x) =

1

�it

Z

1

0


os(t

p

�) 

0

(�)[R

V

(�+ i")�R

V

(�� i")℄gd�+

+

1

�it

Z

1

0


os(t

p

�) (�)[R

V

(�+ i")

2

�R

V

(�� i")

2

℄gd�: (2.3.134)

Estimates (2.3.71) and (2.3.73) applied to (2.3.134) give

ku

"

(t; �)k

L

1

� kgk

L

1

C

t

Z

1

0

�

j 

0

(�)j

p

�

"

+

j (�)j

p

�

"

�

d�

and re
alling that

� � �

"

� �+

"

2

we obtain

ku

"

(t; �)k

L

1

� kgk

L

1

C

t

Z

1

0

 

j 

0

(�)j(

p

�+

p

") +

j (

p

�)j

p

�

!

d�: (2.3.135)

Let now '

j

(s), j 2 Z be the homogeneous Paley-Littlewood partition of

unity de�ned in the Introdu
tion, with

'

j

(s) = �

0

(2

�j

s);

de�ne

e'

j

(s) = '

j�1

(s) + '

j

(s) + '

j+1

(s) (2.3.136)

and 
hoose in (2.3.132)

 (�) = e'

j

(

p

�) � e'

0

(2

�j

p

�):

We thus obtain

ku

"

(t; �)k

L

1

� kgk

L

1

C

t

Z

1

0

 

2

�j

je'

0

0

(2

�j

p

�)j

p

�+

p

"

2

p

�

+

je'

0

(2

�j

p

�)j

p

�

!

d�

whi
h after the 
hange of variables � = 2

�j

p

� gives

ku

"

(t; �)k

L

1

�

C

t

(2

j

+

p

")kgk

L

1
: (2.3.137)
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for some 
onstant C independent of j; t and g. If we let "! 0, for �xed t the

fun
tions u

"

(t; �) 
onverge in L

2

to the solution u(t; x); hen
e a subsequen
e


onverges a.e. and we obtain the estimate

ku(t; �)k

L

1

� C

2

j

t

kgk

L

1
(2.3.138)

for the solution u(t; x) of the Cau
hy problem

�

�u+ V (x)u = 0; t � 0; x 2 R

3

u(0; t) = 0; u

t

(0; x) = e'

j

(

p

H)g

(2.3.139)

If we now 
hoose

g = '

j

(

p

H)f

and noti
e that e'

j

g � e'

j

'

j

f � '

j

f sin
e e'

j

= 1 on the support of '

j

, we


on
lude that: the solution u(t; x) of the Cau
hy problem

�

�u+ V (x)u = 0; t � 0; x 2 R

3

u(0; t) = 0; u

t

(0; x) = '

j

(

p

H)f

(2.3.140)

satis�es the estimate

ku(t; �)k

L

1

� C

2

j

t

k'

j

(

p

H)fk

L

1
(2.3.141)

Consider now the original Cau
hy problem (2.3.1); de
omposing the ini-

tial datum f as

f =

X

j2Z

'

j

(

p

H)f

applying estimate (2.3.141) and summing over j, we obtain by linearity that

the solution u(t; x) to (2.3.1) satis�es the estimate

ku(t; �)k

L

1

�

C

t

kfk

_

B

1

1;1

(V )

: (2.3.142)

Sin
e by Theorem 2.3.23 this norm is equivalent to the standard one, we see

that the proof of Theorem 2.3.1 is 
on
luded.



78

2.4 The S
hr�odinger and heat equation perturbed

with a small rough potential

In this se
tion we 
onsider perturbed S
hr�odinger and heat equations

1

i

�

t

u��u+ V u = 0; u(0; x) = u

0

(x); (2.4.1)

�

t

u��u+ V u = 0; u(0; x) = u

0

(x) (2.4.2)

in dimension n � 3. The importan
e of these equations in quantum me-


hani
s (see [61℄), in the theory of 
ombustion (see [109℄) and in many other

appli
ations is well known.

In this Se
tion we dedu
e the 
omplete Stri
hartz estimates for the so-

lution of the S
hr�odinger equation (2.4.1) perturbed with a larger 
lass of

potentials satisfying V � jxj

�2

, via interpolation between the endpoint and

the energy estimate. The arguments of the previous se
tions are then ex-

tended to the 
ase of a small time dependent potential V (t; x).

We study also the heat equation (2.4.2) perturbed by a singular potential

and we prove the existen
e of solutions, the maximum prin
iple and the

dispersive estimates.

2.4.1 Selfadjointness of H = ��+ V

In this subse
tion we 
he
k that the sum H = �� + V 
an be realized as

a selfadjoint operator on L

2

by a standard Friedri
hs extension. This will

allow us to 
onsider the S
hr�odinger 
ow e

�itH

and the heat 
ow e

�tH

in

the following of the se
tion. Noti
e that here we assume that the potential

is in the weak Lebesgue spa
e L

(

n

2

;1)

, whi
h is not 
omparable to the Kato


lass 
onsidered in the last se
tions.

Consider the bilinear form

B(f; f) = (rf;rf)

L

2

(R

n

)

+

Z

R

n

V (x)jf(x)j

2

dx; x 2 R

n

; n � 3:

It is not diÆ
ult to see that

f ! V f

is a self adjoint operator with dense domain

_

H

2

(R

n

). In this 
ase we 
an

use the KLMN- theorem (see theorem 10.17 in [83℄). Due to this theorem it

is suÆ
ient to verify the estimate

�

�

�

�

Z

R

n

V (x)jf(x)j

2

dx

�

�

�

�

� a

Z

R

n

jrf(x)j

2

dx� bkfk

2

L

2

(R

n

)

;

with a < 1. Indeed, our assumption

kV (�)k

L

(

n

2

;1)

<

2n

C

s

(n� 2)

;
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implies that

p

jV j 2 L

(n;1)

;

so that, by the H�older inequality for Lorentz spa
es,

k

p

jV jfk

L

2 � Ck

p

jV jk

L

(n;1)

kfk

L

(q;2)

� CC

0

kfk

L

(q;2)

;

where

1

q

=

1

2

�

1

n

; i:e: q =

2n

n� 2

:

Using the Sobolev embedding (see [9℄)

_

H

1

(R

n

) ,! L

(q;2)

(R

n

); we get

kfk

L

(q;2)

� C

1

kfk

_

H

1

and

�

�

�

�

Z

R

n

V (x)jf(x)j

2

dx

�

�

�

�

� k

p

jV jfk

2

L

2

(R

n

)

� C

2

0

C

2

C

2

1

krfk

2

L

2

(R

n

)

:

If C

0

is su
h that CC

0

C

1

< 1 i.e. C

0

<

1

CC

1

; where C is the 
onstant

from the H�older inequality (for Lorentz spa
es) and C

1

is the 
onstant from

Sobolev embedding, then we 
an 
on
lude, using the KLMN theorem, that

there exists a self-adjoint operator H = ��+ V su
h that

((��+ V )f; f)

L

2 = krfk

2

L

2

+

Z

R

n

V (x)jf(x)j

2

dx:

2.4.2 Stri
hartz estimates for the S
hr�odinger 
ow e

�itH

In this subse
tion we study the de
ay properties of the S
hr�odinger 
ow for

the operator H 
onstru
ted above. More pre
isely, we 
an represent the

solution to the S
hr�odinger equation (2.4.1) as

u(t) = U(t)u

0

; U(t) = e

�itH

:

Our starting point will be the following Stri
hartz estimate, essentially

proved in the paper [66℄:

Proposition 2.4.1. Let n � 3 and 
onsider the Cau
hy Problem for the

S
hr�odinger equation

(

1

i

�

t

u��u = F (t; x);

u(0; x) = 0; x 2 R

n

;

(2.4.3)

then the following estimates hold:

kuk

L

p

t

L

(q;2)

x

� CkFk

L

~p

0

t

L

(~q

0

;2)

x

; (2.4.4)
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kuk

L

p

t

L

q

x

� CkFk

L

~p

0

t

L

~q

0

x

; (2.4.5)

for all p; ~p 2 [2;1℄, and q; ~q 2 [2;

2n

n�2

℄; su
h that

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Remark 2.4.1. Note that for the S
hr�odinger equation (p; q) = (2;

2n

n�2

) it is

the end-point S
hr�odinger-admissible for n � 3.

Proof. The se
ond estimate (2.4.5) is the standard Stri
hartz estimate, proved

in [66℄; noti
e that it follows from the stronger estimate (2.4.4) by embedding

of Lorentz spa
es.

Estimate (2.4.4) in the endpoint p = ~p = 2, q = ~q =

2n

n�2

is proved in

se
tion 6 of [66℄. On the other hand, the point p = ~p = 1, q = ~q = 2

redu
es to the standard 
onservation of energy sin
e L

(2;2)

= L

2

. Thus by

interpolation we obtain (2.4.4) in the dual 
ase p = ~p, q = ~q. We 
on
lude

the proof applying as usual the TT

�

method.

Our next step is to establish the end-point estimate for the perturbed

S
hr�odinger equation:

Proposition 2.4.2. Let n � 3 and 
onsider the Cau
hy Problem

(

1

i

�

t

u��u+ V u = F;

u(0; x) = 0; x 2 R

n

;

(2.4.6)

where V = V (x) is a real-valued potential su
h that

kV k

L

(

n

2

;1)

� C

0

<

2n

C

s

(n� 2)

; (2.4.7)

(here C

s

is the 
onstant appearing in the Stri
hartz estimates for the unper-

turbed equation). Then the following estimate holds

kuk

L

2

t

L

q

x

� CkFk

L

~p

0

t

L

~q

0

x

; (2.4.8)

where

q =

2n

n� 2

;

and ~p 2 [2;1℄, and ~q 2 [2;

2n

n�2

℄ are su
h that

1

~p

+

n

2~q

=

n

4

:
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Proof. Indeed we 
an 
onsider the solution u = u

1

+ u

2

as the sum of

solutions to following Cau
hy problems

(

1

i

�

t

u

1

��u

1

= F;

u(0; x) = 0; x 2 R

n

; n � 3;

(2.4.9)

and

(

1

i

�

t

u

2

��u

2

= �V u;

u(0; x) = 0; x 2 R

n

; n � 3:

(2.4.10)

For (2.4.9) we have the 
lassi
al S
hr�odinger equation, su
h that

ku

1

k

L

2

t

L

(q;2)

x

� C

s

kFk

L

~p

0

t

L

(~q

0

;2)

x

(2.4.11)

is satis�ed for the Proposition 2.4.1 (see [66℄).

Sin
e for the Cau
hy problem (2.4.10) we have

ku

2

k

L

2

t

L

(q;2)

x

� C

s

kV uk

L

2

t

L

(q

0

;2)

x

; (2.4.12)

we are in position to apply the H�older estimate (see Theorem 3.5 in [73℄)

kV uk

L

(q

0

;2)

� C

2

kV k

L

(

n

2

;1)

kuk

L

(q;2)

� C

2

C

0

kuk

L

(q;2)

(2.4.13)

where

C

2

= q �

2n

n� 2

;

so if C

0

is su
h that C

s

C

0

C

2

< 1, i.e.

C

0

<

2n

C

s

(n� 2)

;

we see that from (2.4.11), (2.4.12) and (2.4.13) that

kuk

L

2

t

L

(q;2)

x

�

C

s

1� C

s

C

0

C

2

kFk

L

~p

0

t

L

(~q

0

;2)

x

;

where

1

~p

+

n

2~q

=

n

4

:

So using the Theorem of Calder�on (see Lemma 2.5 in [73℄)

kuk

L

(p;d)

�

�

d

1

p

�

1

d

1

�

1

d

kuk

L

(p;d

1

)

;

for d > d

1

; 1 < p <1, we get

kuk

L

2

t

L

q

x

= kuk

L

2

t

L

(q;q)

x

�

�

2

q

�

1

2

�

1

q

kuk

L

2

t

L

(q;2)

x
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and

kuk

L

~p

0

t

L

~q

0

x

= kuk

L

~p

0

t

L

(~q

0

;~q

0

)

x

� kuk

L

~p

0

t

L

(~q

0

;2)

x

;

so we arrive at

kuk

L

2

t

L

q

x

� CkFk

L

~p

0

t

L

~q

0

x

; q =

2n

n� 2

; n � 3;

where

C =

�

n� 2

n

�

1

n

�

C

s

1� C

s

C

0

C

2

�

;

and

1

~p

+

n

2~q

=

n

4

:

In the next step we 
onsider the point p =1, q = 2:

Proposition 2.4.3. Let n � 3 and 
onsider the Cau
hy Problem for the

perturbed S
hr�odinger equation

(

1

i

�

t

u��u+ V u = F;

u(0; x) = 0; x 2 R

n

;

(2.4.14)

where V = V (x) is a real-valued potential su
h that

kV k

L

(

n

2

;1)

<1: (2.4.15)

Then the following estimate holds

kuk

L

1

t

L

2

x

� CkFk

L

ep

0

t

;L

eq

0

x

; (2.4.16)

where ~p 2 [2;1℄, and ~q 2 [2;

2n

n�2

℄ are su
h that

1

~p

+

n

2~q

=

n

4

:

Proof. Multipling the perturbed S
hr�odinger equation (2.4.14) by �u and

taking the Imaginary part of integral

Im

�

1

i

Z

R

n

�

t

u � �udx

�

+Im

�

Z

R

n

jruj

2

dx

�

+Im

�

Z

R

n

V juj

2

dx

�

= Im

�

Z

R

n

F �udx

�

;

we noti
e that

Im

�

Z

R

n

jruj

2

dx

�

= 0

and

Im

�

Z

R

n

V juj

2

dx

�

= 0;
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thus we have

�Re

�

1

i

Z

R

n

�

t

u � �udx

�

= Im

�

Z

R

n

F �udx

�

:

The Cau
hy-S
whartz inequality implies

�

t

ku(t)k

2

L

2

� kFk

L

2
kuk

L

2
;

and we obtain

ku(t)k

L

2
�

Z

t

0

kFk

L

2
dt

so we obtain the following estimate

kuk

L

1

L

2
� CkFk

L

1

L

2
: (2.4.17)

The estimate (2:4:8) leads to

kuk

L

2

L

q
� CkFk

L

1

L

2
; q =

2n

n� 2

;

by duality we have also

kuk

L

1

L

2
� CkFk

L

2

L

q

0

; q

0

=

2n

n+ 2

: (2.4.18)

Interpolating between (2.4.17) and (2.4.18), we obtain

kuk

L

1

t

L

2

x

� CkFk

L

ep

0

t

;L

eq

0

x

;

where

1

~p

+

n

2~q

=

n

4

:

We 
an now 
on
lude the proof of the full Stri
hartz estimates for the

problem:

Theorem 2.4.1. Let n � 3, p; ~p 2 [2;1℄, and let q; ~q 2 [2;

2n

n�2

℄ be su
h that

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Let V = V (x) be a real-valued potential su
h that

kV k

L

(

n

2

;1)

� C

0

<

2n

C

s

(n� 2)

; (2.4.19)
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where C

s

is the universal Stri
hartz 
onstant for the unperturbed equation.

Then the solution to the Cau
hy Problem

(

1

i

�

t

u��u+ V (x)u = F (t; x);

u(0; x) = f;

(2.4.20)

satis�es the estimates

kuk

L

p

(R

t

;L

(q;2)

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

(eq

0

;2)

x

)

+ Ckfk

L

2
; (2.4.21)

and

kuk

L

p

(R

t

;L

q

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

eq

0

x

)

+ Ckfk

L

2 : (2.4.22)

Proof. Assume �rst that f = 0. By interpolation between (2.4.8) and

(2.4.16), we get

kuk

L

p

t

L

q

x

� CkFk

L

ep

0

t

;L

eq

0

x

for all (p; q), (~p; ~q) as in the statement of the Theorem.

Assume now that F = 0 and f arbitrary. The previous estimate and the

TT

�

argument of [51℄, yield the estimate

kuk

L

p

t

L

q

x

� Ckfk

L

2
:

Noti
e that the 
onservation of energy gives also

kuk

L

p

t

L

q

x

+ kuk

C

t

L

2
� Ckfk

L

2
:

Summing up we obtain (2.4.22). The proof of (2.4.21) is similar (see also

the proof of Proposition 2.4.1).

If we start from the lo
al Stri
hartz estimates instead of the global ones,

in a similar way we 
an prove the following

Theorem 2.4.2. Under the assumptions of Theorem 2.4.1 we have

kuk

L

p

([0;T ℄;L

(q;2)

x

)

+ kuk

C([0;T ℄;L

2

)

� CkFk

L

ep

0

([0;T ℄;L

(eq

0

;2)

x

)

+ Ckfk

L

2
(2.4.23)

for all T > 0 and with a 
onstant C independent of T .

2.4.3 The 
ase of time dependent potentials

The arguments of the previous se
tions 
an be extended to 
over the 
ase of

a small, time dependent potential V (t; x). Indeed, our method of proof

is based on a perturbation of the standard Stri
hartz estimates for the

S
hr�odinger and heat equations. However, we noti
e that in this 
ase we


annot use the standard theory of selfadjoint operators to study the per-

turbed Hamiltonian H = �� + V (t; x). Thus in the following we shall


onsider the problem of existen
e and of the de
ay of solutions.

Our �rst result is the following:
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Theorem 2.4.3. Let n � 3, p; ~p 2 [2;1℄, and let q; ~q 2 [2;

2n

n�2

℄ be su
h that

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Let V = V (t; x) be a real-valued potential su
h that

kV k

L

1

t

L

(

n

2

;1)

x

� C

0

(2.4.24)

is small enough. Then for any F (t; x) 2 L

~p

0

L

~q

0

there exists a unique global

solution u(t; x) of the the Cau
hy Problem

(

1

i

�

t

u��u+ V (t; x)u = F (t; x);

u(0; x) = f:

(2.4.25)

whi
h satis�es the estimates

kuk

L

p

(R

t

;L

(q;2)

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

(eq

0

;2)

x

)

+ Ckfk

L

2 ;

and

kuk

L

p

(R

t

;L

q

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

eq

0

x

)

+ Ckfk

L

2
:

Analogous estimates hold on �nite time intervals [0; T ℄ with 
onstants inde-

pendent of T .

Proof. The proof follows the lines of the proof of Theorem 2.4.1. We de�ne

�(v) as the solution u of the linear problem

(

1

i

�

t

u��u = F (t; x)� V (t; x)v;

u(0; x) = f:

(2.4.26)

By Proposition 2.4.1 and [66℄ we have

kuk

L

1

L

2
+ kuk

L

2

L

(q;2)

� CkF � V vk

L

2

L

(q

0

;2)

+ kfk

L

2

� kFk

L

2

L

(q

0

;2)

+ kV vk

L

2

L

(q

0

;2)

+ kfk

L

2
;

where q =

2n

n�2

. Using the H�older inequality for Lorentz spa
es (see [73℄)

and the assumption (2.4.24), we get

kuk

L

1

L

2
+ kuk

L

2

L

(q;2)

� CkFk

L

2

L

(q

0

;2)

+C

0

kvk

L

2

L

(q;2)

+ kfk

L

2
:

Thus � : v 2 L

2

L

(q;2)

7! u 2 L

2

L

(q;2)

\ L

1

L

2

. We show now that � is a


ontra
tion on the spa
e L

2

L

(q;2)

. Let v

1

; v

2

2 L

2

L

(q;2)

su
h that �(v

i

) =

u

i

; i = 1; 2; then we have

ku

1

�u

2

k

L

1

L

2
+ku

1

�u

2

k

L

2

L

(q;2)

� kV (v

1

�v

2

)k

L

2

L

(q

0

;2)

� C

0

kv

1

�v

2

k

L

2

L

(q;2)

:
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If C

0

< 1 the map � is a 
ontra
tion, and this implies that for any F 2

L

2

L

(q

0

;2)

and f 2 L

2

there exists a unique solution u(t; x) 2 L

2

L

(q;2)

\L

1

L

2

of the Cau
hy problem (2.4.25).

In parti
ular for all F 2 C

1




and f 2 L

2

there exists a unique solution.

When F 2 C

1




, we 
an pro
eed as in Proposition 2.4.2 and we 
an prove

the endpoint estimate

kuk

L

2

t

L

q

x

� CkFk

L

~p

0

t

L

~q

0

x

+ kfk

L

2 ; (2.4.27)

with

q =

2n

n� 2

;

and ~p 2 [2;1℄, and ~q 2 [2;

2n

n�2

℄ are su
h that

1

~p

+

n

2~q

=

n

4

:

The only di�eren
e in the proof is to repla
e (2.4.13) with the following

H�older estimate

kV uk

L

2

L

(q

0

;2)

� CkV k

L

1

L

(

n

2

;1)

kuk

L

2

L

(q;2)

� CC

0

kuk

L

2

L

(q;2)

: (2.4.28)

On the other hand, we 
an repeat the proof of Proposition 2.4.3 and we

obtain

kuk

L

1

t

L

2

x

� CkFk

L

ep

0

t

;L

eq

0

x

+ kfk

L

2 ; (2.4.29)

where

1

~p

+

n

2~q

=

n

4

:

Then by interpolation we obtain the full Stri
hartz estimates

kuk

L

p

(R

t

;L

(q;2)

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

(eq

0

;2)

x

)

+ Ckfk

L

2
(2.4.30)

for all F 2 C

1




.

Sin
e we have proved that for all su
h F there exists a unique solution

u(t; x), by a density argument we easily obtain that for all F 2 L

ep

0

t

L

eq

0

x

there

exists a unique global solution u(t; x) 2 L

p

t

L

q

x

, with

1

~p

+

n

2~q

=

n

4

.

2.4.4 Heat equation perturbed with a singular potential

This se
tion is devoted to a study of the perturbed heat equation. The

ideas of the pre
eding se
tions 
an be applied also in this 
ase with some

modi�
ations. The main di�eren
e is the role of the positive part V

+

of

the potential V ; indeed, in order to prove the de
ay of the solution, weaker

assumptions on V

+

are suÆ
ient.

Our result is the following:
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Theorem 2.4.4. Let n � 3 and assume the potential V 2 L

(

n

2

;1)

. More-

over, assume that the negative part V

�

= �(V ^ 0) satis�es

kV

�

k

L

(

n

2

;1)

� C

0

<

2n

C

s

(n� 2)

: (2.4.31)

Then any solution to the following Cau
hy problem

(

�

t

u��u+ V (x)u = F (t; x);

u(0; x) = u

0

2 L

1

\ L

1

;

(2.4.32)

satis�es the Stri
hartz estimate

kuk

L

p

(R

t

;L

q

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

eq

0

x

)

+Cku

0

k

L

2
:

where p; ~p 2 [2;1℄, and q; ~q 2 [2;

2n

n�2

℄ are su
h that

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

We split the proof of Theorem 2.4.4 in several parts.

Proposition 2.4.4. Let n � 3 and 
onsider the following Cau
hy problem

(

�

t

u��u+ V (x)u = 0;

u(0; x) = u

0

� 0;

(2.4.33)

with initial data u

0

2 L

1

\ L

1

, and we assume that

V (x) � 0 and V 2 L

(

n

2

;1)

: (2.4.34)

Then there exists a unique solution to the Cau
hy problem (2.4.33)

u(t; x) = e

�tH

0

u

0

satisfying the maximum prin
iple, i.e.

u � 0:

Proof. Sin
e we know that the maximum prin
iple holds if the potential

is positive and V 2 L

1

, we 
onsider a sequen
e of trun
ated potentials

V

k

= V ^ k; k � 1 so that V

k

2 L

1

. We 
onsider then the respe
tively

approximated Cau
hy problem

(

�

t

u

k

��u

k

+ V

k

(x)u

k

= 0; k � 1;

u

k

(0; x) = u

0

; u

0

� 0;

(2.4.35)
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and by maximum prin
iple 0 � u

k+1

� u

k

� u

0

. Sin
e fu

k

g is a sequen
e

de
reasing and u

0

2 L

1

\ L

1

, then by monotone 
onvergen
e Theorem we

have that fu

k

g 
onverge in strong sense to u(t; x)

u(t; x) = L

p

� lim

k!1

u

k

(t; x); 1 � p <1:

Now it suÆ
es to prove that u(t; x) is a solution to (2.4.33), so we have that

0 � u � u

k

� u

0

. Thus sin
e u(t; x) satis�es the Maximum prin
iple (see

[72℄), we have the uniqueness of the solution to (2.4.33).

Sin
e u

0

2 L

1

\L

1

and fu

k

g is a sequen
e de
reasing su
h that u

k

� ju

0

j,

by Theorem of Lebesgue we have the 
onvergen
e u

k

! u in L

1

.

As 
onsequen
e we have following 
onvergen
es in the distributional sense

D

0

8k !1

u

k

! u;

�

t

u

k

! �

t

u;

�u

k

! �u:

Then it remains to prove that we have the following 
onvergen
e

V

k

u

k

! V u

in the distributional sense. Indeed, we shall use the identity

V

k

u

k

� V u = (V

k

� V )u

k

+ V (u

k

� u): (2.4.36)

Consider the �rst term to (2.4.36) and sin
e L

(

n

2

;1)

� L

1

lo


we 
an take

V 2 L

1

lo


(R

n

);

that implies

Z

K

jV (x)� V

k

(x)jdx! 0 8k !1;

so that

Z

K

jV (x)�V

k

(x)jju

k

(t; x)jdx � sup

x2R

n

ju

k

(t; x)j

Z

K

jV (x)�V

k

(x)jdx! 0; 8k!1:

Thus the �rst term 
onverges

(V

k

� V )u

k

! 0 8k !1

in the distributional sense D

0

.

Now we are ready to estimate the se
ond term to (2.4.36). We have

kV (u

k

� u)k

L

1 � kV k

L

(

n

2

;1)

ku

k

� uk

L

(q;1)

� C

0

ku

k

� uk

L

(q;1)

where

1

q

= 1�

2

n

; and using the real interpolation (see [73℄)

L

(q;1)

= (L

1

; L

1

)

(1�

1

q

;1)

;
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we have the following

ku

k

� uk

L

(q;1)

� ku

k

� uk

2

n

L

1

ku

k

� uk

n�2

n

L

1

:

Sin
e fu

k

g is de
reasing and u

k

� u

0

2 L

1

\ L

1

, by monotone 
onvergen
e

Theorem one obtains

ku

k

� uk

L

1
! 0;

and

ku

k

� uk

L

1

! 0:

Thus V (u

k

� u)! 0 in L

1

, and so it 
onverges in distributional sense, i.e.

V

k

u

k

� V u! 0:

This 
on
ludes the proof.

Proposition 2.4.5. Let n � 3 and assume that

V

+

(x) � 0; V

+

2 L

(

n

2

;1)

: (2.4.37)

Then any solution to the Cau
hy problem

(

�

t

u��u+ V

+

(x)u = 0;

u(0; x) = u

0

;

(2.4.38)

satis�es the dispersive estimate

ku(t; �)k

L

1

�

C

t

n

2

ku

0

k

L

1
: (2.4.39)

Proof. Consider the Cau
hy problem for the heat equation with the same

initial data to (2.4.38)

(

�

t

~u��~u = 0;

~u(0; x) = u

0

; u

0

� 0:

(2.4.40)

The dispersive estimate (2.4.39) is valid for this problem.

Let w = ~u� u. Then w is a solution to the following Cau
hy problem

(

�

t

w ��w = V

+

(x)u;

w(0; x) = 0:

(2.4.41)

Sin
e 0 � V

+

2 L

(

n

2

;1)

we 
an apply it the previous Proposition and we

obtain that

u � 0:
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So applying one more the maximum prin
iple for (2.4.41) we obtain

0 � w = ~u� u:

Thus we have

0 � u � ~u

and the dispersive estimate

ku(t; �)k

L

1

�

C

t

n

2

ku

0

k

L

1 ;

follows. This 
on
ludes the proof of this Proposition.

Now we use the 
onne
tion between self-adjointness and semibounded

quadrati
 form, extending the notion of "
losed" from operators to forms.

Lemma 2.4.6. Let n � 3 and assume that

V

+

(x) � 0; V

+

2 L

(

n

2

;1)

: (2.4.42)

Then the operator H

0

= ��+ V

+

is self-adjoint in H

2

(R

n

).

Proof. Consider the quadrati
 form

B(f; f) = (rf;rf)

L

2

(R

n

)

+

Z

R

n

V (x)jf(x)j

2

dx; x 2 R

n

; n � 3;

on the dense subspa
e H

1

(R

n

) of L

2

(R

n

).

To prove this Lemma it suÆ
es to apply the standard theory of sym-

metri
 quadrati
 forms (see e.g. Theorem VIII.15 in the [82℄). One 
an see

easily that B(f; f) is a positive quadrati
 form, thus it remains to see that

it is 
losed in H

1

(R

n

), i.e. H

1

(R

n

) is 
omplete under the norm

jjjf jjj

2

:= B(f; f) + kfk

2

L

2

: (2.4.43)

Sin
e V

+

(x) � 0 one obtains

jjjf jjj

2

= krfk

2

L

2

+ (V

+

f; f)

L

2 + kfk

2

L

2

� Ckfk

2

H

1

: (2.4.44)

The assumption on the potential implies that

p

V

+

2 L

(n;1)

;

so that, by the H�older inequality for Lorentz spa
es,

k

p

V

+

fk

L

2 � Ck

p

V

+

k

L

(n;1)

kfk

L

(q;2)

� CC

0

kfk

L

(q;2)

;

where

1

q

=

1

2

�

1

n

:
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Using the Sobolev embedding (see [9℄)

_

H

1

(R

n

) ,! L

(q;2)

(R

n

); we get

kfk

L

(q;2)

� C

1

kfk

_

H

1

and

(V

+

f; f)

L

2
=

�

�

�

�

Z

R

n

V (x)jf(x)j

2

dx

�

�

�

�

� k

p

V

+

fk

2

L

2

(R

n

)

�

~

Ckfk

2

_

H

1

(R

n

)

;

so that

jjjf jjj

2

� Ckfk

2

H

1

:

Thus we have the equivalen
e

jjjf jjj ' kfk

H

1
; (2.4.45)

and the 
on
lusion follows at on
e.

Remark 2.4.2. Sin
e H

0

= ��+ V

+

is a self-adjoint operator, we 
an rep-

resent the solution to the Cau
hy problem

(

�

t

u��u+ V

+

(x)u = 0;

u(0; x) = u

0

;

(2.4.46)

as

u(t) = U(t)u

0

; U(t) = e

�tH

0

;

and U(t) is a 
ontinuous semigroup in L

2

and we have the energy inequality

kU(t)u

0

k

L

2
� ku

0

k

L

2
: (2.4.47)

Noti
e that interpolating the dispersive estimate (2.4.39) with the energy in-

equality we obtain L

p

-de
ay estimates, and using the TT

�

method of Ginibre

and Velo (see [51℄, [66℄) it is possible obtain the full Stri
hartz spa
e-time

estimates

kuk

L

p

(R

t

;L

q

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

eq

0

x

)

+Cku

0

k

L

2
;

with

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Remark 2.4.3. Consider the following perturbed Cau
hy problem

(

�

t

u�H

0

u+ V

�

(x)u = F (t; x);

u(0; x) = u

0

;

(2.4.48)

where V

�

2 L

(

n

2

;1)

, kV

�

k

L

(

n

2

;1)

� C

0

. Using the same argument of sub-

se
tion 2.4.1 we show that the operator H = H

0

� V

�

is selfadjoint, so the

solution to (2.4.48) is u(t; x) = e

�tH

u

0

. Moreover, repeating the same steps

of se
tion 2.4.2, it is not diÆ
ult to show the full Stri
hartz estimates for

the heat 
ow e

�tH

and this 
on
ludes the proof of Theorem 2.4.4.
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2.5 The S
h�odinger equation with a large poten-

tial

In the last se
tion of this 
hapter we shall 
onsider the S
h�rodinger equation

perturbed by a large unsigned time dependent potential V (t; x)

i�

t

u��u+ V (t; x)u = 0 (2.5.1)

and its inhomogeneous version with a sour
e term. Of 
ourse in general

there is no hope to prove de
ay estimates in this 
ase; thus we shall assume

an integrability 
ondition at in�nity of the form V (t; x) 2 L

r

t

L

s

x

whi
h in

some sense repla
es the smallness 
ondition of the pre
eding se
tion.

Our goal here is to show that, by purely elementary arguments based on

integrability properties of the potential, it is possible to obtain a great deal

of information on the behaviour of the solution, and to prove the Stri
hartz

estimates for a wide 
lass of large potentials with no de�nite sign. Moreover,

the usual obstru
tions to de
ay are present also in this general situation:

existen
e of standing waves, res
aling and pseduo
onformal symmetry of

the equation. Using these, we are able to show that our 
onditions are also

ne
essary, at least in the 
lass of potentials under 
onsideration.

For the 
onvenien
e of the reader we re
all here the 
lassi
al Stri
hartz

estimates for the S
hr�odinger equation, and introdu
e some notations. We

use a prime to denote 
onjugate indi
es; moreover, for any subinterval I of

R (bounded or unbounded) we de�ne the mixed spa
e-time norms

kuk

L

p

I

L

q

�

�

Z

I

ku(t; �)k

p

L

q

(R

n

)

dt

�

1=p

(2.5.2)

and when I = [0;+1[ we write simply L

p

L

q

in pla
e of L

p

I

L

q

. Similarly, we

shall write

C

I

L

p

� C(I;L

p

); CL

p

� C([0;+1[;L

p

) (2.5.3)

for 1 � p � 1.

De�nition 2.5.1. Let n � 2. The pair (p; q) is said to be (S
hr�odinger)

admissible if

1

p

+

n

2q

=

n

4

; p; q 2 [2;1℄; (n; p; q) 6= (2; 2;1): (2.5.4)

The Stri
hartz estimates 
an be stated as follows: for all admissible 
ouples

(p; q) and (~p; ~q) there exists a 
onstant C(p; ~p) su
h that, for all interval

I � R (bounded or unbounded), for all fun
tions u

0

(x) 2 L

2

(R

n

), and

F (t; x) 2 L

~p

0

I

L

~q

0

the following inequalities hold:













e

it�

u

0













L

p

I

L

q

� C(p; ~p) ku

0

k

L

2
(2.5.5)
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t
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e

i(t�s)�

F (s) ds













L

p

I

L

q

� C(p; ~p)







F







L

~p

0

I

L

~q

0

(2.5.6)

Note that the 
onstant is independent of the interval I.

Clearly, when n � 3 the 
onstant 
an be taken also independent of p and

~p: we shall denote this universal 
onstant (whi
h depends now only on the

spa
e dimension n) by C

0

. When n = 2, the 
onstant is unbounded as p # 2

or ~p # 2.

Here e

it�

is the unitary operator

e

it�

f =

Z

R

n

e

�

ijx�yj

2

4t

(4�it)

n=2

f(y) dy; (2.5.7)

Z

t

0

e

i(t�s)�

F (s) ds =

Z

t

0

Z

R

n

e

�

ijx�yj

2

4(t�s)

(4�i(t � s))

n=2

F (s; y) dy ds;

whi
h is properly de�ned on L

2

but 
an be extended to di�erent L

p

spa
es

using e.g. these expli
it expressions.

Consider now the di�erential equation

i�

t

u��u+ V (t; x)u = F (t; x); u(0; x) = u

0

(x): (2.5.8)

For low regularity solutions, it is 
ustomary to repla
e (2.5.8) with the in-

tegral equation

u(t; x) = e

it�

u

0

(x) +

Z

t

0

e

i(t�s)�

[F (s)� V (s)u(s)℄ ds: (2.5.9)

The two formulations are equivalent under very mild assumptions on the


lass of solutions; we shall not dis
uss this problem here, instead we shall

use the integral formulation ex
lusively.

We 
an now state our �rst result:

Theorem 2.5.1. Let n � 2, let I be either the interval [0; T ℄ or [0;+1[,

and assume V (t; x) is a real valued potential belonging to

V (t; x) 2 L

r

I

L

s

;

1

r

+

n

2s

= 1 (2.5.10)

for some �xed r 2 [1;1[ and s 2℄n=2;1℄. Let u

0

2 L

2

and F 2 L

~p

0

I

L

~q

0

for

some admissible pair (~p

0

; ~q

0

).

Then the integral equation (2.5.9) has a unique solution u 2 C

I

L

2

whi
h

belongs to L

p

I

L

q

for all admissible pairs (p; q) and satis�es the Stri
hartz

estimates

kuk

L

p

I

L

q

� C

V

ku

0

k

L

2 + C

V

kFk

L

~p

0

I

L

~q

0

: (2.5.11)
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When n � 3, the 
onstant C

V


an be estimated by k(1 + 2C

0

)

k

, where C

0

is the Stri
hartz 
onstant for the free equation, while k is an integer su
h

that the interval I 
an be partitioned in k subintervals J with the property

kV k

L

r

J

L

s

� (2C

0

)

�1

. A similar statement holds when n = 2, provided we

repla
e C

0

by C(p; ~p).

Finally, when F � 0 the solution satis�es the 
onservation of energy

ku(t)k

L

2 � ku

0

k

L

2 ; t 2 I: (2.5.12)

Remark 2.5.1. We emphasize that the potentials V (t; x) 
onsidered in Theo-

rem 2.5.1 may be both large and 
hange sign. The usual smallness assump-

tion is repla
ed here by the integrability 
ondition with respe
t to time,

whi
h ensures smallness of V on suÆ
iently small time intervals, and for

t >> 1.

Remark 2.5.2. By iterating the argument of the proof, it is easy to extend

the above result to any potential of the form

V = V

1

+ � � �+ V

k

where V

1

; : : : ; V

k

satisfy assumption (2.5.10), with possibly di�erent indi
es

r

j

; s

j

.

Remark 2.5.3. Note that when I is a bounded interval, assumption (2.5.10)


an be relaxed to

V (t; x) 2 L

r

I

L

s

;

1

r

+

n

2s

� 1; (2.5.13)

indeed, from (2.5.13), using H�older's inequality in time we 
an easily show

that also (2.5.10) holds, for a smaller value of r and the same value of s.

Thus in parti
ular we see that the existen
e part of our theorem extends

a result of Yajima [108℄, who proved that the equation (2.5.9) (or (2.5.8))

is well posed in L

2

with 
onservation of energy, provided the potential V

satis�es

V = V

1

+ V

2

; V

1

2 L

r

I

L

s

; V

2

2 L

1

I

L

�

(2.5.14)

with � > 1 and

1

r

+

n

2s

< 1 (2.5.15)

(see also the pre
eding remark).

When the potential V (t; x) belongs to L

1

I

L

n=2

, i.e., in the limiting 
ase of

Theorem 2.5.1, the result 
an not be true; indeed, this 
ase in
ludes the stati


potentials V (x) 2 L

n=2

without any positivity or smallness assumption. We

mention that even for a nonnegative potential in L

n=2

it is not known if the

Stri
hartz estimates are valid in general. The best result in this dire
tion

is due to Rodnianski and S
hlag [88℄ who 
onsidered bounded potentials

de�ned on R

n

satisfying the estimate jV (x)j � Cjxj

�2��

for jxj large enough.

However, in the limiting 
ase we 
an prove a partial substitute of Theorem

2.5.1. To simplify our statement we introdu
e the following de�nition:
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De�nition 2.5.2. Let V (x) be a real valued fun
tion su
h that

H = �� V (x)

has a selfadjoint extension. We say that the potential V (x) is of Stri
hartz

type if for all bounded time interval I = [0; T ℄, for all u

0

2 L

2

and F 2 L

~p

0

I

L

~q

0

with (~p; ~q) admissible, the integral equation

u(t; x) = e

itH

u

0

+

Z

t

0

e

i(t�s)H

F (s) ds (2.5.16)

has a unique solution u(t; x) 2 C

I

L

2

satisfying the Stri
hartz estimates

kuk

L

a

I

L

b

� C(I; V ) ku

0

k

L

2 + C(I; V ) kFk

L

~p

0

I

L

~q

0

(2.5.17)

for all admissible pairs (a; b).

Then we have:

Theorem 2.5.2. Let n � 3, let I be a bounded interval [0; T ℄ and let

V (t; x) 2 C

I

L

n=2

. Assume that for ea
h t 2 I, V (t; �) is of Stri
hartz

type, while the fun
tions u

0

and F (t; x) are as in Theorem 2.5.1. Then

the 
on
lusion of Theorem 2.5.1 holds true (lo
al Stri
hartz estimates).

The result holds also in the 
ase I = [0;1[ (global Stri
hartz esti-

mates) under the additional assumption: there exists T

0

> 0 su
h that

kV (t; �)k

L

n=2

� (2C

0

)

�1

for t > T

0

.

Remark 2.5.4. By simple modi�
ations in the proof, Theorem 2.5.2 
an be

extended to any potential of the form

V (t; x) = V

1

(t; x) + V

2

(t; x);

with V

1

as in the theorem while V

2

2 L

1

I

L

n=2

satis�es

kV

2

k

L

1

I

L

n=2

� "(V

1

)

for a suitable small 
onstant �(V

1

) depending only on V

1

.

Example 2.5.1. To illustrate a possible use of Theorem 2.5.1, 
onsider the

semilinear S
hr�odinger equation

i�

t

u��u+ f(u)u = 0; jf(u)j � Cjuj




; 
 > 1; (2.5.18)

f real valued, whi
h in
ludes both fo
using and defo
using equations with a

power nonlinearity. Then we may regard (2.5.18) as a S
hr�odinger equation

with a time dependent potential

V (t; x) = f(u(t; x)):
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We see that V satis�es the assumptions of Theorem 2.5.1 provided

u 2 L

a

L

b

;

1

a

+

n

2b

=

1




; a <1: (2.5.19)

Thus any solution satisfying (2.5.19) sats�es the full set of Stri
hartz esti-

mates.

For instan
e, in the 
ase of the (fo
using or defo
using) quinti
 S
hr�odinger

equation in three dimensions, any solution u 2 L

10

L

10

satis�es the Stri
hartz

estimates; this was the �rst step in the proof of the global well posedness

for the radial defo
using three dimensional quinti
 in [18℄.

Example 2.5.2. We give a simple appli
ation of Theorem 2.5.2. Consider a

real valued potential V 2 CL

n

2

and assume it satis�es the bounds

0 � V (t; x) �

C

(1 + jxj)

2+Æ

; x 2 R

n

; n � 3 (2.5.20)

for some C; Æ > 0. Then we 
an prove that V (t; x) satis�es the assumptions

of Theorem 2.5.2 and hen
e the lo
al Stri
hartz estimates hold (and also the

global ones, under the additional assumption of smallness at in�nity).

Indeed, let W (x) = V (t

0

; x) for an arbitrary �xed t

0

; we must show that

W (x) is of Stri
hartz type. The existen
e part of the de�nition is trivial; let

us prove the estimates. Consider the operator H = �� +W (x); H has a

unique selfadjoint extension by standard results, with spe
trum 
ontained in

[0;+1[; by Theorem XIII.58 in [85℄ H has no stri
tly positive eigenvalues,

sin
e W is bounded and de
ays as jxj

�2�Æ

at in�nity; 0 is 
ertainly not an

eigenvalue sin
e Hf = 0 implies f = 0 easily. This implies that the operator

H has a purely 
ontinuous spe
trum. Now Theorem 1.4 in [88℄ states that

P




e

itH

satis�es the full set of Stri
hartz estimates when the potential is

bounded and de
ays faster than jxj

�2

at in�nity; here P




is the proje
tion

on the 
ontinuous subspa
e of L

2

for H, whi
h 
oin
ides with all of L

2

as

we have just proved. In 
on
lusion, W (x) = V (t

0

; x) is of Stri
hartz type as


laimed.

Remark 2.5.5. Condition (2.5.10) is quite natural, in view of the following

argument: the standard res
aling u

�

(t; x) = u(�

2

t; �x) takes equation (2.5.1)

into the equation

i�

t

u

�

��u

�

+ V

�

(t; x)u

�

= 0; V

�

(t; x) = �

2

V (�

2

t; �x); (2.5.21)

and we have

kV

�

k

L

r

L

s

= �

2

(

1�

1

r

�

n

2s

)

kV k

L

r

L

s

(2.5.22)

so that the L

r

L

s

norm of V

�

is independent of � pre
isely when r; s satisfy

(2.5.10).

Indeed, by a suitable use of res
aling arguments, it is possible to show

that the 
ondition 1=r + n=(2s) = 1 is ne
essary in order that the global
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Stri
hartz estimates be true for any potential belonging to the 
lasses L

r

L

s

(see Theorem 2.5.3 below).

Con
erning the lo
al Stri
hartz estimates, the situation is more interest-

ing. When 1=r+n=(2s) < 1, as already observed in Remark 2.5.3, the lo
al

Stri
hartz estimates are an elementary 
onsequen
e of Theorem 2.5.1. On

the other hand, when 1=r + n=(2s) > 1, it is possible to show that the lo
al

Stri
hartz estimates fail. This 
ase is more deli
ate; a
tually it is not even


lear if equation (2.5.1) is well posed in L

2

under this assumption on V .

We 
olle
t our 
ounterexamples in the following theorem, 
on
erning the

homogeneous equation

iu

t

��u+ V (t; x)u = 0: (2.5.23)

Note that the 
ase (r; s) = (1; n=2) is almost trivial sin
e it is based on the


onstru
tion of a standing wave for (2.5.23); we state it in some length both

for 
ompleteness, and be
ause the remaining 
ounterexamples are based on

it. Thus, in the proof of Theorem 2.5.3 it is essential to use potentials whi
h


hange sign.

Theorem 2.5.3. Let n � 2. Then we have the following.

(i) (Case r = 1) We 
an 
onstru
t a potential W (x) 2 C

1

0

(R

n

) and a

fun
tion u

0

2 H

s

for all s > 0 su
h that

��u

0

+W (x)u

0

+ u

0

= 0: (2.5.24)

Hen
e the fun
tion u(t; x) = e

�it

u

0

(x) 2 CL

2

solves (2.5.23) with

V (t; x) �W (x) 2 L

1

([0;+1[;L

n=2

(R

n

));

and does not belong to the spa
e L

p

([0;+1[;L

q

) for all admissible pairs

(p; q) 6= (1; 2). In other words, there exists a potential V (t; x) belonging to

L

1

L

s

for all s 2 [1;1℄ su
h that the global Stri
hartz estimates (2.5.11) on

I = [0;+1[ do not hold for equation (2.5.23).

(ii) (Counterexamples to global estimates) For every pair (r; s) with r 2

[1;1[, s 2℄n=2;1℄ and

1

r

+

n

2s

6= 1; (2.5.25)

we 
an 
onstru
t a potential V (t; x) 2 L

r

([0;+1[;L

s

) and a sequen
e of

solutions u

k

(t; x) 2 C([0;+1[;L

2

) to equation (2.5.23) su
h that

lim

k!1

ku

k

k

L

p

L

q

ku

k

(0)k

L

2

=1 for every admissible pair (p; q) 6= (1; 2): (2.5.26)

(iii) (Counterexamples to lo
al estimates) For every pair (r; s) with r 2

[1;1[, s 2℄n=2;1℄ and

1

r

+

n

2s

> 1; (2.5.27)
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we 
an 
onstru
t, on any given bounded time interval I = [0; T ℄, a potential

V (t; x) 2 L

r

([0; T ℄;L

s

) and a sequen
e of solutions u

k

(t; x) 2 C([0; T ℄;L

2

)

to equation (2.5.23) su
h that

lim

k!1

ku

k

k

L

p

I

L

q

ku

k

(0)k

L

2

=1 for every admissible pair (p; q) 6= (1; 2): (2.5.28)

We 
on
lude the paper with a result showing that, at least for a re-

stri
ted range of indi
es r; s, the 
on
lusion of Theorem 2.5.3, part (iii), 
an

be improved in an essential way. While the above theorem was based on

suitable res
aling arguments, Proposition 2.5.4 exploits the pseudo
onformal

invarian
e of the S
hr�odinger equation.

Proposition 2.5.4. Let n � 2, and assume r 2 [1;1[ and s 2℄n=2; n[

satisfy

1

2r

+

n

2s

> 1: (2.5.29)

Then we 
an 
onstru
t a potential V (t; x) 2 L

r

(0; 1;L

s

(R

n

)) and a solution

u(t; x) 2 C([0; 1℄;L

2

) to equation (2.5.23) su
h that, for all admissible pairs

(p; q) with p <1, and for any 0 < T < 1, we have

u 2 L

p

(0; T ;L

q

(R

n

)) but u 62 L

p

(0; 1;L

q

(R

n

)):

2.5.1 Proof of Theorem 2.5.1

We shall 
onsider in detail only the 
ase n � 3; in the 
ase n = 2, when the

endpoint fails, it is suÆ
ient to repla
e in the following arguments the spa
e

L

2

J

L

2n

n�2

with any L

p

J

L

q

with q arbitrarily large.

We distinguish two 
ases, a

ording to the value of r 2 [1;1[.

2.5.2 Case A: r 2 [2;1[

Consider a small interval J = [0; Æ℄, and let Z be the Bana
h spa
e

Z = C

J

L

2

\ L

2

J

L

2n

n�2

; kvk

Z

:= max

�

kvk

L

1

J

L

2
; kvk

L

2

J

L

2n

n�2

�

:

Noti
e that, by interpolation, Z is embedded in all admissible spa
es L

p

J

L

q

.

For any v(t; x) 2 Z we de�ne the mapping

�(v) = e

it�

u

0

+

Z

t

0

e

i(t�s)�

[F (s)� V (s)v(s)℄ ds: (2.5.30)

A dire
t appli
ation of (2.5.5), (2.5.6) gives

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV vk

L

p

0

0

J

L

q

0

0

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.31)
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for all admissible (p; q), (p

0

; q

0

), (~p; ~q), and by H�older's inequality we 
an

write

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV k

L

r

J

L

s

kvk

L

2

J

L

2n

n�2

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.32)

provided we 
hoose p

0

; q

0

su
h that

1

p

0

=

1

2

�

1

r

;

1

q

0

=

n+ 2

2n

�

1

s

:

Note that

1

p

0

+

n

2q

0

=

1

2

+

n+ 2

4

�

�

1

r

+

n

2s

�

�

1

2

+

n+ 2

4

� 1 �

n

4

by our assumptions on r; s, and moreover

r 2 [2;1[ =) p

0

2 [2;1[

so that our 
hoi
e of p

0

; q

0

always gives an admissible pair in the 
ase under


onsideration.

In parti
ular, 
hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)), we obtain

k�(v)k

Z

� C

0

ku

0

k

L

2
+ C

0

kV k

L

r

J

L

s

kvk

Z

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.33)

Thus �(v) belongs to all the admissible spa
es L

p

J

L

q

, and to prove that

�(v) belongs to Z it remains only to show that u is 
ontinuous with values

in L

2

. But this is an immediate 
onsequen
e of the following simple remark:

Remark 2.5.6. Let G(t; x) 2 L

a

0

J

L

b

0

with (a; b) admissible. Then the fun
tion

w(t; x) =

Z

t

0

e

i(t�s)�

G(s) ds

belongs to C

J

L

2

. Indeed, this is 
ertainly true if we know in addition that G

is a smooth fun
tion, 
ompa
tly supported in x for ea
h t. If we approximate

G by a sequen
e of su
h fun
tions G

j

in the L

a

0

J

L

b

0

norm, the Stri
hartz

estimates imply that the 
orresponding fun
tions w

j


onverge in L

1

L

2

,

when
e the 
laim follows.

We have thus 
onstru
ted a mapping � : Z ! Z. Assume now the

length Æ of the interval J is 
hosen so small that

C

0

kV k

L

r

J

L

s

�

1

2

; (2.5.34)

this is 
ertainly possible sin
e r < 1. With this 
hoi
e we obtain imme-

diately two 
onsequen
es: �rst of all, the mapping � is a 
ontra
tion on Z
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and hen
e has a unique �xed point v(t; x) whi
h is the required solution;

se
ond, v satis�es

kvk

L

p

J

L

q

� C

0

ku

0

k

L

2
+

1

2

kvk

L

p

J

L

q

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.35)

when
e we obtain

kvk

L

p

J

L

q

� 2C

0

ku

0

k

L

2
+ 2C

0

kFk

L

~p

0

J

L

~q

0

(2.5.36)

It is 
lear that the above argument applies on any subinterval J =

[t

0

; t

1

℄ � I on whi
h a 
ondition like (2.5.34) holds; of 
ourse, we will obtain

an estimate of the form

kvk

L

p

J

L

q

� 2C

0

kv(t

0

)k

L

2
+ 2C

0

kFk

L

~p

0

J

L

~q

0

: (2.5.37)

Noti
e also that (2.5.37) implies in parti
ular

kv(t

1

)k

L

2
� 2C

0

kv(t

0

)k

L

2
+ 2C

0

kFk

L

~p

0

J

L

~q

0

: (2.5.38)

Now we 
an partition the interval I (bounded or unbounded) in a �nite

number of subintervals on whi
h 
ondition (2.5.34) holds. Applying indu
-

tively the estimates (2.5.37) and (2.5.38) we easily obtain (2.5.11) and the


laimed estimate for the Stri
hartz 
onstant.

The last remark (2.5.12) 
on
erning the 
onservation of energy 
an be

proved by approximation as follows: let V

j

(t; x) be a sequen
e of real valued

smooth potentials, 
ompa
tly supported in x, and let v

j

be the 
orrespond-

ing solutions; then the di�eren
es w

j

= v � v

j

satisfy (in suitable integral

sense)

i�

t

w

j

��w

j

+ V w

j

= (V � V

j

)v

j

� F

j

:

Now we observe that the smooth solutions v

j

have a 
onserved energy; more-

over, we 
an 
hoose the approximating potentials V

j

in su
h a way that they


onverge to V in L

r

I

L

s

and their Stri
hartz 
onstants do not ex
eed the above


onstru
ted 
onstant for V . Indeed, if we 
an partition I in a �nite set of

subintervals satisfying (2.5.34), we 
an 
hoose exa
tly the same subintervals

for ea
h V

j

provided we 
onstru
t V

j

by a 
onvolution with standard molli-

�ers, so that their Lebesgue norm does not in
rease. In 
on
lusion, the v

j

satisfy uniform Stri
hartz estimates, and this implies that the nonhomoge-

neous terms F

j

= (V � V

j

)v

j

tend to 0 in the (dual) admissible spa
es, by

estimates identi
al to the above ones. Thus in parti
ular w

j

! 0 in L

1

L

2

and this shows that also v(t; x) satis�es the 
onservation of energy.

2.5.3 Case B: r 2 [1; 2℄

The method in this 
ase is quite similar to the above one, but instead of

(2.5.31) we use the estimate

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV vk

L

r

J

L

2s

s+2

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.39)
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where (p; q) and (~p; ~q) are arbitrary admissible pairs, while the pair (r; 2s=(s+

2)) is the dual of (r

0

; 2s=(s� 2)) and this last pair is admissible sin
e

1

r

0

+

n

2

�

s� 2

2s

=

n

2s

+

n

2

�

s� 2

2s

=

n

4

where we have used the assumption 1=r + n=(2s) = 1; noti
e also that

r 2 [1; 2℄ and hen
e 2s=(s+ 2) 2 [1; 2℄ too.

Thus by H�older's inequality we obtain

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV k

L

r

J

L

s

kvk

L

1

J

L

2
+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.40)

and 
hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)) and pro
eeding as above we

arrive at

k�(v)k

Z

� C

0

ku

0

k

L

2
+

1

2

kvk

Z

+ C

0

kFk

L

~p

0

J

L

~q

0

: (2.5.41)

From this point on, the proof is identi
al to the �rst 
ase.

2.5.4 Proof of Theorem 2.5.2

The proof follows the same lines as the pre
eding one; indeed, the 
ontinuity

in time of the potential allows to 
onsider V (t; x) as a small perturbation of

V (t

0

; x) for t near t

0

.

Let J = [0; Æ℄ be a small interval, and 
onsider again the spa
e

Z = C

J

L

2

\ L

2

J

L

2n

n�2

; kvk

Z

:= max

�

kvk

L

1

J

L

2
; kvk

L

2

J

L

2n

n�2

�

:

On Z we 
onstru
t a map � de�ned as follows:

�(v) = e

itH

u

0

+

Z

t

0

e

i(t�s)H

[F (s)�W (s)v(s)℄ ds; (2.5.42)

where

H = �� V (0; x); W (t; x) = V (t; x)� V (0; x): (2.5.43)

We have used the assumption that V (0; x) is of Stri
hartz type (De�nition

2.5.2) to make meaningful the operators e

itH

; on the other hand this implies

also that the full Stri
hartz estimates (2.5.5), (2.5.6) hold for the group e

itH

,

hen
e we 
an write

k�(v)k

L

p

J

L

q

� C ku

0

k

L

2
+ C kWvk

L

2

J

L

2n

n+2

+ C kFk

L

~p

0

J

L

~q

0

(2.5.44)

for all admissible pairs (p; q) and (~p; ~q). Noti
e that here C is a 
onstant

depending on V and the interval J only, and 
an be assumed to be non

in
reasing when Æ # 0. This implies

k�(v)k

L

p

J

L

q

� C ku

0

k

L

2
+C kWk

L

1

J

L

n=2

kvk

L

2

J

L

2n

n�2

+C kFk

L

~p

0

J

L

~q

0

(2.5.45)
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and if Æ is so small that

C kWk

L

1

J

L

n=2

�

1

2

(2.5.46)

whi
h is possible by the 
ontinuity of V (t; x) as an L

n=2

-valued fun
tion, we

arrive at

k�(v)k

Z

� C ku

0

k

L

2
+

1

2

kvk

Z

+ C kFk

L

~p

0

J

L

~q

0

: (2.5.47)

This guarantees, as above, the existen
e of a unique lo
al solution belonging

to the spa
e Z and satisfying the Stri
hartz estimates with some 
onstant

C(0) for some time interval [0; Æ).

The same argument 
an be applied near ea
h point t

0

2 I. More pre-


isely, let J = [t

0

� Æ; t

0

+ Æ℄ \ I and assume Æ > 0 is so small that the

potential

W (t; x) = V (t; x)� V (t

0

; x)

satis�es

kW (t; �)k

L

n=2

� (2C(V (t

0

; x)))

�1

for t 2 J; (2.5.48)

where C(V (t

0

; x)) is the Stri
hartz 
onstant 
orresponding to the potential

V (t

0

; x) and relative to the interval [0; t

0

+1℄. Then we may argue as above,

and we obtain that for any given initial time t

1

2 J and for any f 2 L

2

, the

Cau
hy problem

i�

t

u�Hu = F (t; x)�W (t; x)u; u(t

1

) = f; H = �� V (t

0

; x)

(interpreted as usual in integral form via the group e

itH

) has a unique solu-

tion in Z = C

J

L

2

\ L

2

J

L

2n

n�2

, whi
h satis�es the Stri
hartz estimates

k�(v)k

Z

� 2C(t

0

) ku

0

k

L

2
+ 2C(t

0

) kFk

L

~p

0

J

L

~q

0

: (2.5.49)

for some 
onstant C(t

0

) depending on the point t

0

but not on the initial

time t

1

2 J .

Now we may pro
eed by a 
ontinuation argument as follows. Extend

the lo
al solution 
onstru
ted on [0; Æ℄ to a maximal interval [0; T

�

[; i.e.,


onsider the union of all intervals [0; Æ℄ on whi
h a solution u 2 C([0; Æ℄;L

2

)\

L

2

(0; Æ;L

2n

n�2

) exists and satis�es (for all admissible pairs) the Stri
hartz

estimates with some 
onstant C

Æ

. Assume by 
ontradi
tion that T

�

< T .

Then the above lo
al argument applied at t

0

= T

�

on a suitable interval of

the form J = [T

�

� "; T

�

+ "℄ shows that we 
an pat
h the maximal solution

and extend it to [0; T

�

+ "℄. Moreover, we 
laim that the extended solution

satis�es the Stri
hartz estimates on [0; T

�

+ "℄: indeed, 
hosen any t

1

su
h
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that T

�

� " < t

1

< T

�

, by 
onstru
tion we see that the estimates hold both

on I

1

= [0; t

1

℄, with initial data at t = 0:

kuk

L

p

I

1

L

q

� C

0

ku(t

0

)k

L

2
+ C

0

kFk

L

~p

0

I

1

L

~q

0

; (2.5.50)

and on J = [T

�

� "; T

�

+ "℄, with initial data at t = t

1

:

kuk

L

p

J

L

q

� C

0

ku(t

1

)k

L

2
+ C

0

kFk

L

~p

0

J

L

~q

0

; (2.5.51)

for a suitable 
onstant C

0

. Sin
e ku(t

1

)k

L

2

an be estimated exa
tly by

(2.5.50) (p = 2; q = 1), we easily 
on
lude the proof of our 
laim. This


ontradi
ts the assumption T

�

< T and we obtain that T

�

= T .

The modi�
ations required to prove the �nal remark 
on
erning the 
ase

I = [0;1[, and also Remark 2.5.4, are obvious.

2.5.5 Proof of the 
ounterexamples

An eigenvalue problem.

The �rst step in our 
onstru
tion requires to �nd a potential V (x) su
h

that the operator ��+ V (x) has a negative eigenvalue, i.e., su
h that the

equation

��u

0

+ V (x)u

0

+ 


2

u

0

= 0 (2.5.52)

admits a solution u

0

2 H

1

for some 
 > 0. There are many results on this

problem, and in general there is a 
lear 
onne
tion between the number of

su
h eigenvalues and the size of the negative part of V , in a suitable norm.

This is true both in the negative sense (expli
it bounds on the number of

the eigenvalues) and in the positive sense, whi
h is our main fo
us here.

For instan
e, it is known that (see [85℄) if V (x) 2 L

n=2

(R

n

) satis�es the

assumption

the set fx 2 R

n

: V (x) < 0g has a positive measure, (2.5.53)

then there exists �

0

> 0 su
h that, for all � > �

0

, the equation

��u

0

+ �V (x)u

0

+ 


2

u

0

= 0 (2.5.54)

admits at least a solution f 2 H

1

for some 
 > 0. It 
an also be proved that

the dimension of the eigenspa
e grows to in�nity as � tends to in�nity.

However, for our purposes here we need only a mu
h less pre
ise result,

whi
h 
an be proved dire
tly by an elementary variational argument. Both

this result and the proof we give here are 
ompletely standard, but we prefer

to in
lude it here for the 
onvenien
e of the reader. Indeed, take any smooth
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ompa
tly supported fun
tion w(x) su
h that w(x

0

) > 0 at least in one point

x

0

. Then 
onsider the minimization problem with a 
onstraint

min

f2M

Z

R

n

�

jrf j

2

+ jf j

2

�

dx on M =

�

f 2 H

1

:

Z

R

n

w(x) jf j

2

dx = 1

�

:

(2.5.55)

Note that M is not empty, thanks to the assumption w(x

0

) > 0. The

existen
e of a solution to problem (2.5.55) 
an be proved easily by a standard


ompa
tness argument, sin
e we 
an work on the (bounded) support of w(x).

On the other hand, the Euler-Lagrange equation of the problem is

��f + f = �w(x)f (2.5.56)

(where � is a Lagrange multiplier); hen
e, 
hoosing W (x) = ��w(x) and

u

0

= f , we see that u

0

solves the equation

��u

0

+W (x)u

0

+ u

0

= 0 (2.5.57)

and hen
e

u(t; x) = e

�it

u

0

(x) solves iu

t

��u+W (x)u = 0: (2.5.58)

Note also that a trivial bootstrapping argument gives u

0

2 H

s

for all s > 0.

This 
on
ludes the proof of Theorem 2.5.3, part (i).

Proof of Theorem 2.5.3, 
ase 1=r + n=(2s) < 1, r 6=1

We start from the fun
tion (2.5.58) and we apply the standard res
aling

u(t; x) 7! u

�

(t; x) = u(�

2

t; �x) � e

�i�

2

t

u

0

(�x): (2.5.59)

Then the fun
tion u

�

solves globally

i�

t

u

�

��u

�

+W

�

(x)u

�

= 0; W

�

(x) = �

2

W (�x): (2.5.60)

Consider now two monotone sequen
es of positive real numbers

0 = T

0

< T

1

< � � � < T

k

" +1; 0 < �

k

# 0; k = 0; 1; 2; 3; : : :

(2.5.61)

and de�ne a potential V (t; x) on [0;+1[�R

n

by pat
hing the potentials V

�

as follows:

V (t; x) =W

�

k

(x) for t 2 [T

k

; T

k+1

[; k = 0; 1; 2; : : : : (2.5.62)

Thus u

�

k

solves the equation

i�

t

u��u+ V (t; x)u = 0 (2.5.63)
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on the interval [T

k

; T

k+1

[.

Choose now r and s satisfying

1

r

+

n

2s

< 1; r 6=1; (2.5.64)

and assume we 
an 
hoose the parameters T

k

; �

k

in su
h a way that

kV k

L

r

L

s

� kWk

L

s

X

k�0

(T

k+1

� T

k

)

1=r

�

2�n=s

<1; (2.5.65)

then V (t; x) 2 L

r

([0;+1[;L

s

). On the other hand by Theorem 2.5.1 we 
an

extend (uniquely) u

�

k

to a global solution of (2.5.63) in C([0;+1[;L

2

(R

n

))

whi
h we shall denote by u

k

(t; x). Noti
e that, by the same theorem, we

have

ku

k

(t; �)k

L

2 � 
onst. � ku

�

k

(T

k

)k

L

2 � �

�n=2

ku

0

k

L

2 (2.5.66)

re
alling the expli
it expression (2.5.59) of u

�

. On the other hand, we 
an

write

ku

k

k

L

p

(R;L

q

)

� ku

k

k

L

p

(T

k

;T

k+1

;L

q

)

� ku

�

k

k

L

p

(T

k

;T

k+1

;L

q

)

� (T

k

�T

k+1

)

1=p

�

�n=q

k

ku

0

k

L

q

(2.5.67)

by an elementary 
al
ulation. The Stri
hartz esimates are violated when

ku

k

k

L

p

(R;L

q

)

ku

k

(0)k

L

2

is unbounded, (2.5.68)

and this holds provided the parameters T

k

; �

k

satisfy the 
ondition

ku

k

k

L

p

(R;L

q

)

ku

k

(0)k

L

2

�

ku

�

k

k

L

p

(T

k

;T

k+1

;L

q

)

ku

�

k

(0)k

L

2

�

ku

0

k

L

q

ku

0

k

L

2

(T

k

� T

k+1

)

1=p

�

n

2

�

n

q

k

!1:

(2.5.69)

In 
on
lusion, we only need to adjust the parameters (2.5.61) so to satisfy

the two 
onditions (2.5.65) and (2.5.69):

X

k�0

(T

k+1

� T

k

)

1=r

�

2�n=s

k

<1; (T

k

� T

k+1

)

1=p

�

n

2

�

n

q

k

!1; (2.5.70)

given an admissible pair (p; q) with p 6= 1 and (r; s) as in (2.5.64). With

the spe
ial 
hoi
es

T

0

= 0; T

k+1

= T

k

+ k

�

; �

0

= 1; �

k

= k

��=2

; k = 1; 2; 3; : : :

(2.5.71)

for some �; � > 0, the 
onditions redu
e to

�

r

+ �

n

2s

< � � 1;

�

p

+ �

n

2q

> �

n

4

: (2.5.72)



106

Sin
e (p; q) is admissible, the se
ond 
ondition simpli�es to � > �, and

rearranging the �rst one we are redu
ed to

�� �

r

+ �

�

1

r

+

n

2s

�

< � � 1; � > �: (2.5.73)

The term in bra
kets is smaller then 1 by assumption, hen
e if we 
hoose

any

� > � >

�

1�

�

1

r

+

n

2s

��

�1

(2.5.74)

with � 
lose enough to �, we 
on
lude the proof of the �rst part of Theorem

2.5.2, (ii).

2.5.6 Proof of Theorem 2.5.3, 
ase 1=r + n=(2s) > 1, r 6=1

As in 
ase 2.5.5 the proof is based on a res
aling argument. First of all

we prove part (ii). Consider again the res
aled solution (2.5.59) whi
h

solves equation (2.5.60) globally with a smooth 
ompa
tly supported po-

tential W

�

(x) = �

2

W (�x). Now, take two monotone sequen
es of positive

real numbers

1 = �

0

< �

1

< � � � < �

k

" +1; 0 < Æ

k

# 0; k = 0; 1; 2; 3; : : : (2.5.75)

and de�ne a potential V (t; x) on [0;+1[�R

n

as follows:

V (t; x) =

(

W

�

k

(x) if t 2 [k; k + Æ

k

℄, x 2 R

n

,

0 elsewhere.

(2.5.76)

Note that V (t; x) 2 L

1

I

L

1

for any bounded time interval I, while globally

kV k

L

r

L

s

� kWk

L

s

X

k�0

Æ

1=r

k

�

2�n=s

k

: (2.5.77)

As above, the fun
tion u

�

k

solves the equation

i�

t

u��u+ V (t; x)u = 0 (2.5.78)

on the interval t 2 [k; k + Æ

k

℄, and 
an be extended to a global solution

u

k

(t; x) of the same equation thanks to the existen
e part of Theorem 2.5.1

(re
all that V 2 L

1

I

L

1

). Moreover, u

k

has a 
onserved energy

ku

k

(t; �)k

L

2
� ku

k

(k; �)k

L

2
� �

�n=2

ku

0

k

L

2
: (2.5.79)

Then, as before, we 
an estimate

ku

k

k

L

p

(R;L

q

)

ku

k

(0)k

L

2

�

ku

�

k

k

L

p

(k;k+Æ

k

;L

q

)

ku

�

k

(0)k

L

2

�

ku

0

k

L

q

ku

0

k

L

2

Æ

1=p

k

�

n

2

�

n

q

k

: (2.5.80)
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Again, in order to violate the Stri
hartz estimates for an admissible 
ouple

(p; q) and the potential V 2 L

r

L

s

, it is suÆ
ient to satisfy the two 
onditions

X

k�0

Æ

1=r

k

�

2�n=s

k

<1; Æ

1=p

k

�

n

2

�

n

q

k

!1: (2.5.81)

With the spe
ial 
hoi
es

Æ

k

= k

��

; �

k

= k

�=2

; (2.5.82)

the parameters �; � > 0 to be pre
ised, we are redu
ed to

�

�

r

+

�

1�

n

2s

�

� < �1; �

�

p

+

�

n

4

�

n

2q

�

� > 0: (2.5.83)

Sin
e (p; q) is an admissible pair, the se
ond 
ondition is equivalent to � < �

and we 
an rewrite the 
onditions as

�� �

r

+

�

1

r

+

n

2s

�

� > � + 1; � < �: (2.5.84)

Re
all now that we are 
onsidering the 
ase

1

r

+

n

2s

> 1; (2.5.85)

hen
e we may 
hoose any � su
h that

� >

��

1

r

+

n

2s

�

� 1

�

�1

(2.5.86)

and 
hoosing then any � < � 
lose enough to �, we easily satisfy the 
ondi-

tions (2.5.84).

This 
on
ludes the proof of part (ii) of Theorem 2.5.3.

Part (iii) 
an be proved by a simple modi�
ation of the pre
eding proof.

Indeed, 
onsider again the sequen
e Æ

k

= k

��


onstru
ted above, and noti
e

that it is not restri
tive to assume that � > � > 1. Thus the series

P

Æ

k


onverges, and the sequen
e of partial sums

T

k

=

k

X

j=0

Æ

k

(2.5.87)

is positive, stri
tly in
reasing, and 
onverges to

lim

k!1

T

k

= T �

X

k�0

Æ

k

: (2.5.88)
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We 
an now modify the de�nition (2.5.76) of the potential V (t; x) as follows:

V (t; x) =

(

W

�

k

(x) if t 2 [T

k

; T

k

+ Æ

k

℄, x 2 R

n

,

0 if t 2 [0; Æ

0

[.

(2.5.89)

This de�nes a potential on I � R

n

= [0; T ℄� R

n

, whose L

r

I

L

s

is given again

by (2.5.77). The remaining arguments of the pre
eding proof apply without

modi�
ation.

The proof of Theorem 2.5.3 is 
on
luded.

2.5.7 Proof of Proposition 2.5.4

The main tool of the proof is the pseudo
onformal transform

u(t; x) 7! U(T;X) = e

�i

jXj

2

4T

T

�

n

2

u

�

�

1

T

;

X

T

�

(2.5.90)

whi
h takes a solution u(t; x) of the S
hr�odinger equation in the variables

t; x into another solution of the same equation, in the variables T;X. If we

apply the transform to the solution (2.5.58), we obtain a fun
tion U(T;X)

whi
h solves

i�

T

U ��

X

U + V (T;X)U = 0; U(1;X) = e

i�ijXj

2

u

0

(X); (2.5.91)

where the potential V (T;X) is given by

V (T;X) =

1

T

2

W

�

X

T

�

: (2.5.92)

It is easy to 
ompute expli
itly the norm of V on the interval [0; 1℄:

kV k

L

r

(Æ;1;L

s

)

=

�

Z

1

Æ

T

r(n=s�2)

dT

�

1=r

kWk

L

s

<1 (2.5.93)

and this integral 
onverges sin
e our assumption (2.5.29) on the pair (r; s)

is equivalent to

r

�

n

s

� 2

�

> �1:

On the other hand, the L

p

I

L

q

norm of U(T;X) on an interval of the form

[Æ; 1℄ with 0 < Æ < 1 is given by

kUk

L

p

I

L

q

=

�

Z

1

Æ

T

p

�

n

q

�

n

2

�
�

1=p

kWk

L

q

�

�

Z

1

Æ

T

�2

�

1=p

kWk

L

q

(2.5.94)

sin
e admissible pairs (p; q) satisfy p(n=q � n=2) � �2. This implies that

U(T;X) belongs to all L

p

I

L

q

spa
es for I = [Æ; 1℄ for all 0 < Æ < 1, but not

for I = [0; 1℄ where the integral diverges. Note also that

kU(1; �)k

L

2
� ku

0

k

L

2
:

It is suÆ
ient now to apply to U(T;X) a re
e
tion and a translation

in time T to obtain exa
tly the 
ounterexample required in Theorem 2.5.4.

The proof is 
on
luded.



Chapter 3

Equations on non
ompa
t

manifolds with negative


urvature

3.1 Introdu
tion

This 
hapter is devoted to the study of the perturbed S
hr�odinger equation

on some manifolds with 
onstant negative 
urvature:

iu

t

��

M

u+ V (t; x)u = F (t; x);

where ��

M

denotes the Lapla
e-Beltrami operator of the manifold M .

More pre
isely, we shall 
onsider the spe
ial 
ase M = H

n

, the hyperboli


spa
e of dimension n, and the more general 
lass of Damek-Ri

i spa
es.

Our �rst goal is to prove the analogous of Stri
hartz estimates on H

n

;

the e�e
t of negative 
urvature is that in the estimates new weights appears,

in
reasing as jxj ! 1. Thus in the presen
e of negative 
urvature the esti-

mates are stronger than in the 
at 
ase. If a large time dependent potential

V (t; x) is present, we 
an extend the results of Se
tion [lavoro
onNi
ola℄ to

this 
ase, and we 
an prove the Stri
hartz estimates provided V satis�es

a suitable weighted L

r

t

L

s

x


ondition. We then apply these estimates to the

semilinear S
hr�odinger equation with a power nonlinearity depending also

on the spa
e variables:

iu

t

��

H

n

u+ V (t; x)u = g(jxj; u):

We prove results of both lo
al and global well-posedness for radial solutions

in the energy 
lass. The behaviour of the nonlinearity for whi
h we have

global existen
e is similar to the 
at 
ase, but here we 
an allow a growth of

the nonlinear term as jxj ! 1, whi
h is more general than in the 
at 
ase.

109
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In the next se
tion we investigate the 
ase of Damek-Ri

i spa
es S, and

we 
onsider the free S
hr�odinger and wave equations

iu

t

��

S

u = F (t; jxj); u

tt

��

S

u = F (t; jxj):

For these equations, in the radial 
ase, we prove generalized Stri
hartz esti-

mates with weights; again, these estimates are stronger than the 
orrespond-

ing ones on R

n

, as an e�e
t of 
urvature. We noti
e also that in the 
ase

of the three dimensional hyperboli
 spa
e H

3

we reobtain (with a simpler

proof) a weighted dispersive estimate proved by Bani
a in [5℄.

The results of this 
hapter are 
ontained in the papers [76℄ and [77℄.

3.2 Stri
hartz estimates

For the 
onvenien
e of the reader, we 
olle
t here the Stri
hartz estimates

for the S
hr�odinger and the wave equations on R

n

, whi
h we shall extend

to more general manifolds in the following se
tions. Standard referen
es are

[98℄, [51℄, and [66℄.

The Stri
hartz estimates for the S
hr�odinger equation on R

n


an be

written in the following form:

ke

it�

fk

L

p

(I;L

q

(R

n

))

� kfk

L

2

(R

n

)

(3.2.1)

for any f 2 L

2

, any (bounded or unbounded) time interval I � R, and for

all sharp

n

2

-admissible 
ouples (p; q):

1

p

+

n

2q

=

n

4

; p; q � 2 and (p; q) 6= (2;1): (3.2.2)

The 
ase (p; q) = (2;

2n

n�2

) is 
alled the endpoint; estimate (3.2.1) is true also

at the endpoint for n � 3. When n = 2 the endpoint is exa
tly (p; q) =

(2;1); in this 
ase the estimate is still true when f is a radial fun
tion, but

is known to be false in general.

The equivalent nonhomogeneous form of (3.2.1) is













Z

t

0

e

i(t�s)�

F (s; x)ds













L

p

(I;L

q

(R

n

))

� CkFk

L

~p

0

(I;L

~q

0

(R

n

))

(3.2.3)

for all (p; q) and (~p; ~q) admissible, ~p

0

and ~q

0

being dual to p, q respe
tively.

The Stri
hartz estimates for the wave equation on R

n

��

2

t

u+�u = F (t; x); u(0; x) = u

0

(x); �

t

u(0; x) = u

1

(x); (3.2.4)

under the assumption that the dimensional analysis (or "gap") 
ondition

1

p

+

n

q

=

n

2

� 
 =

1

~p

0

+

n

~q

0

� 2; (3.2.5)
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holds, are the following

kuk

L

p

t

L

q

x

� Cku

0

k

_

H




+ Cku

1

k

_

H


�1

+ CkFk

L

~p

0

t

L

~q

0

x

; (3.2.6)

for any data u

0

2

_

H




, u

1

2

_

H


�1

, F 2 L

~p

0

I

L

~q

0

, any (bounded or unbounded)

time interval I � R, and for all

n�1

2

-admissible 
ouples (p; q), (~p; ~q), i.e. su
h

that

1

p

+

n� 1

2q

�

n� 1

4

; p 2℄2;1℄ and q 2 [2;

2(n� 1)

n� 3

�

; n � 3: (3.2.7)

Estimate (3.2.6) is true also at the endpoint (p; q) = (2;

2(n�1)

n�3

) for n � 4,

but is false when n = 3.

3.3 Hyperboli
 spa
es

We 
onsider here the S
hr�odinger equation on the hyperboli
 spa
e

(

i�

t

u+�

H

n

u = 0;

u(0; x) = f(
); 
 2 H

n

:

(3.3.1)

See the following se
tion for the main properties of H

n

and its Lapla
e-

Beltrami operator �

H

n

. The solution u 
an be represented using the unitary

operators e

it�

H

n

as

u(t;
) = e

it�

H

n

f: (3.3.2)

It is natural to expe
t that the 
urvature of the manifold has some in
u-

en
e on the dispersive properties. Indeed, in [5℄ the following estimate was

proved for u(t;
) = e

it�

H

n

f , n � 3 odd,

ju(t;
)j � C

 

1

jtj

n

2

+

1

jtj

3

2

!

Z

H

3

jf(


0

)j

�

�

sinh�

�

n�1

2

d


0

; (3.3.3)

where by � we denoted the hyperboli
 distan
e between the points 
 and 


0

.

If we 
ompare (3.3.3) with the standard dispersive estimate on R

n

, we see

that the e�e
t of the 
urvature is a weight in the right hand side of (3.3.3).

If we restri
t to radial data f , then (3.3.3) implies the weighted estimate

w(
)ju(t;
)j �

C

jtj

n

2

Z

H

n

jf(


0

)jw

�1

(


0

)d


0

(3.3.4)

where the weight fun
tion w(
) is given by

w(
) =

sinhd(0;
)

d(0;
)

: (3.3.5)
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Here we denote by 0 the origin of the hyperboli
 spa
e, 0 = (1; 0; : : : ; 0), and

the L

p

spa
e on H

n

as

L

p

= L

p

(H

n

) = L

p

(d
);

where d
 is the measure on the hyperboli
 spa
e H

n

(see the following

se
tion for the pre
ise de�nitions).

Thus by using interpolation and the standard TT

�

argument of [51℄, [66℄,

it is easy to obtain the weighted Stri
hartz estimates

ke

it�

H

n

fk

L

p

(I;L

q

(w

q�2

))

� Ckfk

L

2
; (3.3.6)

whi
h 
an be written also

kw

1�

2

q

e

it�

H

n

fk

L

p

(I;L

q

)

� Ckfk

L

2 : (3.3.7)

Moreover, the TT

�

argument gives the equivalent estimate













w

1�

2

q

Z

t

0

e

i(t�s)�

H

n

F (s;
)ds













L

p

(I;L

q

)

� Ckw

1�

2

~q

0

Fk

L

~p

0

(I;L

~q

0

)

(3.3.8)

for all admissible 
ouples (p; q) and (~p; ~q), for all radial fun
tions f(
) and

F (t;
), and for all unbounded interval I � R when n = 3 and bounded

interval I � R when n > 3 odd.

Consider now a perturbed S
hr�odinger equation of the form

i�

t

u+�

H

n

u+ V (t;
)u = 0: (3.3.9)

This 
an be regarded as a �rst step to the general equation with variable


oeÆ
ients. As it was observed in [39℄, a perturbation of the form (3.3.9) 
an

be treated if we assume that the potential V satis�es suitable integrability

properties in spa
e and time.

The main result of this se
tion is the following

Theorem 3.3.1. Let I be an interval of the form [0;+1[ in three dimension

and [0; T ℄ bounded when n > 3 odd. Let V : I � H

n

! C be a fun
tion su
h

that

kw(
)

�

2

s

V k

L

r

(I;L

s

)

< +1 (3.3.10)

and indi
es r; s satisfying

1

r

+

n

2s

= 1; r 2 [1;1℄ and s 2 [

n

2

;1℄: (3.3.11)

Moreover, assume that

i) V is a radial fun
tion in 
;

ii) in the endpoint 
ase (r; s) = (1;

n

2

), the norm kw

�

4

n

V k

L

1

(I;L

n

2

)

is small

enough.
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Let f 2 L

2

and F su
h that w

1�

2

~q

0

F 2 L

~p

0

(I;L

~q

0

) be two fun
tions radial

in 
, with (~p; ~q) admissible. Then the Cau
hy problem

(

i�

t

u+�

H

n

u+ V (t;
)u = F (t;
);

u(0;
) = f(
);

(3.3.12)

has a unique solution u 2 C(I;L

2

) satisfying for all admissible 
ouples (p; q)

the weighted Stri
hartz estimates

kw

1�

2

q

uk

L

p

(I;L

q

)

� Ckfk

L

2
+ Ckw

1�

2

~q

0

Fk

L

~p

0

(I;L

~q

0

)

(3.3.13)

with p; q; ~p; ~q as above.

When F � 0, the norm kuk

L

2
is 
onstant in time.

Remark 3.3.1. Note that for a singular 
oeÆ
ient V (t;
) it is not 
lear in

general if the Cau
hy problem (3.3.12) is well posed. Thus in the proof

of Theorem 3.3.1 we must also obtain the existen
e and uniqueness of the

solution u(t;
).

Remark 3.3.2. By iterating the argument of the proof, one 
an treat easily

the 
ase of a general potential

V = V

1

+ : : :+ V

k

su
h that ea
h V

1

; : : : ; V

k

satis�es the assumptions of the Theorem 3.3.1

(with possibly di�erent values of r; s).

Remark 3.3.3. In the 
ase of a bounded time interval I = [0; T ℄, we 
an easily

extend the results of Theorem3.3.1 to any potential satisfying (ii) with

1

r

+

n

2s

� 1:

Indeed, by H�older inequality we see immediately that a su
h V satis�es (ii)

for a di�erent 
ouple (~r; ~s).

In the se
ond part of the paper we shall 
onsider an appli
ation of

Theorem3.3.1 to a nonlinear S
hr�odinger equation of the form

i�

t

u+�

H

n

u = g(
; u): (3.3.14)

Noti
e that our weighted estimate (3.4.20) makes it possible to 
onsider


oeÆ
ients g(
; u) whi
h are unbounded as j
j ! 1. Our result is the

following:

Theorem 3.3.2. Let n � 3 odd. Let V be as in Theorem 3.3.1. Assume

g : H

n

� C ! C is su
h that:

(i) Im(g(
; u)) = 0 (gauge invarian
e);
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(ii) if 1 � 
 < 1 +

4

n

, the following inequalities hold:

jg(
; u)j � Cw(
)

4

n

juj




; (3.3.15)

jg(
; v) � g(
; w)j � Cw(
)

4

n

(jvj+ jwj)


�1

jv � wj; (3.3.16)

(iii) g is a radial fun
tion of 
.

Then the Cau
hy problem

(

i�

t

u+�

H

n

u+ V (t;
)u = g(
; u);

u(0;
) = f(
) radial;

(3.3.17)

has a unique global solution u 2 C(R; L

2

) su
h that w

1�

2

q

u 2 L

p

(R;L

q

) for

all admissible 
ouples (p; q).

Moreover, when 
 = 1 +

4

n

the result is still true provided the L

2

norm

of data kfk

L

2
is suÆ
iently small and without hypothesis (i).

3.3.1 Basi
 properties of H

n

We re
all brie
y some properties of the hyperboli
 spa
e that we shall use in

the following. We shall represent H

n

as the upper bran
h of the hyperboloid:

H

n

= f
 = (t; x) 2 R

n+1

; (t; x) = (
osh r; ! sinh r); r � 0; ! 2 S

n�1

g:

This 
an be written in an equivalent way as follows:

H

n

= fx = (x

0

; x

1

; : : : ; x

n

) 2 R

n+1

; x

0

> 0; [x; x℄ = 1g

where [x; y℄ denotes the inner produ
t on R

n+1

[x; y℄ = x

0

y

0

� x

1

y

1

� � � � � x

n

y

n

:

If we restri
t to H

n

the Lorentz metri
 on R

n+1

dl

2

= �dt

2

+ dx

2

we obtain the following riemannian metri
 on the hyperboli
 spa
e

ds

2

= dr

2

+ sinh

2

rd!

2

as it follows immediately from the relations

dt = sinh rdr; dx = 
osh r!dr + sinh rd!:

The distan
e between two points in this metri
 
an be written expli
itly,

using the above de�ned inner produ
t

d(
;


0

) = 
osh

�1

([
;


0

℄):
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A useful spe
ial 
ase is the distan
e of a point from the origin 0 whi
h 
or-

responds to (x

0

; x

1

; : : : ; x

n

) = (1; 0; : : : ; 0) or equivalently to (t; r) = (1; 0):

d(
; 0) = d((
osh r; sinh r!); (1; 0)) = 
osh

�1

(
osh r � 0) = r:

Finally, the 
orresponding measure 
an be written in the 
oordinates r; ! as

follows:

Z

H

n

f(
)d
 =

Z

1

0

Z

S

n�1

f(r; !) sinh

n�1

rdrd!:

The Lapla
e-Beltrami operator on the hyperboloid has a simple expres-

sion in terms of the lapla
e operator on the sphere:

�

H

n

= �

2

r

+ (n� 1)


osh r

sinh r

�

r

+

1

sinh

2

r

�

S

n�1
:

3.3.2 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 follows 
losely the ideas of [39℄. For the bene�t of

the reader we give here a 
omplete proof, with the ne
essary modi�
ations.

In the following for simpli
ity we write only � instead of �

H

n

. We shall

also introdu
e the notation

L

p

J

L

q

= L

p

(J ;L

q

(d
))

for the mixed spa
es on the produ
t J � H

n

, where J is any time interval

[0;1[ when n = 3, and [0; T ℄ bounded when n > 3 odd.

We distinguish two 
ases, a

ording to the value of r 2 [1;1[.

3.3.3 Case A: r 2 [2;1[

Consider a small interval J = [0; Æ℄ and the norm

kvk

Z

:= max

�

kvk

L

1

J

L

2
; kw(
)

2

n

vk

L

2

J

L

2n

n�2

�

;

note that

1�

2

r

=

2

n

for r =

2n

n� 2

:

Let Z be the Bana
h spa
e

Z = ff 2 C

J

L

2

: kfk

Z

<1g

with the norm kvk

Z

. Then, by interpolation, Z is embedded in all admissible

spa
es L

p

J

L

q

.

For any v(t;
) 2 Z we de�ne the mapping

�(v) = e

it�

H

n

f +

Z

t

0

e

i(t�s)�

H

n

[F (s)� V (s)v(s)℄ ds: (3.3.18)
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A dire
t appli
ation of the weighted Stri
hartz estimates (3.3.8) gives

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2 + C

0

kw

1�

2

q

0

0

V vk

L

p

0

0

J

L

q

0

0

+ C

0

kw

1�

2

q

0

Fk

L

~p

0

J

L

~q

0

(3.3.19)

for all admissible (p; q), (p

0

; q

0

), (~p; ~q). Now, by H�older's inequality we have

kw

1�

2

q

0

0

V vk

L

p

0

0

J

L

q

0

0

� kw

1�

2

q

0

0

�

2

n

V k

L

r

J

L

s

kw

2

n

vk

L

2

J

L

2n

n�2

and this gives

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2
+C

0

kw

�

2

s

V k

L

r

J

L

s

kw

2

n
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provided we 
hoose p

0

; q

0

su
h that

1

p

0

=

1

2

�

1

r

;

1

q

0

=

n+ 2

2n

�

1

s

:

Indeed, our 
hoi
e gives in parti
ular (see the weight for V )

1�

2

q

0

0

�

2

n

= �

2

s

:

Note that

1

p

0

+

n

2q

0

=

1

2

+

n+ 2

4

�

�

1

r

+

n

2s

�

�

1

2

+

n+ 2

4

� 1 �

n

4

by our assumptions on r; s, and moreover

r 2 [2;1[ =) p

0

2 [2;1[

so that our 
hoi
e of p

0

; q

0

always gives an admissible pair in the 
ase under


onsideration.

In parti
ular, 
hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)), we obtain
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2
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kw
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(3.3.21)

Thus �(v) belongs to all the admissible weighted spa
es L

p

J

L

q

, and to

prove that �(v) belongs to Z it remains only to show that u is 
ontinuous

with values in L

2

. But this is an immediate 
onsequen
e of the following

simple remark:

Remark 3.3.4. Let G be su
h that w

1�

2

b

0

G(t;
) 2 L

a

0

J

L

b

0

with (a; b) admis-

sible. Then the fun
tion

~w(t;
) =

Z

t

0

e

i(t�s)�

H

n

G(s) ds
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belongs to C

J

L

2

. Indeed, this is 
ertainly true if we know in addition that G

is a smooth fun
tion, 
ompa
tly supported in 
 for ea
h t. If we approximate

G by a sequen
e of su
h fun
tions G

j

so that w

1�

2

b

0

G

j


onverges to w

1�

2

b

0

G

in the L

a

0

J

L

b

0

norm, the Stri
hartz estimates imply that the 
orresponding

fun
tions w

j


onverge in L

1

L

2

, when
e the 
laim follows.

We have thus 
onstru
ted a mapping � : Z ! Z. Assume now the

length Æ of the interval J is 
hosen so small that

C

0

kw

�

2

s

V k

L

r

J

L

s

�

1

2

; (3.3.22)

this is 
ertainly possible sin
e r < 1. With this 
hoi
e we obtain imme-

diately two 
onsequen
es: �rst of all, the mapping � is a 
ontra
tion on Z

and hen
e has a unique �xed point v(t;
) whi
h is the required solution;

se
ond, v satis�es

kw
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q
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p
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� C
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2
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0
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when
e we obtain
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(3.3.24)

It is 
lear that the above argument applies on any subinterval J =

[t

0

; t

1

℄ � I on whi
h a 
ondition like (3.3.22) holds; of 
ourse, we will obtain

an estimate of the form

kw

1�

2

q

vk

L

p

J

L

q

� 2C

0

kv(t
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L

2
+ 2C

0
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: (3.3.25)

Noti
e also that (3.3.25) implies in parti
ular

kw

1�

2

q

v(t

1

)k

L

2
� 2C

0
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L

2
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kw
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L
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L

~q

0

: (3.3.26)

Now we 
an partition the interval I (bounded or unbounded) in a �-

nite number of subintervals on whi
h 
ondition (3.3.22) holds. Applying

indu
tively the estimates (3.3.25) and (3.3.26) we easily obtain (3.3.13).

The last remark 
on
erning the 
onservation of energy 
an be proved by

approximation as follows: let V

j

(t;
) be a sequen
e of real valued smooth

potentials, 
ompa
tly supported in 
, and let v

j

be the 
orresponding solu-

tions; then the di�eren
es w

j

= v � v

j

satisfy (in suitable integral sense)

i�

t

w

j

��

H

n

w

j

+ V w

j

= (V � V

j

)v

j

� F

j

:

Now we observe that the smooth solutions v

j

have a 
onserved energy; more-

over, we 
an 
hoose the approximating potentials V

j

in su
h a way that

w

�

2

s

V

j

they 
onverge to w

�

2

s

V in L

r

I

L

s

and their Stri
hartz 
onstants do
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not ex
eed the above 
onstru
ted 
onstant for V . Indeed, if we 
an partition

I in a �nite set of subintervals satisfying (3.3.22), we 
an 
hoose exa
tly the

same subintervals for ea
h V

j

provided we 
onstru
t V

j

by a 
onvolution

with standard molli�ers, so that their Lebesgue norm does not in
rease. In


on
lusion, the v

j

satisfy uniform Stri
hartz estimates, and this implies that

the nonhomogeneous terms F

j

= (V � V

j

)v

j

tend to 0 in the (dual) admis-

sible spa
es, by estimates identi
al to the above ones. Thus in parti
ular

w

j

! 0 in L

1

L

2

and this shows that also v(t;
) satis�es the 
onservation

of energy.

3.3.4 Case B: r 2 [1; 2℄

The method in this 
ase is quite similar to the above one, but instead of

(3.3.19) we use the estimate
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(3.3.27)

where (p; q) and (~p; ~q) are arbitrary admissible pairs, while the pair (r; 2s=(s+

2)) is the dual of (r

0

; 2s=(s� 2)) and this last pair is admissible sin
e

1

r

0

+

n

2

�

s� 2

2s

=

n

2s

+

n

2

�

s� 2

2s

=

n

4

where we have used the assumption 1=r + n=(2s) = 1; noti
e also that

r 2 [1; 2℄ and hen
e 2s=(s+ 2) 2 [1; 2℄ too.

Thus by H�older's inequality we obtain
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(3.3.28)

and 
hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)) and pro
eeding as above we

arrive at
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Z

� C

0

kfk

L

2 +

1

2

kvk

Z

+ C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

: (3.3.29)

>From this point on, the proof is identi
al to the �rst 
ase.

3.3.5 Case C: (r; s) = (1; n=2)

In the last 
ase we assume the potential to be small in the following sense:
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L
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< �:

The proof is similar to Case A, with the same 
hoi
e of the indi
es; we obtain
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and by the smallness assumption we 
an write
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:

(3.3.31)

Choosing (p; q) = endpoint we easily 
on
lude the proof of the Theorem.

3.3.6 Proof of Theorem 3.3.2

We begin by the 
riti
al 
ase 
 = 1+ 4=n. We de�ne �(v) as the solution u

of the Cau
hy problem

(

i�

t

u+�

H

n

u+ V (t;
)u = g(
; v);

u(0;
) = f(
) radial:

(3.3.32)

By Theorem 3.3.1 the following weighted Stri
hartz estimate holds
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with p; q; ~p; ~q as above. By (3.3.15) we have
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and we obtain that
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where

� =

1




�

1�

2

~q

0

+

4

n

�

:

We have to require the admissibility of 
ouples (p; q) and (~p; ~q); moreover we

must 
hoose ~p, ~q in su
h a way that the last norm in the above inequality

is the same as the norm at the left hand side. We 
an express all these


onditions by the following system:

8

>

>

>

>

<

>

>

>

>

:

~p

0


 = p;

~q

0


 = q;

1

p

+

n

2q

=

n

4

; p; ~p 2 [2;1℄

1

~p

+

n

2~q

=

n

4

; q; ~q 2 [2;

2n

n�2

℄;

(3.3.35)

i.e.

1

~p

+

n

2~q

= 1�




p

+

n

2

(1�




q

) = 


n

4

+ 1�

n

2

=

n

4

: (3.3.36)

Now, if we know that


 = 1 +

4

n
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we see that we 
an 
hoose admissible 
ouples (p; q) and (~p; ~q) as above.

Moreover, if we substitute in the de�nition of � the above relations, we

obtain

� =

1




�

1 +

4

n

�

2

~q

0

�

= 1�

2

q

and thus we have proved that � maps the Bana
h spa
e X with norm

kvk

X

:= kw

1�

2

q

vk

L

p

(I;L

q

)

into itself.

We show now that � is a 
ontra
tion on the spa
e X. Let v

1

; v

2

2 X

su
h that �(v

i

) = u

i

; i = 1; 2; then we 
an apply the weighted Stri
hartz

estimate to the di�eren
e v

1

� v

2

and we get the following:
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:

By (3.3.16) we have
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and as before we obtain
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If we assume now that v

i

2 X su
h that kv

i

k

X

< ", with " small enough,

and also that kfk

L

2
< Æ, by (3.3.34) we note that

kuk

X

� CÆ + C"




= CÆ + C"("


�1

) < ";

provided "; Æ are su
h that C"
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1

2

and CÆ <

"

2

. We have also
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provided " is so small that 2C"


�1

<

1

2

. Thus, if initial data are small

i.e. kfk

L

2
< Æ, the map � is a 
ontra
tion and this implies that there

exists a unique solution u(t;
) of the Cau
hy problem (3.3.2) su
h that

w

1�

2

q

u(t;
) 2 L

p

(I;L

q

) with a admissible 
ouple (p; q) when 
 = 1+

4

n

: As

observed above one see easily that this is the unique solution in u(t;
) 2

C(R;L

2

) with radial initial data in L

2

:

In the sub
riti
al 
ase, i.e., when 
 < 1 +

4

n

, we pro
eed as above and

using the H�older inequality in time on I = [0; T ℄ we 
an prove that � is a

map from X

M

:= fw

1�

2

q

v 2 L

p

(I;L

q

) : kw

1�

2

q

vk

L
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q

)

� Mg into itself,

provided the time T is small enough. Indeed, 
hoosing the indi
es as above

and applying H�older's inequality in time we have
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for some � > 0. We must to prove that � is a 
ontra
tion on the spa
e X

M

.

By hypothesis (ii) we obtain that

ku
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� Ckv
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) (3.3.39)

Let v

i

2 X

M

and let kfk 2 L

2

, by (3.3.38) we note that

kuk

X

M

� Ckfk

L

2
+ CM




T

�

= Ckfk

L

2
+ CM(M


�1

) < M;

providedM is so large that C

M
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L

and T is so small that CT

�
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. Thus we have also
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�
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: In 
on
lusion, if M � 2Ckfk

L

2
and T � (

1

4CM


�1

)

1

�

,

then the map � : X

M

! X

M

is a 
ontra
tion and as 
onsequen
e there exists

a unique solution u 2 X

M

to Cau
hy problem (3.3.17) when 
 < 1 +

4

n

for

radial initial data large f 2 L

2

. Noti
e that T depends only by L

2

-norm of

initial data i.e.

T =

 

1

8C

2

kfk


�1

L

2

!

1

�

= T (kfk

L

2
);

and thanks to the 
onservation of 
harge, i.e., ku(t)k

L

2
� kfk

L

2
for all t,

we 
an iterate the above argument starting at t = T and we 
an solve up

to time 2T , then up to time 3T , and so on. In other words, the solution

exists for all times. Thus we have proved the global existen
e of a unique

solution to Cau
hy problem (3.3.17) for large radial initial data in L

2

when


 < 1 +

4

n

.

3.4 Damek-Ri

i spa
es

In this se
tion we study the S
h�rodinger and wave equations in the more

general 
ontext of Damek-Ri

i spa
es, also known as Harmoni
 AN groups;

these spa
es have been studied by several authors in the past 15 years ([4℄,

[89℄, [11℄, [10℄, [29℄, [30℄, [33℄, [35℄, [36℄, [87℄, [100℄ and others). As Rie-

mannian manifolds, these solvable Lie groups in
lude all symmetri
 spa
es

of non
ompa
t type and rank one, namely the hyperboli
 spa
es H

n

(R),

H

n

(C ), H

n

(H ), H

2

(O ), but most of them are not symmetri
, thus providing

numerous 
ounterexemples to the Lin
hnerowi
z 
onje
ture [35℄. This was

impli
itely formulated in 1944 by Lin
hnerowi
z, who showed that every

harmoni
 manifold of dimension at most 4 is a symmetri
 spa
e, leaving

open the question if this assertion remains true in every dimension. Though

in 1990, Szabo proved it true for any simply 
onne
ted 
ompa
t harmoni


manifold ([99℄), in 1992, Ewa Damek and Fulvio Ri

i found a large 
lass



122

of non-
ompa
t harmoni
 manifolds whi
h are not symmetri
 spa
es. More

details on Damek-Ri

i spa
es are 
ontained in the following se
tion.

Our goal here is to extend the Stri
hartz estimates for the radial S
hr�odinger

and wave equations on Damek-Ri

i spa
es.

The idea of the proof is to transform the equation into a new perturbed

one with a suitable potential V on R

n

; then, using the results of the pertur-

bative theory of Burq, Plan
hon, Stalker and Tahvildar-Zadeh [19℄, we 
an

obtain the Stri
hartz estimates. More pre
isely, the radial operator ��

M


an be redu
ed to an operator of the form ��+

e

V , where the potential

e

V

has a 
riti
al de
ay � jxj

�2

and 
an be treated by the methods of [21℄.

It is interesting to note that we obtain the results on these non
ompa
t

manifolds as appli
ation of the perturbative theory on R

n

, thus avoiding the

diÆ
ulties 
aused by the geometry of these spa
es.

Our �rst result 
on
erns the S
hr�odinger equation on S; we 
an prove

the following weighted Stri
hartz estimates
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:

Also for the wave equation on S we are able to prove the following

weighted Stri
hartz estimates
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:

3.4.1 Harmoni
 analysis asso
iated to L

�;�

Ja
obi operator

In this se
tion we re
all the spheri
al harmoni
 analysis on Damek-Ri

i

spa
es S = AN , developed in [36℄ ([4℄, [89℄), in a

ord with the general

framework of Ja
obi analysis [71℄.

First of all we re
all brie
y the stru
ture of these spa
es. Let n be a

two-step nilpotent Lie algebra equipped with an inner produ
t h ; i. Denote

by z the 
enter of n and by v the orthogonal 
omplement of z in n. So that

n = v� z; [v; v℄ � z; [v; z℄ = 0 and [z; z℄ = 0:
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For Z 2 z let J

Z

: v! v be the linear map de�ned by

hJ

Z

X ; Y i = hZ ; [X;Y ℄i; (3.4.1)

for every X;Y 2 v. If, for every Z 2 z, X 2 v,

J

2

Z

X = �kZk

2

X; (3.4.2)

where k � k is the norm de�ned by an inner produ
t, then n is a algebra of

Heisenberg type. Denoting by m = dimv and k = dim z, for k � 1 there

exists a algebra of Heisenberg type if and only if the possible dimensions

m; k are the values in the following table:

k 8a+ 1 8a+ 2 8a+ 3 8a+ 4 8a+ 5 8a+ 6 8a+ 7 8a+ 8

m 2

4a+1

b 2

4a+2

b 2

4a+3

b 2

4a+4

b 2

4a+5

b 2

4a+6

b 2

4a+7

b 2

4a+8

b

where a � 0 and b � 1 are arbitrary integers. In parti
ular m is always

even.

The 
orresponding (
onne
ted) and simply 
onne
ted Lie groups N are


alled groups of Heisenberg type. We shall identify them with their Lie

algebra n via the exponential map exp : n ! N . Thus multipli
ation in

N � n reads

(X;Z) � (X

0

; Z

0

) = (X +X

0

; Z + Z

0

+

1

2

[X;X

0

℄): (3.4.3)

We will not develop here the geometry and the analysis onN ; see for example

[10℄ 
hapter 2; [36℄ 
hapter 3. Consider ([11℄, [10℄, [29℄, [30℄, [33℄, [34℄, [35℄,

[36℄, [100℄) the semi-produ
t S = N � R

�

+

de�ned by

(X;Z; a)(X

0

; Z

0

; a

0

) = (X + a

1

2

X

0

; Z + aZ

0

+

1

2

a

1

2

[X;X

0

℄: (3.4.4)

S is a solvable (
onne
ted and) simply 
onne
ted Lie group, with Lie algebra

s = v� z� R and Lie bra
ket

[(X;Z; `); (X

0

; Z

0

; `

0

)℄ = (

1

2

`X

0

�

1

2

`

0

X; `Z

0

� `

0

Z + [X;X

0

℄; 0): (3.4.5)

S is equipped with left-invariant Riemnnian metri
 indu
ed by

h(X;Z; `); (X

0

; Z

0

; `

0

)i = hX;X

0

i+ hZ;Z

0

i+ ``

0

(3.4.6)

on s. The asso
iated left-invariant (Riemannian-Haar) measure on S is given

by

a

�Q

dXdZ

da

a

: (3.4.7)

Here Q =

m

2

+ k is the homogeneous dimension of N . Thus we have the

following de�nition.
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De�nition 3.4.1. We 
all Damek-Ri

i spa
es the (
onne
ted and) simply


onne
ted Lie groups S = AN for whi
h Lie algebra is s = n � R with the

Lie bra
ket (3.4.5), provided with left-invariant Riemnnian metri
 indu
ed

by inner produ
t (3.4.6) on s.

Most Riemannian symmetri
 spa
es G=K of non
ompa
t type and rank

one �t into this framework. A

ording to the Iwasawa de
omposition G =

NAK, they 
an be realized indeed as S = NA = AN , with A = R. N is

abelian for real hyperboli
 spa
es G=K = H

n

(R) and of Heisenberg type in

the other 
ases G=K = H

n

(C ); H

n

(H ); H

2

(O ). Noti
e that these 
lassi
al

examples form only a very small sub
lass of harmoni
 AN group, as 
an be

seen by looking at the dimension:

H

n

(R) H

n

(C ) H

n

(H ) H

2

(O )

k [0℄ 1 3 4

m [n� 1℄ 2(n� 1) 4(n� 1) 8

In the ball model B(s), the geodesi
s passing trough the origin are the

diameters, the geodesi
 distan
e to the origin is given by

r = d(x

0

; 0) = log

1 + kx

0

k

1� kx

0

k

; i:e: � = kx

0

k = tanh

r

2

; (3.4.8)

and the Riemannian volume writes

dV = 2

m+k

(sinh

r

2

)

m+k

(
osh

r

2

)

k

drd�; (3.4.9)

where d� denotes the surfa
e measure on the unit sphere �B(s) in s and

n = dimS = m + k + 1. In parti
ular, the volume density in normal


oordinates at the origin, and by translation at any point, is a purely radial

fun
tion, whi
h means that S is a harmoni
 manifold ([35℄, [99℄). Like all

harmoni
 manifolds, S is an Einstein manifold. A lenghty 
omputation

yields the a
tual 
onstant:

Ri

i 
urvature = �(

m

4

+ k)� Riemannian metri
: (3.4.10)

The se
tional 
urvature, as far as it is 
on
erned, is nonpositive, with min-

imum = �1 ([10℄). Noti
e that it may vanish, 
ontrairly to the hyperboli


spa
e 
ase.

Now, we re
all the prin
ipal te
hniques of harmoni
 analysis on these

spa
es. The 
ommutativity of the 
onvolution on bi-K-invariant obje
ts

on G is basilar for the harmoni
 analysis on symmetri
 spa
es G=K. If
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one repla
e bi-K-invarian
e by radiality, a similar phenomenum appears on

general S. As established in [36℄, for the 
onvolution on S:

(u � v)(x) =

Z

S

u(y)v(y

�1

x)dy;

the radial integrable fun
tions on S form a 
ommutative Bana
h algebra

L

1

(S)

℄

. We note that for distribution, invariant di�erential operators, : : :

radiality is de�ned by means of an averaging operator over spheres, whi
h


an be written

f

℄

(x

0

) =

�(

n

2

)

2�

n

2

Z

�B(s)

d�f(��)

in the ball model and generalizes K averages on rank one symmetri
 spa
es

G=K. The algebra of invariant di�erential operators on S whi
h are radial is

a polynomial algebra with a single generator, the Lapla
e-Beltrami operator

L.

De�nition 3.4.2. We de�ne a spheri
al fun
tion on S as a radial eigen-

fun
tion ' of L (and thus automati
ally analyti
), normalized by '(0) = 1.

The radial part (in geodesi
 polar 
oordinates) of the Lapla
e-Beltrami

operator L on S writes

radL =

�

2

�s

2

+

�

m+ k

2


oth

s

2

+

k

2

tanh

s

2

�

�

�s

: (3.4.11)

By substituting r =

s

2

, 4radL be
omes the Ja
obi operator [71℄

radL =

�

2

�r

2

+ f(2�+ 1) 
oth r + (2� + 1) tanh rg

�

�r

; (3.4.12)

with indi
es � =

m+k+1

2

and � =

k�1

2

, � > � > �

1

2

. For every � 2 C there

exists a unique radial C

1

fun
tion '

�

su
h that

L'

�

= �(�

2

+ �

2

)'

�

and '(0) = 1: (3.4.13)

Note that '

�

= '

�

if and only if � = ��. Moreover

'

�

(r) =

2

F

1

(�� i�; �+ i�;

n

2

;� sinh

2

r

2

); (3.4.14)

where

2

F

1

is the hypergeometri
 fun
tion

2

F

1

(a; b; 
; z) =

1

X

k=0

(a)

k

(b)

k

(
)

k

z

k

k!

; (3.4.15)

with (a)

0

= 1, (a)

k

= a(a + 1)

_

(a + k � 1) if k � 1; the fun
tion

2

F

1

is

extended analyti
al to C n[1;1℄.
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For Re(i�) = �Im� > 0, we have the following asymptoti
 behaviour:

'

�

(x) � 
(�)e

i��

Q

2

)r

as r = r(x)! +1; (3.4.16)

where 
(�) =

�(m+k)

�(

m+k

2

)

�(i2�)

�(i2�+

m

2

)

�(i�+

m

4

)

�(i�+

m

4

+

k

2

)

: Noti
e that spheri
al fun
tions on

S are Ja
obi fun
tions:

'

�

(r) = �

(�;�)

2�

(

r

2

):

The spheri
al Fourier transform is de�ned by

~

f(�) =

Z

S

dx'

�

(x)f(x) =

2

n

�

n=2

�(n=2)

Z

+1

0

dr(sinh

r

2

)

m+k

(
osh

r

2

)

k

'

�

(r)f(r);

(3.4.17)

for radial fun
tions f = f(x) on S, whi
h we shall identify with fun
tions

f = f(r) of the geodesi
 distan
e to the origin r = d(x; 0) 2 [0;+1). The

spheri
al Fourier transform 
on
ides with the Ja
obi transform:

~

f(�) = 2

2�k

�

n=2

�(

n

2

)

[

f(2�)

(�;�)

(2�):

3.4.2 Weighted Stri
hartz estimates for the S
hr�odinger equa-

tion on S

We obtain the following result.

Theorem 3.4.1. Assume n > 3. Let u

0

and F be two fun
tions radial in

x 2 S, su
h that w

2

u

0

2 L

2

(S) and w

eq

0

F 2 L

~p

0

(R;L

~q

0

(S)). Consider the

Cau
hy problem

(

i�

t

u+ L

�;�

u = F (t; x);

u(0; x) = u

0

(r);

(3.4.18)

then for all

n

2

-admissible 
ouples (p; q) and (~p; ~q), i.e. su
h that

1

p

+

n

2q

=

n

4

; p 2℄2;1℄; and q 2

�

2;

2n

n� 2

�

; (3.4.19)

the following weighted Stri
hartz estimates holds

kw

q

uk

L

p

(R;L

q

(S))

� Ckw

2

u

0

k

L

2

(S)

+ Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

; (3.4.20)

with the weight

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(
osh r)

k

2

(1�

2

q

)

; (3.4.21)

and � =

m+k�1

2

; � =

k�1

2

; � � � � �

1

2

:
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In the spe
ial 
ase � =

1

2

, the spa
e S is the three-dimensional real

hyperboli
 spa
e H

3

(R), the following weighted dispersive estimate holds

�

sinh r

r

�

ju(t; x)j �

C

t

3

2










u

0

�

r

sinh r

�










L

1

(H

3

(R))

: (3.4.22)

Proof. Let L

�;�

be the Ja
obi operator de�ned as

L

�;�

= �

2

r

+B(r)�

r

+ �

2

; (3.4.23)

where we have set

B(r) = (2�+ 1) 
oth r + (2� + 1) tanh r (3.4.24)

and

� = (�+ � + 1); � =

m+ k � 1

2

; � =

k � 1

2

; � � � � �

1

2

: (3.4.25)

Noti
e that (3.4.23) in
ludes the radial part of the Lapla
e-Beltrami operator

on hyperboli
 spa
es and more generally on Damek-Ri

i spa
es S de�ned

above. Re
all that the radial part of the Lapla
e operator in R

n

is

� = �

2

r

+

n� 1

r

�

r

:

The idea of the proof is to 
onstru
t a transformation whi
h maps the Ja
obi

operator on S into the radial part of the Lapla
e operator de�ned on R

n

by

imposing the following

u(t; r) = �(r)v(t; r): (3.4.26)

We have then

L

�;�

u(t; r) = �

2

r

u(t; r) +B(r)�

r

u(t; r) + �

2

u(t; r) =

�

2

r

(�(r)v(t; r)) +B(r)�

r

(�(r)v(t; r)) + �

2

�(r)v(t; r) =

�(r)

�

�

2

r

v(t; r) +

�

2

�

0

(r)

�(r)

+B(r)

�

�

r

v(t; r) +

�

�

00

(r)

�(r)

+B(r)

�

0

(r)

�(r)

+ �

2

�

v(t; r)

�

:

(3.4.27)

The 
ru
ial point is imposing the following 
ondition

2

�

0

(r)

�(r)

+B(r) =

2�+ 1

r

; (3.4.28)

and solving this di�erential ordinary equation we obtain

�(r) = r

�+

1

2

(sinh r)

�(�+

1

2

)

(
osh r)

�(�+

1

2

)

: (3.4.29)

Repla
ing (3.4.29) in the 
oeÆ
ient of v(t; r) in (3.4.27), after some 
ompu-

tations, we obtain the potential

V (r) =

�

�

2

�

1

4

�

1

r

2

�

B

0

(r)

2

�

B

2

(r)

4

+ �

2

:
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Thus, using formula (3.4.24) we a
hieve

V (r) =

�

�

2

�

1

4

�

1

r

2

�

�

�

2

�

1

4

�


oth

2

r�

�

�

2

�

1

4

�

tanh

2

r+

�

�

2

+ �

2

�

1

2

�

:

(3.4.30)

Noti
e that V 2 C

1

[0;1) and it tends to zero as r ! 1. As a result, we

have obtained the perturbed S
hr�odinger equation

i�

t

v +�v �

e

V v = 0 (3.4.31)

on R

2�+2

, where

e

V = �V . Now, we aim to study the behavior of

e

V . It is

not diÆ
ult to 
he
k that our potential satis�es the inequality

e

V (r) > �

a

r

2

; (3.4.32)

where a =

(n�2)

2

4

. This allows us to apply the result of Burq, Plan
hon,

Stalker and Tahvildar-Zadeh (see [19℄), where they prove Stri
hartz esti-

mates for the S
hr�odinger and wave equations perturbed with the potential

satisfying inequality (3.4.32). Thus, if we 
onsider the Cau
hy problem

(

i�

t

v +�v �

e

V v =

F (t;r)

�(r)

;

v(0; x) = v

0

;

(3.4.33)

with radial initial data, we obtain the following Stri
hartz estimates

kvk

L

p

(R;L

q

(R

2�+2

))

� Ckv

0

k

L

2

(R

2�+2

)

+ C













F

�













L

ep

0

(R;L

eq

0

(R

2�+2

))

(3.4.34)

If we put (3.4.26) we obtain the following inequality










u

�










L

p

(R;L

q

(R

2�+2

))

� C










u

0

�










L

2

(R

2�+2

)

+ C













F

�













L

ep

0

(R;L

eq

0

(R

2�+2

))

: (3.4.35)

Writing expli
itely the left hand one has










u

�










L

p

(R;L

q

(R

2�+2

))

=

 

Z

R

�

Z

R

2�+2

ju(t; x)�(x)

�1

j

q

dx

�

p

q

dt

!

1

p

=

repla
ing (3.4.29) into the weight � in polar 
oordinates we have

=

0

�

Z

R

 

Z

S

n�1

Z

R

�

�

�

�

�

u(t; r; !)

�

sinh r

r

�

�+

1

2

(
osh r)

�+

1

2

�

�

�

�

�

q

r

n�1

drd!

!

p

q

dt

1

A

1

p

;
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where � =

m+k�1

2

; � =

k�1

2

; � � � � �

1

2

; for simpli
ity let us 
onsider

only the radial 
omponent

=

0

�

Z

R

 

Z

R

�

�

�

�

�

u(t; r)

�

sinh r

r

�

m+k

2

(1�

2

q

)

(
osh r)

k

2

(1�

2

q

)

�

�

�

�

�

q

sinh r

m+k


osh r

k

dr

!

p

q

dt

1

A

1

p

;

sin
e on the Damek-Ri

i spa
es S the Riemannian volume is

dV = 2

m+k

sinh r

m+k


osh

k

drde!;

where de! denotes the surfa
e measure on the unit sphere �B(s) in s and

n = dimS = m+ k + 1; we obtain

= C

0

�

Z

R

 

Z

S

�

�

�

�

�

u(t; r)

�

sinh r

r

�

m+k

2

(1�

2

q

)

(
osh r)

k

2

(1�

2

q

)

�

�

�

�

�

q

dr

!

p

q

dt

1

A

1

p

;

thus denoting w

q

(r) our weight

�

sinh r

r

�

m+k

2

(1�

2

q

)

(
osh r)

k

2

(1�

2

q

)

we have

= Ckw

q

uk

L

p

(R;L

q

(S))

:

In an analogous way, writing expli
itly the right hand side of (3.4.35), by

similar 
omputations we 
on
lude the proof of all weighted Stri
hartz esti-

mates in Theorem 3.4.1.

In the spe
ial 
ase � =

1

2

our Damek-Ri

i spa
e is the real hyperboli


spa
e of dimension threeH

3

(R) when � = �

1

2

. In this 
asem = 2 and k = 0.

To prove the weighted dispersive estimate (3.4.42) we pro
eed as above; we

noti
e that after our transformation (3.4.26) the potential (3.4.30) be
omes

V (r) = 0;

thus we obtain a linear Cau
hy problem

(

i�

t

v +�v = 0;

v(0; x) = v

0

;

(3.4.36)

whi
h satis�es the dispersive estimate

kv(t)k

L

1

(R

3

)

�

C

t

3=2

kv

0

k

L

1

(R

3

)

:

Using the inverse transformation and 
omputing as before we prove the

following

�

sinh r

r

�

ju(t; x)j �

C

t

3

2










r

sinh r

u

0










L

1

(H

3

(R))

;

and this 
on
ludes the proof of Theorem 3.4.1.
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3.4.3 Weighted Stri
hartz estimates for the Wave equation

on S

Theorem 3.4.2. Assume n > 3. Let u

0

and F be two fun
tions radial in

x 2 S, su
h that

u

0

�

2 H




(S),

u

1

�

2 H


�1

(S) and w

eq

0

F 2 L

~p

0

(R;L

~q

0

(S)).

Consider the Cau
hy problem

8

>

<

>

:

��

2

t

u+ L

�;�

u = F (t; x);

u(0; x) = u

0

(r);

u

t

(0; x) = u

1

(r);

(3.4.37)

then for all

n�1

2

-admissible 
ouples (p; q) and (~p; ~q), i.e. su
h that

1

p

+

n� 1

2q

�

n� 1

4

; p 2℄2;1℄; and q 2

�

2;

2(n� 1)

n� 3

�

; (3.4.38)

the following weighted Stri
hartz estimates holds

kw

q

uk

L

p

(R;L

q

(S))

� C










u

0

�










H




(S)

+










u

1

�










H


�1

(S)

+ Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

;

(3.4.39)

with the weights

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(
osh r)

k

2

(1�

2

q

)

; (3.4.40)

and

�(r) = r

�+

1

2

(sinh r)

�(�+

1

2

)

(
osh r)

�(�+

1

2

)

: (3.4.41)

In the spe
ial 
ase � =

1

2

, the spa
e S is the three-dimensional real

hyperboli
 spa
e H

3

(R), the following weighted dispersive estimate holds

�

sinh r

r

�

ju(t; x)j �

C

t










r

sinh r

u

1










B

1;1

(H

3

(R))

: (3.4.42)

The proof is based again on the 
hange of variables (3.4.26), (3.4.29)

whi
h redu
es Ja
obi operator to a standard Lapla
e operator perturbed

with a potential. Sin
e the result of [19℄ are valid also for the wave equation,

we 
an pro
eed exa
tly as in the proof of Theorem 3.4.1.



Chapter 4

Nonlinear S
hr�odinger

equations on 
ompa
t

manifolds with positive


urvature

4.1 Introdu
tion

We have seen that, on a manifold, negative 
urvature has the e�e
t of im-

proving the dispersive properties of evolution equations. In this 
hapter we

examine a model situation when the 
urvature is positive, by studying some

nonlinear S
hr�odinger equations on the four dimensional sphere S

4

; we also


onsider the more general 
ase of 
ompa
t four-dimensional manifolds. In


ontrast with the negative 
urvature 
ase, the positive 
urvature tends to

destroy the de
ay properties of the equation, and in general the results both

from the point of view of de
ay and regularity are worse than in the 
at


ase.

In parti
ular, the situation for 
ompa
t manifolds has been investi-

gated in a re
ent series of papers ( [22℄, [24℄, [25℄, see also [26℄, [46℄) by

Burq-G�erard-Tzvetkov. They studied the Cau
hy problem for nonlinear

S
hr�odinger equations (NLS) on Riemannian 
ompa
t manifolds, generaliz-

ing the work of Bourgain on tori ([14℄, [15℄). In [22℄, Stri
hartz estimates

with fra
tional loss of derivatives were established for the S
hr�odinger group.

They led to global wellposedness of NLS on surfa
es with any defo
using

polynomial nonlinearity. On three-manifolds, these estimates also provided

global existen
e and uniqueness for 
ubi
 defo
using NLS, but they failed to

prove the Lips
hitz 
ontinuity of the 
ow map on the energy spa
e. These

results were improved in [24℄, [25℄ for spe
i�
 manifolds su
h as spheres, tak-

ing advantage of new multilinear Stri
hartz inequalities for the S
hr�odinger

group (see also [23℄). In parti
ular, on su
h three-manifolds the Lips
hitz

131
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ontinuity and the smoothness of the 
ow map on the energy spa
e were

established for 
ubi
 NLS, as well as global existen
e on the energy spa
e

for every defo
using subquinti
 NLS.

However, none of the above methods provided global wellposedness results in

the energy spa
e for NLS on four-dimensional manifolds. This is in strong


ontrast with the Eu
lidean 
ase (see [50℄, [65℄, [27℄). The only available

global existen
e result on a 
ompa
t four-manifold seems to be the one

of Bourgain in [15℄, whi
h 
on
erns defo
using nonlinearities of the type

juju and Cau
hy data in H

2

(T

4

). Let us dis
uss brie
y the reasons of this

diÆ
ulty. On the one hand, Stri
hartz estimates of [22℄ involve a too large

loss of derivative in four spa
e dimension ; typi
ally, for 
ubi
 NLS, they

lead to lo
al wellposedness in H

s

for s > 3=2, whi
h is not suÆ
ient in

view of the energy and L

2


onservation laws. Moreover, these estimates are

restri
ted to L

p

t

L

q

x

norms with p � 2 and the admissibility 
ondition

1

p

+

2

q

= 1 ;

so that the analysis does not improve when the nonlinearity be
omes sub
u-

bi
. On the other hand, the analysis based on bilinear Stri
hartz estimates

is 
urrently restri
ted to nonlinearities of 
ubi
 type, and on S

4

it only yields

lo
al wellposedness in H

s

for s > 1. In fa
t, this obstru
tion 
an be made

more pre
ise by 
ombining two results from [22℄ and [24℄. Indeed, from

Theorem 4 in [22℄, we know that the estimate

Z

2�

0

Z

S

4

je

it�

f (x)j

4

dt dx . kfk

4

H

1=2

(S

4

)

is wrong, whi
h, by Remark 2.12 in [24℄, implies that the 
ow map of 
ubi


NLS 
annot be C

3

near the Cau
hy data u

0

= 0 in H

1

(S

4

).

The goal of this se
tion is to provide further results on four-dimensional

manifolds. We shall study two types of NLS equations. In se
tion 4.2.1, we

study NLS with the following nonlo
al nonlinearity,

(

i�

t

u+�u =

�

(1��)

��

juj

2

�

u;

u(0; x) = u

0

(x)

(4.1.1)

where � > 0. Noti
e that the homogeneous version of this nonlinearity on

the Eu
lidean spa
e R

d

reads

�

1

jxj

d�2�

� juj

2

�

u

so that (4.1.1) 
an be seen as a variant of Hartree's equation on a 
ompa
t

manifold. Combining the 
onservation laws for (4.1.1) with suitable bilinear

estimates, we obtain the following result.
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Theorem 4.1.1. Let (M; g) be a 
ompa
t Riemannian manifold of dimen-

sion 4 and let � >

1

2

. There exists a subspa
e X of C(R;H

1

(M)) su
h

that, for every u

0

2 H

1

(M), the Cau
hy problem (4.1.1) has a unique global

solution u 2 X. Moreover, in the spe
ial 
ase M is the four-dimensional

standard sphere M = S

4

, the same result holds for all values � > 0 of the

parameter.

The proof of Theorem 4.1.1 relies on the following quadrilinear estimates

sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(m(N

1

; � � � ; N

4

))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

for every � 2 C

1

0

(R), for every s

0

< 1 and for f

1

; f

2

; f

3

; f

4

satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4:

Here and in the sequel m(N

1

; � � � ; N

4

) denotes the produ
t of the smallest

two numbers among N

1

; N

2

; N

3

; N

4

. Moreover u

j

and f

j

are linked by

u

j

(t; x) = S(t)f

j

(x); j = 1; 2; 3; 4;

where S(t) = e

it�

: Noti
e that, 
ompared to the multilinear estimates used

in [25℄, a frequen
y variable � is added in the equation. It would be interest-

ing to know if the smallest value of � for whi
h these estimates (and hen
e

Theorem 4.1.1) are valid depends or not on the geometry of M .

In Se
tion 4.2.2, we 
ome ba
k to power nonlinearities. Sin
e we want to

go below the 
ubi
 powers and at the same time we want to use multilinear

estimates, we are led to deal with quadrati
 nonlinearities. In other words,

we study the following equations,

i�

t

u+�u = q(u); (4.1.2)

where q(u) is a homogeneous quadrati
 polynomial in u; u

q(u) = au

2

+ bu

2

+ 
juj

2

:

Noti
e that a sub
lass of these equations 
onsists of Hamiltonian equations

q(u) =

�V

�u

where V is a real-valued homogeneous polynomial of degree 3 in u; u; with

the above notation, this 
orresponds to 
 = 2a. In this 
ase, the following

energy is 
onserved,

E =

Z

M

jruj

2

+ V (u) dx :
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A typi
al example is

V (u) =

1

2

juj

2

(u+ u) ; q(u) = juj

2

+

1

2

u

2

:

Noti
e that this Hamiltonian stru
ture does not prevent from blow up in

general. In the above example, a purely imaginary 
onstant as Cau
hy data

leads to a blow up solution ! Therefore we 
an only hope for lo
al-in-time

existen
e. Our results are the following.

Theorem 4.1.2. If (M; g) is the four-dimensional standard sphere , then the

Cau
hy problem (4.1.2) is (lo
ally in time) uniformly well-posed in H

s

zonal

(S

4

)

for every s >

1

2

, where H

s

zonal

(S

4

) denotes the H

s

spa
e of zonal fun
tions

relative to some pole ! 2 S

4

: f(x) =

~

f(hx; !i) .

The main tool in the proof of Theorem 4.1.2 is the following trilinear

estimate on linear solutions u

j

(t) = S(t)f

j

,

sup

�2R

�

�

�

�

Z

R

Z

S

4

�(t) e

it�

T ( u

1

(t; x); u

2

(t; x); u

3

(t; x)) dx dt

�

�

�

�

� C (min(N

1

; N

2

; N

3

))

s

0

kf

1

k

L

2

(S

4

)

kf

2

k

L

2

(S

4

)

kf

3

k

L

2

(S

4

)

;

(4.1.3)

for every R-trilinear expression T on C

3

, for every � 2 C

1

0

(R), for every

s

0

> 1=2 and for zonal fun
tions f

1

; f

2

; f

3

satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3 :

It would be interesting to know whether the above estimate holds with non

zonal fun
tions for some s

0

< 1 ; this would extend the above theorem to

any �nite energy Cau
hy data.

Moreover we give a 
lassi�
ation for all the Hamiltonian quadrati
 non-

linearities for whi
h the Cau
hy problem asso
iated to (4.1.2) has a unique

global solution for suitable small initial data in H

1

zonal

(S

4

).

Corollary 4.1.1. Assume (M; g) is the four-dimensional standard sphere

and 
 = 2a. Then the following assertions are equivalent.

i) There exists a subspa
e X of C(R; H

1

zonal

(S

4

)) su
h that, for every small

initial data ku

0

k

H

1

zonal

(S

4

)

� ", the Cau
hy problem (4.1.2) has a unique

global solution u 2 X.

ii) The parameters a; b satisfy

a

2

a

= b: (4.1.4)

It would be interesting to know whether blowing up solutions exist for

non small data under property (4.1.4).

When property (4.1.4) is not satis�ed, our blowing up solutions are par-

ti
ularly simple, sin
e they are solutions of the ordinary di�erential equation
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dedu
ed from (4.1.2) for spa
e-independent solutions. Another open prob-

lem is of 
ourse to �nd a wider variety of blowing up solutions for equation

(4.1.2) in this 
ase.

4.2 Wellposedness via multilinear estimates

The main step of this se
tion is to prove a result of lo
al existen
e in time

for initial data in H

1

(M) using some multilinear estimates asso
iated to the

nonlinear S
hr�odinger equation, that we will establish in Se
tion 4.2.2 with

a spe
ial attention to the 
ase of the sphere. For that purpose we follow


losely the ideas of Burq, G�erard and Tzvetkov ([26℄, [24℄). In those papers,

the authors extended to general 
ompa
t manifolds the nonlinear methods

introdu
ed by Bourgain ([14℄, [15℄, [17℄) in the 
ontext of tori R

d

=Z

d

. Finally,

we a
hieve the global wellposedness thanks to the 
onservation laws.

4.2.1 Well-posedness in Sobolev spa
es for the Hartree non-

linearity

In this subse
tion we prove that the uniform wellposedness of (4.1.1) on

M 
an be dedu
ed from quadrilinear estimates on solutions of the linear

equation. Firstly, we re
all the notion of wellposedness we are going to

address.

De�nition 4.2.1. Let s 2 R. We shall say that the nonlinear S
hr�odinger

equation (4.1.1) is (lo
ally in time) uniformly well-posed on H

s

(M) if, for

any bounded subset B of H

s

(M), there exists T > 0 and a Bana
h spa
e

X

T


ontinuously 
ontained into C([�T; T ℄;H

s

(M)), su
h that

i For every Cau
hy data u

0

2 B, (4.1.1) has a unique solution u 2 X

T

.

ii If u

0

2 H

�

(M) for � > s, then u 2 C([�T; T ℄;H

�

(M)).

iii The map u

0

2 B 7! u 2 X

T

is uniformly 
ontinuous.

The following theorem stresses the general relationship between uniform

wellposedness for equation (4.1.1) and a 
ertain type of quadrilinear esti-

mates.

Theorem 4.2.1. Suppose that there exists C > 0 and s

0

� 0 su
h that for

any f

1

; f

2

; f

3

; f

4

2 L

2

(M) satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4; (4.2.1)
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one has the following quadrilinear estimates

sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(m(N

1

; � � � ; N

4

))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

u

j

(t) = S(t)f

j

; j = 1; 2; 3; 4;

(4.2.2)

where � 2 C

1

0

(R) is arbitrary, and m(N

1

; � � � ; N

4

) denotes the produ
t of

the smallest two numbers among N

1

; N

2

; N

3

; N

4

. Then the Cau
hy problem

(4.1.1) is uniformly well-posed in H

s

(M) for any s > s

0

.

Proof. The proof follows essentially the same lines as the one of Theorem 3

in [24℄ and relies on the use of a suitable 
lass X

s;b

of Bourgain-type spa
es.

We shall sket
h it for the 
ommodity of the reader. We �rst show that (4.2.2)

is equivalent to a quadrilinear estimate in the spa
es X

s;b

. We then prove

the 
ru
ial nonlinear estimate, from whi
h uniform wellposedness 
an be

obtained by a 
ontra
tion argument in X

s;b

T

. Sin
e this spa
e is 
ontinuously

embedded in C([�T; T ℄;H

s

(M)) provided b >

1

2

, this 
on
ludes the proof of

the lo
al well posedness result.

Following the de�nition in Bourgain [14℄ and Burq, G�erard and Tzvetkov

[26℄, we introdu
e the family of Hilbert spa
es

X

s;b

(R �M) = fv 2 S

0

(R �M) : (1 + ji�

t

+�j

2

)

b

2

(1��)

s

2

v 2 L

2

(R �M)g

(4.2.3)

for s; b 2 R. More pre
isely, with the notation

hxi =

p

1 + jxj

2

;

we have the following de�nition :

De�nition 4.2.2. Let (M; g) be a 
ompa
t Riemannian manifold, and 
on-

sider the Lapla
e operator �� on M . Denote by (e

k

) an L

2

orthonormal

basis of eigenfun
tions of ��, with eigenvalues �

k

, by �

k

the orthogonal

proje
tor along e

k

, and for s � 0 by H

s

(M) the natural Sobolev spa
e

generated by (I ��)

1

2

, equipped with the following norm

kuk

2

H

s

(M)

=

X

k

h�

k

i

s

k�

k

uk

2

L

2

(M)

: (4.2.4)

Then, the spa
e X

s;b

(R�M) is de�ned as the 
ompletion of C

1

0

(R

t

;H

s

(M))

for the norm

kuk

2

X

s;b

(R�M)

=

X

k

kh� + �

k

i

b

h�

k

i

s

2

d

�

k

u(�)k

2

L

2

(R

�

;L

2

(M))

= kS(�t)u(t; �)k

2

H

b

(R

t

;H

s

(M))

;

(4.2.5)

where

d

�

k

u(�) denotes the Fourier transform of �

k

u with respe
t to the time

variable.
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Denoting by X

s;b

T

the spa
e of restri
tions of elements of X

s;b

(R�M) to

℄� T; T [�M , it is easy to prove the embedding

8b >

1

2

; X

s;b

T

� C([�T; T ℄;H

s

(M)): (4.2.6)

Moreover, we have the elementary property

8f 2 H

s

(M); 8b > 0; (t; x) 7! S(t)f(x) 2 X

s;b

T

: (4.2.7)

We next reformulate the quadrilinear estimates (4.2.2) in the 
ontext of

X

s;b

spa
es.

Lemma 4.2.1. Let s 2 R. The following two statements are equivalent:

i) For any f

j

2 L

2

(M); j = 1; 2; 3; 4; satisfying (4.2.1), estimate (4.2.2)

holds;

ii) For any b >

1

2

and any u

j

2 X

0;b

(R �M); j = 1; 2; 3; 4; satisfying

1

p

1��2[N

j

;2N

j

℄

(u

j

) = u

j

;

one has

�

�

�

�

Z

R

Z

M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(m(N

1

; � � � ; N

4

))

s

0

4

Y

j=1

ku

j

k

X

0;b

(R�M)

:

(4.2.8)

Proof. We sket
h only the essential steps of the proof of ii) assuming i), sin
e

we follow 
losely the argument of Lemma 2.3 in [26℄. The reverse impli
ation

is easier and will not be used in this paper.

Suppose �rst that u

j

are supported in time in the interval (0; 1) and we

sele
t � 2 C

1

0

(R) su
h that � = 1 on [0; 1℄; then writing u

℄

j

(t) = S(�t)u

j

(t)

we have easily

�

(1��)

��

(u

1

u

2

)u

3

u

4

�

(t) =

1

(2�)

4

Z

R

Z

R

Z

R

Z

R

e

it(�

1

��

2

+�

3

��

4

)

� (1��)

��

(S(t)bu

℄

1

(�

1

)S(t)bu

℄

2

(�

2

))S(t)bu

℄

3

(�

3

)S(t)bu

℄

4

(�

4

) d�

1

d�

2

d�

3

d�

4

;

where bu

℄

j

denotes the Fourier transform of u

℄

j

with respe
t to time. Using

i) and the Cau
hy-S
hwarz inequality in (�

1

; �

2

; �

3

; �

4

) (here the assumption

b >

1

2

is used, in order to get the ne
essary integrability) yields

�

�

�

�

Z

R�M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

. m(N

1

; � � � ; N

4

)

s

0

4

Y

j=1

kh�i

b

bu

℄

j

k

L

2

(R�M)

. m(N

1

; � � � ; N

4

)

s

0

4

Y

j=1

ku

j

k

X

0;b

(R�M)

:
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Finally, by de
omposing u

j

(t) =

P

n2Z

 (t �

n

2

)u

j

(t) with a suitable  2

C

1

0

(R) supported in (0; 1), the general 
ase for u

j

follows from the spe
ial


ase of u

j

supported in the time interval (0; 1).

Returning to the proof of Theorem 4.2.1, there is another way of esti-

mating the L

1

norm of the produ
t ((1��)

��

(u

1

u

2

)u

3

u

4

).

Lemma 4.2.2. Assume � as in Theorem 1 and that u

1

; u

2

; u

3

; u

4

satisfy

1

p

1��2[N;2N ℄

(u

j

) = u

j

: (4.2.9)

Then, for every s

0

> s

0

there exists b

0

2℄0;

1

2

[ su
h that

�

�

�

�

Z

R

Z

M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�
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(4.2.10)

Proof. We split the proof in several steps.

First of all we prove that, for � > 0,
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:

(4.2.11)

By symmetry we have to 
onsider the following three 
ases:

m(N

1

; � � � ; N

4

) = N

1

N
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;m(N
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; � � � ; N

4

) = N

3

N

4

; m(N

1

; � � � ; N

4

) = N

1

N

3

:

In the �rst 
ase, by a repeated use of H�older's inequality, we obtain
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;

where we also used that (1��)

��

is a pseudodi�erential operator of negative

order, hen
e a
ts on L

1

(M). By Sobolev inequality, we infer
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�

�

�
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:

By the Sobolev embedding in the time variable for the fun
tion v(t) =

S(�t)u(t), we have X

0;1=4

� L

4

(R; L

2

(M)), and this 
on
lude the proof of

the �rst 
ase.
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In the se
ond 
ase m(N

1

; � � � ; N

4

) = N

3

N

4

we 
an pro
eed in the same

way by writing the integral in the form

�
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Z
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u
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:

Finally, when m(N

1

; � � � ; N

4

) = N

1

N

3

, we write the integral as follows

�

�

�

�

Z

R

Z

M

(1��)

�
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;

and by Cau
hy-S
hwarz and H�older's inequalities we estimate it by
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:

Finally we 
on
lude the proof of (4.2.11) by means of Sobolev's inequality

in both spa
e and time variables as above.

The se
ond step 
onsists in interpolating between (4.2.8) and (4.2.11) in

order to get the estimate (4.2.10). To this end we de
ompose ea
h u

j

as

follows

u
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K

j

u

j;K

j
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j;K

j
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(u
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);

where K

j

denotes the sequen
e of dyadi
 integers. Noti
e that
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X

K
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:

We then write the integral in the left hand side of (4.2.10) as a sum of the

following elementary integrals,
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Using su

essively (4.2.8) and (4.2.11), we estimate these integrals as
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(4.2.12)

where either (�; �) = (s

0

; b) for every b > 1=2, or (�; �) = (2; 1=4). There-

fore, for every s

0

> s

0

, there exists b

1

< 1=2 su
h that (4.2.12) holds for

(�; �) = (s

0

; b

1

). Choosing b

0

2℄b

1

; 1=2[, this yields
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whi
h 
ompletes the proof, sin
e the right hand side is a 
onvergent series.

We are �nally in position to prove Theorem 4.2.1. We 
an write the

solution of the Cau
hy problem (4.1.1) using the Duhamel formula

u(t) = S(t)u

0

� i

Z

t

0

S(t� �)

�

(1��)

��

(ju(�)j

2

)u(�)

�

d� : (4.2.13)

The next lemma 
ontains the basi
 linear estimate.

Lemma 4.2.3. Let b; b

0

su
h that 0 � b

0

<

1

2

, 0 � b < 1 � b

0

. There exists

C > 0 su
h that, if T 2 [0; 1℄, w(t) =

R

t

0

S(t� �)f(�)d�; then
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T

: (4.2.14)

We refer to [52℄ for a simple proof of this lemma.

The last integral equation (4.2.13) 
an be handled by means of these

spa
es X

s;b

T

using Lemma 4.2.3 as follows
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(4.2.15)

Thus to 
onstru
t the 
ontra
tion � : X

s;b

T

! X

s;b

T

; �(v

i

) = u

i

; i = 1; 2 and

to prove the propagation of regularity ii) in De�nition 4.2.1, it is enough to

prove the following result.

Lemma 4.2.4. Let s > s

0

. There exists (b; b

0

) 2 R

2

satisfying

0 < b

0

<

1

2

< b; b+ b

0

< 1; (4.2.16)

and C > 0 su
h that for every triple (u

j

); j = 1; 2; 3 in X

s;b

(R �M),
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Moreover, for every � > s, there exists C

�
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h that
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: (4.2.18)

Proof. We only sket
h the proof of (4.2.17). The proof of (4.2.18) is similar.

Thanks to a duality argument it is suÆ
ient to show the following
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(4.2.19)
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The next step is to perform a dyadi
 expansion in the integral of the left

hand-side of (4.2.19), this time in the spa
e variable. We de
ompose u

1

; u

2

; u

3

; u

4

as follows:

u

j

=
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N

j

u

j;N

j

; u
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;2N
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℄

(u
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In this de
omposition we have
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:

We introdu
e now this de
omposition in the left hand side of (4.2.19), and

we are left with estimating ea
h term
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Consider the terms with N

1

� N

2
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3

(the other 
ases are 
ompletely

similar by symmetry). Choose s

0
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h that s > s

0

> s

0

. By Lemma 4.2.2

we 
an �nd b

0
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h that 0 < b

0
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1

2
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This is equivalent to
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:

In this series we separate the terms in whi
h N

4

� CN

3

from the others.

For the �rst ones the series 
onverges thanks to a simple argument of sum-

mation of geometri
 series and Cau
hy-S
hwarz inequality. To perform the

summation of the other terms, it is suÆ
ient to apply the following lemma,

whi
h is a simple variant of Lemma 2.6 in [24℄.

Lemma 4.2.5. Let � a positive number. There exists C > 0 su
h that, if
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k

j

� �

k

4

, then for every p > 0 there exists C
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:

Remark 4.2.1. Noti
e that if M = S

4

the above lemma is trivial sin
e in

that 
ase, by an elementary observation on the degree of the 
orresponding

spheri
al harmoni
s, we obtain that if k

4

> k

1

+ k

2

+ k

3

then the integral

(4.2.20) is zero.
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Finally, the proof of Lemma 4.2.4 is a
hieved by 
hoosing b su
h that

1

2

<

b < 1� b

0

and by merely observing that
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j

k
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; j = 1; 2; 3:

4.2.2 Lo
al wellposedness for the quadrati
 nonlinearity

In this subse
tion, we study the wellposedness theory of the quadrati
 non-

linear S
hr�odinger equation posed on S

4

i�

t

u+�u = q(u); q(u) = au

2

+ bu

2

+ 
juj

2

; (4.2.21)

with zonal initial data u(0; x) = u

0

(x).

In fa
t we shall prove Theorem 4.1.2 on every four-manifold satisfying the

trilinear estimates (4.1.3). This is a result of independent interest that we

state below.

Theorem 4.2.2. Let M be a Riemannian manifold, let G be a subgroup of

isometries of M . Assuming that there exists C > 0 and s

0
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h that for any
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; j = 1; 2; 3; (4.2.22)

one has the trilinear estimates
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(4.2.23)

where T (u

1

; u

2

; u

3

) = u

1

u

2
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3

or T (u

1

; u

2
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3

) = u

1

u

2

u

3

and � 2 C

1

0

(R)

is arbitrary. Then, for every s > s

0

, the Cau
hy problem (4.2.21) is uni-

formly well-posed on the subspa
e of H

s

(M) whi
h 
onsists of G-invariant

fun
tions.

Proof. It is 
lose to the one of Theorem 4.2.1 above, so we shall just survey

it. We denote by L

2

G

(M), H

s

G

(M), X

s;b

G

(R �M) the subspa
es of L

2

(M),

H

s

(M), X

s;b

(R �M) whi
h 
onsist of G-invariant fun
tions. For the sake

of simpli
ity, we shall fo
us on the 
ase

q(u) = juj

2

+

1

2

u

2

:

The general 
ase follows from straightforward modi�
ations. As in the proof

of Theorem 4.2.1, it is enough, for every s > s

0

, to show that there exists

b; b

0
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h that

0 < b

0

<
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< b < 1� b

0
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with the following estimates,
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where u

1

; u

2

; u are G -invariant. As before, we fo
us on the �rst set of

estimates. Thanks to a duality argument, these estimates are equivalent to
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(4.2.24)

In this way, writing the solution of the Cau
hy problem (4.2.21) using

the Duhamel formula

u(t) = S(t)u

0

� i

Z
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S(t� �)(ju(�)j
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(�)) d�; (4.2.25)

and applying Lemma 4.2.3, we obtain a 
ontra
tion on X

s;b

T

proving a re-

sult of lo
al existen
e of the solution to (4.2.21) on H

s

(M); s > s

0

: Thus

the proof of this theorem is redu
ed to establishing the trilinear estimates

(4.2.24) for suitable s; b; b

0

. We just prove the �rst inequality in (4.2.24).

The proof of the se
ond one is similar.

First we reformulate trilinear estimates (4.2.23) in the 
ontext of Bourgain

spa
es.
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Proof. The proof of this lemma follows lines of Lemma 4.2.1 above. First we

assume that u
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3

are supported for t 2 [0; 1℄, and we sele
t � 2 C
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h that � = 1 on [0; 1℄. We set u
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where � = (�

1
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2
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3

). Supposing for instan
e N

1
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2

� N

3

and applying

(4.2.23) we obtain that the right hand side is bounded by
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:

We 
on
lude the proof as in the proof of Lemma 4.2.1 in se
tion 2, using

the Cau
hy-S
hwarz inequality in (�

1

; �

2

; �

3

), and �nally de
omposing ea
h

u

j

by means of the partition of unity

1 =

X

n2Z

 

�

t�

n

2

�

;

where  2 C

1

0

([0; 1℄).

Lemma 4.2.7. For every s

0

> s

0

there exist b

0

su
h that 0 < b

0

<

1

2

and,

for every G-invariant fun
tions u

1

; u

2

; u

3

satisfying (4.2.26),

�

�

�

�

Z

R

Z

M

(u

1

u

2

u

3

)dxdt

�

�

�

�

� Cmin(N

1

; N

2

; N

3

)

s

0

3

Y

j=1

ku

j

k

X

0;b

0

: (4.2.28)

Proof. Following the same lines of the proof of Lemma 4.2.2, it is enough to

establish

�

�

�

�

Z

R

Z

M

(u

1

u

2

u

3

)dxdt

�

�

�

�

� Cmin(N

1

; N

2

; N

3

)

2

3

Y

j=1

ku

j

k

X

0;

1

6

(R�M)

: (4.2.29)

Then the lemma follows by interpolation with (4.2.27). Indeed, assuming

for instan
e N

1

� N

2

� N

3

, we apply the H�older inequality as follows,

�

�

�

�

Z

R

Z

M

(u

1

u

2

u

3

)dxdt

�

�

�

�

� Cku

1

k

L

3

(R;L

1

(M))

ku

2

k

L

3

(R;L

2

(M))

ku

3

k

L

3

(R;L

2

(M))

and using the Sobolev embedding we obtain

� C(N

1

)

2

ku

1

k

L

3

(R;L

2

(M))

ku

2

k

L

3

(R;L

2

(M))

ku

3

k

L

3

(R;L

2

(M))

:

By the Sobolev embedding in the time variable for fun
tion v(t) = S(�t)u(t),

we know that

kuk

L

3

(R;L

2

(M))

� kuk

X

0;

1

6

(R�M)

and this 
ompletes the proof.

Let us sket
h the last part of the proof of Theorem4.2.2. We de
ompose

u

1

; u

2

; u

3

as follows:

u

j

=

X

N

j

u

j;N

j

; u

j;N

j

= 1

p

1��2[N

j

;2N

j

℄

(u

j

):
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We introdu
e this de
omposition in the left hand side of (4.2.24) and we

use Lemma 4.2.7. Supposing now for simpli
ity that N

1

� N

2

, we obtain

that for any s

0

> s

0

we 
an �nd b

0

su
h that 0 < b

0

<

1

2

and

�

�

�

�

Z

R

Z

M

u

1

u

2

u

3

dxdt

�

�

�

�

� C

X

N

j

(N

1

)

s

0

�s

�

N

3

N

2

�

s

ku

1

k

X

s;b

0

ku

2

k

X

s;b

0

ku

3

k

X

�s;b

0

(4.2.30)

for any s > s

0

> s

0

. Noti
e that the summation over N

1


an be performed via

a 
rude argument of summation of geometri
 series. As for the summation

over N

2

; N

3

, following the same proof as in Se
tion 4.2.1, we 
on
lude by

observing that the main part of the series 
orresponds to the 
onstraint

N

3

. N

2

.

4.2.3 Conservation laws and global existen
e for the Hartree

nonlinearity

Next we prove that for an initial datum u

0

2 H

1

(M), the lo
al solution

of the Cau
hy problem (4.1.1) obtained above 
an be extended to a global

solution u 2 C(R; H

1

(M)).

By the de�nition of uniform wellposedness, the lifespan T of the lo
al

solution u 2 C([0; T );H

1

(M)) depends only on the H

1

norm of the initial

datum. Thus, in order to prove that the solution 
an be extended to a global

one, it is suÆ
ient to show that the H

1

norm of u remains bounded on any

�nite interval [0; T ). This is a 
onsequen
e of the following 
onservation

laws, whi
h 
an be proved by means of the multipliers u and u

t

,

Z

M

ju(t; x)j

2

dx = Q

0

;

Z

M

jru(t; x)j

2

g

+

1

2

j(1��)

��=2

(juj

2

)(t; x)j

2

dx = E

0

:

(4.2.31)

Remark 4.2.2. Noti
e that a similar argument 
an be applied in the 
ase of

an attra
tive Hartree nonlinearity, at least when � > 1. Indeed, 
onsider

the fo
using S
hr�odinger equation

iu

t

+�u = �(1��)

��

(juj

2

)u;

where the nonlinear term has the opposite sign. Computing as above, we

obtain the 
onservation of energy

kruk

2

L

2

(M)

�

1

2

k(1 ��)

��=2

(juj

2

)k

2

L

2

= 
onst;

but now the energy E(t) does not 
ontrol the H

1

norm of u. However, we


an write

kruk

2

L

2

� C + Ck(1��)

��=2

(juj

2

)k

2

L

2

;
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and by Sobolev embedding we have

k(1��)

��=2

(juj

2

)k

2

L

2

� Ck juj

2

k

2

L

q

� Ckuk

4

L

2q

;

1

q

=

1

2

+

�

4

;

so that we obtain, with p = 2q,

kruk

L

2
� C + Ckuk

2

L

p

;

1

p

=

1

4

+

�

8

:

We now use the Gagliardo-Nirenberg inequality (for d = 4)

kwk

p

L

p

� C(kwk

p�(p�2)

d

2

L

2

krwk

(p�2)

d

2

L

2

+ kwk

p

L

2

)

and we obtain

kruk

L

2
� C(1 + kuk

2

L

2

) + Ckuk

2�4(p�2)=p

L

2

kruk

4(p�2)=p

L

2

:

Noti
e that, as in the defo
using 
ase above, the L

2

norm of u is a 
onserved

quantity. If the power 4(p� 2)=p is stri
tly smaller than 1, we infer that the

H

1

norm of u must remain bounded. In other words, we have proved global

existen
e provided

4 �

p� 2

p

< 1 () � > 1:

4.2.4 Studying the global existen
e for the quadrati
 nonlin-

earity

Proposition 4.2.8. Let (M; g) be a four-dimensional Riemannian manifold

satisfying the assumptions of Theorem 4.2.2. There exists " > 0 and a

subspa
e X of C(R;H

1

G

(M)) su
h that, for every initial data u

0

2 H

1

G

(M)

satisfying ku

0

k

H

1
� ", the Cau
hy problem (4.1.2), where q(u) = (Re u)

2

,

has a unique global solution u 2 X.

Proof. By Theorem 4.2.2, we obtain that for an initial datum u

0

2 H

1

G

(M),

there exists a lo
al solution of the Cau
hy problem

(

i�

t

u+�u = (Re u)

2

;

u(0; x) = u

0

(x):

By the de�nition of uniform wellposedness, the lifespan T of the lo
al solu-

tion u 2 C([0; T );H

1

G

(M)) only depends on a bound of the H

1

norm of the

initial datum. Thus, in order to prove that the solution 
an be extended to

a global one, it is suÆ
ient to show that the H

1

norm of u remains bounded
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on any �nite interval [0; T ). This is a 
onsequen
e of the following 
onser-

vation laws and of a suitable assumption of smallness on the initial data.

Noti
e that

�

t

�

Z

M

u(t; x) dx

�

= �i

Z

M

(Re u)

2

dx;

from whi
h

Z

M

Re u(t; x) dx = 
onst: (4.2.32)

Moreover the following energy is 
onserved,

Z

M

jru(t; x)j

2

+

2

3

(Reu(t; x))

3

dx = E

0

: (4.2.33)

Consequently we 
an write

kruk

2

L

2

� E

0

+ C

�

�

�

�

Z

M

(Re u)

3

�

�

�

�

:

Sin
e by Gagliardo-Nirenberg inequality we have

�

�

�

�

Z

M

(Re u)

3

dx

�

�

�

�

� CkRe uk

L

2
kr(Re u)k

2

L

2

+ k(Re u)k

3

L

2

;

and by the following inequality

kRe uk

L

2
� C

�

�

�

�

Z

M

Reu dx

�

�

�

�

+ kr(Re u)k

L

2
;

we dedu
e that

kruk

2

L

2

� E

0

+ C

�

�

�

�

�

Z

M

Re u dx

�

�

�

�

+ kruk

L

2

�

kruk

2

L

2

:

Thanks to (4.2.32) we know that

�

�

�

�

Z

M

Re u dx

�

�

�

�

� ku

0

k

L

1

(M)

� Cku

0

k

H

1

(M)

;

thus we obtain

kruk

2

L

2

� E

0

+C (ku

0

k

H

1
+ kruk

L

2
) kruk

2

L

2

:

Assuming that

ku

0

k

H

1
� ";

we infer, by a 
lassi
al bootstrap argument, that kruk 
annot blow up, as

well as kRe uk

L

2
. Using again the evolution law of the integral of u, this

implies that this integral 
annot blow up, and 
ompletes the proof of the

proposition.
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Noti
e that the proof above extends without diÆ
ulty to q(u) = 
(Re u)

2

,

for any real number 
. If (M; g) satis�es the assumptions of Theorem 4.2.2,

we 
an now prove that the 
on
lusions of Corollary 4.1.1 hold on M .

Proof. Let q(u) = au

2

+ bu

2

+2ajuj

2

. The idea is to transform the equation

into an equivalent one using the 
hange of unknown u = !v, with j!j = 1,

and then impose 
onditions on a; b su
h that the transformed equation is

of the spe
ial type 
orresponding to q(u) = 
(Re u)

2

for whi
h, thanks to

Proposition 4.2.8, we know that the solution is global. Thus we try to impose

q(!v) = 
!(Re v)

2

for some 
 2 R and some ! with j!j = 1, and we obtain the polynomial

identity

a!

2

v

2

++b!

2

v

2

+ 2ajvj

2

=


!

4

(v + v)

2

:

Equating the 
oeÆ
ients of the two polynomials we obtain

a = 


!

4

; b = 


!

3

4

and this is equivalent to

a

2

a

= b :

Conversely, we prove that if this 
ondition is not satis�ed, it is always pos-

sible to 
onstru
t small energy solutions whi
h blow up in a �nite time. We

take as initial datum a 
onstant in the form

u

0

(x) = !y

0

; y

0

2 R n f0g ; j!j = 1;

and then the equation redu
es to the ordinary di�erential equation

iu

t

= q(u); u(0) = !y

0

:

De�ning y(t) = u(t)=!, we see that y(t) is a solution of the equation

i!y

0

(t) = q(u) = y

2

q(!)

whi
h 
an be written

y

0

(t) = �iq(!)! y

2

; y(0) = y

0

2 R

The solution 
an be written expli
itly as

y(t) =

1

y

�1

0

+ iq(!)!t
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and is not global if and only if q(!)! is purely imaginary. Thus to 
on
lude

the proof it is suÆ
ient to show that we 
an �nd an ! su
h that

q(!)! � a! + b!

3

+ 2a! is purely imaginary (and not 0):

Writing a = Ae

i�

, b = Be

i�

, ! = e

i�

with A;B � 0, this is equivalent to

�nding a simple zero for the following fun
tion

f(�) = 3A 
os(�+ �) +B 
os(� � 3�):

Observe that the average of f vanishes. A point where the sign of f 
hanges


annot be a double zero unless it is a triple zero, and a straightforward


al
ulation shows that this 
orresponds exa
tly to the 
ase A = B and

3�+� = 2k�, namely

a

2

a

= b. Hen
e, if this 
ondition is not satis�ed, f has

a simple zero. This 
ompletes the proof.

4.3 Multilinear estimates

In this se
tion we establish multilinear estimates, whi
h, 
ombined with

Theorems 4.2.1 and 4.2.2, yield Theorems 4.1.1 and 4.1.2. We re
all that

S(t) = e

it�

:

4.3.1 Quadrilinear estimates

This subse
tion is devoted to the proof of quadrilinear estimates (4.2.2) with

s

0

< 1 on arbitrary four-manifolds with � > 1=2, and on the sphere S

4

with

� > 0. In view of subse
tions 4.2.1 and 4.2.3, this will 
omplete the proof

of Theorem 4.1.1.

Lemma 4.3.1. Let � >

1

2

, s

0

=

�

3

2

� �

�

and let (M; g) a 
ompa
t four-

dimensional Riemannian manifold. Then there exists C > 0 su
h that for

any f

1

; f

2

2 L

2

(M) satisfying

1

p

1��2[N;2N ℄

(f

1

) = f

1

; 1

p

1��2[L;2L℄

(f

2

) = f

2

; (4.3.1)

one has the following bilinear estimate:

k(1��)

�

�

2

(u

1

u

2

)k

L

2

((0;1)�M)

� C(min(N;L))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

;

(4.3.2)

with u

j

(t) = S(t)f

j

.

Proof. By symmetry, it is not restri
tive to assume thatN � L. The Sobolev

embedding implies

k(1 ��)

�

�

2

(u

1

u

2

)k

L

2

((0;1)�M)

� Cku

1

u

2

k

L

2

((0;1);L

q

(M))

;

1

q

=

1

2

+

�

4

;
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and applying the Hold�er inequality we obtain

k(1��)

�

�

2

(u

1

u

2

)k

L

2

((0;1)�M)

� Cku

1

k

L

2

((0;1);L

4

�

(M))

ku

2

k

L

1

((0;1);L

2

(M))

:

Thanks to the 
onservation of the L

2

norm we 
an bound the last fa
tor with

the L

2

norm of f

2

; on the other hand, the L

2

L

4=�

term 
an be bounded using

the Stri
hartz inequality on 
ompa
t manifolds established by Burq, G�erard,

Tzvetkov in [22℄ (see Theorem 1), whi
h reads, in this parti
ular 
ase,

ku

1

k

L

2

((0;1);L

4

(M))

� C N

1=2

kf

1

k

L

2

(M)

:

Combining this estimate with the Sobolev inequality, we obtain (4.3.2) as


laimed.

Proposition 4.3.2. Let � >

1

2

, s

0

>

�

3

2

� �

�

and let (M; g) a 
ompa
t four

dimensional Riemannian manifold. Then there exists C > 0 su
h that for

any f

1

; f

2

; f

3

; f

4

2 L

2

(M) satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4;

one has the following quadrilinear estimate for u

j

(t) = S(t)f

j

:

sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(m(N

1

; � � � ; N

4

))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

(4.3.3)

where � 2 C

1

0

(R) is arbitrary and m(N

1

; � � � ; N

4

) is the produ
t of the small-

est two numbers among N

1

; N

2

; N

3

; N

4

.

Proof. The proof of our quadrilinear estimate (4.3.3) whenm(N

1

; � � � ; N

4

) =

N

1

N

3

follows dire
tly by the Cau
hy-S
hwarz inequality and Lemma 4.3.1.

In fa
t, assuming for instan
e that � is supported into [0; 1℄, we have

I � sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� Ck(1��)

�

�

2

(u

1

u

2

)k

L

2

((0;1)�M)

k(1 ��)

�

�

2

(u

3

u

4

)k

L

2

((0;1)�M)

� C(m(N

1

; � � � ; N

4

))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

by applying (4.3.2). By symmetry, it remains to 
onsider only the 
ase

m(N

1

; � � � ; N

4

) = N

1

N

2

:

By the self-adjointness of (1��), H�older's inequality and Sobolev's inequal-

ity we have

I � Cku

1

u

2

k

L

1

((0;1);L

q

0

(M))

k(1��)

��

(u

3

u

4

)k

L

1

((0;1);L

q

(M))

� Cku

1

u

2

k

L

1

((0;1);L

q

0

(M))

ku

3

u

4

k

L

1

((0;1);L

1

(M))

;
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provided

1

q

> 1�

�

2

. Using again H�older's inequality, we infer

I � C

Y

j=1;2

ku

j

k

L

2

((0;1);L

2q

0

(M))

Y

k=3;4

ku

k

k

L

1

((0;1);L

2

(M))

:

Conservation of energy implies that ku

k

k

L

1

((0;1);L

2

(M))

= kf

k

k

L

2

(M)

. On

the other hand by Sobolev embedding we have

ku

j

k

L

2

((0;1);L

2q

0

(M))

� CN

2

q

�1

j

ku

j

k

L

2

((0;1);L

4

(M))

:

Now we 
an apply the above-mentioned Stri
hartz estimate of [22℄ to obtain

ku

j

k

L

2

((0;1);L

2q

0

(M))

� CN

2

q

�

1

2

j

kf

j

k

L

2

(M))

:

Sin
e

s

0

=

2

q

�

1

2

>

3

2

� �;

and s

0


an be arbitrarily 
lose to

3

2

� �, the proof is 
omplete.

Remark 4.3.1. In this 
ase, an iteration s
heme for solving 
an be per-

formed as in [22℄, avoiding the use of Bourgain spa
es, making in X

T

=

C([0; T ℄;H

1

) \ L

2

([0; T ℄;H

�

4

) .

On the four dimensional sphere, endowed with its standard metri
, the pre-


ise knowledge of the spe
trum �

k

= k(k + 3); k 2 N makes it possible

to improve our quadrilinear estimate. We pro
eed in several steps, starting

with an estimate on the produ
t of two spheri
al harmoni
s.

Lemma 4.3.3. Let � 2℄0;

1

2

℄ and let s

0

= 1�

3�

4

. There exists C > 0 su
h

that for any H

n

;

e

H

l

spheri
al harmoni
s on S

4

of degree n; l respe
tively, the

following bilinear estimate holds:

k(1��)

�

�

2

(H

n

e

H

l

)k

L

2

(S

4

)

� C(1 + min((n; l))

s

0

kH

n

k

L

2

(S

4

)

k

e

H

l

k

L

2

(S

4

)

:

(4.3.4)

Proof. It is not restri
tive to assume that 1 � n � l. We shall adapt the

proof of multilinear estimates in [23℄,[25℄, using the approa
h des
ribed in

[26℄.

Writing

h = (n(n+ 3))

�1=2

;

e

h = (l(l + 3)

�1=2

;

the equations satis�ed by the eigenfun
tions H

n

;

e

H

l

read

h

2

�H

n

+H

n

= 0 ;

~

h

2

�

e

H

l

+

e

H

l

= 0 :

In lo
al 
oordinates, these are semi
lassi
al equations, with prin
ipal symbol

p(x; �) = 1� g

x

(�; �) :
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We now de
ompose H

n

and H

l

using a mi
rolo
al partition of unity with

semi-
lassi
al 
ut-o� of the form �(x; hD), e�(x;

e

hD) respe
tively. When

supp�(x; �) \ fg

x

(�; �) = 1g = ;;

i.e. in the "ellipti
" 
ase, the estimates are quite strong : we have, for all s,

p,

kjD

x

j

s

�(x; hD

x

)H

n

k

L

2

(S

4

)

� C

s;p

h

p

kH

n

k

L

2

(S

4

)

; (4.3.5)

with similar estimates for

~

H

l

. Consequently, it is suÆ
ient to estimate

k(1��)

�

�

2

(�(x; hD

x

)H

n

e�(x;

e

hD

x

)

e

H

l

)k

L

2

(S

4

)

(4.3.6)

when 
ut-o� fun
tions �; e� are lo
alized near the 
hara
teristi
 set

fg

x

(�; �) = 1g :

Re�ning the partition of unity, we may assume that the supports of �, e� are


ontained in small neighborhoods of (m;!), (m; e!) where m 2 M and !; e!

are 
ove
tors su
h that

g

m

(!; !) = g

m

(e!; e!) = 1 :

Noti
e that fun
tions u = �(x; hD

x

)H

n

; eu = e�(x;

e

hD

x

)

e

H

l

are 
ompa
tly

supported and satisfy

p

w

(x; hD)u = hF ; p

w

(x;

e

hD)eu =

e

h

e

F ;

where kFk

L

2
. kH

n

k

L

2
and k

e

F k

L

2
. k

e

H

l

k

L

2
.

Set g

x

(x; �) = hA(x)�; �i. Choose any system (x

1

; : : : ; x

4

) of linear 
oor-

dinates on R

4

su
h that

hA(m)!; dx

1

i 6= 0 and hA(m)e!; dx

1

i 6= 0 :

Then, on the supports of � and e�, one 
an fa
torize the symbol of the

equation as

p(x; �) = e(x; �)(�

1

� q(x; �

0

)) ; p(x; �) = ee(x; �)(�

1

� eq(x; �

0

));

where e; ee are ellipti
 symbol while q; eq are real valued symbols. In other

words, we 
an redu
e the equations for u; eu to evolution equations with

respe
t to the variable x

1

. Noti
e that �

0

2 R

d�1

= R

3

, i.e., the spatial

dimension of these evolution equations is 3. Moreover, sin
e the se
ond

fundamental form of the 
hara
teristi
 ellipsoid f� : g

m

(�; �) = 1g is non

degenerate, the Hessian of q; eq with respe
t to the �

0

variables does not

vanish on the supports of �; e� respe
tively.

Therefore we 
an apply to this equation the (lo
al) three-dimensional

Stri
hartz estimates (see Corollary 2.2 of [26℄ for more details). We 
on
lude
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that u satis�es the 3-dimensional semi
lassi
al Stri
hartz estimates in the

following form:

kuk

L

p

x

1

L

q

x

0

� Ch

�

1

p

kH

n

k

L

2 . n

1

p

kH

n

k

L

2 ; (4.3.7)

for all (p; q) satisfying the admissibility 
ondition

2

p

+

3

q

=

3

2

; p � 2:

An identi
al argument is valid for eu. In fa
t, for eu we shall only need the

energy estimate

keuk

L

1

x

1

L

2

x

0

� Ck

e

H

l

k

L

2
: (4.3.8)

Finally, we estimate the produ
t ueu as follows. By the Sobolev inequality,

k(1��)

�

�

2

(u~u)k

L

2
� Cku~uk

L

q

;

1

q

=

1

2

+

�

4

:

Applying the H�older inequality we obtain

k(1 ��)

�

�

2

(u~u)k

L

2
� Ckuk

L

q

x

1

L

4

�

x

0

k~uk

L

1

x

1

L

2

x

0

Noti
ing that q < 2 and using the 
ompa
tness of the support of u, we have

kuk

L

q

x

1

L

4

�

x

0

� Ckuk

L

2

x

1

L

4

�

x

0

:

Applying the Stri
hartz estimate (4.3.7) with p = 2 and the Sobolev embed-

ding in the x

0

variables, we obtain

kuk

L

2

x

1

(L

4

�

x

0

)

� Cn

1

2

�

3�

4

kuk

L

2

x

1

L

6

x

0

� Cn

1�

3�

4

kH

n

k

L

2
: (4.3.9)

Combining with the L

1

L

2

estimate (4.3.8) on ~u, this 
ompletes the proof.

We now 
ome to a quadrilinear estimate on spheri
al harmoni
s.

Lemma 4.3.4. Let � 2℄0;

1

2

℄ and s

0

= 1�

3�

4

. There exists C > 0 su
h that

for any H

(j)

n

j

; j = 1; � � � ; 4, spheri
al harmoni
s on S

4

of degree n

j

respe
-

tively, the following quadrilinear estimate holds:

Z

S

4

(1��)

��

(H

(1)

n

1

H

(2)

n

2

)H

(3)

n

3

H

(4)

n

4

dx � C(1 +m((n

j

))

s

0

4

Y

j=1

kH

(j)

n

j

k

L

2

(S

4

)

:

(4.3.10)
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Proof. By symmetry, it is suÆ
ient to 
onsider the two 
ases

m(n

1

; � � � ; n

4

) = n

1

n

3

; m(n

1

; � � � ; n

4

) = n

1

n

2

:

In the �rst 
ase, the proof follows dire
tly by the Cau
hy-S
hwarz inequality

and Lemma 4.3.3. It remains to 
onsider only the 
ase m(n

1

; � � � ; n

4

) =

n

1

n

2

. We use the same idea as in Lemma 4.3.3 to de
ompose, if n

j

� 1,

ea
h H

(j)

n

j

into a sum of terms of the form

u

j

= �

j

(x; h

j

D

x

)H

(j)

n

j

; h

j

= (n

j

(n

j

+ 3))

�1=2

; j = 1; 2; 3; 4 :

As before, ea
h u

j

may be mi
rolo
alized either into the ellipti
 zone, in

whi
h 
ase we have mu
h stronger semi
lassi
al estimate (4.3.5), in parti
-

ular an L

1

bound, or near the 
hara
teristi
 set, and for these terms we


an use the Stri
hartz type estimate (4.3.7). Noti
e that the very spe
ial


ase n

j

= 0 
an be in
luded into the ellipti
 
ase. Thus we have several

possibilities to 
onsider.

If at least two u

j

's are mi
rolo
alized in the ellipti
 zone, then the quadri-

linear estimate holds trivially (with s

0

= 0) by a simple appli
ation of the

Cau
hy-S
hwarz inequality.

If u

3

or u

4

is mi
rolo
alized in the ellipti
 zone, then, again by the

Cau
hy- S
hwarz inequality, the quadrilinear estimate is a 
onsequen
e of

estimate (4.3.4) of Lemma 4.3.3, with � repla
ed by 2�.

It remains to deal with the 
ases when only u

1

or u

2

is mi
rolo
alized in

the ellipti
 zone, and when all the u

j

's are mi
rolo
alized near the 
hara
-

teri
ti
 set. In both 
ases, we shall make use of the following variant of the

Sobolev inequality.

Lemma 4.3.5. Let A be a pseudodi�erential operator of order �2� on R

4

,

and let B be a bounded subset of R

4

. For any smooth fun
tion F on R

4

with

support in B, we have the estimate

kA(F )k

L

1

x

1

(L

q

x

0

)

� CkFk

L

1

x

1

(L

1

x

0

)

(4.3.11)

provided

1

q

> 1� 2�=3.

Proof. The kernel K(x; y) of A admits an estimate like

jK(x; y)j �

C

(jx� yj)

4�2�

�

C

(jx

1

� y

1

j+ jx

0

� y

0

j)

4�2�

: (4.3.12)

The 
laim is then a 
onsequen
e of Young's inequality in variables x

0

.

By the self-adjointness of (1 ��) the terms to estimate 
an be written

as follows:

I =

�

�

�

�

Z

S

4

(u

1

u

2

)� (1��)

��

(u

3

u

4

) dx

�

�

�

�

: (4.3.13)
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As in the proof of Lemma 4.3.3 we sele
t a splitting x = (x

1

; x

0

) of the

lo
al 
oordinates su
h that u

2

; u

3

; u

4

are solutions of semi
lassi
al evolution

equations, and therefore satisfy Stri
hartz estimates (4.3.7). Using the L

1

bound on u

1

, we have

I � CkH

(1)

n

1

k

L

2

(S

4

)

ku

2

k

L

1

x

1

(L

q

0

x

0

)

k(1��)

��

(u

3

u

4

)k

L

1

x

1

(L

q

x

0

)

;

and by Lemma 4.3.5 we obtain

I � CkH

(1)

n

1

k

L

2

(S

4

)

ku

2

k

L

1

x

1

(L

q

0

x

0

)

ku

3

u

4

k

L

1

x

1

(L

1

x

0

)

provided

1

q

> 1�

2�

3

. H�older's inequality gives

I � CkH

(1)

n

1

k

L

2

(S

4

)

ku

2

k

L

2

x

1

(L

q

0

x

0

)

ku

3

k

L

1

x

1

(L

2

x

0

)

ku

4

k

L

1

x

1

(L

2

x

0

)

;

and, applying estimate (4.3.8) on u

3

; u

4

and estimate (4.3.7) with p = 2 on

u

2

, we obtain

I � Cn

s

2

4

Y

j=1

kH

(j)

n

j

k

L

2

(S

4

)

;

with

s = max

�

1

2

; 1�

3

q

0

�

< s

0

;

sin
e q

0

is arbitrary with

1

q

0

<

2�

3

.

Finally, we treat the 
ase when all the fa
tors are mi
rolo
alized near

the 
hara
teristi
 set. On
e again, we sele
t a splitting x = (x

1

; x

0

) of the

lo
al 
oordinates for whi
h Stri
hartz estimates (4.3.7) are valid for ea
h u

j

.

By H�older's inequality and Lemma 4.3.5 we have

I � Cku

1

u

2

k

L

1

x

0

(L

q

0

x

0

)

ku

3

u

4

)k

L

1

x

1

(L

1

x

0

)

� Cku

1

k

L

2

x

1

(L

2q

0

x

0

)

ku

2

k

L

2

x

1

(L

2q

0

x

0

)

ku

3

k

L

1

x

1

(L

2

x

0

)

ku

4

k

L

1

x

1

(L

2

x

0

)

:

By estimates (4.3.7) with p = 2 on u

1

; u

2

and (4.3.8) on u

3

; u

4

, we 
on
lude

I � C(n

1

n

2

)

s

4

Y

j=1

kH

(j)

n

j

k

L

2

(S

4

)

;

with

s = max

�

1

2

; 1�

3

2q

0

�

< s

0

;

sin
e q

0

is arbitrary with

1

q

0

<

2�

3

. This 
ompletes the proof.
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Remark. It is 
lear that Lemma 4.3.3 and Lemma 4.3.4 extend to Lapla
e

eigenfun
tions on arbitrary 
ompa
t four-manifolds. Moreover, a re�nement

of the study of the ellipti
 
ase shows that, as in [23℄, [25℄, eigenfun
tions


an be repla
ed by fun
tions belonging to the range of spe
tral proje
tors of

the type 1

[n;n+1℄

(

p

��):

We now 
ome to the main result of this subse
tion.

Proposition 4.3.6. For every � > 0, for every s

0

> 1�

3�

4

, the quadrilinear

estimate (4.2.2) holds on S

4

.

Proof. Let f

1

; � � � ; f

4

be fun
tions on S

4

satisfying the spe
tral lo
alization

property

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4 : (4.3.14)

This implies that one 
an expand

f

j

=

X

n

j

H

(j)

n

j

;

where H

(j)

n

j

are spheri
al harmoni
s of degree n

j

, and where the sum on n

j

bears on the domain

N

j

=2 � 1 + n

j

� 2N

j

: (4.3.15)

Consequently, the 
orresponding solutions of the linear S
hr�odinger equation

are given by

u

j

(t) = S(t)f

j

=

X

n

j

e

�itn

j

(n

j

+3)

H

(j)

n

j

and we have to estimate the expression

Q(f

1

; � � � ; f

4

; �) =

Z

R

Z

S

4

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

=

X

n

1

;��� ;n

4

b�(

4

X

j=1

"

j

n

j

(n

j

+ 3)� �) I(H

(1)

n

1

; � � � ;H

(4)

n

4

) ;

with "

j

= (�1)

j�1

and

I(H

(1)

n

1

; � � � ;H

(4)

n

4

) =

Z

S

4

(1��)

��

(H

(1)

n

1

H

(2)

n

2

)H

(3)

n

3

H

(4)

n

4

dx :

Appealing to Lemma 4.3.4, we have, with s = 1� 3�=4,

jI(H

(1)

n

1

; � � � ;H

(4)

n

4

)j � Cm(N

1

; � � � ; N

4

)

s

4

Y

j=1

kH

(j)

n

j

k

L

2
:
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Using the fast de
ay of b� at in�nity, we infer

jQ(f

1

; � � � ; f

4

; �)j � C m(N

1

; � � � ; N

4

)

s

X

`2Z

(1 + j`j

2

)

�1

X

�([� ℄+`)

4

Y

j=1

kH

(j)

n

j

k

L

2

. m(N

1

; � � � ; N

4

)

s

sup

k2Z

X

�(k)

4

Y

j=1

kH

(j)

n

j

k

L

2
;

where �(k) denotes the set of (n

1

; � � � ; n

4

) satisfying (4.3.15) for j = 1; 2; 3; 4

and

4

X

j=1

"

j

n

j

(n

j

+ 3) = k :

Now we write

f1; 2; 3; 4g = f�; �; 
; Æg

with m(N

1

; � � � ; N

4

)) = N

�

N

�

, and we split the sum on �(k) as

jQ(f

1

; � � � ; f

4

; �)j . m(N

1

; � � � ; N

4

)

s

sup

k2Z

X

a2Z

S(a)S

0

(k � a) (4.3.16)

where

S(a) =

X

�(a)

kH

(�)

n

�

k

L

2
kH

(
)

n




k

L

2
; S

0

(a

0

) =

X

�

0

(a

0

)

kH

(�)

n

�

k

L

2
kH

(Æ)

n

Æ

k

L

2
;

�(a) = f(n

�

; n




) : (4.3.15) holds for j = �; 
;

X

j2f�;
g

"

j

n

j

(n

j

+ 3) = ag;

�

0

(a

0

) = f(n

�

; n

Æ

) : (4.3.15) holds for j = �; Æ;

X

j2f�;Æg

"

j

n

j

(n

j

+ 3) = a

0

g:

Now we appeal to the following elementary result of number theory (see e.g.

Lemma 3.2 in [24℄).

Lemma 4.3.1. Let � 2 f�1g. For every " > 0, there exists C

"

su
h that,

given M 2 Z and a positive integer N ,

#f(k

1

; k

2

) 2 N

2

: N � k

1

� 2N ; k

2

1

+ �k

2

2

=Mg � C

"

N

"

:

A simple appli
ation of Lemma 4.3.1 implies, for every " > 0,

sup

a

#�(a) � C

"

N

"

�

; sup

a

0

#�

0

(a

0

) � C

"

N

"

�

;
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and 
onsequently, by a repeated use of the Cau
hy-S
hwarz inequality,

X

a

S(a)S

0

(k � a) � C

"

(N

�

N

�

)

"

�

0

�

X

a

X

�(a)

kH
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�
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L

2

kH
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1

A
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0

�

X

a

X

�

0

(k�a)

kH
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�
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L

2
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L

2
;

where, in the last estimate, we used the orthogonality of the H

(j)

n

j

's as n

j

varies. Coming ba
k to (4.3.16), this 
ompletes the proof.

Remark. Using the remark before the statement of this proposition, the

proof above extends easily to any 
ompa
t four-dimensional Zoll manifold

(see [24℄ for more details).

4.3.2 Trilinear estimates on the sphere

In this subse
tion, we prove trilinear estimates (4.2.23) on S

4

, for every s

0

>

1=2, for zonal solutions of the S
hr�odinger equation. In view of subse
tions

2.2 and 2.4, this will 
omplete the proof of Theorem 4.1.2 and of Corollary

4.1.1, by 
hoosing for G the group of rotations whi
h leave invariant a given

pole on S

4

.

First we re
all the de�nition of zonal fun
tions.

De�nition 4.3.1. Let d � 2, and let us �x a pole on S

d

. We shall say

that a fun
tion on S

d

is a zonal fun
tion if it depends only on the geodesi


distan
e to the pole.

The zonal fun
tions 
an be expressed in terms of zonal spheri
al harmoni
s

whi
h in their turn 
an be expressed in terms of 
lassi
al polynomials (see

e.g. [92℄). As in [25℄, we 
an represent the normalized zonal spheri
al

harmoni
 Z

p

in the 
oordinate � (the geodesi
 distan
e of the point x to

our �xed pole) as follows:

Z

p

(x) = C(sin �)

�

d�1

2

�


os[(p+ �)� + �℄ +

O(1)

p sin �

�

;




p

� � � � �




p

(4.3.17)

with �; � independent of p, and C uniformly bounded in p. On the other

hand, near the 
on
entration points � = 0; � we 
an write

jZ

p

(x)j � Cp

d�1

2

; � 62 [
=p; � � 
=p℄: (4.3.18)

and kZ

p

k

L

2

(S

d

)

= 1.
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With this notation, we have the following trilinear eigenfun
tion esti-

mates.

Lemma 4.3.7. There exists a 
onstant C > 0 su
h that the following tri-

linear estimate holds:

kZ

p

Z

q

Z

l

k

L

1

(S

4

)

� C(min(p; q; l))

1=2

: (4.3.19)

Proof. It is not restri
tive to assume that p � q � l. Moreover, by Cau
hy-

S
hwarz inequality it is suÆ
ient to prove (4.3.19) in the spe
ial 
ase q = l.

Then we have

kZ

p

Z

2

q

k

L

1

(S

4

)

= 


Z

�

0

jZ

p

(�)jZ

q

(�)

2

(sin �)

3

d� ;

where 
 is some universal 
onstant. We split the interval [0; �℄ into the

intervals I

1

= [0; 
=q℄, I

2

= [
=q; 
=p℄, I

3

= [
=p; �=2℄ and I

4

= [�; 2; �� 
=p℄,

I

5

= [��
=p; ��
=q℄, I

6

= [��
=p; �℄. Clearly, by symmetry, it is suÆ
ient

to estimate the integral on the �rst three intervals I

1

; I

2

; I

3

.

On I

1

we 
an use (4.3.18) for both harmoni
s Z

p

; Z

q

and the simple

estimate sin � � �, and we obtain

Z


=q

0

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

3=2

q

3

Z


=q

0

�

3

d� � Cp

3=2

q

3

q

�4

� Cp

1=2

sin
e q � p.

On the se
ond interval I

2

we use (4.3.17) for Z

p

and (4.3.18) for Z

q

:

Z


=p


=q

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

3=2

Z


=p


=q

�

1 +

1

q sin �

�

2

d�

and by the elementary inequality

�

1 +

1

q sin �

�

2

� C +

C

q

2

�

2

(4.3.20)

we have immediately

Z


=p


=q

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

3=2

�




p

�




q

+

C

q

2

(q=
 � p=
)

�

� Cp

1=2

:

Finally, in the interval I

3

we must use (4.3.17) for both harmoni
s:

Z

�=2


=p

jZ

p

jZ

2

q

(sin �)

3

d� � C

Z

�=2


=p

�

1 +

1

p sin �

��

1 +

1

q sin �

�

2

(sin �)

�3=2

d�:

Using again (4.3.20), the inequality sin � � C� on [0; �=2℄, and the fa
t that

q � p, we have easily

�

1 +

1

p sin �

��

1 +

1

q sin �

�

2

(sin �)

�3=2

� C�

�3=2

+ Cp

�3

�

�9=2

:
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Then integrating on I

3

we obtain

Z

�=2


=p

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

1=2

and this 
on
ludes the proof.

We now 
ome to the main result of this subse
tion, whi
h asserts that tri-

linear estimates (4.2.23) hold for every s

0

> 1=2 onM = S

4

in the parti
ular


ase of zonal Cau
hy data.

Proposition 4.3.8. Let s

0

>

1

2

and � 2 C

1

0

(R). There exists C > 0 su
h

that for any f

1

; f

2

; f

3

2 L

2

(S

4

) are zonal fun
tions and satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; (4.3.21)

one has the following trilinear estimate for u

j

(t) = S(t)f

j

,

sup

�2R

�

�

�

�

Z

R

Z

S

4

�(t) e

it�

u

1

u

2

u

3

dxdt

�

�

� C(min(N

1

; N

2

; N

3

))

s

0

kf

1

k

L

2

(S

4

)

kf

2

k

L

2

(S

4

)

kf

3

k

L

2

(S

4

)

:

(4.3.22)

Proof. The proof is very similar to the one of Proposition 4.3.6. We write

u

j

(t) =

X

n

j

e

�itn

j

(n

j

+3)




j

(n

j

)Z

n

j

;

where n

j

is subje
t to the 
ondition (4.3.15) and

X

n

j

j


j

(n

j

)j

2

� kf

j

k

2

L

2

:

Thus we 
an write the integral of the left hand-side of (4.3.22) as

J =

X

n

1

;n

2

;n

3

b�(

3

X

j=1

"

j

n

j

(n

j

+ 3)� �) 


1

(n

1

)


2

(n

2

)


3

(n

3

)

Z

S

4

Z

n

1

Z

n

2

Z

n

3

dx ;

where "

1

= "

2

= 1 and "

3

= �1. Using the fast de
ay of the Fourier

transform b� and the estimate of Lemma 4.3.7, we obtain

jJ j �C (min(N

1

; N

2

; N

3

))

1

2

X

`2Z

1

1 + `

2

X

�

[� ℄+`

j


1

(n

1

)


2

(n

2

)


3

(n

3

)j ;

. (min(N

1

; N

2

; N

3

))

1

2

sup

k2Z

X

�

k

j


1

(n

1

)


2

(n

2

)


3

(n

3

)j ;
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where

�

k

= f(n

1

; n

2

; n

3

) : (4.3.15) holds for j = 1; 2; 3 ;

3

X

j=1

"

j

n

j

(n

j

+ 3) = k g :

Suppose for instan
e that min(N

1

; N

2

; N

3

) is N

1

or N

2

. Introdu
ing

�

k

(n

3

) = f(n

1

; n

2

) : (n

1

; n

2

; n

3

) 2 �

k

g;

we spe
ialize index n

3

in the above sum as

J �C sup

k

X

n

3

j


3

(n

3

)j

0

�

X

(n

1

;n

2

)2�

k

(n

3

)

j


1

(n

1

)


2

(n

2

)j

1

A

�C sup

k

 

X

n

3

j


3

(n

3

)j

2

!

1

2

0

�

X

n

3

�

X

(n

1

;n

2

)2�

k

(n

3

)

j


1

(n

1

)


2

(n

2

)j

�

2

1

A

1

2

�C

 

X

n

3

j


3

(n

3

)j

2

!

1

2

sup

k

0

�

X

n

3

[#�

k

(n

3

)℄

X

(n

1

;n

2

)2�

k

(n

3

)

j


1

(n

1

)j

2

j


2

(n

2

)j

2

1

A

1

2

:

To 
omplete the proof, it remains to appeal on
e again to Lemma 4.3.1,

whi
h yields the estimate

#�

�;`

(n

3

) � C

Æ

(min(N

1

; N

2

))

Æ

;

for every Æ > 0. If N

3

is min(N

1

; N

2

; N

3

), the proof is similar, by spe
ializing

the sum with respe
t to n

1

, say.
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