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Abstrat

The purpose of this thesis is to study the dispersive properties of the solu-

tions of the Shr�odinger, wave and heat equations and their perturbations

with potential on Riemannian manifolds. Furthemore, we onsider a few ap-

pliations of these results to the orresponding nonlinear Cauhy problems.

A �rst main question studied in the present thesis is: what part of the

dispersive properties is preserved if we perturb the equations with a potential

term of the form V (t; x)u or simply V (x)u? The importane of this question

is lear both from the point of view of the appliations, and as a �rst step

for the general ase of equations with variables oeÆients.

In Chapter 2 we onsider the perturbed wave equation

u

tt

��u+ V (x)u = 0; n = 3: (0.0.1)

We show the dispersive estimates in the ase of a small potential in the Kato

lass, [74℄, and then we extend these results under the weaker assumption

that the potential belongs to a suitable Kato lass (see De�nition 2.2.1); the

positive part of the potential an be large. This result is almost optimal

results for the ase of large potential [38℄.

We onsider also the Shr�odinger equation

1

i

u

t

��u+ V (t; x)u = 0; (0.0.2)

in arbitrary dimension n � 1. Instead of the stronger dispersive estimate,

our goal here is to prove only the Strihartz estimates. We give two quite

general results of this type.

In the �rst one, we dedue the omplete Strihartz estimates for the

solution of the Shr�odinger equation (0.0.2) perturbed with a larger lass of

potentials satisfying V � jxj

�2

, via interpolation between the endpoint and

the energy estimate. These arguments are then extended to the ase of a

small time dependent potential V (t; x).

We study also the heat equation

u

t

��u+ V (t; x)u = 0; (0.0.3)

perturbed by a singular potential and we prove the existene of solutions,

the maximum priniple and the dispersive estimates.

5



6

In our seond result onerning equation (0.0.2), we do not assume that

the potential is small.

We study the dispersive properties of the linear Shr�odinger equation

with a time-dependent potential V (t; x). We show that an appropriate in-

tegrability ondition in spae and time on V , i.e. the boundedness of a

suitable L

r

t

L

s

x

norm, is suÆient to prove the full set of Strihartz estimates.

We also onstrut several ounterexamples whih show that our assumptions

are optimal, both for loal and for global Strihartz estimates, in the lass

of large unsigned potentials V 2 L

r

t

L

s

x

.

The next hapters of the thesis are dediated to the following question:

do these tehniques and ideas extend to more general equations on mani-

folds? We are interested in partiular to investigate the extensions of these

equations to more general Riemannian manifolds, and the inuene of the

urvature on the dispersive properties.

In Chapter 3, we deal with the ase of nonompat manifolds of nega-

tive urvature. In partiular, we study the Shr�odinger equation perturbed

with a potential V 2 L

r

t

L

s

x

on the hyperboli spaes H

n

, obtaining suitable

weighted Strihartz estimates with weights related to Bania's ([5℄). As an

appliation of these estimates, we prove the global existene of small solu-

tions to the semilinear perturbed Shr�odinger equation on H

n

; the nonlinear

term may depend also on the spae variables, and it is allowed to inrease

as jxj ! 1.

In this paper, we prove Strihartz estimates for radial Shr�odinger and

wave equations on Damek-Rii spaes and in partiular on symmetri spaes

of nonompat type and rank one, using the perturbative theory with po-

tentials. It is natural to expet that the urvature of the manifold nonom-

pat has some inuene on the dispersive properties, indeed we obtain the

weighted Strihartz estimates for the perturbed Cauhy problem.

Finally, the last Chapter 4 is devoted to the opposite situation of mani-

folds with positive urvature. We prove two new results about the Cauhy

problem in the energy spae for nonlinear Shr�odinger equations on four-

dimensional ompat manifolds. The �rst one onerns global wellposed-

ness for Hartree-type nonlinearities and inludes approximations of ubi

NLS on the sphere. The seond one provides, in the ase of zonal data on

the sphere, loal wellposedness for quadrati nonlinearities as well as global

wellposedness for small energy data in the Hamiltonian ase. Both results

are based on new multilinear Strihartz-type estimates for the Shr�odinger

group.
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Chapter 1

Introdution

The main subjet of this thesis is the study of the dispersive properties of

some fundamental equations of mathematial physis, suh as the Shr�odin-

ger equation

iu

t

+�u = 0;

the heat equation

u

t

��u = 0

and the wave equation

u

tt

��u = 0;

and their perturbations with a potential:

iu

t

+�u+ V (t; x)u = 0; u

t

��u+ V (t; x)u = 0;

u

tt

��u+ V (t; x)u = 0:

Moreover, we shall study the extensions of these equations to more general

Riemannian manifolds, and the inuene of the urvature on the dispersive

properties of the solutions. We shall also onsider a few appliations of these

results to the orresponding nonlinear Cauhy problems.

The notion \dispersive properties" whih we used above requires some

explanation. It is well-known that some evolution equations of some lassial

waves have �nite \speed of propagation". For instane, for the wave equation

signals travel with speed equal to one; this means that if the initial data have

support in a ball of radius R, the solution at time T has support in a larger

ball of radius R+ T . Thus the energy of the solution spreads over a region

that inreases with time, and it is natural to expet that the size of the

solution dereases aordingly. From a physial point of view, one an think

of the waves spreading on the surfae of a lake when we throw a stone: the

irles beome larger and larger, but the amplitude of the waves dereases

until they disappear (this nie example is due to F.John). The traditional

terminology for this phenomenon is the deay of solutions as t!1.
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But it is also well known that a similar phenomenon ours also for

other equations, even if the speed of propagation is not �nite: the most

important examples are the Shr�odinger and the heat equation, mentioned

above. For these equations it is very easy to prove the property, thanks

to the expliit representation of the solutions; but it is also lear that the

mehanism must be di�erent from the wave equation. For instane, if the

initial data have ompat support, the solutions of these equations at time T

do not have ompat support. In these ases, using the Fourier transform one

an see that the omponents of the solution with di�erent frequenies travel

at di�erent speeds. Then it is natural to think of a \loud of partiles" whih

have di�erent energies, and for this reason travel at di�erent speeds. This

piture is probably at the origin of the modern terminology: in reent years,

instead of deay of solutions, one speaks of dispersion, and the property is

alled dispersive property, in order to unify the ases of �nite and in�nite

speed.

The study of these properties is of fundamental importane from several

points of view. First of all, there is essential phisial importane of the study

of asymptoti properties of the solutions: for instane, in sattering theory

the most important problem is to determine the sattered amplitude of the

waves after the interation, but not the preise mehanism of the interation.

Moreover, dispersive estimates have been used as a very useful tool in many

nonlinear problems; in partiular, for the semilinear Shr�odinger and wave

equations, the modern theory of loal and global well posedness is based

essentially on these estimates. We mention among the others the results of

global existene with small data for semilinear perturbations, and the loal

existene of solutions of low regularity (due to von Wahl, Strihartz, John,

Peher, Brenner, Klainerman, Kapitanski, Shatah, Struwe, Kenig, Pone,

Vega, Bourgain, Tao and many others; see the referenes [67℄, [68℄, [69℄,

[112℄, [62℄, [12℄, [13℄, [90℄, [70℄, [92℄, [81℄).

We must also mention that there is a very deep onnetion between dis-

persive estimates and some fundamental results of harmoni analysis known

as restrition properties. The phenomenon an be desribed as follows: on-

sider a funtion f in L

2

(R

n

), and its Fourier transform

b

f . Then we ask if it

possible to restrit

b

f to a hypersurfae S of dimension smaller than n, and

if we an estimate some norm of the restrition. In general

b

f is only L

2

, and

hene the restrition to S has no meaning sine S has measure zero. But if

we assume that f is in L

1

, then

b

f is bounded and ontinuous, and we an

de�ne the restrition of

b

f to S and also estimate the maximum of

b

f

�

�

�

S

with

the L

1

norm of f . This argument an be extended to more general L

p

spaes

and surfaes, and there are many deep open problems in this diretion.

Now, onsider for instane the solutions of the homogeneous wave or

Shr�odinger equation. If we take the Fourier transform of the solution with

respet to spae and time, we obtain a measure with support on a hypersur-
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fae (one or hyperboloid). Then the dispersive estimates for the solution

imply orresponding estimates for these measures. In other words, disper-

sive properties imply restrition properties, and vieversa. This onnetion

has been used in both diretions and has been intensively investigated in

reent years.

We now desribe our results in more details; �rst of all we reall some

standard fats. Consider �rst the n-dimensional Shr�odinger equation, with

n � 1,

iu

t

+�u = 0; u(0; x) = f(x):

Sine the solution an be represented as

u(t; x) = e

it�

f(x) =

1

(4�it)

n=2

Z

e

i

jx�yj

2

4t

f(y)dy;

one obtains diretly the following deay estimate

je

it�

f(x)j � C t

�

n

2

kfk

L

1
: (1.0.1)

Notie that the solution of the heat equation

u

t

��u = 0; u(0; x) = f(x)

have a (formally) very similar representation, apart from an imaginary fator

at the exponent:

u(t; x) = e

�t�

f(x) =

1

(4�t)

n=2

Z

e

�

jx�yj

2

4t

f(y)dy:

Then by the same method we obtain

je

�t�

f(x)j � C t

�

n

2

kfk

L

1
: (1.0.2)

The orresponding estimate for the wave equation is more deliate. Al-

though already known in some speial ases, the �rst omplete analysis was

the 1971 paper of von Wahl (see [112℄), who proved that the solution to the

n-dimensional wave equation, n � 2

�u � (�

2

t

��)u = 0; u(0; x) = 0; u

t

(0; x) = f

satis�es the deay estimate

ju(t; x)j � C (1 + t)

�

n�1

2

kfk

W

N;1

for N = N(n) large enough and whereW

N;1

are the lassial Sobolev spaes.

This estimate was improved, extended and re�ned by Brenner (who intro-

dued the use of Besov spaes), Peher, Kapitanski, Ginibre and Velo, and
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others (see the referenes [62℄, [51℄), and �nally the following optimal esti-

mate was obtained:

ju(t; x)j � C t

�

n�1

2

kfk

_

B

n�1

2

1;1

(R

n

)

: (1.0.3)

Here

_

B

s

p;q

(R

n

) is the homogeneous Besov spae de�ned by

kfk

q

_

B

s

p;q

(R

n

)

=

X

j2Z

2

jsq

k�

j

(

p

��)fk

q

L

p

(1.0.4)

where �

j

(r) = �

j

(jxj) is a Paley-Littlewood partition of unity, i.e., �

j

(r) =

�

0

(2

�j

r), �

0

(r) =  (r)� (r=2), with  (r) being a nonnegative funtion in

C

1

0

suh that  (r) = 1 for r < 1 and  (r) = 0 for r > 2.

These estimates are now alled the L

1

� L

1

dispersive estimates.

Starting from the dispersive estimates, it is possible to dedue several

other spae-time estimates whih are generally alled Strihartz estimates.

Atually, the estimate originally proved by Strihartz was only a speial

ase; his method of proof was based on tehniques of harmoni analysis (e.g.

Stein interpolation theorem). On the other hand, by re�ning the tehnique

of Brenner and using some subtle funtional analysis arguments, Ginibre

and Velo [51℄ obtained the omplete set of estimates, with the exlusion of

some exeptional ases (the endpoint ases); the gap was �nally losed by

Keel and Tao [66℄ who gave the �nal form of the estimates.

For the Shr�odinger equation on R

n

, the Strihartz estimates an be

written in the following form:

ke

it�

fk

L

p

(I;L

q

(R

n

))

� kfk

L

2

(R

n

)

(1.0.5)

for any f 2 L

2

, any (bounded or unbounded) time interval I � R, and for

all sharp

n

2

-admissible ouples (p; q):

1

p

+

n

2q

=

n

4

; p; q � 2 and (p; q) 6= (2;1): (1.0.6)

The ase (p; q) = (2;

2n

n�2

) is alled the endpoint; estimate (1.0.5) is true

also at the endpoint for n � 3. When n = 2 the endpoint is exatly

(p; q) = (2;1); in this ase the estimate is false in general. The equiva-

lent nonhomogeneous form of (1.0.5) is









Z

t

0

e

i(t�s)�

F (s; x)ds









L

p

(I;L

q

(R

n

))

� CkFk

L

~p

0

(I;L

~q

0

(R

n

))

(1.0.7)

for all (p; q) and (~p; ~q) admissible, ~p

0

and ~q

0

being dual to ~p, ~q respetively.

We onsider now the ase of the wave equation. The Strihartz estimates

for the wave equation on R

n

�

2

t

u��u = F (t; x); u(0; x) = u

0

(x); �

t

u(0; x) = u

1

(x); (1.0.8)
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under the assumption that the dimensional analysis (or "gap") ondition

1

p

+

n

q

=

n

2

�  =

1

~p

0

+

n

~q

0

� 2; (1.0.9)

holds, are the following

kuk

L

p

t

L

q

x

� C

�

ku

0

k

_

H



+ ku

1

k

_

H

�1

+ kFk

L

~p

0

t

L

~q

0

x

�

; (1.0.10)

for any data u

0

2

_

H



, u

1

2

_

H

�1

, F 2 L

~p

0

I

L

~q

0

, any (bounded or unbounded)

time interval I � R, and for all

n�1

2

-admissible ouples (p; q), (~p; ~q), i.e. suh

that

1

p

+

n� 1

2q

�

n� 1

4

; p 2℄2;1℄ and q 2 [2;

2(n� 1)

n� 3

�

; n � 3: (1.0.11)

Estimate (1.0.10) is true also at the endpoint (p; q) = (2;

2(n�1)

n�3

) for n � 4,

but is false when n = 3.

As mentioned above, one of the most important appliations of these

estimates is to nonlinear evolution equations, in partiular semilinear equa-

tions of the form

(i�

t

�H)u = F (u); u(0; x) = f(x)

(to �x the ideas, we onsider the ase of the Shr�odinger equation). The

usual way to prove loal existene for this type of equations is a ontration

mapping method. More preisely, one onsiders �rst the linear map �: G 7!

u, where u is the solution of the linear equation

(i�

t

�H)u = G; u(0; x) = f(x):

By suitable linear estimates, whih in the lassial results are energy esti-

mates, one proves that � is bounded between two suitable Banah spaes,

� : Y

T

! X

T

; the index T refers to the fat that we onsider solutions

de�ned on a bounded interval of time 0 � t � T . Sine � is a linear map-

ping, it is atually Lipshitz ontinuous, and the Lipshitz onstant (in many

ases) depends on T and is small when T is small. In other words, � is a

ontration for small times. Now onsider the nonlinear term F (u). If we

an prove that the F (u) takes X

T

to Y

T

and is also Lipshitz ontinuous

between these spaes, in other words if F (u) satis�es a nonlinear estimate

of the form

kF (u)� F (v)k

Y

T

� �(kuk

X

T

)ku� vk

X

T

then the omposition �(F (u)) is a ontration on X

T

for small times. The

�xed point is a loal solution of the Cauhy problem onsidered.

In many situation, the linear estimate an be improved using the Strihartz

estimates; this an be used for instane to obtain the loal well posedness

for solutions with low regularity.
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Moreover, using Strihartz or more general spae-time estimates, this

method an be applied also for large times; the ontration property of the

nonlinear term is now obtained by assuming that the initial data are small.

We mention that these tehniques are not suÆient to handle more gen-

eral nonlinear terms, for instane ontaining derivatives. For the nonlinear

Shr�odinger equation, this more diÆult problem was studied by Bourgain,

Kenig-Pone-Vega and others ([12℄, [13℄, [67℄, [68℄), using more re�ned meth-

ods, inluding smoothing estimates, loal Morawetz estimates, and suitable

modi�ed Sobolev spaes adapted to the struture of the equation (whih

are now alled Bourgain spaes). For the nonlinear wave equation and re-

lated equations and systems of mathmatial physis, inluding Yang-Mills,

Maxwell-Klein-Gordon and others, Klainerman and his group have applied

analogous method to prove deliate results of loal well posedness in low

regularity spaes.

We must also mention the beautiful theory developed by Burq, G�erard

and Tzvetkov (see [22℄, [24℄, [25℄), onerning the nonlinear Shr�odinger

equation on ompat manifolds.

A �rst main question studied in the present thesis is: what part of the

dispersive properties is preserved if we perturb the equations with a potential

term of the form V (t; x)u or simply V (x)u? The importane of this question

is lear both from the point of view of the appliations, and as a �rst step

to the general ase of equations with variables oeÆients.

Notie that it is easy to destroy the dispersive properties by a potential

perturbation. For instane, if we add to �� a negative potential term V (x)u,

V < 0, it is well known that the operator ��+V (x) has eigenfuntions u(x)

for positive eigenvalues, provided V is large enough; then it is suÆient to

onsider the orresponding standing wave, of the form e

i�t

u(x), to produe

a solution of the evolution equation with a norm onstant in time. Thus we

see that the potential V must satisfy suitable assumptions.

In partiular for the Shr�odinger equation perturbed with a potential

independent of time, this problem has been studied by many authors. A

basi general results was obtained by Journ�e, So�er and Sogge [60℄ who

proved that the dispersive estimate is still true provided the potential is

nonnegative and belongs to the Shwartz lass. This assumption has been

relaxed and the result re�ned by many authors, in partiular we mentions

Yajima, Rodnianski, Shlag and Goldberg ([108℄, [88℄, [52℄). Notie that the

main problem here is to �nd minimal assumptions on the potential V (x)

whih guarantee that the dispersive estimate is true; in dimension n = 1; 2; 3

this program has almost been ompleted, while in higher dimension it is still

not lear what are the minimal assumptions.

Muh less is known for potentials V (t; x) whih depend also on time.

In general one must assume that the potential is small in a suitable norm.
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Rodnianski and Shlag proved the dispersive estimate for the equation

1

i

u

t

��u+ V (t; x)u = 0; (1.0.12)

provided the spae dimension is n = 3 and V satis�es

sup

t

kV (t; �)k

L

3=2

(R

3

)

+ sup

x

Z

R

3

Z

R

jV (�̂ ; x)j

jx� yj

d�dy < �;

� small enough. Here V (�̂ ; x) is the Fourier transform of V with respet to

time.

In Chapter 2 we onsider equation (1.0.12) in general dimension n � 1.

Instead of the stronger dispersive estimate, our goal here is to prove only

the Strihartz estimates. We give two quite general results of this type.

In the �rst one, we prove that the Strihartz estimates hold for (1.0.12),

n � 1, under the assumption that the norm

sup

t2R

kV (t; �)k

L

(

n

2

;1)

< �

is small enough. Here L

(

n

2

;1)

is the weak Lebesgue (or Lorentz) spae.

Notie that, even in the speial ase n = 3, this assumption is muh weaker

that Rodniaski and Shlag's; indeed, the Lorentz spae L

(

3

2

;1)

ontains the

Lebesgue spae L

3

2

stritly, and we make no assumption onerning the norm

of the Fourier transform of V .

In our seond result onerning equation (1.0.12), we do not assume that

the potential is small. Instead, we replae this by a ondition of \smallness

at in�nity", i.e., integrability, of the following form

kV k

L

r

(R;L

s

(R

n

))

<1

where the indies satisfy

1

r

+

n

2s

= 1: (1.0.13)

We further stress that the potential V an be large and also negative. Under

these onditions, we prove that the Strihartz estimates are valid for any

dimension n � 1. Moreover, by a suitable lass of ounterexamples, we

prove that our assumption (1.0.13) is neessary for the Strihartz estimates

to hold, at least in the lass of potentials V 2 L

r

L

s

.

In Chapter 2 we onsider also the perturbed wave equation

u

tt

��u+ V (x)u = 0; n � 2: (1.0.14)

For this equation, Beals and Strauss proved the dispersive estimate provided

the potential is nonnegative (or small) and in the Shwarz lass ([7℄, [8℄).

As for the Shr�odinger equation, also in this ase many authors have tried
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to relax the assumptions on V , inluding Yajima, Cuagna, Georgiev and

Visiglia ([108℄, [32℄, [44℄). We onsider the speial ase of dimension n = 3,

for whih we have obtained a �rst result in the ase of a small potential

in the Kato lass in [74℄, and then we extended the results to the ase of

a large potential, an almost optimal result in [38℄. Indeed, we an prove

the dispersive estimate under the quite weak assumption that the potential

belongs to a suitable Kato lass (see De�nition 2.2.1); the positive part of the

potential an be large. When the potential is large we have the additional

problem of resonanes and eigenvalues, and this makes the proof of the deay

properties muh harder.

The next hapters of the thesis are dediated to the following ques-

tion: do these tehniques and ideas extend to more general equations on

manifolds? We are interested in partiular to the study of the dispersive

properties of some evolution equations on urved manifolds.

We begin by studying, in Chapter 3, the ase of nonompat manifolds

of negative urvature. In this ase it is natural to expet that the dispersive

properties should be better than the ones in the at ase, sine the solutions

have more \room" to disperse.

We reall that the asymptoti properties of evolution equations on non-

ompat manifolds have been studied only very reently. Bania [5℄ on-

sidered the onstant negative urvature ase and studied the Shr�odinger

equation on the hyperboli spae H

n

. In dimension n = 3 she obtained a

dispersive estimate with the same rate of deay t

�1

as in the at ase; how-

ever the L

1

and L

1

norms are replaed by suitable weighted norms, and

this shows that the urvature improves the dispersion at spae in�nity.

In the �rst part of Chapter 3 we apply this result to the Shr�odinger

equation on H

n

perturbed with a potential V 2 L

r

t

L

s

x

; as expeted, we ob-

tain suitable weighted Strihartz estimates with weights related to Bania's.

As an appliation of these estimates, we prove the global existene of small

solutions to the semilinear perturbed Shr�odinger equation on H

n

; the non-

linear term may depend also on the spae variables, and it is allowed to

inrease as jxj ! 1.

In the seond part of Chapter 3 we onsider also a more general lass of

nonompat manifolds, whih are frequently alled the Damek-Rii spaes,

also known as Harmoni AN groups; these spaes have been studied by sev-

eral authors in the past 15 years ([4℄, [89℄, [11℄, [10℄, [29℄, [30℄, [33℄, [35℄, [36℄,

[87℄, [100℄ and others). As Riemannian manifolds, these solvable Lie groups

inlude all symmetri spaes of nonompat type and rank one, namely the

hyperboli spaes H

n

(R), H

n

(C ), H

n

(H ), H

2

(O ), but most of them are not

symmetri, thus providing numerous ounterexemples to the Linhnerowiz

onjeture [35℄. This was impliitely formulated in 1944 by Linhnerowiz,

who showed that every harmoni manifold of dimension at most 4 is a sym-

metri spae, leaving open the question, if this assertion remains true in

every dimension. Though in 1990, Szabo proved it is true for any simply
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onneted ompat harmoni manifold ([99℄), in 1992, Ewa Damek and Ful-

vio Rii found a large lass of non-ompat harmoni manifolds whih are

not symmetri spaes. More details on Damek-Rii spaes are ontained in

the setion 3.4.1.

We restrit to the radial ase, in whih the Laplae operator admits

a expliit desription and an be redue to the Jaobi operator. Then we

prove, both for the Shr�odinger and for the wave equation, suitable weighted

Strihartz estimates with weights depending on the parameters of the man-

ifold. In the speial ase of the three-dimensional hyperboli spae H

3

our

method allows us to reobtain Bania's dispersive estimate by a very simple

proof.

The idea of our proof is to transform the equation into a new perturbed

one with a suitable potential V on R

n

; then, using the results of the pertur-

bative theory of Burq, Planhon, Stalker and Tahvildar-Zadeh [19℄, we an

obtain the Strihartz estimates. More preisely, the radial operator ��

M

an be redued to an operator of the form ��+

e

V , where the potential

e

V

has a ritial deay � jxj

�2

and an be treated by the methods of [21℄.

It is interesting to note that we obtain the results on these nonompat

manifolds as appliation of the perturbative theory on R

n

, thus avoiding the

diÆulties aused by the geometry of these spaes.

Our �rst result onerns the Shr�odinger equation on S; we an prove

the following weighted Strihartz estimates

kw

q

uk

L

p

(R;L

y

(S))

� Ckw

2

u

0

k

L

2

(S)

+Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

;

with the weight

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

:

Also for the wave equation on S we are able to prove the following

weighted Strihartz estimates

kw

q

uk

L

p

(R;L

q

(S))

� C







u

0

�







H



(S)

+ C







u

1

�







H

�1

(S)

+Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

;

with the weights

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

;

and

�(r) = r

�+

1

2

(sinh r)

�(�+

1

2

)

(osh r)

�(�+

1

2

)

:

Finally, the last Chapter 4 is devoted to the opposite situation of mani-

folds with positive urvature. In ontrast with the negative urvature ase,
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the positive urvature tends to destroy the deay properties of the equation,

and in general the results both from the point of view of deay and regular-

ity are worse than in the at ase. More preisely, we study the nonlinear

Shr�odinger equation on the four dimensional sphere S

4

, or, more gener-

ally, a four dimensional ompat manifold M . In this situation, the ubi

equation

iu

t

+�

M

u = (juj

2

)u;

is ritial, and well posedness barely fails. However, if we introdue a slightly

regularizing operator as follows

iu

t

+�

M

u = ((1 ��)

��

juj

2

)u; � > 0; (1.0.15)

then the situation is greatly improved. Notie that (1.0.15) an be regarded

as a natural generalization of the lassial Hartree equation

iu

t

+�u =

�

jxj

�

� juj

2

�

u:

We onsider (1.0.15) both on a general four-dimensional ompat manifold

and on the sphere S

4

. In both ases we obtain the global well posedness in

the energy spae, provided � > 1=2 in the general ase and � > 0 in the

ase of the sphere. The main tool here is a areful appliation of suitable

multilinear estimates, adapted to the ase of a ompat manifold. These

estimates are new and they are lose to the restrition method of Bourgain.

In order to go below the ubi powers, but using the same multilinear

tehniques we are led to deal with the following quadrati equations on the

sphere S

4

:

i�

t

u+�u = q(u);

where q(u) is a homogeneous quadrati polynomial in u; u, i.e.,

q(u) = au

2

+ bu

2

+ juj

2

:

Notie that a sublass of these equations onsists of Hamiltonian equations

q(u) =

�V

�u

where V is a real-valued homogeneous polynomial of degree 3 in u; u; with

the above notation, this orresponds to  = 2a. The advantage of Hamilto-

nian equations is the onservation of energy

E =

1

2

Z

M

jruj

2

dx+

Z

M

jV (u) dx = onst:

For instane we have

q(u) = juj

2

+

1

2

u

2

=) V (u) =

1

2

juj

2

(u+ u):
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Conerning the loal existene, we are able to prove a well posendess result

below the energy norm, and preisely in H

s

for any s > 1=2, provided we

assume that the data are \radial", whih in the ase of the sphere beomes

the assumtpion of zonal initial data.

On the other hand, a general global existene result with small data

meets essential diÆulties. Indeed, the onservation of energy is not suÆ-

ient to prevent the blow up; we onstrut expliit (and easy) examples of

this phenomenon. However, the possibility of onstruting these blow up

solutions is onneted with an algebrai ondition on the quadrati polyno-

mial q; we are able to haraterize ompletely the terms whih give rise to

blow up, and for the other ases we an prove a result of global existene

with small (zonal) data in the energy spae H

1

.

The results of my thesis are ontained in the following papers ([74℄, [38℄,

[75℄, [39℄,[76℄, [77℄, [47℄):

V.Pierfelie; Deay estimate for the wave equation with a small po-

tential, to appear on NoDEA.

P. D'Anona, V. Pierfelie; On the wave equation with a large

rough potential to appear on Journal of Funt. Anal.

V. Pierfelie; Strihartz estimates for the Shr�odinger and heat equa-

tions perturbed with singular and time dependent potentials. Preprint 2004.

P. D'Anona, V. Pierfelie, N. Visiglia; Some remarks on the

Shr�odinger equation with a potential in L

r

t

L

s

x

to appear to Mathematishe

Annalen.

V. Pierfelie; Weighted Strihartz estimates for the radial perturbed

Shr�odinger equation on the hyperboli spae. Preprint 2004.

V. Pierfelie; Weighted Strihartz estimates for the Shr�odinger and

wave equations on Damek-Rii spaes. Preprint 2005.

P. G

�

erard, V. Pierfelie; Nonlinear Sh�odinger equation on four-

dimensional ompat manifolds. Preprint 2005.



Chapter 2

Dispersive equations with

potential perturbations on

at manifolds

2.1 Introdution

In this hapter we study the dispersive properties of several perturbed evo-

lution equations (wave, Shr�odinger, heat) in the absene of urvature, i.e.,

on R

n

. The perturbations we onsider are of potential type, both depending

and not depending on time.

For the three dimensional wave equation

�u+ V (x) = 0; n = 3

the potential will be independent of time and very rough: more preisely

V (x) belongs to the Kato lass (see De�nition 2.2.1). We shall �rst onsider

the ase of a small potential, for whih the proofs are simpler, and then we

shall extend the results to the ase of a large potential in the Kato lass.

When the potential is large we have the additional problem of resonanes

and eigenvalues, and this makes the proof of the deay properties muh

harder. In both ases we shall prove the dispersive estimate

ju(t; x)j �

C

t

for a suitable onstant C depending on the initial data. These results have

been published in the papers [74℄ and [38℄.

Several works have investigated the Cauhy problem for the wave equa-

tion perturbed with a potential and the dispersive estimate for it. In [8℄ the

potential satis�es (essentially) the following deay assumption:

jV (x)j �

C

jxj

4+Æ

; jxj � 1;

20
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for some C; Æ > 0, moreover V must be smooth. Under this ondition the

authors proved L

p

� L

p

0

deay estimates but not the dispersive estimate,

whih was obtained by the same methods and under similar assumptions in

[7℄. These works treat also the ase of dimension n � 3.

In [32℄ (only for the ase of spae dimension 3) the previous assumption

is weakened and the deay required at in�nity for the C

2

potential V is the

following one:

jD

�

V (x)j �

C

jxj

3+Æ

; j�j � 2:

For general dimension n, the best results are due to Yajima, who, in a

series of papers (see e.g. [106℄, [107℄), proved the L

p

boundedness of the

wave operator intertwining the free with the perturbed operator; as a onse-

quene he obtains dispersive estimates for a variety of equations, inluding

the wave equation. We should also mention that the Strihartz estimates

an be proved independently of the dispersive estimates, under quite general

assumptions on the perturbed operator; for a nie proof see [21℄; see also

[20℄ and [27℄.

In the speial ase of dimension n = 3, Georgiev and Visiglia [44℄ were

able to prove the dispersive estimate for potentials of H�older lass V (x) 2

C

�

(R

3

n 0), � 2℄0; 1[, satisfying for some " > 0

0 � V (x) �

C

jxj

2+"

+ jxj

2�"

: (2.1.1)

One sees that the potential V (x) is bounded by

V (x) �

C

jxj

2+"

if jxj � 1,

and by

V (x) �

C

jxj

2�"

if jxj � 1.

The last estimate shows that V admits a singularity suh that it is not in

L

2

lo

(R

3

) (when " <

1

2

). In fat one has V 2 L

3=2�Æ

\ L

3=2+Æ

for Æ small

(0 < Æ < 3"=4).

Notie that the spae of funtions with bounded Kato norm ontains

L

3=2;1

sine

kV k

K

� CkV k

L

3=2;1

by the Hardy-Sobolev inequality. Thus from the point of view of regularity

assumption

kV k

K

<1 (2.1.2)

is weaker than (2.1.1).
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The ritial behavior for the potential is learly V � jxj

�2

. The family

of radial potentials

V (x) =

a

jxj

2

; where a > �

(n� 2)

2

4

; n � 2;

is studied in the papers [78℄ and [19℄. More preisely, in the �rst paper

one shows that in the radial ase, i.e. when the initial data are radially

symmetri, the solution to the perturbed wave equation satis�es the gener-

alized spae-time Strihartz estimates (1.0.10) but not the dispersive esti-

mate (1.0.3), as it is shown by suitable ounterexamples. Sine their proof

was based on estimates for the ellipti operator P

a

:= ��+

a

jxj

2

; the orre-

sponding Strihartz estimates hold also for the Shr�odinger equation. In the

seond paper these results are extended to general non radial initial data.

Notie that the inverse square potential belongs to the weak L

3=2

w

' L

3=2;1

Lorentz spae.

Thus it is natural to ask what are the weakest assumptions on the po-

tential that imply the dispersive estimate. In setion 2.3 we prove that it

is suÆient to assume that V belongs to a suitable Kato lass of potentials,

and no smoothness at all is required. The proof of this result is quite lenghty

and diÆult. For this reason, we deided to treat in setion 2.2 the speial

ase of a small potential satisfying the ondition

kV k

K

< 4�: (2.1.3)

In this ase the proof is easier to follows sine it is based on a Neumann

development of the perturbed resolvent.

For the Shr�odinger equation

iu

t

��u+ V (t; x)u = 0; n � 2 (2.1.4)

we shall investigate the ase of time dependent potentials. In this ase, for

large potentials it is known that in general there is no deay.

In a lassial paper, Journ�e, So�er and Sogge ([60℄) proved the standard

dispersive estimate

ju(t; x)j � Ct

�

n

2

ku(0; �)k

L

1 (2.1.5)

provided the time independent potential V (x) is suÆiently smooth and

deaying at in�nity, and 0 is not a resonane. This result was improved

by several authors, in the diretion of requiring less regularity and deay

of V (x). It appears that the limiting behaviour is V � jxj

�2

, or more

generally V 2 L

n=2

; in dimension three Goldberg [52℄ reently proved that

(2.1.5) holds provided V 2 L

3=2+

\L

1

, and this appears to be nearly optimal.

The situation when the potential V (t; x) depends also on time is muh

more diÆult, and almost ompletely open. In dimension three Rodnianski
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and Shlag [88℄ were able to prove the dispersive estimate for potentials

V (t; x) suh that the norm

sup

t2R

kV (t; �)k

L

3=2

+ sup

x2R

3

Z

R

3

Z

1

�1

jV (�̂ ; x)j

jx� yj

d� dx

is small enough, where V (�̂ ; x) is the Fourier transform with respet to t of

V (t; x). The ases of higher dimensions or large potentials are still open.

From all the above results it appears that V 2 L

n=2

or V � jxj

�2

are

both reasonable andidates for the limiting behaviour of the potential. In

setion 2.4 we unify these onditions and we go one step further; indeed, we

onsider potentials belonging to the weak Lebesgue (Lorentz) spae L

(

n

2

;1)

.

Sine our results are based on perturbative methods we need to impose a

smallness ondition, however with the advantage that we an treat also time

dependent potentials V (t; x).

More preisely, we an prove the omplete Strihartz estimates for (2.1.4)

when the real valued potential V = V (t; x) satis�es

sup

t2R

kV (t; �)k

L

(

n

2

;1)

� C

0

is small enough (2.1.6)

(see Theorem 4.2.24 below; see also [9℄ for more details on Lorentz spaes).

When the potential does not depend on time we an ompute the onstant

more aurately: the same result holds provided

kV (�)k

L

(

n

2

;1)

<

2n

C

s

(n� 2)

; (2.1.7)

where C

s

is the Strihartz onstant for the unperturbed equation (see The-

orem ?? below) . We mention that the ase of dimension n = 3 and of

a potential V = V (x) independent of time has been onsidered earlier by

Georgiev and Ivanov in [43℄.

For the heat equation the results are stronger, as natural. Indeed, in

Theorem ?? we onsider a real valued potential V (x) 2 L

(

n

2

;1)

, whih we

split into positive and negative part V (x) = V

+

(x) � V

�

(x); V

�

� 0, and

we assume that the negative part satis�es

kV

�

k

L

(

n

2

;1)

� C

0

<

2n

C

s

(n� 2)

: (2.1.8)

Under this ondition we an prove that the maximum priniple holds, and as

a onsequene we dedue the full Strihartz estimates. When the potential

is nonnegative, we an also prove the stronger L

1

� L

1

estimate (2.1.5)

(Proposition 5).

Finally, we study equation (2.1.4) when the potential V (t; x) is large but

satis�es an integrability ondition of the form

V 2 L

r

t

L

s

x

;

1

r

+

n

2s

= 1
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and again we prove the omplete Strihartz estimates in all dimensions. We

also show that if the potential is in V 2 L

r

t

L

s

x

but

1

r

+

n

2s

6= 1, the Strihartz

estimates are not true. These results have been published in the papers [75℄

and [39℄.

2.2 The wave equation with a small rough poten-

tial

In this setion, we prove a dispersive L

1

deay estimate for the wave equa-

tion perturbed with a small non smooth potential belonging to Kato lass

in the ase three dimensional. Notie that from this estimate, following [66℄,

one an obtain the omplete set of spae-time estimates as above. In or-

der to introdue our assumption on the potential V we reall the following

lassial de�nition:

De�nition 2.2.1. The measurable funtion V (x) on R

n

, n � 3, is said to

belong to the Kato lass if

lim

r#0

sup

x2R

n

Z

jx�yj<r

jV (y)j

jx� yj

n�2

dy = 0: (2.2.1)

Moreover, the Kato norm of V (x) is de�ned as

kV k

K

= sup

x2R

n

Z

R

n

jV (y)j

jx� yj

n�2

dy: (2.2.2)

For n = 2 the kernel jx� yj

2�n

is replaed by log(jx� yj

�1

).

The two notions are of ourse related (e.g., a ompatly supported fun-

tion of Kato lass has a �nite Kato norm, see Lemma 2.3.11 in Setion

2.3).

Remark 2.2.1. The relevane of the Kato lass in the study of Shr�odinger

operators is well known; full light on its importane was shed in Simon

[91℄ and Aizenmann and Simon [2℄. The stronger norm (2.2.2) was used by

Rodnianski and Shlag [88℄ who proved the dispersive estimate for the three

dimensional Shr�odinger equation with a potential having both the Kato

and the Rollnik norms small.

We an now state the main result of this setion. Consider the Cauhy

problem

8

>

<

>

:

2u+ V (x)u = 0; t � 0; x 2 R

3

;

u(0; x) = 0;

u

t

(0; x) = f(x);

(2.2.3)

then we have:
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Theorem 2.2.1. Assume that V is a real-valued, measurable funtion on

R

3

suh that

kV k

K

< 4�; (2.2.4)

then the solution u(t; x) of (2.2.3) satis�es the dispersive estimate

ku(t; �)k

L

1

(R

3

)

�

C

t

kfk

B

1

1;1

(R

3

)

: (2.2.5)

Remark 2.2.1. It is natural to expet that the estimate (2.2.5) holds with the

homogeneous Besov spaes

_

B

1

1;1

(R

3

) instead of B

1

1;1

(R

3

). Indeed, in the next

setion we shall show that this an be obtained by a muh more omplex

proof; the interest of (2.2.5) is mainly in the simpliity of the arguments

used.

2.2.1 Properties of perturbed operator

We denote by H

0

the Laplae operator �� as a self-adjoint operator on

L

2

(R

3

) with dense domain H

2

(R

3

). In this setion we shall only onsider

the ase of a small potential, sine the proofs are simpler; but the following

lemma an be extended also to potentials with a large positive part, as we

shall show in the next setion. Thus we have:

Lemma 2.2.1. Let V be a real-valued funtion on R

3

suh that

kV k

K

< 4�: (2.2.6)

Then there exists a unique non-negative self-adjoint operator ��

V

= ��+

V with D(��

V

) = H

2

(R

3

) suh that

('; (��+ V ) )

L

2

= (';�� )

L

2

+ (V ';  )

L

2

; 8 '; 2 H

2

(R

3

): (2.2.7)

Proof. To prove this fat we an use the KLMN Theorem (see [83℄ Theorem

10.17), and it is suÆient to verify the following estimate

Z

R

3

jV (x)jj'(x)j

2

dx � a

Z

R

3

jr'(x)j

2

dx+ bk'k

2

L

2

(R

3

)

(2.2.8)

for some onstants a < 1; b > 0. We an rewrite (2.2.8) as follows

j(V '; ')

L

2
j � a(';��')

L

2
+ bk'k

2

L

2

= a











�

H

0

+

b

a

�

1

2

'











2

L

2

:

Writing g =

�

H

0

+

b

a

�

1

2

', we see that we need only to prove the following

inequality











jV j

1

2

�

H

0

+

b

a

�

�

1

2

g











L

2

� akgk

L

2 ;
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for some 1 > a > 0; b > 0.

Now onsider the operator T = jV j

1

2

�

H

0

+

b

a

�

�

1

2

and its adjoint

T

�

=

�

H

0

+

b

a

�

�

1

2

jV j

1

2

:

We must prove that

kTT

�

k

L

2

!L

2
= a < 1: (2.2.9)

Using the expliit representation of resolvent in R

3

:

�

H

0

+

b

a

�

�1

' =

1

4�

Z

R

3

e

�

q

b

a

jx�yj

jx� yj

f(y)dy; (2.2.10)

we an write

kTT

�

'k

2

L

2

=











jV j

1

2

�

H

0

+

b

a

�

�1

jV j

1

2

'











2

L

2

=

=

1

(4�)

2

Z

R

3

jV (x)j

�

�

�

�

�

�

Z

R

3

e

�

q

b

a

jx�yj

jx� yj

jV (y)j

1

2

j'(y)jdy

�

�

�

�

�

�

2

dx

and using the Cauhy-Shwartz inequality we have

�

1

(4�)

2

Z

jV (x)j

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

jV (y)jdy

1

A

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

j'(y)j

2

dy

1

A

dx

�

1

(4�)

2

Z

jV (x)j

�

Z

jV (y)j

jx� yj

dy

��

Z

j'(y)j

2

jx� yj

dy

�

dx

whih by the de�nition of Kato norm kV k

K

we an estimate as follows

�

kV k

K

(4�)

2

ZZ

jV (x)j

jx� yj

j'(y)j

2

dydx �

kV k

2

K

(4�)

2

k'k

2

L

2

:

Therefore we have

kTT

�

k

L

2 =

kV k

K

(4�)

� a < 1 (2.2.11)

by the assumption (2.2.6). Thus we have proved that ��+V is a self-adjoint

operator with domainH

2

(R

3

). Notie that we have proved inequality (2.2.8)

for all b > 0.

Now we prove that ��+ V is a positive operator. Indeed

((��+ V )';')

L

2

= (��';')

L

2

+ (V '; ')

L

2

� kr'k

2

L

2

� j(V '; ')

L

2
j
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using inequality (2.2.8) we have

� (1� a)kr'k

2

L

2

� bk'k

2

L

2

� �bk'k

2

L

2

for every b > 0, and this implies that

((��+ V )';')

L

2

� 0: (2.2.12)

2.2.2 Proof of Theorem 2.2.1

The proof of Theorem 2.2.1 is based on the representation formula (see [110℄)

for funtions of the self-adjoint operators H:

�(H)f = L

2

� lim

"!0

1

2�i

Z

1

0

�(�)[R

V

(�+ i")�R

V

(�� i")℄fd�; (2.2.13)

valid at least for all f 2 C

1

0

(R

3

). Consider the following Cauhy problem

8

>

<

>

:

2u+ V (x)u = 0; t � 0; x 2 R

3

;

u(0; x) = 0;

u

t

(0; x) = '

j

(

p

��

V

)f(x):

(2.2.14)

Here '

j

, j = 0; 1; : : : is a standard non homogeneous Paley-Littlewood par-

tition of unity; we reall that '

j

(�) = '

0

(2

�j

�) and that

 

0

+

X

j�0

'

j

= 1

for a suitable  

0

2 C

1

0

(R

3

).

Then the solution of (2.2.14) an be expressed as

u(t; x) = U

V

(t)'

j

(

p

��

V

)f; (2.2.15)

where

U

V

(t) =

sin(t

p

��

V

)

p

��

V

:

Sine ��

V

is a self-adjoint operator we an write the solution using the

spetral representation (2.2.13), i.e.

u(t; x) = L

2

� lim

"!0

1

2�i

Z

1

0

'

j

(

p

�)

sin t

p

�

p

�

[R

V

(�+ i")�R

V

(�� i")℄fd�:

The main point in the proof of Theorem 2.2.1 are the following L

1

�L

1

estimates of the resolvent R

V

(�� i0) and its square:
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Proposition 2.2.2. Assume that the potential V satis�es

kV k

K

4�

< 1: (2.2.16)

Then for any � 2 R

+

; " > 0 we have the following estimates:

k[R

V

(�+ i")�R

V

(�� i")℄fk

L

1

� C

V

p

�

"

2�

kfk

L

1
; (2.2.17)

k[R

V

(�+ i")

2

�R

V

(�� i")

2

℄fk

L

1

�

C

V

8�

p

�

"

kfk

L

1
; (2.2.18)

where C

V

=

�

1�

kV k

K

4�

�

�2

and

�

"

=

�+ (�

2

+ "

2

)

1=2

2

> 0:

Before proving Proposition 2.2.2, we show how from it the dispersive

estimate follows easily. De�ne

u

"

(t; x) =

Z

1

0

'

j

(

p

�)

(��

�

os

p

�t)

t

[R

V

(�+ i")�R

V

(�� i")℄fd�;

so that for all t > 0

u

"

(t; �)! u(t; �) in L

2

;

integrating by parts we have

u

"

=

1

t

Z

1

0

�

�

�

'

j

(

p

�)[R

V

(�+ i") �R

V

(�� i")℄f

�

(os

p

�t)d�:

By the properties of the Paley-Littlewood deomposition and using the fol-

lowing relation

�

�

[R

V

(�+ i")�R

V

(�� i")℄ = R

V

(�+ i")

2

�R

V

(�� i")

2

; (2.2.19)

we obtain

ju

"

j �

1

t

Z

1

0

j�

�

'

0

j

(

p

�)jj[R

V

(�+ i") �R

V

(�� i")℄f jd�+

+

1

t

Z

1

0

'

j

(

p

�)j[R

V

(�+ i")

2

�R

V

(�� i")

2

℄f jd�:

Then applying Proposition 2.2.2 and the elementary inequalities

p

� �

p

�

"

�

p

�+

p

"

we obtain, sine '

j

(

p

�) = '

0

(2

�j

p

�),

ju

"

j � C

0

C

V

t

Z

1

0

h

2

�j

j'

0

0

(2

�j

p

�)j(

p

�+

p

") + j'

0

(2

�j

p

�)j

i

d�

p

�
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and after the hange of variables � = 2

�j

p

� we obtain

ku

"

(t; �)k

L

1

�

�

1�

kV k

K

4�

�

�2

C

1

2

j

+

p

"

t

kfk

L

1
; (2.2.20)

for some onstant C

1

independent of j and ". If now we let " ! 0, and we

remark that u

"

! u in L

2

implies the onvergene a.e. for a subsequene,

we obtain

ku(t; �)k

L

1

�

�

1�

kV k

K

4�

�

�2

C

1

2

j

t

kfk

L

1
: (2.2.21)

The estimate for the term orresponding to  

0

is idential.

Now we use a standard trik: writing for j � 1

e'

j

= '

j�1

+ '

j

+ '

j+1

we have that e'

j

, j = 0; 1; 2; : : : is another Paley-Littlewood deomposition

with the property that '

j

� e'

j

� '

j

. Hene the Cauhy problem (2.2.14) is

idential to the problem

8

>

<

>

:

2u+ V (x)u = 0; t � 0; x 2 R

3

;

u(0; x) = 0;

u

t

(0; x) = e'

j

(

p

��

V

)'

j

(

p

��

V

)f(x)

(2.2.22)

and estimate (2.2.21) gives also

ku(t; �)k

L

1

� C

V

2

j

t

k'

j

(

p

��

V

)fk

L

1
: (2.2.23)

If we now onsider the original Cauhy problem (2.2.3) we obtain by linear-

ity, after summation over j,

ku(t; �)k

L

1

�

C

V

t

kfk

B

1

1;1

(V )

; (2.2.24)

kfk

B

1

1;1

(V )

�

0

�

k 

0

(

p

��

V

)fk

L

1
+

1

X

j=0

2

j

k'

j

(

p

��

V

)fk

L

1

1

A

where the last equality is the de�nition of the perturbed Besov normB

1

1;1

(V ).

The �nal step in the proof of Theorem 1 is the inequality

kfk

B

1

1;1

(V )

� Ckfk

B

1

1;1

(R

3

)

to estimate with the standard Besov norms. This step will be ompleted in

Setion 2.2.
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We now go bak to the proof of Proposition 2.2.2. We split the proof

into a few lemmas. An essential tool will be the expliit representation of

the free resolvent R

0

(see [83℄ p 58):

R

0

(�

2

)g = (��� �

2

)

�1

g =

(

1

4�

R

R

3

e

i�jx�yj

jx�yj

g(y)dy; Im � > 0;

1

4�

R

R

3

e

�i�jx�yj

jx�yj

g(y)dy; Im � < 0:

(2.2.25)

By elementary omputations we obtain that for any � 2 R and " > 0

R

0

(�� i")g(x) =

1

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

g(y)dy; (2.2.26)

where

�

"

=

�+ (�

2

+ "

2

)

1=2

2

> 0: (2.2.27)

Moreover by the resolvent identity

d

dz

R

0

(z) = R

2

0

(z);

we an represent also the square of the resolvent:

R

0

(�� i")

2

g =

1

8�

�

�

p

�

"

+ i

"

2

p

�

"

�

�1

Z

e

�

�i

p

�

"

�

"

2

p

�

"

�

jx�yj

g(y)dy:

(2.2.28)

It is easy to derive from (2.2.26) the inequality

jR

0

(�� i")g(x)j �

1

4�

Z

R

3

jg(y)j

jx� yj

dy; (2.2.29)

whih is true for all �; ". On the positive real axis the following well known

representation holds: for any � � 0,

R

0

(�� i0)g(x) =

1

4�

Z

R

3

e

�i

p

�jx�yj

jx� yj

g(y)dy; (2.2.30)

while on the negative real axis we have (now we are outside the spetrum)

R

0

(��)g(x) =

1

4�

Z

R

3

e

�

p

� jx�yj

jx� yj

g(y)dy; � � 0: (2.2.31)

Then we have:

Lemma 2.2.3. For any � 2 R

+

, " � 0 the operators R

0

(�+ i")�R

0

(�� i")

are bounded operators in L(L

1

;L

1

) satisfying

k[R

0

(�+ i")�R

0

(�� i")℄fk

L

1

�

p

�

"

2�

kfk

L

1
: (2.2.32)
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A similar property holds for the operators R

0

(��i")

2

whih satisfy for � 2 R,

" � 0 the estimate

kR

0

(�� i")

2

fk

L

1

�

1

8�

p

�

"

kfk

L

1 : (2.2.33)

Finally, for any measurable funtion V (x) with kV k

K

< 1, the operators

V R

0

(�� i") are bounded on L

1

, the operators R

0

(�� i")V are bounded on

L

1

, and we have for all � 2 R, " � 0

kR

0

(�� i")V fk

L

1

�

kV k

K

4�

kfk

L

1

(2.2.34)

and

kV R

0

(�� i")fk

L

1
�

kV k

K

4�

kfk

L

1
(2.2.35)

Proof. The estimates (2.2.32) and (2.2.33) follow easily from (2.2.25), (2.2.26),

(2.2.29).

Using (2.2.29) we obtain immediately

jR

0

(z)V (x)f(x)j �

1

4�

Z

R

3

jV (y)j

jx� yj

jf(y)jdy;

and hene

kR

0

(z)V fk

L

1

�

1

4�

sup

x2R

3

Z

R

3

V (y)

jx� yj

dykfk

L

1

=

kV k

K

4�

kfk

L

1

:

In a similar way, using the expliit representation of resolvent R

0

we have

kV R

0

fk

L

1
�

1

4�

Z

R

3

�

�

�

�

V (x)

Z

R

3

jf(y)j

jx� yj

dy

�

�

�

�

dx =

1

4�

Z Z

R

3

jV (x)f(y)j

jx� yj

dxdy �

kV k

K

4�

kfk

L

1 :

(2.2.36)

Lemma 2.2.4. Let � 2 R, " � 0. Assume that the potential V is a real-

valued, measurable funtion on R

3

suh that

kV k

K

4�

< 1: (2.2.37)

Then the operator I+R

0

(�� i")V belongs to L(L

1

;L

1

) and has an inverse

satisfying

k(I +R

0

(�� i")V )

�1

k

L

1

!L

1

�

�

1�

kV k

K

4�

�

�1

; (2.2.38)
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analogously we have

k(I + V R

0

(�� i"))

�1

k

L

1

!L

1
�

�

1�

kV k

K

4�

�

�1

: (2.2.39)

Moreover for � 2 R, " > 0 the operator I�V R

V

(��i") belongs to L(L

1

;L

1

)

with norm bounded by

kI � V R

V

(�� i")k

L

1

!L

1 �

�

1�

kV k

K

4�

�

�1

: (2.2.40)

Proof. Sine

kV k

K

4�

< 1 by assumption, by (2.2.34) the operator (I + R

0

V )

is invertible and the Neumann series

(I +R

0

V )

�1

=

1

X

k=0

(�1)

k

(R

0

V )

k

onverges in L(L

1

;L

1

). In onlusion we have

k(I +R

0

V )

�1

k

L

1

!L

1

�

1

1�

kV k

K

4�

:

In a similar way, sine

kV k

K

4�

< 1 by assumption, by (2.2.35) the operator

(I + V R

0

) is invertible and the Neumann series

(I + V R

0

)

�1

=

1

X

k=0

(�1)

k

(V R

0

)

k

onverges in L(L

1

;L

1

). Then we have

k(I + V R

0

(z))

�1

k

L

1

!L

1
�

1

1�

kV k

K

4�

:

Finally realling the resolvent identity

R

0

(z) = R

V

(I + V R

0

);

sine (I + V R

0

) is invertible in L

1

as proved above, we an write

(I � V R

V

) = (I � V R

0

(I + V R

0

)

�1

);

and (2.2.39) implies that (I � V R

V

) : L

1

! L

1

with norm

k(I � V R

V

)k

L

1

!L

1 �

1

1�

kV k

K

4�

: (2.2.41)

This onludes the proof of the Lemma.
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Lemma 2.2.5. Assume V satis�es (2.2.37). Then for all z = � + i" with

� 2 R, " > 0 the following identity holds:

R

V

(z)�R

V

(�z) = (I +R

0

(�z)V )

�1

[R

0

(z)�R

0

(�z)℄(I � V R

V

(z)) (2.2.42)

and de�nes a bounded operator in L(L

1

;L

1

). Moreover, we have the esti-

mate

k[R

V

(�+ i")�R

V

(�� i")℄gk

L

1

� C

V

p

�

"

kgk

L

1
(2.2.43)

where C

V

= (1� kV k

K

=(4�))

�2

.

Proof. Thanks to Lemma 2.2.4, we an write the following identities for the

resolvent operator R

V

R

V

(z) = (I +R

0

(z)V )

�1

R

0

(z); (2.2.44)

R

V

(z) = R

0

(z)(I + V R

0

(z))

�1

; (2.2.45)

R

V

(z) = R

0

(z)(I � V R

V

(z)): (2.2.46)

Then we an write

R

V

(z)�R

V

(�z) = R

0

(z)�R

0

(�z)�R

0

(z)V R

V

(z) +R

0

(�z)V R

V

(�z);

adding and subtrating R

0

(�z)V R

V

(z), and fatorizing leads to

= (R

0

(z)�R

0

(�z))� (R

0

(z)�R

0

(�z)) V R

V

(z)�R

0

(�z)V (R

V

(z)�R

V

(�z))

whene (2.2.42) follows easily. The bound of this operator is an obvious

onsequene of Lemmas 2.2.3 and 2.2.4.

We have proved the �rst half of Proposition 2.2.2. The seond part is a

onsequene of the following Lemma:

Lemma 2.2.6. Assume V satis�es (2.2.37). Then for all � 2 R, " > 0 the

following identity holds:

R

V

(�� i")

2

= (I+R

0

(�� i")V )

�1

R

0

(�� i")

2

(I+V R

0

(�� i"))

�1

(2.2.47)

and de�nes a bounded operator in L(L

1

;L

1

). Moreover, we have the esti-

mate

kR

V

(�� i")

2

gk

L

1

�

C

V

8�

p

�

"

kgk

L

1
(2.2.48)

where C

V

= (1� kV k

K

=(4�))

�2

.

Proof. The proof is analogous to the proof of the Lemma 2.2.5, and fol-

lows from the identities (2.2.44), (2.2.45), and from the properties proved in

Lemma 2.2.3
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2.2.3 The equivalene B

1

1;1

(V ) ' B

1

1;1

(R

3

)

The main purpose of this setion is to prove the equivalene between non

homogeneous, perturbed Besov spaes and non homogeneous lassi Besov

spaes. This fat onludes the proof of Theorem 2.2.1, beause it implies

that from (2.2.24) we obtain the following dispersive estimate

ku(t; �)k

L

1

� C

C

V

t

kfk

B

1

1;1

(R

3

)

; (2.2.49)

where C

V

= (1�

kV k

K

4�

)

�2

.

Now we reall the de�nition of the lassial non homogeneous Besov

spaes.

De�nition 2.2.1. Let '

j

, j = 0; 1; : : : be a standard non homogeneous

Paley-Littlewood partition of unity; we reall that '

j

(�) = '

0

(2

�j

�) and

that

supp '

0

= f� : 2

�1

� j�j � 2g suh that '

0

(�) > 0 for 2

�1

� j�j � 2:

 

0

+

X

j�0

'

j

= 1;

for a suitable  

0

2 C

1

0

(R

3

). The non homogeneous Besov spaes B

s

p;q

are

de�ned by

B

s

p;q

= fu : u 2 S

0

; kuk

B

s

p;q

<1g; (2.2.50)

with the norm

kuk

B

s

p;q

= k 

0

(D)uk

L

p

+

0

�

1

X

j=0

2

sjq

k'

j

(D)uk

q

L

p

1

A

1

q

; (2.2.51)

where D =

p

��, and s 2 R; 1 � p; q �1.

Clearly, B

s

p;q

are normed linear spaes with norms k � k

B

s

p;q

. Moreover,

they are omplete and therefore Banah spaes.

In a similar way, we an de�ne non homogeneous perturbed Besov spaes

as

B

s

p;q

(V ) = fu : u 2 S

0

; kuk

B

s

p;q

(V )

<1g; (2.2.52)

with the norm

kuk

B

s

p;q

(V )

= k 

0

(D

V

)uk

L

p

+

0

�

1

X

j=0

2

sjq

k'

j

(D

V

)uk

q

L

p

1

A

1

q

; (2.2.53)

where D

V

=

p

��

V

�

p

��+ V , and s 2 R; 1 � p; q � 1.

Now we see the following
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Theorem 2.2.2. Assume that the potential V satis�es (2.2.37). Then the

following equivalene holds:

B

1

1;1

(V ) ' B

1

1;1

(R

3

); (2.2.54)

i.e.

kfk

B

1

1;1

(V )

' kfk

B

1

1;1

(R

3

)

: (2.2.55)

To prove Theorem 2.2.2 we need some Lemmas. In the following we shall

use the operator

(��)

�1

f = R

0

(0)f =

1

4�

Z

f(y)

jx� yj

dy

whih satis�es the identity

I = (��)R

0

(0) = R

0

(0)(��)

(see standard referenes) and, writing ��

V

= ��+ V , the operator

(��

V

)

�1

= R

V

(0) = R

0

(0)(I + V R

0

(0))

�1

= (I +R

0

(0)V )

�1

R

0

(0)

whih satis�es the analogous identities

R

V

(0)(��

V

) = R

V

(0)(��+ V ) = (I +R

0

(0)V )

�1

R

0

(0)(��+ V ) = I

and

(��

V

)R

V

(0) = I:

Moreover we reall that the operator V R

0

(0) is bounded on L

1

sine

kV R

0

(0)fk

L

1 �

1

4�

ZZ

jV (y)j

jx� yj

jf(y)jdydx �

1

4�

kV k

K

kfk

L

1 ;

and its dual R

0

(0)V is bounded on L

1

with the same norm. Thus also

V R

V

(0) and R

V

(0)V given by

V R

V

(0) = V R

0

(0)(I + V R

0

(0))

�1

; R

V

(0)V = (I +R

0

(0)V )

�1

R

0

(0)V

are bounded on L

1

and L

1

respetively, with norms

kV R

V

(0)k = kR

V

(0)V k �

kV k

K

4�

�

1�

kV k

K

4�

�

�1

:

Now we proeed as Theorem 7.1 in [44℄.
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Lemma 2.2.7. Let '

j

, j = 0; 1; : : : be a standard non homogeneous Paley-

Littlewood partition of unity, and let V satisfy (2.2.37). Then the following

inequalities hold for all p 2 [1;1℄

k'

j

(

p

��

V

)(��

V

)

�1

k

L

p

!L

p

� C2

�2j

; j � 0; (2.2.56)

k'

j

(

p

��

V

)(��

V

)k

L

p

!L

p

� C2

2j

; j � 0; (2.2.57)

k 

0

(

p

��

V

)k

L

p

!L

p

+ k 

0

(

p

��

V

)(��

V

)k

L

p

!L

p

� C; (2.2.58)

k'

j

(

p

��

V

)k

L

p

!L

p

� C; j � 0 (2.2.59)

We notie that (2.2.56), (2.2.57), (2.2.58) hold also if we onsider the

Laplae operator �� instead of ��

V

(take V = 0).

Proof. Consider

g(��) = '

0

(

p

��)�

�1

�

�1

;

where '

0

(

p

�) 2 C

1



. Sine our potential belongs to the Kato lass and ��

V

is a non-negative operator we an apply Theorem 2.1 in [58℄ and obtain the

following estimate

kg((��

V

)�)k

L

p

!L

p

� C;

where C is a onstant independent of � 2℄0; 1℄. Thus we have

k'

0

(�

p

(��

V

)

�1

)(��

V

)

�1

k

L

p

!L

p

� C�; � 2℄0; 1℄;

we an hoose � = 2

�2j

; j � 0, and we known that '

j

(

p

�) = '

0

(2

�j

p

�),

so this proves the �rst inequality of the Lemma.

As above, we onsider now

g(��) = '

0

(

p

��)��;

and we apply to it again Theorem 2.1 in Nakamura-Jensen. If we hoose

� = 2

2j

; j � 0 we obtain the seond inequality

k'

j

(

p

��

V

)(��

V

)k

L

p

!L

p

� C2

2j

; j � 0:

Finally, in a similar way hoosing

g(�) =  

0

(

p

�) with � = 1

or

g(�) =  

0

(

p

�)� with � = 1

or

g(��) = '

0

(

p

��)�

�1

;

we prove the last two inequalities.
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Lemma 2.2.8. Under the same assumptions as in the preeding Lemma we

have

k'

j

(

p

��

V

)'

k

(

p

��)k

L

1

!L

1
� C2

�2j+2k

; 8 j; k � 0: (2.2.60)

Proof. We an write '

j

(

p

��

V

)'

k

(

p

��) as

'

j

(

p

��

V

)(��

V

)

�1

(��

V

)'

k

(

p

��) =

= '

j

(

p

��

V

)(��

V

)

�1

(��)'

k

(

p

��)+

+ '

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��):

Using (2.2.56) and (2.2.57) it is easy to see that we have the following

k'

j

(

p

��

V

)(��

V

)

�1

(��)'

k

(

p

��)k

L

1

!L

1
� C2

�2j+2k

; j; k � 0:

(2.2.61)

Moreover we an write

'

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��) =

= '

j

(

p

��

V

)(��

V

)

�1

V R

0

(0)(��)'

k

(

p

��);

and we an apply to it (2.2.56):

k'

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��)k

L

1

!L

1
�

� C2

�2j

kV R

0

(0)k

L

1

!L

1
k(��)'

k

(

p

��)k

L

1

!L

1
:

by (2.2.57) in Lemma 2.2.7 we obtain

k'

j

(

p

��

V

)(��

V

)

�1

V '

k

(

p

��)k

L

1

!L

1
� C2

�2j

kV k

K

4�

2

2k

; 8 j; k � 0

and this onludes the proof.

Now we see the proof of Theorem 2.2.2. The �rst step is to prove the

following inequality

kfk

B

1

1;1

(V )

� Ckfk

B

1

1;1

(R

3

)

: (2.2.62)

By the de�nition of non homogeneous perturbed Besov spaes we have,

writing for brevity

D

V

=

p

��

V

; D =

p

��

kfk

B

1

1;1

(V )

= k 

0

(D

V

)fk

L

1
+

1

X

j=0

2

j

k'

j

(D

V

)fk

L

1
: (2.2.63)
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We know that

 

0

(D) +

X

k�0

'

k

(D) = 1;

and thus we have

kfk

B

1

1;1

(V )

� k 

0

(D

V

) 

0

(D)fk

L

1
+

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1
+

+

1

X

j=0

2

j

k'

j

(D

V

) 

0

(D)fk

L

1 +

X

j;k�0

2

j

k'

j

(D

V

)'

k

(D)fk

L

1 :

Now we estimate separately the four terms.

Applying to the �rst term the (2.2.58) we obtain that  

0

(D

V

) is bounded

on L

1

so that

k 

0

(D

V

) 

0

(D)fk

L

1
� Ckfk

L

1
(2.2.64)

and sine

kfk

L

1 � k 

0

(D)fk

L

1 +

X

j�0

k'

j

(D)fk

L

1 ;

this is smaller than kfk

B

1

1;1

(R

3

)

.

In the same way we have for the seond term

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1 � C

1

X

k=0

k'

k

(D)fk

L

1 � Ckfk

B

1

1;1

(R

3

)

For the third term we an write

1

X

j=0

2

j

k'

j

(D

V

) 

0

(D)fk

L

1
=

1

X

j=0

2

j

k'

j

(D

V

)(��

V

)

�1

(��

V

) 

0

(D)fk

L

1

and from (2.2.56) in Lemma 2.2.2 we have

� C

X

j�0

2

�j

k(��

V

) 

0

(D)fk

L

1 = Ck(��

V

) 

0

(D)fk

L

1 �

� Ck(��) 

0

(D)fk

L

1
+ CkV  

0

(D)fk

L

1
;

by our assumption on the potential we have

kV  

0

(D)fk

L

1
= kV R

0

(0)(��) 

0

(D)fk

L

1
�

kV k

K

4�

k(��) 

0

(D)fk

L

1

and sine (��) 

0

(D) is bounded in L

1

by (2.2.58), the third term is bounded

by

1

X

j=0

2

j

k'

j

(D

V

) 

0

(D)fk

L

1
� C

2

kfk

L

1
: (2.2.65)
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Finally, we divide the fourth term in the ases j � k and j > k:

X

j;k�0

2

j

k'

j

(D

V

)'

k

(D)fk

L

1
=

X

j�k

+

X

j>k

for j � k we use the fat that '

j

(D

V

) are bounded on L

1

with uniform

norm by (2.2.59) and we obtain

X

j�k

�

X

k�0

k'

k

(D)fk

L

1

X

0�j�k

2

j

= 2

X

k�0

2

k

k'

k

(D)fk

L

1
:

For j > k, we know that '

j

= '

j

f'

j

and we have

X

j>k

2

j

k'

j

(D

V

)'

k

(D)fk

L

1
=

X

j>k

2

j

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1
;

now applying to the last term the Lemma 2.2.8 we have

X

j>k

2

j

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1
�

X

j>k

C2

k�j

2

k

kf'

k

fk

L

1

and sine

P

j>k

2

k�j

< 1 we have

X

j;k�0

2

j

k'

j

(D

V

)'

k

(D)fk

L

1
� C

X

k�0

2

k

k

^

'

k

(D)fk

L

1
: (2.2.66)

In onlusion, we obtain

kfk

B

1

1;1

(V )

� Ckfk

L

1
+ C

X

k�0

2

k

k

^

'

k

(D)fk

L

1
� kfk

B

1

1;1

(R

3

)

: (2.2.67)

The seond step is to prove the following inequality

kfk

B

1

1;1

(R

3

)

� kfk

B

1

1;1

(V )

; (2.2.68)

this is ompletely analogous to �rst step, and so the proof is onluded.

2.3 The wave equation with a large rough poten-

tial

We onsider now the ase of the wave equation

�

1+n

u+ V (x)u = 0; u(0; x) = 0; u

t

(0; x) = f(x); (2.3.1)

perturbed by a large potential in the Kato lass.

The main new diÆulty is the possibility that the operator ��+ V (x)

has eigenvalues or resonanes.
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As it is well known, the presene of eigenvalues or resonanes an inuen-

e the deay properties of the solutions. The standard way out of this

diÆulty is to assume that no resonanes are present on the positive real

axis, and in many ases this redues to assuming that 0 is not a resonane.

In our �rst result this assumption takes the following form. We denote as

usual by R

0

(z) = (�z��)

�1

the resolvent operator of ��, and by R

0

(��i0)

the limits lim

"#0

R(�� i") at a point � � 0. Then we assume that

The integral equation f + R

0

(� + i0)V f = 0 has no nontrivial

bounded solution for any � � 0,

or, equivalently,

f +

1

4�

Z

R

3

e

i

p

�jx�yj

jx� yj

V (y)f(y)dy = 0; f 2 L

1

; � � 0 =) f � 0:

(2.3.2)

In several ases this assumption an be drastially weakened, as disussed

below.

We an now state the �rst result of the setion:

Theorem 2.3.1. Let V = V

1

+ V

2

be a real valued potential of Kato lass.

Assume that:

i) V

1

is ompatly supported and has a bounded Kato norm;

ii) V

2

has a small Kato norm and preisely

kV

2

k

K

�

�

1 +

1

4�

kV

1

k

K

�

< 4�; (2.3.3)

iii) the negative part V

�

= maxf�V; 0g satis�es

kV

�

k

K

< 2�; (2.3.4)

iv) the non resonant ondition (2.3.2) holds for all � � 0.

Then any solution u(t; x) to problem (2.3.1) satis�es the dispersive estimate

ku(t; �)k

L

1

� C t

�1

kfk

_

B

1

1;1

(R

3

)

: (2.3.5)

We give some omments on the above assumptions.

Remark 2.3.1. Condition (2.3.3) an be intepreted as a smallness at in�nity

of V , and is satis�ed by quite a large lass of potentials. For instane,

assume that V belongs to the Lorentz spae L

3=2;1

(R

3

). By the extended

Young inequality we have

kfk

K

� 

0

kfk

L

3=2;1

for some universal onstant 

0

. Thus we see that V has a bounded Kato

norm, and a similar argument shows that V also belongs to the Kato lass.
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Moreover, if �(x) is the harateristi funtion of the ball fjxj < 1g, we an

deompose V as follows: for any R > 0,

V = V

1

+ V

2

; V

1

= �(x=R)V; V

2

= (1� �(x=R))V:

Notie that

kV

2

k

K

� 

0

kV

2

k

L

3=2;1

! 0 as R! +1;

on the other hand,

kV

1

k

K

� 

0

kV

1

k

L

3=2;1

� 

0

kV k

L

3=2;1

independently of R, and hene

kV

2

k

K

�

�

1 +

1

4�

kV

1

k

K

�

! 0 as R! +1:

In other words, assumptions (i) and (ii) are automatially satis�ed by any

potential in L

3=2;1

. We an sum up this argument in the following Corollary:

Corollary 2.3.2. Assume the real valued potential V belongs to L

3=2;1

with

kV

�

k

K

< 2� and satis�es the non resonant ondition (2.3.2). Then the

same onlusion of Theorem 2.3.1 holds.

In partiular, this applies to potentials belonging to L

3=2�Æ

(R

3

)\L

3=2+Æ

(R

3

)

for some Æ > 0, in view of the embedding

L

3=2�Æ

(R

3

) \ L

3=2+Æ

(R

3

) � L

3=2;1

(R

3

):

This overs the potentials satisfying (2.1.1), as remarked above.

It is interesting to ompare this to the results of Burq et al. [20℄, [21℄

onerning the inverse square potential; in the sale of Lorentz spaes we

an say that the dispersive estimate holds when V 2 L

3=2;1

but not when

V 2 L

3=2;1

. It is not lear what an be said for potentials of Lorentz lass

L

3=2;q

with 1 < q <1, and in partiular for L

3=2

= L

3=2;3=2

.

Remark 2.3.2. It is a problem of independent interest to �nd onditions on

the potential V whih ensure that no resonanes in the sense of (2.3.2) our

on the positive real axis. A well known result in this diretion was proved

in [3℄ (see in partiular Appendies 2 and 3). We briey reall two speial

ases whih an be applied here (V is always real valued):

Proposition 2.3.3. (Alsholm-Shmidt) Let n = 3. Assume that V 2 L

2

lo

and

that, for some C;R; � > 0, one has jV (x)j � Cjxj

�2��

for jxj > R. Then

property (2.3.2) holds for all � > 0.

Proposition 2.3.4. (Alsholm-Shmidt) Let n = 3. Assume that, for some

C;R; � > 0, one has jV (x)j � Cjxj

�1��

for jxj > R. Moreover, assume that

either V 2 L

1

\ L

2

or hxi

1=2+�

V 2 L

2

. Then property (2.3.2) holds for all

� > 0.
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Notie that the results of [3℄ do not apply to the potentials like (2.1.1)

sine the singularity jxj

�2+�

is not L

2

lo

; however, in order to apply e.g.

Proposition 2.3.3, it is suÆient to assume that

jV (x)j �

C

jxj

2+"

+ jxj

3=2�"

: (2.3.6)

When V satis�es (2.3.6), (iii) of Theorem 2.3.1, and � = 0 is not a resonane

(in the sense of (2.3.2)), then the dispersive estimate is true.

We further stress that the above propositions do not rule out the pos-

sibility of a resonane at � = 0. This ase an be exluded (at least in the

sense of (2.3.2)) if one requires a stronger deay at in�nity of the potential;

as an example, we an prove the following

Theorem 2.3.5. Let V

1

be a nonnegative L

2

funtion suh that V

1

(x) �

Cjxj

�3�Æ

(Æ > 0) for large x. Then there exists a onstant �(V

1

) > 0 suh

that: for all real valued funtions V

2

of Kato lass with

kV

2

k

K

< �(V

1

) (2.3.7)

and for V = V

1

+ V

2

, the solution u(t; x) of problem (2.3.1) satis�es the

dispersive estimate (2.3.5).

In essene, this result states that the dispersive estimate holds (without

additional assumptions on the resonanes) for all nonnegative potentials de-

aying faster than jxj

�3

and for all \small enough" perturbations thereof;

however, it does not give a measure of the smallness of admissible pertur-

bations. For this, we must use Theorem 2.3.1 whih requires the additional

assumption (2.3.2).

Remark 2.3.3. In Setion 2.3.6 we prove the equivalene of the standard

homogeneous Besov norms with the perturbed ones, i.e., generated by the

operator ��+ V :

_

B

s

1;q

(R

n

)

�

=

_

B

s

1;q

(V ); 0 < s < 2; 1 � q � 1; n � 3

for all potentials V = V

+

� V

�

with V

�

� 0 and

kV

+

k

K

<1; kV

�

k

K

< �

n=2

=�

�

n

2

� 1

�

(2.3.8)

(see Theorem 2.3.23). For this result, a suitable extension of some lemmas

in [58℄-[59℄ was needed, whih in turn required an improvement in Simon's

estimates for the Shr�odinger semigroup [91℄. Indeed, in Proposition 2.3.18

we prove that the semigroup e

t(��V )

has an integral kernel k(t; x; y) suh

that (n � 3)

jk(t; x; y)j �

(2�t)

�n=2

1� 2kV

�

k

K

=

n

e

�jx�yj

2

=8t

(2.3.9)
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and satis�es the estimate

ke

�tH

k

L(L

p

;L

q

)

�

(2�t)

�

(1� kV

�

k

K

=

n

)

2

;  =

n

2

�

1

p

�

1

q

�

: (2.3.10)

Thus, as a byprodut of our proof we obtain the following paraboli disper-

sive estimate (see Proposition 2.3.18):

Theorem 2.3.6. Let n � 3, assume the potential V (x) is of Kato lass, has

a �nite Kato norm and its negative part V

�

satis�es

kV

�

k

K

< 2�

n=2

=�

�

n

2

� 1

�

(2.3.11)

Then the solution u(t; x) to the perturbed heat equation

u

t

��u+ V (x)u = 0; u(0; x) = f(x) (2.3.12)

satis�es the dispersive estimate

ku(t; �)k

L

q

� Ct

n

2

�

1

q

�

1

p

�

kfk

L

p

;

1

p

+

1

q

= 1; q 2 [2;1℄: (2.3.13)

Remark 2.3.4. As notied in [44℄, in dimension n = 3 the spetral repre-

sentation of the solution and an integration by parts are suÆient to prove

the dispersive estimate, provided suitable L

1

� L

1

estimates for the spe-

tral measure are available. Here we follow a similar line of proof; however,

we prefer to apply the spetral theorem outside the real axis and to prove

estimates whih are uniform in the imaginary part of the parameter. This

approah does not require to extend the limiting absorption priniple to the

perturbed operator, as it would be neessary when working on the real axis.

See also the previous work [76℄ where the ase of potentials with a small

Kato norm was onsidered.

2.3.1 Properties of the free resolvent

We have already studied the properties of the free resolvent in the last

setion; here we review and expand those results in a more systemati way.

We start from the representation of R

0

(z) = (�� � z)

�1

in R

3

(see

e.g. [88℄):

R

0

(�

2

)g(x) = (��� �

2

)

�1

g =

8

>

>

>

>

>

<

>

>

>

>

>

:

1

4�

Z

R

3

e

i�jx�yj

jx� yj

g(y)dy for Im � > 0

1

4�

Z

R

3

e

�i�jx�yj

jx� yj

g(y)dy for Im � < 0.

(2.3.14)
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By elementary omputations we obtain that for any � 2 R and " > 0

R

0

(�� i")g(x) =

1

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

g(y)dy (2.3.15)

where

�

"

=

�+ (�

2

+ "

2

)

1=2

2

> 0: (2.3.16)

These formulas de�ne bounded operators on L

2

, provided " > 0 or � < 0.

When approahing the positive real axis, i.e., as " # 0, this property fails;

however if we onsider the limit operators for � � 0

R

0

(�� i0)g(x) =

1

4�

Z

e

�i

p

�jx�yj

jx� yj

g(y)dy (2.3.17)

then the limiting absorption priniple ensures that R

0

(�� i0) are bounded

from the weighted spae L

2

(hxi

s

dx) to L

2

(hxi

�s

dx) for any s > 1, and

atually R

0

(�� i")! R

0

(�� i0) in the operator norm (see e.g. [1℄, [57℄).

For negative � the estimates are of ourse muh stronger sine we are in

the resolvent set of ��. Using

0 < �

"

<

"

2

;

"

2

p

�

"

�

p

j�j for all � < 0

we have from (2.3.15), for all � < 0, " � 0

jR

0

(�� i")g(x)j �

1

4�

Z

e

�

p

j�jjx�yj

jx� yj

jg(y)jdy (2.3.18)

and atually for � < 0, " = 0

R

0

(�� i0)g(x) =

1

4�

Z

e

�

p

j�jjx�yj

jx� yj

g(y)dy:

We ollet here some immediate onsequenes of the above representa-

tions whih will be used in the following. Sine

[R

0

(�+ i")�R

0

(�� i")℄g =

i

2�

Z

sin(

p

�

"

jx� yj)

jx� yj

e

�"jx�yj=2

p

�

"

g(y)dy

(2.3.19)

we an write for all � 2 R and " � 0

k[R

0

(�+ i")�R

0

(�� i")℄gk

L

1

�

p

�

"

2�

kgk

L

1
: (2.3.20)

Realling De�nition 2.2.1, a straightforward omputation shows that

kR

0

(�� i")V gk

L

1

�

1

4�

kV k

K

kgk

L

1

8� 2 R; " � 0 (2.3.21)
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for any measurable funtion V (x), and in a similar way

kV R

0

(�� i")gk

L

1
�

1

4�

kV k

K

kgk

L

1
8� 2 R; " � 0: (2.3.22)

Of ourse for negative � we have better estimates:

Lemma 2.3.7. Assume V is of Kato lass and has a �nite Kato norm.

Then for all Æ > 0 there exists C

Æ

> 0 suh that

kR

0

(�� i")V gk

L

1

�

 

Æ + C

Æ

kV k

K

p

j�j

!

kgk

L

1

8� < 0; " � 0 (2.3.23)

and

kV R

0

(�� i")gk

L

1
�

 

Æ + C

Æ

kV k

K

p

j�j

!

kgk

L

1
8� < 0; " � 0: (2.3.24)

Proof. By (2.3.18) we have

jR

0

(�� i")V g(x)j �

1

4�

Z

jV (y)j

jx� yj

jg(y)je

�

p

j�jjx�yj

dy:

Now for any r > 0 we an split the integral in two zones jx � yj < r and

� r; for the �rst piee we have

1

4�

Z

jx�yj<r

jV (y)j

jx� yj

jg(y)je

�

p

j�jjx�yj

dy �

1

4�

Z

jx�yj<r

jV (y)j

jx� yj

dykgk

L

1

and this an be made smaller than Ækgk

L

1

by the de�nition of Kato lass

(2.2.1), provided we hoose r < r(Æ). With this hoie we an estimate the

seond piee as follows

1

4�

Z

jx�yj�r(Æ)

jV (y)j

jx� yj

jg(y)je

�

p

j�jjx�yj

dy �

kgk

L

1

4�r(Æ)

p

j�j

Z

jV (y)j

jx� yj

dy

where we have used the inequality e

�a

� 1=a, and this proves (2.3.23).

Estimate (2.3.24) follows by duality.

We shall also need estimates for the square of the resolvent R

0

(�� i")

2

.

Sine by the resolvent identity

d

dz

R

0

(z) = R

2

0

(z);

we have the expliit representations

R

0

(�� i")

2

g =

1

8�

�

�

p

�

"

+ i

"

2

p

�

"

�

�1

Z

e

�

�i

p

�

"

�

"

2

p

�

"

�

jx�yj

g(y)dy

(2.3.25)
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and

R

0

(�� i0)

2

g = �

1

8�

p

�

Z

e

�i

p

�jx�yj

g(y)dy: (2.3.26)

From these relations we obtain immediately the estimate, valid for all � 2 R

and " � 0 with (�; ") 6= (0; 0)

kR

0

(�� i")

2

gk

L

1

�

1

8�

p

�

"

kgk

L

1
: (2.3.27)

2.3.2 The perturbed operator for large potentials

In Setion 2.2.1 we proved the selfadjointness of the operator ��+V (x) for

a real valued small potential in the Kato lass. We show here that the same

result an be proved also when the positive part of the potential is large, by

a slightly more involved argument. More preisely we have:

Lemma 2.3.8. Let V = V

+

� V

�

with V

�

� 0 be a measurable funtion on

R

3

satisfying

V

+

is of Kato lass, kV

�

k

K

< 4�: (2.3.28)

Then the operator ��+V de�ned on C

1

0

(R

n

) extends to a unique nonneg-

ative self-adjoint operator H = ��+ V with domain D(H) = H

2

(R

3

) suh

that

( ;H )

L

2

= ( ;�� )

L

2

+ ( ; V  )

L

2

� 0 8  2 H

2

(R

3

): (2.3.29)

Proof. We shall use the KLMN Theorem (see [91℄, Vol.II, Theorem 10.17).

Thus it is suÆient to verify the following inequality:

Z

R

3

jV (x)jj'(x)j

2

dx � a

Z

R

3

jr'(x)j

2

dx+ bk'k

2

L

2

(R

3

)

(2.3.30)

for some onstants a < 1; b 2 R and for all test funtions ' (whene the

same inequality is true for all ' 2 H

1

whih is the domain of the form

�(�';')).

First of all we prove that for some a 2 ℄0; 1[ and for all b > 0

Z

R

3

V

�

(x)j'(x)j

2

dx � akr'k

2

L

2

(R

3

)

+ bk'k

2

L

2

(R

3

)

: (2.3.31)

This is equivalent to

j(V

�

';')

L

2
j � a(';��')

L

2
+ bk'k

2

L

2

= a











�

H

0

+

b

a

�

1

2

'











2

L

2

;

where H

0

= �� is the selfadjoint operator with domain H

2

(R

3

). Thus,

writing g =

�

H

0

+

b

a

�

1

2

', the inequality to be proved takes the form











jV

�

j

1

2

�

H

0

+

b

a

�

�

1

2

g











L

2

� akgk

L

2 ;
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for some 1 > a > 0 and all b > 0; and this is equivalent to prove that

kTT

�

k

L

2

!L

2
= a

2

< 1 (2.3.32)

where we introdued the operator T = jV

�

j

1

2

�

H

0

+

b

a

�

�

1

2

and its adjoint

T

�

=

�

H

0

+

b

a

�

�

1

2

jV

�

j

1

2

:

Using the expliit representation

�

H

0

+

b

a

�

�1

' =

1

4�

Z

R

3

e

�

q

b

a

jx�yj

jx� yj

'(y)dy

we an write

kTT

�

'k

2

L

2

=











jV

�

j

1

2

�

H

0

+

b

a

�

�1

jV

�

j

1

2

'











2

L

2

=

=

1

(4�)

2

Z

jV

�

(x)j

�

�

�

�

�

�

Z

e

�

q

b

a

jx�yj

jx� yj

jV

�

(y)j

1

2

j'(y)jdy

�

�

�

�

�

�

2

dx

and by the Cauhy-Shwartz inequality we have

�

1

(4�)

2

Z

jV

�

(x)j

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

jV

�

(y)jdy

1

A

0

�

Z

e

�

q

b

a

jx�yj

jx� yj

j'(y)j

2

dy

1

A

dx:

Now by de�nition of Kato norm we have (for all x and any a; b > 0)

Z

e

�

q

b

a

jx�yj

jx� yj

jV

�

(y)jdy �

Z

jV

�

(y)j

jx� yj

dy � kV

�

k

K

(2.3.33)

whih implies

kTT

�

'k

2

L

2

�

kV

�

k

K

(4�)

2

Z Z

jV

�

(x)j

e

�

q

b

a

jx�yj

jx� yj

j'(y)j

2

dydx:

Using again (2.3.33) we obtain

kTT

�

'k

2

L

2

�

kV

�

k

2

K

(4�)

2

k'k

2

L

2

whih means

kTT

�

k

L

2

!L

2
�

kV

�

k

K

4�

� a < 1 (2.3.34)
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by assumption (2.3.28), and this proves (2.3.31)

To onlude the proof it is suÆient to show that for all test funtions

', for all a > 0 and for some b = b(a) 2 R

Z

R

3

V

+

(x)j'(x)j

2

dx � akr'k

2

L

2

(R

3

)

+ bk'k

2

L

2

(R

3

)

(2.3.35)

The proof is almost idential to the above one; the only di�erene appears

in estimate (2.3.33) where we split the integral as follows

Z

e

�

q

b

a

jx�yj

jx� yj

jV

+

(y)jdy =

Z

jx�yj<r

+

Z

jx�yj�r

for arbitrary r > 0. Fix now Æ > 0; if we hoose r > 0 small enough, the

�rst integral an be made smaller than Æ by assumption (2.3.28); on the

other hand, with r hosen, the seond integral an be made smaller than Æ

by hoosing b large enough. In onlusion we have

Z

e

�

q

b

a

jx�yj

jx� yj

jV

+

(y)jdy � 2Æ

provided b in (2.3.35) is large enough.

Inequality (2.3.30) is now a trivial onsequene of (2.3.31) and (2.3.35);

thus the assumptions of the KLMN theorem are satis�ed and we an on-

strut H = �� + V as a selfadjoint operator on H

2

. To hek that it is

positive, we write

((��+ V )';')

L

2

= (��';')

L

2

+ (V '; ')

L

2

� kr'k

2

L

2

� j(V

�

';')

L

2
j;

by inequality (2.3.31) we may ontinue

� (1� a)kr'k

2

L

2

� bk'k

2

L

2

� �bk'k

2

L

2

for every b > 0, and this implies

((��+ V )';')

L

2

� 0: (2.3.36)

Remark 2.3.5. The above proof an be easily extended to general dimension

n � 3. Indeed, the kernel K

M

(x) of (��+M)

�1

for M > 0 satis�es

jK(x)j �

1

�

n

jxj

n�2

; lim

M!+1

sup

jxj>r

e

jxj

K(x) = 0 (2.3.37)

for eah �xed r > 0 (see e.g. [91℄, p.454), and these are exatly the properties

we used in the above proof. Moreover, the onstant �

n

is well known and is

equal to

�

n

= 4�

n=2

=�

�

n

2

� 1

�

:
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Thus we see that the result of Lemma 2.3.8 is true for all n � 3, provided

the negative part of V satis�es

kV

�

k

K

< 4�

n=2

=�

�

n

2

� 1

�

: (2.3.38)

2.3.3 Spetral alulus for the perturbed operator

Lemma 2.3.8 allows us to apply the spetral theorem and hene to use the

funtional alulus for H = ��+V , i.e., given any funtion �(�) ontinuous

and bounded on R, we an de�ne the operator �(H) on L

2

as

�(H)f =

1

2�i

� L

2

� lim

"#0

Z

�(�)[R

V

(�+ i")�R

V

(�� i")℄fd� (2.3.39)

where

R

V

(z) = (��+ V � z)

�1

is the resolvent operator for H (see e.g. Vol. II of [101℄). When the limit

absorption priniple is satis�ed, one an de�ne the limit operators R

V

(��i0)

and take the limit in the spetral formula as " ! 0. Instead, here we shall

use formula (2.3.39) exlusively, sine our estimates will always be uniform

in the parameter " > 0.

For z outside the positive real axis we have the well known identities

R

0

(z) = (I +R

0

(z)V )R

V

(z) = R

V

(z) (I + V R

0

(z)) ; (2.3.40)

and a standard way to represent R

V

(z) in terms of R

0

(z) is to onstrut

the inverse operators (I +R

0

(z)V )

�1

. This is the ontent of the following

proposition, whih is the ruial result of the paper. In the following we

shall onsider in detail the ase of dimension 3 alone, but all the results

in this setion an be extended to general dimension n � 2 by suitable

modi�ations in the proofs.

Proposition 2.3.9. Under the assumptions of Theorem 2.3.1 (or Theo-

rem 2.3.5) there exists "

0

> 0 suh that the bounded operators I + R

0

(� �

i")V : L

1

! L

1

are invertible for all � 2 R, 0 � " � "

0

with a uniform

bound

k(I +R

0

(�� i")V )

�1

k

L(L

1

;L

1

)

� C for all � 2 R; 0 � " � "

0

: (2.3.41)

We need a few lemmas. First of all we reall the standard L

2

weighted

estimate of the free resolvent (see e.g. [1℄ or Vol.II of [57℄; see also [6℄):

Lemma 2.3.10. For all � > 0 and " � 0, the free resolvent R

0

(� �

i") is a bounded operator from the weighted L

2

(hxi

2s

dx) to the weighted

L

2

(hxi

�2s

dx) spae for any s > 1=2; moreover the following estimate holds

with a onstant C = C(s) independent of ", �:

khxi

�s

R

0

(�� i")fk

L

2
�

C

p

�

khxi

s

fk

L

2
: (2.3.42)
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The following is an elementary but useful property of Kato lass fun-

tions:

Lemma 2.3.11. A ompatly supported funtion of Kato lass has a �nite

Kato norm.

Proof. Let V (x) be of Kato lass with support ontained in a ball B(0; R) �

R

3

. Then by de�nition we have the uniform bound

Z

jx�yj�1

jV (y)jdy �

Z

jx�yj�1

jV (y)j

jx� yj

dy � C

0

for some C

0

independent of x; thus, overing the support of V with a �nite

number of balls of radius 1, we see that V 2 L

1

. Hene we an write

Z

jV (y)j

jx� yj

dy �

Z

jx�yj�1

jV (y)j

jx� yj

dy +

Z

jx�yj�1

jV (y)j

jx� yj

dy � C

0

+ kV k

L

1

and this onludes the proof.

The next lemma is sligthly modi�ed from [91℄:

Lemma 2.3.12. If V (x) is a ompatly supported funtion in the Kato

lass, then there exists a sequene of funtions V

"

2 C

1

0

(R

3

) suh that kV

"

�

V k

K

! 0 and suppV

"

# suppV as " ! 0. When V � 0, the funtions V

"

an be taken nonnegative too.

Proof. By the preeding lemma V has a �nite Kato norm, and learly it

belongs to L

1

. Consider now a sequene of nonnegative radial molli�ers,

i.e., let �(x) 2 C

1

0

(R

3

) be a nonnegative radial funtion with support in the

ball fjxj � 1g suh that

R

�(x)dx = 1, and set �

"

(x) = "

�3

�(x="). Then we

have the following standard properties of the Newton potential 1=jxj:

1

jxj

� �

"

�

1

jxj

for jxj � "; (2.3.43)

1

jxj

� �

"

�

1

jxj

for all jxj 6= 0: (2.3.44)

De�ne now V

"

= V � �

"

; for �xed x we have

�

�

�

�

Z

V (y)

jx� yj

dy �

Z

V

"

(z)

jx� zj

dz

�

�

�

�

=

�

�

�

�

Z

V (y)

�

1

jx� yj

�

Z

�

"

(z � y)

jy � zj

dz

�

dy

�

�

�

�

and sine by (2.3.44) the term in brakets is positive,

�

Z

jV (y)j

�

1

jx� yj

�

Z

�

"

(z � y)

jy � zj

dz

�

dy �

Z

jx�yj<"

jV (y)j

jx� yj

dy
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where in the last step we used (2.3.43). Taking the supremum in x, we

obtain

kV

"

� V k

K

� sup

x2R

3

Z

jx�yj<"

jV (y)j

jx� yj

dy

and realling De�nition 2.2.1 we onlude that kV

"

� V k

K

! 0. Finally,

the support of V

"

is ontained in the set of points at distane � " from the

support of V , and learly V � 0 implies V

"

� 0.

We prove now a property of the squared operator (R

0

V )

2

:

Lemma 2.3.13. Let V be a ompatly supported funtion in the Kato lass.

Then for all � > 0, " � 0 and Æ > 0 there exists a onstant C

Æ

depending

only on Æ suh that

kR

0

(�� i")V R

0

(�� i")V fk

L

1

�

�

Æ +

C

Æ

p

�

�

kfk

L

1

: (2.3.45)

Proof. By the maximum (Phragm�en-Lindel�of) priniple, sine R

0

(z) is holo-

morphi, it is suÆient to prove the estimate for " = 0, i.e., for the operators

R

0

(� � i0). If we approximate V by the sequene of test funtions V

"

on-

struted in Lemma 2.3.12, we an write

R

0

(�� i0)V R

0

(�� i0)V = R

0

(V � V

"

)R

0

V +R

0

V

"

R

0

(V � V

"

) +R

0

V

"

R

0

V

"

and using estimate (2.3.21) we obtain

kR

0

V R

0

V fk

L

1

� (2�)

�1

kV k

K

� kV � V

"

k

K

� kfk

L

1

+ kR

0

V

"

R

0

V

"

fk

L

1

:

(2.3.46)

We an hoose " = "(Æ) so small that

(2�)

�1

kV k

K

� kV � V

"

k

K

�

1

2

Æ;

and hene it suÆient to prove (2.3.45) with V replaed by V

"

. Now we have

jR

0

V

"

R

0

V

"

f(x)j �

Z

jx�yj<r

jV

"

j

jx� yj

dykR

0

V

"

fk

L

1

+

Z

jx�yj�r

jV

"

R

0

V

"

f j

jx� yj

dy;

the �rst term learly satis�es

Z

jx�yj<r

jV

"

j

jx� yj

dy � C

Z

jx�yj<r

dy

jx� yj

= �(r)! 0

sine V

"

is bounded, so that we �nd for all r > 0

jR

0

V

"

R

0

V

"

f(x)j � �(r)kV k

K

kfk

L

1

+

1

r

kV

"

R

0

V

"

fk

L

1
(2.3.47)
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where in the last step we used the property

Z

jV

"

j

jx� yj

dy �

Z

jV j

jx� yj

dy

already used in the ourse of the proof of Lemma 2.3.12. In order to estimate

the seond term in (2.3.47), we may write for some s > 1=2

kV

"

R

0

V

"

fk

L

1
� khxi

s

V

"

k

L

2
khxi

�s

R

0

V

"

fk

L

2

and applying Lemma 2.3.10 we get

�

C

p

�

khxi

s

V

"

k

2

L

2

kfk

L

1

�

C

1

p

�

kfk

L

1

sine V

"

is in C

1

0

. Coming bak to (2.3.47), we obtain

jR

0

V

"

R

0

V

"

f(x)j �

�

�(r)kV k

K

kfk

L

1

+

C

1

r

1

p

�

�

kfk

L

1

whene (2.3.45) follows.

We prove now a fundamental ompatness property:

Lemma 2.3.14. Let V be a ompatly supported funtion in the Kato lass.

Then for all � 2 R, " � 0 the operator R

0

(� � i")V : L

1

! L

1

and the

operator V R

0

(��i") : L

1

! L

1

are ompat operators. Moreover, if f 2 L

1

then the funtion R

0

(�� i")V f satis�es

jR

0

(�� i")V f j �

C

hxi

(2.3.48)

for some C > 0, and hene in partiular R

0

(� � i")V f 2 L

2

(hxi

�2s

dx) for

all s > 1=2 and �; " � 0.

Proof. If the support of V is ontained in the ball fjxj � Mg, we see that,

for all jxj > 2M and y in the support of V , we have jx�yj � jxj�M � jxj=2.

Thus by the expliit representation of R

0

we get

jR

0

V f(x)j �

Z

jV (y)f(y)j

jx� yj

dy �

2

jxj

Z

jV f jdy for jxj � 2M

and realling that V 2 L

1

we obtain the inequality

jR

0

V f(x)j �

2

jxj

kV k

L

1
kfk

L

1

for jxj � 2M: (2.3.49)

From (2.3.49) and the usual estimate

jR

0

V f(x)j �

kV k

K

4�

kfk

L

1

:
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we easily dedue the �nal statement (2.3.48) and that R

0

V f 2 L

2

(hxi

�2s

dx)

for all bounded f and s > 1=2.

In order to prove the ompatness property, we may assume that V is

a smooth funtion with ompat support. Indeed, by Lemma 2.3.12, V an

be approximated in the Kato norm by test funtions V

"

, so that R

0

V is the

limit of the sequene of operators R

0

V

"

in the L(L

1

;L

1

) norm, sine

kR

0

V

"

�R

0

V k

L(L

1

;L

1

)

�

1

4�

kV

"

� V k

K

:

Thus the ompatness of R

0

V follows from the ompatness of R

0

V

"

. A

similar argument holds for V R

0

. From now on, we shall assume that V 2

C

1

0

.

Let f

j

be a bounded sequene in L

1

; writing

r

x

R

0

V f(x) =

1

4�

Z

V (y)f(y)r

x

 

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

!

dy

we immediately obtain a bound for krR

0

V f

j

k

L

1

, uniform in j (reall that

V now is smooth and ompatly supported). Thus an appliation of the

Asoli-Arzel�a theorem shows that the sequene R

0

V f

j

is preompat in the

L

1

norm on any bounded set in R

3

. Using this ompatness property for

small x and again inequality (2.3.49) for large x, by a diagonal proedure

we obtain that R

0

V f

j

has a uniformly onvergent subsequene on the whole

R

3

.

To prove the ompatness of V R

0

we write it as V R

0

= A

r

+B

r

where

A

r

g(x) =

V (x)

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

�

r

(x� y)g(y)dy (2.3.50)

B

r

g(x) =

V (x)

4�

Z

e

�i

p

�

"

jx�yj

jx� yj

e

�"jx�yj=2

p

�

"

(1� �

r

(x� y))g(y)dy; (2.3.51)

here �

r

(y) = �(y=r) is a uto� funtion equal to 1 for x near the origin and

vanishing for large x. It is easy to show that B

r

is a ompat operator on

L

1

; indeed, it is a bounded operator from L

1

to W

1;1

(
) for 
 any bounded

open set ontaining the support of V , whileW

1;1

(
) is ompatly embedded

in L

1

(R

3

) by the Rellih-Kondrahov Theorem. Sine kA

r

k

L(L

1

;L

1

)

! 0 as

r ! 0, we regard as above V R

0

as the uniform limit of ompat operators,

and this onludes the proof.

The following version of the same lemma will be useful later on:

Lemma 2.3.15. Assume V satis�es the inequality jV (x)j � Chxi

�3�Æ

for

some C; Æ > 0. Then all the onlusions of Lemma 2.3.14 remain true.
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Proof. The estimate follows immediately from the standard inequality

Z

dy

hyi

3+Æ

jx� yj

�

C

hxi

(see e.g. Appendix 2 of [2℄). The ompatness property is proved as above

using the Asoli-Arzel�a Theorem.

We are now ready to prove the main proposition of this setion.

Proof. (of Proposition 2.3.9). The inversion of I + R

0

(z)V : L

1

! L

1

is

quite easy when <z << 0. Indeed, Lemma 2.3.7 states that for all Æ > 0

there exists a onstant C

Æ

> 0 suh that

kR

0

(�� i")V k

L(L

1

;L

1

)

� Æ + C

Æ

kV k

K

p

j�j

; 8� < 0; " � 0:

Hene, in partiular, for � < �Æ

2

(C

Æ

kV k

K

)

�2

we have kR

0

(��i")V k

L(L

1

;L

1

)

<

2Æ, and this means that the norm kR

0

(� � i")V k

L(L

1

;L

1

)

tends to 0 for

�! �1, uniformly in ". Thus I +R

0

(�� i")V an be inverted by expan-

sion in Neumann series for any " � 0 and any � < �M provided M > 0 is

large enough, and the L(L

1

;L

1

) norm of the inverse operator is bounded

by a onstant depending only on M (and V ).

We now onsider the ase <z >> 0. Let V = V

1

+ V

2

be as in Theorem

2.3.1, and write for brevity

T = R

0

(z)V

1

; S = R

0

(z)V

2

:

We �rst notie that I + S an be inverted for all z 2 C , with bounded

inverse; indeed, by (2.3.21) the norm of S : L

1

! L

1

is bounded by

kV

2

k

K

=(4�), whih is stritly smaller than 1 by assumption (2.3.3), and

the result follows again by a straightforward Neumann series expansion. We

thus get for all z

k(I + S)

�1

k

L(L

1

;L

1

)

� (1� kV

2

k

K

=(4�))

�1

: (2.3.52)

We then invert I + T for large � = <z. Lemma 2.3.13 ensures that

kT

2

k

L(L

1

;L

1

)

! 0 as � ! 1. This implies that for any Æ 2℄0; 1[ we an

�nd �

Æ

suh that for all <z � �

Æ

, I � T

2

is invertible with norm

k(I � T

2

)

�1

k

L(L

1

;L

1

)

�

1

1� Æ

: (2.3.53)

Sine I � T has norm in L(L

1

;L

1

) bounded by 1+ (4�)

�1

kV

1

k

K

indepen-

dently of z and

(I � T )(I � T

2

)

�1

= (I + T )

�1

;
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we onlude that also I + T is invertible for any <z � �

Æ

, with bound

k(I + T )

�1

k

L(L

1

;L

1

)

�

1

1� Æ

(1 + kV

1

k

K

=(4�)): (2.3.54)

Consider now for <z � �

Æ

the operator

S(I + T )

�1

;

by the usual bound kSk

L(L

1

;L

1

)

� kV

2

k

K

=(4�) and by (2.3.54) we obtain

kS(I + T )

�1

k

L(L

1

;L

1

)

�

1

4�

kV

2

k

K

1

1� Æ

�

1 +

kV

1

k

4�

�

=

�

1� Æ

where the onstant �, realling the main assumption (2.3.3), satis�es

� �

1

4�

kV

2

k

K

�

1 +

kV

1

k

4�

�

< 1:

Hene we see that

kS(I + T )

�1

k

L(L

1

;L

1

)

�

�

1� Æ

< 1

provided Æ < 1��, i.e., provided �

Æ

is large enough. Thus, hoosing a value

of �

Æ

large enough, we have that for <z � �

Æ

the operator

I + S(I + T )

�1

is invertible. Finally, writing

(I + S + T )

�1

= (I + T )

�1

(I + S(I + T )

�1

)

�1

;

we see that I + S + T = I +R

0

V is invertible with the bound

k(I +R

0

(z)V )

�1

k

L(L

1

;L

1

)

�

�

1 +

kV

1

k

4�

�

1

1� �� Æ

(2.3.55)

for <z � �

Æ

.

It remains to invert I + S + T for �M � <z � �

Æ

, 0 � =z � "

0

(or

0 � =z � �"

0

), with a uniform bound. To this end we shall apply Fredholm

theory; notie that the standard analyti Fredholm theory annot be applied

diretly sine we are not in the usual Hilbert framework but we are working

in L

1

instead. We proeed in two slightly di�erent ways aording to the

set of available assumptions.
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2.3.4 Case A: assumptions of Theorem 2.3.1

The �rst step is to prove that I + S + T : L

1

! L

1

is injetive. A general

argument shows that this is always the ase when z is outside the positive

real axis [0;+1[, provided V = V

1

+ V

2

satis�es (i), (ii) of Theorem 2.3.1.

To see this, we approximate V

1

with a sequene of nonnegative test funtions

V

Æ

in suh a way that kV

1

� V

Æ

k

K

! 0 (see Lemma 2.3.12); thus we an

deompose V as

V = V

Æ

+W

Æ

; 0 � V

Æ

2 C

1

0

; kW

Æ

k

K

= kV

2

+ V

1

� V

Æ

k

K

< 4�

for Æ small enough. Assume now that the bounded funtion g satis�es the

integral equation

(I +R

0

(z)V )g = 0; z 62 R

+

;

we shall prove that g = 0. Indeed, we an rewrite the equation as follows:

(I +R

0

(z)W

Æ

)g = �R

0

(z)V

Æ

g 2 L

1

:

Now, R

0

(z)W

Æ

has norm < 1 as a bounded operator on L

1

, hene we an

invert I +R

0

(z)W

Æ

and we obtain

g = �(I +R

0

(z)W

Æ

)

�1

R

0

(z)V

Æ

g:

Note that

(I +R

0

(z)W

Æ

)

�1

R

0

(z) = (�z ��+W

Æ

)

�1

is exatly the resolvent operator of �� + W

Æ

, at a point z outside the

spetrum. Moreover, V

Æ

g is in L

2

, hene g = (�z��+W

Æ

)

�1

V

Æ

g is in H

2

;

sine

(�z ��+ V )g = 0; z 62 R

+

we onlude that g � 0 as laimed.

When z 2 [0;+1[, assumption (iv) of Theorem 2.3.1 means exatly that

I + S + T is injetive on L

1

, thus we have nothing to prove in this ase,

and we obtain that I + S + T is injetive for all values of z 2 C .

The seond step is to prove that I + S + T is invertible. Realling that

I + S is invertible for all z, we an write

I + S + T = (I + T (I + S)

�1

)(I + S)

whih implies that I + T (I + S)

�1

is also injetive for all z. But T , and

hene T (I + S)

�1

are ompat operators on L

1

, thanks to Lemma 2.3.14.

By Fredholm theory this implies that I + T (I + S)

�1

is invertible, and in

onlusion I + S + T is invertible too and the following identity holds:

(I + S + T )

�1

= (I + S)

�1

(I + T (I + S)

�1

)

�1

: (2.3.56)

The last step is to prove a uniform bound on (I + S + T )

�1

. This is the

ontent of the following lemma, whih is our L

1

replaement for the usual

analyti Fredholm theory in the Hilbert spaes L

2

(hxi

s

dx).
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Lemma 2.3.16. Assume V = V

1

+V

2

, with V

1

ompatly supported, kV

1

k

K

<

+1, and kV

2

k

K

< 4�. If the operator I +R

0

(z)V : L

1

! L

1

is invertible

for all z in a ompat set D � C

+

= f<z � 0g (or D � C

�

), then

sup

z2D

k(I +R

0

(z)V )

�1

k

L(L

1

;L

1

)

<1:

Proof. We write as before

T = R

0

(z)V

1

; S = R

0

(z)V

2

(2.3.57)

and when z

n

is a sequene of points in C we shall also write

T

n

= R

0

(z

n

)V

1

; S

n

= R

0

(z

n

)V

2

(2.3.58)

Moreover, we shall denote by L

1

K

the spae of bounded ompatly supported

funtions, and by L

1

0

its losure in L

1

; in other words L

1

0

is the spae of

bounded funtions vanishing at in�nity, with the uniform norm.

The proof onsists in several steps.

Step 1: S is a bounded operator from L

1

0

into itself. Indeed, given any

� 2 L

1

0

, deompose it as

� = �

M

+  

M

; �

M

= � � 1

fjxj<Mg

where 1

fjxj<Mg

is the harateristi funtion of the ball fjxj < Mg. As in

the proof of Lemma 2.3.14, we have immediately

jS�

M

(x)j �

C

jxj

kV

2

k

L

1

(jyj�M)

for jxj > 2M: (2.3.59)

On the other hand,

kS 

M

k

L

1

� Ck 

M

k

L

1

! 0 for M ! +1 (2.3.60)

sine � vanishes at in�nity. Then, given any Æ > 0, we may hoose M =M

Æ

suh that k 

M

k

L

1

< Æ; from (2.3.59) we obtain

jS�(x)j � jS�

M

(x)j+ jS 

M

(x)j �

kV

2

k

L

1

jxj

+ Æ for jxj > 2M

Æ

and this implies S� 2 L

1

0

.

Step 2: If D 3 z

n

! z and � 2 L

1

0

, then S

n

� ! S� uniformly on R

n

(with the notations (2.3.58)). To prove this, we notie that

je

iw

n

jx�yj

� e

iwjx�yj

j

jx� yj

j � Cjw

n

� wj

provided w

n

; w stay in a ompat subset of C ; from this, it easily follows

that

j(R

0

(z

n

)�R

0

(z)f j � C(D) � jz

1=2

� z

1=2

n

j � kfk

L

1
(2.3.61)
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with the determination (�e

i�

)

1=2

=

p

�e

i�=2

. Now, let � 2 L

1

0

; to prove that

S

n

� = R

0

(z

n

)V

2

� onverges to S� = R

0

(z)V

2

� uniformly, we deompose

� = �

M

+  

M

as in Step 1 and write

jS

n

�(x)� S�(x)j � jS

n

�

M

(x)� S�

M

(x)j+ jS

n

 

M

(x)� S 

M

(x)j:

The seond term is bounded by

jS

n

 

M

(x)� S 

M

(x)j � kV

2

k

K

k 

M

k

L

1

whih an be made smaller than Æ > 0 providedM >M

Æ

, as in the preeding

step. To the �rst term we apply (2.3.61) and we obtain

jS

n

�

M

(x)� S�

M

(x)j � C(D) � jz

1=2

n

� z

1=2

j � kV

2

k

L

1

(jyj�M)

k�

M

k

L

1

whene we see that this term tends uniformly to 0 for eah �xed M , when

z

n

! z, z

n

; z 2 D, and this proves the laim.

Note that in Steps 1 and 2 we did not use the assumption kV

2

k

K

< 4�;

both properties are true for potentials of arbitrary (but bounded) Kato

norm; in partiular, they hold for T; T

n

.

Step 3: If D 3 z

n

! z, � 2 L

1

0

and k � 1, then S

k

n

�! S

k

� uniformly

on R

n

(where S

k

n

; S

k

are the k-th powers of the operators de�ned in (2.3.57),

(2.3.58)). It is suÆient to write

S

k

n

� S

k

=

k

X

j=1

S

j�1

n

(S

n

� S)S

k�j

and prove the onvergene of eah term separately. Indeed, S

k�j

� is a

�xed element of L

1

0

by Step 1, hene (S

n

� S)S

k�j

� ! 0 uniformly by

Step 2, and remarking that S

j

n

are bounded operators on L

1

with norm

kS

j

n

k � kS

n

k

j

< 1, we onlude that S

j

n

(S

n

� S)S

k�j

� ! 0 uniformly, as

laimed.

Step 4: IfD 3 z

n

! z and � 2 L

1

0

, then (I+S

n

)

�1

� tends to (I+S)

�1

�

uniformly on R

n

. To prove this, note that an write for any N � 1

(I + S

n

)

�1

� (I + S)

�1

=

N

X

k=1

(�1)

k

(S

k

n

� S

k

) +

1

X

k=N+1

(�1)

k

(S

k

n

� S

k

);

the seond sum an be estimated in the norm of bounded operators on L

1

as follows











1

X

k=N+1

(�1)

k

(S

k

n

� S

k

)











�

kS

n

k

N+1

1� kS

n

k

+

kSk

N+1

1 � kSk

whih is smaller than Æ for N � N

Æ

large enough; on the other hand, we an

apply Step 3 to the terms S

k

n

� S

k

for k = 1; : : : ; N , and this onludes the

proof of this step.
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Step 5: Conlusion of the proof. We know already that (I + S)

�1

is

well de�ned with bounded operator norm for all z, hene by the identity

I + T + S = (I + S)(I + (I + S)

�1

T )

we see that it is suÆient to bound the operator norm of (I+(I+S)

�1

T )

�1

for z 2 D. By the uniform boundedness priniple, our laim redues to the

following: given any sequene z

n

in D, whih an be assumed to onverge

to z 2 D, we have that for all � 2 L

1

there exists (�) > 0 suh that, for

all n,

k(I + (I + S

n

)

�1

T

n

)

�1

�k � (�) (2.3.62)

(just take any sequene z

n

suh that the norm in (2.3.62) onverges to the

supremum over D). We use again the notations (2.3.57), (2.3.58).

Indeed, assume by ontradition that there exists � 2 L

1

suh that

k(I + (I + S

n

)

�1

T

n

)

�1

�k ! 1 as z

n

! z (2.3.63)

and onsider the renormalized funtions

 

n

=

(I + (I + S

n

)

�1

T

n

)

�1

�

k(I + (I + S

n

)

�1

T

n

)

�1

�k

L

1

:

Clearly we have

k 

n

k

L

1

= 1; (I + (I + S

n

)

�1

T

n

) 

n

! 0 in L

1

. (2.3.64)

We have also kT

n

� Tk ! 0, sine using again (2.3.61)

j(T

n

� T )�j � C(D) � jz

1=2

n

� z

1=2

j � kV

1

k

L

1
k�k

L

1

:

This and (2.3.64) imply

k 

n

k

L

1

= 1; (I + (I + S

n

)

�1

T ) 

n

! 0 in L

1

. (2.3.65)

Now, by Lemma 2.3.14, we know that T is a ompat operator on L

1

and the

image of T is ontained in L

1

0

(see (2.3.48)), hene by possibly extrating

a subsequene we obtain that T 

n

onverges uniformly to some funtion

� 2 L

1

0

. Now we an write

(I + S

n

)

�1

T 

n

= (I + S

n

)

�1

(T 

n

� �) + (I + S

n

)

�1

�;

sine k(I+S

n

)

�1

k < C independent of n, the �rst term onverges uniformly

to 0, and by Step 4 we obtain that

(I + S

n

)

�1

T 

n

! (I + S)

�1

�

uniformly. By (2.3.65), this implies the uniform onvergene

 

n

! �(I + S)

�1

� =:  ;
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notie in partiular that k k

L

1

= 1. Summing up, we have proved that

 

n

!  � �(I + S)

�1

�; T 

n

! � � T 

and this implies

 + (I + S)

�1

T = 0 i.e. (I + S + T ) = 0

whih is absurd sine I + T + S is invertible and k k

L

1

= 1.

2.3.5 Case B: assumptions of Theorem 2.3.5

We note that a potential V satisfying the new assumptions an be split as

V = V

0

1

+ V

0

2

with V

0

1

; V

0

2

as in (i), (ii) of Theorem 2.3.1 (take V

0

1

= V for

jxj < R and 0 outside, with R large enough). Thus, for z 62 [0; �

Æ

℄ the same

arguments as in Case A apply; also Lemma 2.3.16 an still be used. Hene

it is suÆient to prove that I+R

0

(z)V is invertible for z 2 [0; �

Æ

℄ under the

new assumptions.

Sine V

1

ful�lls the onditions of both Propositions 2.3.3 and 2.3.4, we

see that the operators I +R

0

(�� i0)V

1

are injetive on L

1

for all � > 0.

We now prove injetivity also at � = 0. Thus, let the bounded funtion

f satisfy

f(x) +

Z

V

1

(y)f(y)

jx� yj

dy = 0; (2.3.66)

in partiular, f is a weak solution of

�f = V

1

f 2 L

2

=) f 2 H

2

:

Now, if V

1

(x) < Chxi

�3�Æ

for jxj > M , we have immediately, for all jxj >

2M ,

jf(x)j � kV

1

k

L

1

(jxj<M)

kfk

L

1

C

jxj

+ Ckfk

L

1

Z

dy

hyi

3+Æ

jx� yj

�

C

jxj

(see Lemma 2.3.15 above). Di�erentiating (2.3.66) we see that rf satis�es

an analogous integral equation

rf(x) +

Z

V

1

(y)f(y)r

x

1

jx� yj

dy = 0

whih implies

jrf(x)j � Ckfk

L

1

Z

jV

1

(y)j

jx� yj

2

dy:

Proeeding as above, we an write for jxj > 2M

jrf(x)j � kV

1

k

L

1

(jxj<M)

kfk

L

1

C

jxj

2

+ Ckfk

L

1

Z

dy

hyi

3+Æ

jx� yj

2

�

C

jxj

2
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thanks to the standard inequality (see [2℄)

Z

dy

hyi

3+Æ

jx� yj

2

�

C

hxi

2

;

Thus we have proved that for all jxj > 2M

jf(x)j �

C

jxj

; jrf(x)j �

C

jxj

2

: (2.3.67)

Now a standard uto� trik an be applied (see the Appendix of [51℄): let

� 2 C

1

0

equal to 0 for jxj > 2 and equal to 1 for jxj < 1, onsider the

identity

Z

�

jrf j

2

+ V

1

jf j

2

�

�

�

y

R

�

dy = �

1

R

Z

R�jyj�2R

r�

�

y

R

�

� rf � fdy

and apply the estimates (2.3.67) to the right hand member, for R large

enough. We obtain

Z

�

jrf j

2

+ V

1

jf j

2

�

�

�

y

R

�

dy �

C

R

and taking the limit as R ! 1 we onlude that f � 0, i.e., 0 is not a

resonane.

Writing as before T = R

0

(z)V

1

, we have just proved that I+T is injetive

on L

1

for z 2 [0; �

Æ

℄. Now we remark that we an split V

1

= V

0

1

+ V

00

1

as

the sum of a ompatly supported funtion V

0

1

2 L

2

, hene with bounded

Kato norm, and a funtion V

00

1

< Chxi

�3�Æ

. The orresponding operators

T = T

0

+ T

00

are ompat on L

1

by Lemmas 2.3.14, 2.3.15 respetively,

hene T is ompat and by Fredholm theory we an onlude that I + T is

invertible for all z 2 [0; �

Æ

℄. Then Lemma 2.3.16 ensures that the operator

norm (I + T )

�1

is bounded by some onstant C

0

uniform on z 2 [0; �

Æ

℄.

Now, writing

I + T + S = (I + T )(I + (I + T )

�1

S)

we see that in order to invert I+T+S it is suÆient to invert I+(I+T )

�1

S;

sine

k(I + T )

�1

Sk � k(I + T )

�1

k �

kV

2

k

K

4�

� C

0

kV

2

k

K

4�

this an be ahieved by a Neumann expansion as soon as the Kato norm of

V

2

is small enough, i.e.,

kV

2

k

K

<

4�

C

0

=: �(V

1

):

This is exatly assumption (2.3.7).

Thus we have proved that I + S + T is invertible for all omplex z, and

a last appliation of Lemma 2.3.16 onludes the proof of Case B.
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We an now draw some onsequenes whih shall be used in the following.

Corollary 2.3.17. Under the assumptions of Theorem 2.3.1 (or Theorem

2.3.5) there exists "

0

> 0 suh that the bounded operators I + V R

0

(� �

i") : L

1

! L

1

are invertible for all � 2 R, 0 � " � "

0

with uniform bound

k(I + V R

0

(�� i"))

�1

k

L(L

1

;L

1

)

� C for all � 2 R; 0 � " � "

0

: (2.3.68)

Proof. The operators I + V R

0

are one to one on L

1

by duality, sine by

Proposition 2.3.9 the operators I+R

0

V are onto. They are onto by Fredholm

theory, sine V R

0

are ompat operators on L

1

by Lemma 2.3.14. Finally,

the bound on the inverse also follows by duality and the bound (2.3.41);

indeed, (L

1

)

0

= L

1

and hene

k(I + V R

0

)fk

L

1
= sup

khk

L

1
=1

Z

h(I + V R

0

)fdx = sup

khk

L

1
=1

Z

f(I +R

0

V )hdx:

As a onsequene of (2.3.40) and of Proposition 2.3.9, Corollary 2.3.17

we an write the standard representation formulas:

R

V

(z) = (I +R

0

V )

�1

R

0

(z) = R

0

(z)(I + V R

0

)

�1

: (2.3.69)

By ombining these relations we easily obtain the identity

R

V

(�+ i") �R

V

(�� i") =

= (I +R

0

(�� i")V )

�1

(R

0

(�+ i")�R

0

(�� i"))(I + V R

0

(�+ i"))

�1

(2.3.70)

for all � 2 R, " 2℄0; "

0

℄. Then by the bounds (2.3.20) and (2.3.41), (2.3.68)

we obtain

k[R

V

(�+ i") �R

V

(�� i")℄gk

L

1

� C

p

�

"

kgk

L

1
: (2.3.71)

for all � 2 R, " 2℄0; "

0

℄.

Moreover from (2.3.69) we get

R

V

(�� i")

2

= (I+R

0

(�� i")V )

�1

R

0

(�� i")

2

(I+V R

0

(�� i"))

�1

(2.3.72)

and realling (2.3.27) we obtain

kR

V

(�� i")

2

gk

L

1

�

C

p

�

"

kgk

L

1
(2.3.73)

for all � 2 R, " 2℄0; "

0

℄.
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2.3.6 Equivalene of Besov norms

This setion is devoted to prove the equivalene of perturbed and standard

Besov spaes

_

B

s

1;q

(R

3

)

�

=

_

B

s

1;q

(V ) (2.3.74)

whih holds for 0 < s < 2 and 1 � q � 1 under our assumptions. An

analogous property holds also for non homogeneous spaes.

We begin by adapting to our situation a result of Simon [91℄ (whose

proof we follow losely). Hoping that estimates (2.3.77) and (2.3.79) may

be of independent interest, we shall give the proof for general dimension

n. If the negative part of the potential is in the Kato lass but not small,

by Theorem B.1.1 of [91℄ the semigroup is still bounded, but its norm may

inrease exponentially as t!1.

Proposition 2.3.18. Assume the potential V = V

+

� V

�

on R

n

, n � 3,

V

�

� 0, satis�es

V

+

is of Kato lass (2.3.75)

and

kV

�

k

K

< 

n

� 2�

n=2

=�

�

n

2

� 1

�

(2.3.76)

and onsider the selfadjoint operator H = ��+ V . Then for all t > 0 and

1 � p � q � 1 the semigroup e

�tH

is bounded from L

p

to L

q

with norm

ke

�tH

k

L(L

p

;L

q

)

�

(2�t)

�

(1� kV

�

k

K

=

n

)

2

;  =

n

2

�

1

p

�

1

q

�

: (2.3.77)

Moreover, under the stronger assumption

kV

�

k

K

<

1

2



n

(2.3.78)

e

�tH

is an integral operator with kernel k(t; x; y) satisfying

jk(t; x; y)j �

(2�t)

�n=2

1� 2kV

�

k

K

=

n

e

�jx�yj

2

=8t

: (2.3.79)

Proof. In the following we shall use the more onvenient notations

H = �

1

2

� + V; H

0

= �

1

2

�; (2.3.80)

thus in the �nal step it will be neessary to substitute t! 2t and V ! V=2

in order to obtain the orret estimates.

The fundamental tool will be the Feynman-Ka� formula

(e

�tH

f)(x) = E

x

�

exp

�

�

Z

t

0

V (b(s))ds

�

f(b(t))

�

(2.3.81)
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whih is valid under muh more general assumptions (see e.g. [111℄). Here

E

x

is the integral over the path spae 
 with respet to the Wiener measure

�

x

, x 2 R

n

, while b(t) represents a generi path (brownian motion). We

shall not need the full power of the theory but only a few basi fats:

i) Given a non negative funtion G(x) on R

n

we have the identity

E

x

�

Z

t

0

G(b(s))ds

�

=

Z

Q

t

(x� y)G(y)dy (2.3.82)

where Q

t

(x) is the funtion

Q

t

(x) =

Z

t

0

(2�s)

�n=2

e

�jxj

2

=2s

ds: (2.3.83)

It is easy to see by resaling that

Z

1

0

(2�s)

�n=2

e

�jxj

2

=2s

ds =

Z

1

0

�

n

2

�2

e

��

d�

jxj

2�n

2�

n=2

= �

�

n

2

� 1

�

jxj

2�n

2�

n=2

so that by de�nition of 

n

(see (2.3.76))

Q

t

(x) �

1



n

jxj

n�2

(2.3.84)

and by (2.3.82)

E

x

�

Z

t

0

G(b(s))ds

�

�

1



n

kGk

K

: (2.3.85)

ii) Khasminskii's lemma ([65℄; B.1.2 in [91℄): if G(x) is a non negative

funtion on R

n

suh that for some t

� � sup

x

E

x

�

Z

t

0

G(b(s))ds

�

< 1; (2.3.86)

then

sup

x

E

x

�

exp

�

Z

t

0

G(b(s))ds

��

�

1

1� �

: (2.3.87)

An immediate appliation is the following: if V

�

satis�es

kV

�

k

K

< 

n

we have

� � sup

x

E

x

�

Z

t

0

V

�

(b(s))ds

�

�

1



n

kV

�

k

K

< 1

by (2.3.85), so that

sup

x

E

x

�

exp

�

Z

t

0

V

�

(b(s))ds

��

�

1

1� kV

�

k

K

=

n

: (2.3.88)
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These simple fats gives us the �rst L

1

�L

1

estimate for the semigroup.

Indeed, by the Feynman-Ka� formula we have

ke

�tH

fk

L

1

= sup

x2R

n

E

x

�

exp

�

�

Z

t

0

V (b(s))ds

�

f(b(t))

�

�

� kfk

L

1

E

x

�

exp

�

�

Z

t

0

jV

�

(b(s))jds

��

�

kfk

L

1

1� kV

�

k

K

=

n

: (2.3.89)

The seond step is a L

2

� L

1

estimate. By the Feynman-Ka� formula

and the Shwarz inequality

je

�tH

f(x)j � E

x

�

exp

�

�2

Z

t

0

V

�

(b(s))ds

��

1=2

E

x

(jf(b(t))j)

1=2

�

�

h

(e

�t(H

0

+2V )

1)(x)

i

1=2

�

e

�tH

0

jf j

2

�

1=2

(2.3.90)

where in the last step we used again the formula; now e

�tH

0

is the standard

heat kernel whih has norm (2�t)

�n=2

as an L

1

�L

1

operator, while we an

apply estimate (2.3.89) to the operator e

�t(H

0

+2V )

. We thus obtain

je

�tH

f(x)j �

k1k

L

1

1� 2kV

�

k

K

=

n

(2�t)

�n=4

kfk

L

2

whih implies

ke

�tH

fk

L

1

�

(2�t)

�n=4

1� 2kV

�

k

K

=

n

kfk

L

2
; (2.3.91)

provided

kV

�

k

K

<



n

2

:

By duality, sine e

�tH

is selfadjoint, we obtain the L

2

� L

1

estimate

ke

�tH

fk

L

2 �

(2�t)

�n=4

1� 2kV

�

k

K

=

n

kfk

L

1 ; (2.3.92)

using the semigroup property we an write

e

�tH

f = e

�

t

2

H

e

�

t

2

H

f

and applying (2.3.91) �rst, then (2.3.92) we obtain

ke

�tH

fk

L

1

�

(�t)

�n=2

(1� 2kV

�

k

K

=

n

)

2

kfk

L

1
: (2.3.93)

Now realling (2.3.89), by duality and interpolation we obtain

ke

�tH

fk

L

p

�

(�t)

�

(1� 2kV

�

k

K

=

n

)

2

kfk

L

q
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(the onstant ould be slightly but not essentially improved) with  as in

the statement. The hange t! 2t, V ! V=2 gives (2.3.77).

Let now g(x); h(x) be bounded funtions; the same argument as in

(2.3.90) gives

je

�tH

h(x)j �

h

(e

�t(H

0

+2V )

jhj)(x)

i

1=2

�

e

�tH

0

jhj(x)

�

1=2

and multiplying by g(x) and taking the sup we get

kge

�tH

hk

L

1

� kge

�t(H

0

+2V )

jhjk

1=2

L

1

kge

�tH

0

jhjk

1=2

L

1

: (2.3.94)

We hoose

g = �

K

1

; h = f�

K

2

where f(x) is a bounded funtion while �

K

1

; �

K

2

are the harateristi fun-

tions of two disjoint ompat sets K

1

;K

2

. We may estimate the �rst fator

in (2.3.94) using (2.3.93) as follows

kge

�t(H

0

+2V )

jhjk

L

1

� ke

�t(H

0

+2V )

jhjk

L

1

�

(�t)

�n=2

(1� 4kV

�

k

K

=

n

)

2

kf�

K

2

k

L

1

while for the seond we may use the expliit kernel of e

�tH

0

i.e.,

(2�t)

�n=2

exp(�jx� yj

2

=2t)

and we obtain

kge

�tH

0

jhjk

L

1

� (2�t)

�n=2

exp(�d

2

=2t)kf�

K

2

k

L

1
; d = dist(K

1

;K

2

):

In onlusion we have

k�

K

1

e

�tH

f�

K

2

k

L

1

�

(�t)

�n=2

e

�d

2

=4t

1� 4kV

�

k

K

=

n

kf�

K

2

k

L

1
; d = dist(K

1

;K

2

):

(2.3.95)

By the Dunford-Pettis Theorem (see Tr�eves [105℄ and A.1.1-A.1.2 in [91℄),

this implies at one that e

�tH

has an integral kernel representation, with

kernel

k(t; x; y) =

(�t)

�n=2

1� 4kV

�

k

K

=

n

e

�jx�yj

2

=4t

and this onludes the proof (after resaling bak t! 2t, V ! V=2).

We shall now use the above kernel representation of the semigroup to

improve a result due to Jensen and Nakamura (Theorem 2.1 in [58℄):
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Proposition 2.3.19. Assume the Kato lass potential V = V

+

�V

�

on R

n

,

n � 3, V

�

� 0, satis�es

kV

+

k

K

<1 (2.3.96)

and

kV

�

k

K

<

1

2



n

� �

n=2

=�

�

n

2

� 1

�

(2.3.97)

and onsider the selfadjoint operator H = ��+V . Then for any g 2 C

1

0

(R)

and any � > 0 the operator g(�H) is bounded on L

p

(R

n

), 1 � p � 1, with

norm independent of �:

kg(�H)k

L(L

p

;L

p

)

� C(p; n; g; V ): (2.3.98)

The same property holds for the resaled operators

kg(H

�

)k

L(L

p

;L

p

)

� C(p; n; g; V ); (2.3.99)

where H

�

= ��+ �V (

p

�x).

Proof. The proof for �xed � is ontained in [59℄. In [58℄, Theorem 2.1, the

result was extended to the uniform estimate (2.3.98) for 0 < � � 1, under

assumptions on the potential weaker than ours. Following that proof, in

order to extend the result to � � 1 it will be suÆient to prove that a

few estimates are uniform in � � 1. More preisely, onsider the resaled

potential

V

�

(x) = �V (

p

�x); (2.3.100)

notie that the Kato norm is invariant under this transformation:

kV

�

k

K

� kV k

K

: (2.3.101)

Consider the operator

H

�

= ��+ V

�

: (2.3.102)

We proeed exatly as in the proof of Theorem 2.1 in [58℄; as remarked there,

(2.3.98) is a onsequene of (2.3.99). Thus we are redued to prove that

kg(H

�

)k

L(L

p

;L

p

)

� C (2.3.103)

uniformly in �, and this amounts to prove three estimates uniformly in �:

i) a pointwise estimate for the kernel of e

�tH

�

,

ii) an L

2

� L

2

estimate for the operator (H

�

+M)

�1=2

, M > 0 a �xed

onstant (we an take M = 1 here),

iii) an L

2

� L

2

estimate for the operator �

x

(H

�

+M)

�1=2

.

Step i) follows diretly from estimate (2.3.79)

jk

�

(t; x; y)j �

(2�t)

�n=2

1� 2kV

�

�

k

K

=

n

e

�jx�yj

2

=4t

: (2.3.104)
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whih is uniform in � > 0 sine by (2.3.100)

kV

�

�

k

K

� kV

�

k

K

does not depend on �.

Step ii) is trivial sine k(H

�

+M)

�1=2

k

L(L

2

;L

2

)

�M

�1=2

. To get iii), we

must prove that

k�

x

(H

�

+M)

�1=2

fk

L

2
� Ckfk

L

2

or equivalently

kgk

_

H

1

� Ck(H

�

+M)

1=2

gk

L

2 (2.3.105)

for some C independent of � > 0. We rewrite (2.3.105) as

C

�1

kgk

_

H

1

� (��g; g) + (V

�

g; g) +Mkgk

2

L

2

: (2.3.106)

Clearly (2.3.106) is implied by

j(V

�

�

g; g)j � �kgk

_

H

1

+Mkgk

2

L

2

; � < 1; � independent of �. (2.3.107)

Now reall (2.3.31), where we proved the inequality in dimension n = 3: for

all b > 0

j(V

2

';')j � a(��';') + bk'k

L

2
(2.3.108)

where by (2.3.34)

a

2

=

kV

2

k

K

4�

: (2.3.109)

We an now apply (2.3.108), (2.3.109) to V

�

�

whose Kato norm is indepen-

dent of �:

a

2

=

kV

�

�

k

K

4�

=

kV

�

k

K

4�

<



3

8�

=

1

4

by (2.3.97), and this onludes the proof of iii) in dimension n = 3.

The proof for n � 3 is idential; it is suÆient to use again (2.3.31),

(2.3.34) whih are still true for general dimension n, as notied in Remark

2.3.5.

The following onsequene will be useful:

Corollary 2.3.20. Assume V satis�es the assumptions of Proposition 2.3.19,

let H

�

= �� + �V (

p

�x), H

0

= ��, and let '

j

(s) = '

0

(2

�j

s),  

j

(s) =

 

0

(2

�j

s) be two homogeneous Paley-Littlewood partitions of unity, j 2 Z.

Then we have the estimates: for all j; k 2 Z,

k'

j

(

p

H

�

) 

k

(

p

H

0

)k

L(L

1

;L

1

)

� C2

�2j+2k

(2.3.110)

with a onstant C independent of j; k and of � > 0. The same estimates

hold interhanging H

0

and H

�

.
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Proof. We �rst note two onsequenes of (2.3.98): for all j, with a onstant

independent of j,

k'

j

(

p

H

�

)H

�

k

L(L

p

;L

p

)

� C2

2j

; k'

j

(

p

H

�

)H

�1

�

k

L(L

p

;L

p

)

� C2

�2j

(2.3.111)

and the analogous ones for H

0

instead of H (indeed, the ase V = 0 is a

speial ase of (2.3.111)). The �rst one follows by hoosing

g(s) = '

0

(

p

s)s =) g(2

�2j

H

�

) = '

j

(

p

H

�

)2

�2j

H

�

;

the seond one follows by

g(s) = '

0

(

p

s)s

�1

=) g(2

�2j

H

�

) = '

j

(

p

H

�

)2

2j

H

�1

�

:

Then we an write

'

j

(

p

H

�

) 

k

(

p

H

0

) = '

j

(

p

H

�

)H

�1

�

H

�

 

k

(

p

H

0

) =

= '

j

(

p

H

�

)H

�1

�

H

0

 

k

(

p

H

0

) + '

j

(

p

H

�

)H

�1

�

V

�

 

k

(

p

H

0

):

The �rst term an be estimated immediately using (2.3.111):

k'

j

(

p

H

�

)H

�1

�

H

0

 

k

(

p

H

0

)k

L(L

p

;L

p

)

� C2

�2j+2k

;

for the seond one we may write

k'

j

(

p

H

�

)H

�1

�

V

�

 

k

(

p

H

0

)k

L(L

p

;L

p

)

� C2

�2j

kV

�

 

k

(

p

H

0

)k

L(L

p

;L

p

)

and sine

V

�

 

k

(

p

H

0

) = V

�

R

0

(0)H

0

 

k

(

p

H

0

);

realling that V

�

R

0

is a bounded operator on L

1

(with norm proportional

to the Kato norm of V

�

whih does not depend on �) and applying again

(2.3.111) we obtain (2.3.110).

For higher dimension n > 3 the proof is idential; only in the last step

we need the estimate

kV R

0

(0)fk

L

1
� CkV k

K

kfk

L

1

whih is true for any n. Indeed, R

0

(0) apart from a onstant is the on-

volution with the kernel jxj

2�n

, and this gives immediately that R

0

(0)V is

bounded on L

1

with norm CkV k

K

. By duality we dedue that V R

0

(0) is

a bounded operator on L

1

with the same norm.

Using Corollary 2.3.20 we an show the equivalene of non homogeneous

Besov spaes B

s

1;q

(V ) with the standard ones, and later on we shall prove

the more deliate result onerning the homogeneous ase. We reall the
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preise de�nition: given a homogeneous Paley-Littlewood partition of unity

'

j

(s) = '

0

(2

�j

s), j 2 Z, we set for p 2 [1;1℄, q 2 [1;1[, s 2 R

kfk

_

B

s

p;q

(V )

=

0

�

X

j2Z

2

jsq

k'

j

(

p

H)fk

q

L

p

1

A

1=q

with obvious modi�ation when q = 1. On the other hand, if we onsider

a non homogeneous Paley-Littlewood partition of unity, i.e., '

j

as above for

j � 0, and we set

 

0

= 1�

X

j�0

'

j

we have  

0

2 C

1

0

(R

n

), and we an de�ne the non homogeneous Besov norm

as

kfk

B

s

p;q

(V )

=

0

�

k 

0

(

p

H)fk

q

L

p

+

X

j�0

2

jsq

k'

j

(

p

H)fk

q

L

p

1

A

1=q

When V = 0 we obtain the lassial Besov spaes, whih we denote simply

by

_

B

s

p;q

and B

s

p;q

.

Theorem 2.3.21. Assume the Kato lass potential V = V

+

� V

�

on R

n

,

n � 3, V

�

� 0, satis�es

kV

+

k

K

<1 (2.3.112)

and

kV

�

k

K

<

1

2



n

� �

n=2

=�

�

n

2

� 1

�

(2.3.113)

Then we have the equivalene of norms

kfk

B

s

1;q

(V )

�

=

kfk

B

s

1;q

(2.3.114)

for all q 2 [1;1℄, 0 � s < 2. Moreover, for the resaled potentials

V

�

(x) = �V (

p

�x) (2.3.115)

we have the uniform estimates

C

�1

kfk

B

s

1;q

� kfk

B

s

1;q

(V

�

)

� Ckfk

B

s

1;q

(2.3.116)

with a onstant C independent of � > 0.

Remark 2.3.6. In order to improve the result and onsider higher values of

s � 2 stronger smoothness assumptions on the of the potential V are nees-

sary; we shall not pursue this problem here. Also, to prove the equivalene

of Besov spaes B

s

p;q

for p 6= 1, one should prove di�erent bounds for the op-

erator V R

0

on L

p

; this is possible but quite tehnial and we limit ourselves

to the ase p = 1 whih is our main interest here.
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Proof. We shall limit ourselves to the ase q = 1 and we shall only prove

the inequality

kfk

B

s

1;1

(V

�

)

� Ckfk

B

s

1;1

; (2.3.117)

the proof of the reverse inequality and of the ases 1 < q � 1 are ompletely

analogous.

In the following we shall drop the index � sine all the estimates we use

(from Proposition 2.3.19 and Corollary 2.3.20) have onstants independent

of � > 0.

Using the notations

D

V

=

p

H; D =

p

H

0

we have

kfk

B

s

1;1

(V )

= k 

0

(D

V

)fk

L

1
+

1

X

j=0

2

js

k'

j

(D

V

)fk

L

1
: (2.3.118)

Using

1 =  

0

(D) +

X

k�0

'

k

(D);

we have

kfk

B

s

1;1

(V )

� k 

0

(D

V

) 

0

(D)fk

L

1
+

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1
+

+

1

X

j=0

2

js

k'

j

(D

V

) 

0

(D)fk

L

1
+

X

j;k�0

2

js

k'

j

(D

V

)'

k

(D)fk

L

1
=

= I + II + III + IV:

We estimate separately the four terms.

Sine by (2.3.99)  

0

(D

V

) is bounded on L

1

, we have for the �rst term

I = k 

0

(D

V

) 

0

(D)fk

L

1
� Ckfk

L

1
(2.3.119)

and sine

kfk

L

1
� k 

0

(D)fk

L

1
+

X

j�0

k'

j

(D)fk

L

1

this is smaller than Ckfk

B

s

1;1

.

The same argument gives for the seond term

II =

1

X

k=0

k 

0

(D

V

)'

k

(D)fk

L

1
� C

1

X

k=0

k'

k

(D)fk

L

1
� Ckfk

B

s

1;1
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As to the third term, we an write

1

X

j=0

2

js

k'

j

(D

V

) 

0

(D)fk

L

1
=

1

X

j=0

2

js

k'

j

(D

V

)(��

V

)

�1

(��

V

) 

0

(D)fk

L

1

and realling (2.3.111) used in the proof of the orollary we have (for s < 2)

III � C

X

j�0

2

�j(2�s)

k(��

V

) 

0

(D)fk

L

1
= Ck(��

V

) 

0

(D)fk

L

1
�

� Ck(��) 

0

(D)fk

L

1
+ CkV  

0

(D)fk

L

1
:

Now we have

kV  

0

(D)fk

L

1 = kV R

0

(0)(��) 

0

(D)fk

L

1 � CkV k

K

k(��) 

0

(D)fk

L

1

and sine (��) 

0

(D) is bounded in L

1

by (2.3.99), we onlude that

III � C

2

kfk

L

1
� C

3

kfk

B

s

1;1

(2.3.120)

as for the �rst term.

Finally, we split the fourth term in the two sums for j � k and j > k:

IV =

X

j;k�0

2

js

k'

j

(D

V

)'

k

(D)fk

L

1
=

X

j�k

+

X

j>k

:

For j � k we use the fat that '

j

(D

V

) are bounded on L

1

with uniform

norm by (2.3.99) and hene

X

j�k

� C

X

k�0

k'

k

(D)fk

L

1

X

0�j�k

2

js

= 2C

X

k�0

2

ks

k'

k

(D)fk

L

1 :

For j > k, we write '

j

= '

j

('

j�1

+ '

j

+ '

j+1

) = '

j

f'

j

and we have

X

j>k

2

js

k'

j

(D

V

)'

k

(D)fk

L

1 =

X

j>k

2

js

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1 ;

now by the orollary we obtain

X

j>k

2

js

k'

j

(D

V

)'

k

(D)

^

'

k

(D)fk

L

1
�

X

j>k

C2

(k�j)(2�s)

2

ks

kf'

k

fk

L

1

and sine

P

j>k

2

(k�j)(2�s)

< 1 we have

IV =

X

j;k�0

2

js

k'

j

(D

V

)'

k

(D)fk

L

1
� C

X

k�0

2

k

k

^

'

k

(D)fk

L

1
� Ckfk

B

1

1;1

(R

3

)

:

(2.3.121)

and this onludes the proof.
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We shall �nally show that the preeding result implies the equivalene

also for homogeneous Besov spaes. Indeed, the uniformity of estimates

(2.3.116) makes it possible to apply a resaling argument, using the following

lemma:

Lemma 2.3.22. Let s 2 R, p; q;2 [1;1℄. The homogeneous

_

B

s

p;q

(V ) norm

has the following resaling property with respet to saling (S

�

f)(x) = f(�x):

kS

�

fk

_

B

s

p;q

(V )

= �

s�

n

p

kfk

_

B

s

p;q

(V

�

�2

)

(2.3.122)

provided � = 2

k

for some k 2 Z.

Remark 2.3.7. A similar property holds also for any positive �, with equality

replaed by equivalene of norms, however (2.3.122) will be suÆient for our

purposes.

Proof. From the identity

(��+ V (x))S

�

f(x) = �

2

S

�

(��+ �

�2

V (x=�))f(x)

we obtain the rule

�

V

S

�

= �

2

S

�

�

V

�

�2

with the usual notations

�

V

= �+ V; V

�

= �V (

p

�x):

This implies

g(��

V

)S

�

= S

�

g(��

2

�

V

�

�2

)

and in partiular for the funtions �

j

(s) = �

0

(2

�j

s), writing as usual D

V

=

p

��

V

,

�

j

(D

V

)S

�

= �

0

(2

�j

D

V

)S

�

= S

�

�

0

(2

�j

�D

V

�

�2

):

With the speial hoie � = 2

k

this an be written

�

j

(D

V

)S

2

k

= S

2

k

�

j�k

(D

V

2

�2k

):

Hene we have the identity, for � = 2

k

,

kS

�

k

q

_

B

s

p;q

=

X

j2Z

2

jsq

k�

j

(D

V

)S

�

fk

q

L

p

=

X

j2Z

2

jsq

2

�knq=p

kS

�

�

j�k

(D

V

2

�2k

)fk

q

L

p

sine L

p

resales as �

�n=p

; writing 2

jsq

2

knq=p

= 2

k(s�n=p)q

2

(j+k)sq

and shift-

ing the sum j + k ! j we onlude the proof.

Thus we arrive at the �nal result of this setion:
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Theorem 2.3.23. Assume the Kato lass potential V = V

+

� V

�

on R

n

,

n � 3, V

�

� 0, satis�es

kV

+

k

K

<1 (2.3.123)

and

kV

�

k

K

<

1

2



n

� �

n=2

=�

�

n

2

� 1

�

(2.3.124)

Then we have the equivalene of norms

kfk

_

B

s

1;q

(V )

�

=

kfk

_

B

s

1;q

(2.3.125)

for all q 2 [1;1℄, 0 < s < 2. Moreover, for the resaled potentials

V

�

(x) = �V (

p

�x)

we have the uniform estimates

C

�1

kfk

_

B

s

1;q

� kfk

_

B

s

1;q

(V

�

)

� Ckfk

_

B

s

1;q

(2.3.126)

with a onstant C independent of � > 0.

Proof. We shall onsider in detail the ase q = 1 only, the remaining ases

being ompletely analogous.

We already know that (2.3.126) holds for dotless Besov spaes. Now we

need to prove the following inequalities

C

�1

kfk

_

B

s

1;1

(V

�

)

� kfk

B

s

1;1

(V

�

)

� Ckfk

_

B

s

1;1

(V

�

)

+ Ckfk

_

B

0

1;1

(V

�

)

(2.3.127)

with a onstant C independent of � > 0.

First of all we prove that (D =

p

��, D

V

�

=

p

��

V

�

)

X

j<�1

2

js

k'

j

(D

V

�

)fk

L

1
� Ck 

0

(D

V

�

)fk

L

1
: (2.3.128)

We notie that  

0

is equal to 1 on the support of '

j

for j < �1. Hene

'

j

= '

j

 

0

for j < �1 and we an write

k'

j

(D

V

�

)fk

L

1
= k'

j

(D

V

�

) 

0

(D

V

�

)fk

L

1
� Ck 

0

(D

V

�

)fk

L

1
:

(we have used the uniform estimates (2.3.98)-(2.3.99)). Thus (2.3.128) fol-

lows, provided s > 0 so that

P

j<�1

2

js

is onvergent.

The term for j = �1 is estimated in a simple way ('

�1

= '

�1

( 

0

+'

1

))

k'

�1

(D

V

�

)fk

L

1 � k'

�1

(D

V

�

) 

0

(D

V

�

)fk

L

1 + k'

�1

(D

V

�

)'

1

(D

V

�

)fk

L

1 �

� Ck 

0

(D

V

�

)fk

L

1
+ Ck'

1

(D

V

�

)fk

L

1
: (2.3.129)

Clearly, (2.3.128) and (2.3.129) imply immediately the �rst inequality (2.3.127).
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The seond inequality in (2.3.127) is easier: it is suÆient to prove that

k 

0

(D

V

�

)fk

L

1
� C

X

j�1

k'

j

(D

V

�

)fk

L

1

whih follows from  

0

=  

0

�

P

j�1

'

j

, the triangle inequality, and the bound-

edness of  

0

(D

V

�

) on L

1

with uniform norm. This give (2.3.127). Notie

that all the onstants appearing in the above inequalities are uniform in

� > 0.

By (2.3.127) and the equivalene (2.3.116) we an write for 0 < s < 2

kfk

_

B

s

1;1

� Ckfk

B

s

1;1

� Ckfk

B

s

1;1

(V

�

)

� Ckfk

_

B

s

1;1

(V

�

)

+ Ckfk

_

B

0

1;1

(V

�

)

:

If we apply this inequality to a resaled funtion S

2

k

f and reall Lemma

2.3.22, we obtain for all k 2 Z

2

k(s�n)

kfk

_

B

s

1;1

� C2

k(s�n)

kfk

_

B

s

1;1

(V

�2

�2k

)

+ C2

�kn

kfk

_

B

0

1;1

(V

�2

�2k

)

with onstants independent of k; �; we an now hoose � = 2

2k

, divide by

2

k(s�n)

and let k ! +1 to obtain

kfk

_

B

s

1;1

� Ckfk

_

B

s

1;1

(V



)

whih is the �rst part of the thesis. The reverse inequality is proved in the

same way.

2.3.7 Conlusion of the proof

By the spetral alulus for H = ��+ V , given any bounded ontinuous

funtion �(s) on R, we an represent the operator �(H) on L

2

as

�(H)f =

1

2�i

� L

2

� lim

"!0

Z

�(�)[R

V

(�+ i")�R

V

(�� i")℄fd�: (2.3.130)

If � =  

0

is the derivative of a C

1

ompatly supported funtion we an

integrate by parts obtaining the equivalent form

�(H)f =

i

2�

� L

2

� lim

"!0

Z

 (�)[R

V

(�+ i")

2

�R

V

(�� i")

2

℄fd�: (2.3.131)

Now, �x a smooth funtion  (s) with ompat support in ℄0;+1[ and

onsider the Cauhy problem

�

�u+ V (x)u = 0; t � 0; x 2 R

3

u(0; t) = 0; u

t

(0; x) =  (H)g

(2.3.132)

for some smooth g. Then the solution u an be represented as

u(t; �) = L

2

� lim

"!0

u

"

(t; �)
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where

u

"

(t; x) =

1

2�i

Z

1

0

sin(t

p

�)

p

�

 (�)[R

V

(�+ i")�R

V

(�� i")℄gd� (2.3.133)

or equivalently, after integration by parts,

u

"

(t; x) =

1

�it

Z

1

0

os(t

p

�) 

0

(�)[R

V

(�+ i")�R

V

(�� i")℄gd�+

+

1

�it

Z

1

0

os(t

p

�) (�)[R

V

(�+ i")

2

�R

V

(�� i")

2

℄gd�: (2.3.134)

Estimates (2.3.71) and (2.3.73) applied to (2.3.134) give

ku

"

(t; �)k

L

1

� kgk

L

1

C

t

Z

1

0

�

j 

0

(�)j

p

�

"

+

j (�)j

p

�

"

�

d�

and realling that

� � �

"

� �+

"

2

we obtain

ku

"

(t; �)k

L

1

� kgk

L

1

C

t

Z

1

0

 

j 

0

(�)j(

p

�+

p

") +

j (

p

�)j

p

�

!

d�: (2.3.135)

Let now '

j

(s), j 2 Z be the homogeneous Paley-Littlewood partition of

unity de�ned in the Introdution, with

'

j

(s) = �

0

(2

�j

s);

de�ne

e'

j

(s) = '

j�1

(s) + '

j

(s) + '

j+1

(s) (2.3.136)

and hoose in (2.3.132)

 (�) = e'

j

(

p

�) � e'

0

(2

�j

p

�):

We thus obtain

ku

"

(t; �)k

L

1

� kgk

L

1

C

t

Z

1

0

 

2

�j
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0

0

(2

�j

p

�)j

p

�+
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"

2

p

�

+

je'

0

(2

�j

p

�)j

p

�

!

d�

whih after the hange of variables � = 2

�j

p

� gives

ku

"

(t; �)k

L

1

�

C

t

(2

j

+

p

")kgk

L

1
: (2.3.137)
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for some onstant C independent of j; t and g. If we let "! 0, for �xed t the

funtions u

"

(t; �) onverge in L

2

to the solution u(t; x); hene a subsequene

onverges a.e. and we obtain the estimate

ku(t; �)k

L

1

� C

2

j

t

kgk

L

1
(2.3.138)

for the solution u(t; x) of the Cauhy problem

�

�u+ V (x)u = 0; t � 0; x 2 R

3

u(0; t) = 0; u

t

(0; x) = e'

j

(

p

H)g

(2.3.139)

If we now hoose

g = '

j

(

p

H)f

and notie that e'

j

g � e'

j

'

j

f � '

j

f sine e'

j

= 1 on the support of '

j

, we

onlude that: the solution u(t; x) of the Cauhy problem

�

�u+ V (x)u = 0; t � 0; x 2 R

3

u(0; t) = 0; u

t

(0; x) = '

j

(

p

H)f

(2.3.140)

satis�es the estimate

ku(t; �)k

L

1

� C

2

j

t

k'

j

(

p

H)fk

L

1
(2.3.141)

Consider now the original Cauhy problem (2.3.1); deomposing the ini-

tial datum f as

f =

X

j2Z

'

j

(

p

H)f

applying estimate (2.3.141) and summing over j, we obtain by linearity that

the solution u(t; x) to (2.3.1) satis�es the estimate

ku(t; �)k

L

1

�

C

t

kfk

_

B

1

1;1

(V )

: (2.3.142)

Sine by Theorem 2.3.23 this norm is equivalent to the standard one, we see

that the proof of Theorem 2.3.1 is onluded.
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2.4 The Shr�odinger and heat equation perturbed

with a small rough potential

In this setion we onsider perturbed Shr�odinger and heat equations

1

i

�

t

u��u+ V u = 0; u(0; x) = u

0

(x); (2.4.1)

�

t

u��u+ V u = 0; u(0; x) = u

0

(x) (2.4.2)

in dimension n � 3. The importane of these equations in quantum me-

hanis (see [61℄), in the theory of ombustion (see [109℄) and in many other

appliations is well known.

In this Setion we dedue the omplete Strihartz estimates for the so-

lution of the Shr�odinger equation (2.4.1) perturbed with a larger lass of

potentials satisfying V � jxj

�2

, via interpolation between the endpoint and

the energy estimate. The arguments of the previous setions are then ex-

tended to the ase of a small time dependent potential V (t; x).

We study also the heat equation (2.4.2) perturbed by a singular potential

and we prove the existene of solutions, the maximum priniple and the

dispersive estimates.

2.4.1 Selfadjointness of H = ��+ V

In this subsetion we hek that the sum H = �� + V an be realized as

a selfadjoint operator on L

2

by a standard Friedrihs extension. This will

allow us to onsider the Shr�odinger ow e

�itH

and the heat ow e

�tH

in

the following of the setion. Notie that here we assume that the potential

is in the weak Lebesgue spae L

(

n

2

;1)

, whih is not omparable to the Kato

lass onsidered in the last setions.

Consider the bilinear form

B(f; f) = (rf;rf)

L

2

(R

n

)

+

Z

R

n

V (x)jf(x)j

2

dx; x 2 R

n

; n � 3:

It is not diÆult to see that

f ! V f

is a self adjoint operator with dense domain

_

H

2

(R

n

). In this ase we an

use the KLMN- theorem (see theorem 10.17 in [83℄). Due to this theorem it

is suÆient to verify the estimate

�

�

�

�

Z

R

n

V (x)jf(x)j

2

dx

�

�

�

�

� a

Z

R

n

jrf(x)j

2

dx� bkfk

2

L

2

(R

n

)

;

with a < 1. Indeed, our assumption

kV (�)k

L

(

n

2

;1)

<

2n

C

s

(n� 2)

;
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implies that

p

jV j 2 L

(n;1)

;

so that, by the H�older inequality for Lorentz spaes,

k

p

jV jfk

L

2 � Ck

p

jV jk

L

(n;1)

kfk

L

(q;2)

� CC

0

kfk

L

(q;2)

;

where

1

q

=

1

2

�

1

n

; i:e: q =

2n

n� 2

:

Using the Sobolev embedding (see [9℄)

_

H

1

(R

n

) ,! L

(q;2)

(R

n

); we get
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H

1
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�

�

�

�

Z

R

n

V (x)jf(x)j

2

dx

�

�

�

�

� k

p

jV jfk

2
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2

(R

n

)

� C

2

0

C

2

C

2

1

krfk

2

L

2

(R

n

)

:

If C

0

is suh that CC

0

C

1

< 1 i.e. C

0

<

1

CC

1

; where C is the onstant

from the H�older inequality (for Lorentz spaes) and C

1

is the onstant from

Sobolev embedding, then we an onlude, using the KLMN theorem, that

there exists a self-adjoint operator H = ��+ V suh that

((��+ V )f; f)

L

2 = krfk

2

L

2

+

Z

R

n

V (x)jf(x)j

2

dx:

2.4.2 Strihartz estimates for the Shr�odinger ow e

�itH

In this subsetion we study the deay properties of the Shr�odinger ow for

the operator H onstruted above. More preisely, we an represent the

solution to the Shr�odinger equation (2.4.1) as

u(t) = U(t)u

0

; U(t) = e

�itH

:

Our starting point will be the following Strihartz estimate, essentially

proved in the paper [66℄:

Proposition 2.4.1. Let n � 3 and onsider the Cauhy Problem for the

Shr�odinger equation

(

1

i

�

t

u��u = F (t; x);

u(0; x) = 0; x 2 R

n

;

(2.4.3)

then the following estimates hold:
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t

L

(q;2)

x

� CkFk

L

~p

0

t

L

(~q

0

;2)

x

; (2.4.4)
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kuk

L

p

t

L

q

x

� CkFk

L

~p

0

t

L

~q

0

x

; (2.4.5)

for all p; ~p 2 [2;1℄, and q; ~q 2 [2;

2n

n�2

℄; suh that

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Remark 2.4.1. Note that for the Shr�odinger equation (p; q) = (2;

2n

n�2

) it is

the end-point Shr�odinger-admissible for n � 3.

Proof. The seond estimate (2.4.5) is the standard Strihartz estimate, proved

in [66℄; notie that it follows from the stronger estimate (2.4.4) by embedding

of Lorentz spaes.

Estimate (2.4.4) in the endpoint p = ~p = 2, q = ~q =

2n

n�2

is proved in

setion 6 of [66℄. On the other hand, the point p = ~p = 1, q = ~q = 2

redues to the standard onservation of energy sine L

(2;2)

= L

2

. Thus by

interpolation we obtain (2.4.4) in the dual ase p = ~p, q = ~q. We onlude

the proof applying as usual the TT

�

method.

Our next step is to establish the end-point estimate for the perturbed

Shr�odinger equation:

Proposition 2.4.2. Let n � 3 and onsider the Cauhy Problem

(

1

i

�

t

u��u+ V u = F;

u(0; x) = 0; x 2 R

n

;

(2.4.6)

where V = V (x) is a real-valued potential suh that

kV k

L

(

n

2

;1)

� C

0

<

2n

C

s

(n� 2)

; (2.4.7)

(here C

s

is the onstant appearing in the Strihartz estimates for the unper-

turbed equation). Then the following estimate holds
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L

2

t

L

q

x

� CkFk

L

~p

0

t

L

~q

0

x

; (2.4.8)

where

q =

2n

n� 2

;

and ~p 2 [2;1℄, and ~q 2 [2;

2n

n�2

℄ are suh that

1

~p

+

n

2~q

=

n

4

:
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Proof. Indeed we an onsider the solution u = u

1

+ u

2

as the sum of

solutions to following Cauhy problems

(

1

i

�

t

u

1

��u

1

= F;

u(0; x) = 0; x 2 R

n

; n � 3;

(2.4.9)

and

(

1

i

�

t

u

2

��u

2

= �V u;

u(0; x) = 0; x 2 R

n

; n � 3:

(2.4.10)

For (2.4.9) we have the lassial Shr�odinger equation, suh that

ku

1

k

L

2

t

L

(q;2)

x

� C

s

kFk

L

~p

0

t

L

(~q

0

;2)

x

(2.4.11)

is satis�ed for the Proposition 2.4.1 (see [66℄).

Sine for the Cauhy problem (2.4.10) we have
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2

k

L

2

t

L

(q;2)

x

� C

s

kV uk

L

2

t

L

(q

0

;2)

x

; (2.4.12)

we are in position to apply the H�older estimate (see Theorem 3.5 in [73℄)
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;2)
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2
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L

(
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;1)

kuk

L

(q;2)

� C

2

C

0

kuk

L

(q;2)

(2.4.13)

where

C

2

= q �

2n

n� 2

;

so if C

0

is suh that C

s

C

0

C

2

< 1, i.e.

C

0

<

2n

C

s

(n� 2)

;

we see that from (2.4.11), (2.4.12) and (2.4.13) that
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L
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L
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x
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s
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s
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0

C

2
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L

~p

0

t

L

(~q

0

;2)

x

;

where

1

~p

+

n

2~q

=

n

4

:

So using the Theorem of Calder�on (see Lemma 2.5 in [73℄)
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d

kuk

L

(p;d
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)

;

for d > d

1

; 1 < p <1, we get
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q
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= kuk
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(q;q)

x
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�

2

q
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1

2

�

1

q

kuk

L
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and

kuk

L

~p

0

t

L

~q

0

x

= kuk

L

~p

0

t

L

(~q

0

;~q

0

)

x

� kuk

L

~p

0

t

L

(~q

0

;2)

x

;

so we arrive at

kuk

L

2

t

L

q

x

� CkFk

L

~p

0

t

L

~q

0

x

; q =

2n

n� 2

; n � 3;

where

C =

�

n� 2

n

�

1

n

�

C

s

1� C

s

C

0

C

2

�

;

and

1

~p

+

n

2~q

=

n

4

:

In the next step we onsider the point p =1, q = 2:

Proposition 2.4.3. Let n � 3 and onsider the Cauhy Problem for the

perturbed Shr�odinger equation

(

1

i

�

t

u��u+ V u = F;

u(0; x) = 0; x 2 R

n

;

(2.4.14)

where V = V (x) is a real-valued potential suh that

kV k

L

(

n

2

;1)

<1: (2.4.15)

Then the following estimate holds

kuk

L

1

t

L

2

x

� CkFk

L

ep

0

t

;L

eq

0

x

; (2.4.16)

where ~p 2 [2;1℄, and ~q 2 [2;

2n

n�2

℄ are suh that

1

~p

+

n

2~q

=

n

4

:

Proof. Multipling the perturbed Shr�odinger equation (2.4.14) by �u and

taking the Imaginary part of integral

Im

�

1

i

Z

R

n

�

t

u � �udx

�

+Im

�

Z

R

n

jruj

2

dx

�

+Im

�

Z

R

n

V juj

2

dx

�

= Im

�

Z

R

n

F �udx

�

;

we notie that

Im

�

Z

R

n

jruj

2

dx

�

= 0

and

Im

�

Z

R

n

V juj

2

dx

�

= 0;
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thus we have

�Re

�

1

i

Z

R

n

�

t

u � �udx

�

= Im

�

Z

R

n

F �udx

�

:

The Cauhy-Swhartz inequality implies

�

t

ku(t)k

2

L

2

� kFk

L

2
kuk

L

2
;

and we obtain

ku(t)k

L

2
�

Z

t

0

kFk

L

2
dt

so we obtain the following estimate
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L

2
� CkFk

L

1

L

2
: (2.4.17)

The estimate (2:4:8) leads to
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L

q
� CkFk

L

1

L

2
; q =

2n

n� 2

;

by duality we have also
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2
� CkFk

L

2

L

q

0

; q

0

=

2n

n+ 2

: (2.4.18)

Interpolating between (2.4.17) and (2.4.18), we obtain
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x
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L
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t

;L

eq
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;

where

1

~p

+

n

2~q

=

n

4

:

We an now onlude the proof of the full Strihartz estimates for the

problem:

Theorem 2.4.1. Let n � 3, p; ~p 2 [2;1℄, and let q; ~q 2 [2;

2n

n�2

℄ be suh that

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Let V = V (x) be a real-valued potential suh that

kV k

L

(

n

2

;1)

� C

0

<

2n

C

s

(n� 2)

; (2.4.19)
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where C

s

is the universal Strihartz onstant for the unperturbed equation.

Then the solution to the Cauhy Problem

(

1

i

�

t

u��u+ V (x)u = F (t; x);

u(0; x) = f;

(2.4.20)

satis�es the estimates
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x

)
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2
; (2.4.21)

and
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)
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;L

eq
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x

)

+ Ckfk

L

2 : (2.4.22)

Proof. Assume �rst that f = 0. By interpolation between (2.4.8) and

(2.4.16), we get
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q

x

� CkFk

L

ep

0

t

;L

eq

0

x

for all (p; q), (~p; ~q) as in the statement of the Theorem.

Assume now that F = 0 and f arbitrary. The previous estimate and the

TT

�

argument of [51℄, yield the estimate
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q

x

� Ckfk
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2
:

Notie that the onservation of energy gives also
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+ kuk
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L

2
� Ckfk

L

2
:

Summing up we obtain (2.4.22). The proof of (2.4.21) is similar (see also

the proof of Proposition 2.4.1).

If we start from the loal Strihartz estimates instead of the global ones,

in a similar way we an prove the following

Theorem 2.4.2. Under the assumptions of Theorem 2.4.1 we have
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+ Ckfk
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2
(2.4.23)

for all T > 0 and with a onstant C independent of T .

2.4.3 The ase of time dependent potentials

The arguments of the previous setions an be extended to over the ase of

a small, time dependent potential V (t; x). Indeed, our method of proof

is based on a perturbation of the standard Strihartz estimates for the

Shr�odinger and heat equations. However, we notie that in this ase we

annot use the standard theory of selfadjoint operators to study the per-

turbed Hamiltonian H = �� + V (t; x). Thus in the following we shall

onsider the problem of existene and of the deay of solutions.

Our �rst result is the following:
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Theorem 2.4.3. Let n � 3, p; ~p 2 [2;1℄, and let q; ~q 2 [2;

2n

n�2

℄ be suh that

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Let V = V (t; x) be a real-valued potential suh that
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;1)

x

� C

0

(2.4.24)

is small enough. Then for any F (t; x) 2 L

~p

0

L

~q

0

there exists a unique global

solution u(t; x) of the the Cauhy Problem

(

1

i

�

t

u��u+ V (t; x)u = F (t; x);

u(0; x) = f:

(2.4.25)

whih satis�es the estimates
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and
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2
:

Analogous estimates hold on �nite time intervals [0; T ℄ with onstants inde-

pendent of T .

Proof. The proof follows the lines of the proof of Theorem 2.4.1. We de�ne

�(v) as the solution u of the linear problem

(

1

i

�

t

u��u = F (t; x)� V (t; x)v;

u(0; x) = f:

(2.4.26)

By Proposition 2.4.1 and [66℄ we have
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2
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where q =

2n

n�2

. Using the H�older inequality for Lorentz spaes (see [73℄)

and the assumption (2.4.24), we get
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:

Thus � : v 2 L

2

L

(q;2)

7! u 2 L

2
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\ L
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2

. We show now that � is a

ontration on the spae L
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(q;2)

. Let v

1
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2
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2
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suh that �(v
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i

; i = 1; 2; then we have
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If C

0

< 1 the map � is a ontration, and this implies that for any F 2

L

2

L

(q

0

;2)

and f 2 L

2

there exists a unique solution u(t; x) 2 L

2

L

(q;2)

\L

1

L

2

of the Cauhy problem (2.4.25).

In partiular for all F 2 C

1



and f 2 L

2

there exists a unique solution.

When F 2 C

1



, we an proeed as in Proposition 2.4.2 and we an prove

the endpoint estimate
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2 ; (2.4.27)

with

q =

2n

n� 2

;

and ~p 2 [2;1℄, and ~q 2 [2;

2n

n�2

℄ are suh that

1

~p

+

n

2~q

=

n

4

:

The only di�erene in the proof is to replae (2.4.13) with the following

H�older estimate
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: (2.4.28)

On the other hand, we an repeat the proof of Proposition 2.4.3 and we

obtain

kuk

L

1

t

L

2

x

� CkFk

L

ep

0

t

;L

eq

0

x

+ kfk

L

2 ; (2.4.29)

where

1

~p

+

n

2~q

=

n

4

:

Then by interpolation we obtain the full Strihartz estimates
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(2.4.30)

for all F 2 C

1



.

Sine we have proved that for all suh F there exists a unique solution

u(t; x), by a density argument we easily obtain that for all F 2 L

ep

0

t

L

eq

0

x

there

exists a unique global solution u(t; x) 2 L

p

t

L

q

x

, with

1

~p

+

n

2~q

=

n

4

.

2.4.4 Heat equation perturbed with a singular potential

This setion is devoted to a study of the perturbed heat equation. The

ideas of the preeding setions an be applied also in this ase with some

modi�ations. The main di�erene is the role of the positive part V

+

of

the potential V ; indeed, in order to prove the deay of the solution, weaker

assumptions on V

+

are suÆient.

Our result is the following:
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Theorem 2.4.4. Let n � 3 and assume the potential V 2 L

(

n

2

;1)

. More-

over, assume that the negative part V

�

= �(V ^ 0) satis�es
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: (2.4.31)

Then any solution to the following Cauhy problem
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(2.4.32)

satis�es the Strihartz estimate
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where p; ~p 2 [2;1℄, and q; ~q 2 [2;

2n

n�2

℄ are suh that
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:

We split the proof of Theorem 2.4.4 in several parts.

Proposition 2.4.4. Let n � 3 and onsider the following Cauhy problem
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u(0; x) = u

0

� 0;

(2.4.33)

with initial data u

0

2 L

1

\ L

1

, and we assume that

V (x) � 0 and V 2 L

(

n

2

;1)

: (2.4.34)

Then there exists a unique solution to the Cauhy problem (2.4.33)

u(t; x) = e

�tH

0

u

0

satisfying the maximum priniple, i.e.

u � 0:

Proof. Sine we know that the maximum priniple holds if the potential

is positive and V 2 L

1

, we onsider a sequene of trunated potentials

V

k

= V ^ k; k � 1 so that V

k

2 L

1

. We onsider then the respetively

approximated Cauhy problem

(

�

t

u

k

��u

k

+ V

k

(x)u

k

= 0; k � 1;

u

k

(0; x) = u

0

; u

0

� 0;

(2.4.35)
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and by maximum priniple 0 � u

k+1

� u

k

� u

0

. Sine fu

k

g is a sequene

dereasing and u

0

2 L

1

\ L

1

, then by monotone onvergene Theorem we

have that fu

k

g onverge in strong sense to u(t; x)

u(t; x) = L

p

� lim

k!1

u

k

(t; x); 1 � p <1:

Now it suÆes to prove that u(t; x) is a solution to (2.4.33), so we have that

0 � u � u

k

� u

0

. Thus sine u(t; x) satis�es the Maximum priniple (see

[72℄), we have the uniqueness of the solution to (2.4.33).

Sine u

0

2 L

1

\L

1

and fu

k

g is a sequene dereasing suh that u

k

� ju

0

j,

by Theorem of Lebesgue we have the onvergene u

k

! u in L

1

.

As onsequene we have following onvergenes in the distributional sense

D

0

8k !1

u

k

! u;

�

t

u

k

! �

t

u;

�u

k

! �u:

Then it remains to prove that we have the following onvergene

V

k

u

k

! V u

in the distributional sense. Indeed, we shall use the identity

V

k

u

k

� V u = (V

k

� V )u

k

+ V (u

k

� u): (2.4.36)

Consider the �rst term to (2.4.36) and sine L

(

n

2

;1)

� L

1

lo

we an take

V 2 L

1

lo

(R

n

);

that implies

Z

K

jV (x)� V

k

(x)jdx! 0 8k !1;

so that

Z

K

jV (x)�V

k

(x)jju

k

(t; x)jdx � sup

x2R

n

ju

k

(t; x)j

Z

K

jV (x)�V

k

(x)jdx! 0; 8k!1:

Thus the �rst term onverges

(V

k

� V )u

k

! 0 8k !1

in the distributional sense D

0

.

Now we are ready to estimate the seond term to (2.4.36). We have

kV (u

k

� u)k

L

1 � kV k

L

(

n

2

;1)

ku

k

� uk

L

(q;1)

� C

0

ku

k

� uk

L

(q;1)

where

1

q

= 1�

2

n

; and using the real interpolation (see [73℄)

L

(q;1)

= (L

1

; L

1

)

(1�

1

q

;1)

;
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we have the following

ku

k

� uk

L

(q;1)

� ku

k

� uk

2

n

L

1

ku

k

� uk

n�2

n

L

1

:

Sine fu

k

g is dereasing and u

k

� u

0

2 L

1

\ L

1

, by monotone onvergene

Theorem one obtains

ku

k

� uk

L

1
! 0;

and

ku

k

� uk

L

1

! 0:

Thus V (u

k

� u)! 0 in L

1

, and so it onverges in distributional sense, i.e.

V

k

u

k

� V u! 0:

This onludes the proof.

Proposition 2.4.5. Let n � 3 and assume that

V

+

(x) � 0; V

+

2 L

(

n

2

;1)

: (2.4.37)

Then any solution to the Cauhy problem

(

�

t

u��u+ V

+

(x)u = 0;

u(0; x) = u

0

;

(2.4.38)

satis�es the dispersive estimate

ku(t; �)k

L

1

�

C

t

n

2

ku

0

k

L

1
: (2.4.39)

Proof. Consider the Cauhy problem for the heat equation with the same

initial data to (2.4.38)

(

�

t

~u��~u = 0;

~u(0; x) = u

0

; u

0

� 0:

(2.4.40)

The dispersive estimate (2.4.39) is valid for this problem.

Let w = ~u� u. Then w is a solution to the following Cauhy problem

(

�

t

w ��w = V

+

(x)u;

w(0; x) = 0:

(2.4.41)

Sine 0 � V

+

2 L

(

n

2

;1)

we an apply it the previous Proposition and we

obtain that

u � 0:
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So applying one more the maximum priniple for (2.4.41) we obtain

0 � w = ~u� u:

Thus we have

0 � u � ~u

and the dispersive estimate

ku(t; �)k

L

1

�

C

t

n

2

ku

0

k

L

1 ;

follows. This onludes the proof of this Proposition.

Now we use the onnetion between self-adjointness and semibounded

quadrati form, extending the notion of "losed" from operators to forms.

Lemma 2.4.6. Let n � 3 and assume that

V

+

(x) � 0; V

+

2 L

(

n

2

;1)

: (2.4.42)

Then the operator H

0

= ��+ V

+

is self-adjoint in H

2

(R

n

).

Proof. Consider the quadrati form

B(f; f) = (rf;rf)

L

2

(R

n

)

+

Z

R

n

V (x)jf(x)j

2

dx; x 2 R

n

; n � 3;

on the dense subspae H

1

(R

n

) of L

2

(R

n

).

To prove this Lemma it suÆes to apply the standard theory of sym-

metri quadrati forms (see e.g. Theorem VIII.15 in the [82℄). One an see

easily that B(f; f) is a positive quadrati form, thus it remains to see that

it is losed in H

1

(R

n

), i.e. H

1

(R

n

) is omplete under the norm

jjjf jjj

2

:= B(f; f) + kfk

2

L

2

: (2.4.43)

Sine V

+

(x) � 0 one obtains

jjjf jjj

2

= krfk

2

L

2

+ (V

+

f; f)

L

2 + kfk

2

L

2

� Ckfk

2

H

1

: (2.4.44)

The assumption on the potential implies that

p

V

+

2 L

(n;1)

;

so that, by the H�older inequality for Lorentz spaes,

k

p

V

+

fk

L

2 � Ck

p

V

+

k

L

(n;1)

kfk

L

(q;2)

� CC

0

kfk

L

(q;2)

;

where

1

q

=

1

2

�

1

n

:
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Using the Sobolev embedding (see [9℄)

_

H

1

(R

n

) ,! L

(q;2)

(R

n

); we get

kfk

L

(q;2)

� C

1

kfk

_

H

1

and

(V

+

f; f)

L

2
=

�

�

�

�

Z

R

n

V (x)jf(x)j

2

dx

�

�

�

�

� k

p

V

+

fk

2

L

2

(R

n

)

�

~

Ckfk

2

_

H

1

(R

n

)

;

so that

jjjf jjj

2

� Ckfk

2

H

1

:

Thus we have the equivalene

jjjf jjj ' kfk

H

1
; (2.4.45)

and the onlusion follows at one.

Remark 2.4.2. Sine H

0

= ��+ V

+

is a self-adjoint operator, we an rep-

resent the solution to the Cauhy problem

(

�

t

u��u+ V

+

(x)u = 0;

u(0; x) = u

0

;

(2.4.46)

as

u(t) = U(t)u

0

; U(t) = e

�tH

0

;

and U(t) is a ontinuous semigroup in L

2

and we have the energy inequality

kU(t)u

0

k

L

2
� ku

0

k

L

2
: (2.4.47)

Notie that interpolating the dispersive estimate (2.4.39) with the energy in-

equality we obtain L

p

-deay estimates, and using the TT

�

method of Ginibre

and Velo (see [51℄, [66℄) it is possible obtain the full Strihartz spae-time

estimates

kuk

L

p

(R

t

;L

q

x

)

+ kuk

C(R

t

;L

2

)

� CkFk

L

ep

0

(R

t

;L

eq

0

x

)

+Cku

0

k

L

2
;

with

1

p

+

n

2q

=

n

4

;

1

~p

+

n

2~q

=

n

4

:

Remark 2.4.3. Consider the following perturbed Cauhy problem

(

�

t

u�H

0

u+ V

�

(x)u = F (t; x);

u(0; x) = u

0

;

(2.4.48)

where V

�

2 L

(

n

2

;1)

, kV

�

k

L

(

n

2

;1)

� C

0

. Using the same argument of sub-

setion 2.4.1 we show that the operator H = H

0

� V

�

is selfadjoint, so the

solution to (2.4.48) is u(t; x) = e

�tH

u

0

. Moreover, repeating the same steps

of setion 2.4.2, it is not diÆult to show the full Strihartz estimates for

the heat ow e

�tH

and this onludes the proof of Theorem 2.4.4.
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2.5 The Sh�odinger equation with a large poten-

tial

In the last setion of this hapter we shall onsider the Sh�rodinger equation

perturbed by a large unsigned time dependent potential V (t; x)

i�

t

u��u+ V (t; x)u = 0 (2.5.1)

and its inhomogeneous version with a soure term. Of ourse in general

there is no hope to prove deay estimates in this ase; thus we shall assume

an integrability ondition at in�nity of the form V (t; x) 2 L

r

t

L

s

x

whih in

some sense replaes the smallness ondition of the preeding setion.

Our goal here is to show that, by purely elementary arguments based on

integrability properties of the potential, it is possible to obtain a great deal

of information on the behaviour of the solution, and to prove the Strihartz

estimates for a wide lass of large potentials with no de�nite sign. Moreover,

the usual obstrutions to deay are present also in this general situation:

existene of standing waves, resaling and pseduoonformal symmetry of

the equation. Using these, we are able to show that our onditions are also

neessary, at least in the lass of potentials under onsideration.

For the onveniene of the reader we reall here the lassial Strihartz

estimates for the Shr�odinger equation, and introdue some notations. We

use a prime to denote onjugate indies; moreover, for any subinterval I of

R (bounded or unbounded) we de�ne the mixed spae-time norms

kuk

L

p

I

L

q

�

�

Z

I

ku(t; �)k

p

L

q

(R

n

)

dt

�

1=p

(2.5.2)

and when I = [0;+1[ we write simply L

p

L

q

in plae of L

p

I

L

q

. Similarly, we

shall write

C

I

L

p

� C(I;L

p

); CL

p

� C([0;+1[;L

p

) (2.5.3)

for 1 � p � 1.

De�nition 2.5.1. Let n � 2. The pair (p; q) is said to be (Shr�odinger)

admissible if

1

p

+

n

2q

=

n

4

; p; q 2 [2;1℄; (n; p; q) 6= (2; 2;1): (2.5.4)

The Strihartz estimates an be stated as follows: for all admissible ouples

(p; q) and (~p; ~q) there exists a onstant C(p; ~p) suh that, for all interval

I � R (bounded or unbounded), for all funtions u

0

(x) 2 L

2

(R

n

), and

F (t; x) 2 L

~p

0

I

L

~q

0

the following inequalities hold:









e

it�

u

0









L

p

I

L

q

� C(p; ~p) ku

0

k

L

2
(2.5.5)
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Z

t

0

e

i(t�s)�

F (s) ds









L

p

I

L

q

� C(p; ~p)





F





L

~p

0

I

L

~q

0

(2.5.6)

Note that the onstant is independent of the interval I.

Clearly, when n � 3 the onstant an be taken also independent of p and

~p: we shall denote this universal onstant (whih depends now only on the

spae dimension n) by C

0

. When n = 2, the onstant is unbounded as p # 2

or ~p # 2.

Here e

it�

is the unitary operator

e

it�

f =

Z

R

n

e

�

ijx�yj

2

4t

(4�it)

n=2

f(y) dy; (2.5.7)

Z

t

0

e

i(t�s)�

F (s) ds =

Z

t

0

Z

R

n

e

�

ijx�yj

2

4(t�s)

(4�i(t � s))

n=2

F (s; y) dy ds;

whih is properly de�ned on L

2

but an be extended to di�erent L

p

spaes

using e.g. these expliit expressions.

Consider now the di�erential equation

i�

t

u��u+ V (t; x)u = F (t; x); u(0; x) = u

0

(x): (2.5.8)

For low regularity solutions, it is ustomary to replae (2.5.8) with the in-

tegral equation

u(t; x) = e

it�

u

0

(x) +

Z

t

0

e

i(t�s)�

[F (s)� V (s)u(s)℄ ds: (2.5.9)

The two formulations are equivalent under very mild assumptions on the

lass of solutions; we shall not disuss this problem here, instead we shall

use the integral formulation exlusively.

We an now state our �rst result:

Theorem 2.5.1. Let n � 2, let I be either the interval [0; T ℄ or [0;+1[,

and assume V (t; x) is a real valued potential belonging to

V (t; x) 2 L

r

I

L

s

;

1

r

+

n

2s

= 1 (2.5.10)

for some �xed r 2 [1;1[ and s 2℄n=2;1℄. Let u

0

2 L

2

and F 2 L

~p

0

I

L

~q

0

for

some admissible pair (~p

0

; ~q

0

).

Then the integral equation (2.5.9) has a unique solution u 2 C

I

L

2

whih

belongs to L

p

I

L

q

for all admissible pairs (p; q) and satis�es the Strihartz

estimates

kuk

L

p

I

L

q

� C

V

ku

0

k

L

2 + C

V

kFk

L

~p

0

I

L

~q

0

: (2.5.11)
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When n � 3, the onstant C

V

an be estimated by k(1 + 2C

0

)

k

, where C

0

is the Strihartz onstant for the free equation, while k is an integer suh

that the interval I an be partitioned in k subintervals J with the property

kV k

L

r

J

L

s

� (2C

0

)

�1

. A similar statement holds when n = 2, provided we

replae C

0

by C(p; ~p).

Finally, when F � 0 the solution satis�es the onservation of energy

ku(t)k

L

2 � ku

0

k

L

2 ; t 2 I: (2.5.12)

Remark 2.5.1. We emphasize that the potentials V (t; x) onsidered in Theo-

rem 2.5.1 may be both large and hange sign. The usual smallness assump-

tion is replaed here by the integrability ondition with respet to time,

whih ensures smallness of V on suÆiently small time intervals, and for

t >> 1.

Remark 2.5.2. By iterating the argument of the proof, it is easy to extend

the above result to any potential of the form

V = V

1

+ � � �+ V

k

where V

1

; : : : ; V

k

satisfy assumption (2.5.10), with possibly di�erent indies

r

j

; s

j

.

Remark 2.5.3. Note that when I is a bounded interval, assumption (2.5.10)

an be relaxed to

V (t; x) 2 L

r

I

L

s

;

1

r

+

n

2s

� 1; (2.5.13)

indeed, from (2.5.13), using H�older's inequality in time we an easily show

that also (2.5.10) holds, for a smaller value of r and the same value of s.

Thus in partiular we see that the existene part of our theorem extends

a result of Yajima [108℄, who proved that the equation (2.5.9) (or (2.5.8))

is well posed in L

2

with onservation of energy, provided the potential V

satis�es

V = V

1

+ V

2

; V

1

2 L

r

I

L

s

; V

2

2 L

1

I

L

�

(2.5.14)

with � > 1 and

1

r

+

n

2s

< 1 (2.5.15)

(see also the preeding remark).

When the potential V (t; x) belongs to L

1

I

L

n=2

, i.e., in the limiting ase of

Theorem 2.5.1, the result an not be true; indeed, this ase inludes the stati

potentials V (x) 2 L

n=2

without any positivity or smallness assumption. We

mention that even for a nonnegative potential in L

n=2

it is not known if the

Strihartz estimates are valid in general. The best result in this diretion

is due to Rodnianski and Shlag [88℄ who onsidered bounded potentials

de�ned on R

n

satisfying the estimate jV (x)j � Cjxj

�2��

for jxj large enough.

However, in the limiting ase we an prove a partial substitute of Theorem

2.5.1. To simplify our statement we introdue the following de�nition:
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De�nition 2.5.2. Let V (x) be a real valued funtion suh that

H = �� V (x)

has a selfadjoint extension. We say that the potential V (x) is of Strihartz

type if for all bounded time interval I = [0; T ℄, for all u

0

2 L

2

and F 2 L

~p

0

I

L

~q

0

with (~p; ~q) admissible, the integral equation

u(t; x) = e

itH

u

0

+

Z

t

0

e

i(t�s)H

F (s) ds (2.5.16)

has a unique solution u(t; x) 2 C

I

L

2

satisfying the Strihartz estimates

kuk

L

a

I

L

b

� C(I; V ) ku

0

k

L

2 + C(I; V ) kFk

L

~p

0

I

L

~q

0

(2.5.17)

for all admissible pairs (a; b).

Then we have:

Theorem 2.5.2. Let n � 3, let I be a bounded interval [0; T ℄ and let

V (t; x) 2 C

I

L

n=2

. Assume that for eah t 2 I, V (t; �) is of Strihartz

type, while the funtions u

0

and F (t; x) are as in Theorem 2.5.1. Then

the onlusion of Theorem 2.5.1 holds true (loal Strihartz estimates).

The result holds also in the ase I = [0;1[ (global Strihartz esti-

mates) under the additional assumption: there exists T

0

> 0 suh that

kV (t; �)k

L

n=2

� (2C

0

)

�1

for t > T

0

.

Remark 2.5.4. By simple modi�ations in the proof, Theorem 2.5.2 an be

extended to any potential of the form

V (t; x) = V

1

(t; x) + V

2

(t; x);

with V

1

as in the theorem while V

2

2 L

1

I

L

n=2

satis�es

kV

2

k

L

1

I

L

n=2

� "(V

1

)

for a suitable small onstant �(V

1

) depending only on V

1

.

Example 2.5.1. To illustrate a possible use of Theorem 2.5.1, onsider the

semilinear Shr�odinger equation

i�

t

u��u+ f(u)u = 0; jf(u)j � Cjuj



;  > 1; (2.5.18)

f real valued, whih inludes both fousing and defousing equations with a

power nonlinearity. Then we may regard (2.5.18) as a Shr�odinger equation

with a time dependent potential

V (t; x) = f(u(t; x)):
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We see that V satis�es the assumptions of Theorem 2.5.1 provided

u 2 L

a

L

b

;

1

a

+

n

2b

=

1



; a <1: (2.5.19)

Thus any solution satisfying (2.5.19) sats�es the full set of Strihartz esti-

mates.

For instane, in the ase of the (fousing or defousing) quinti Shr�odinger

equation in three dimensions, any solution u 2 L

10

L

10

satis�es the Strihartz

estimates; this was the �rst step in the proof of the global well posedness

for the radial defousing three dimensional quinti in [18℄.

Example 2.5.2. We give a simple appliation of Theorem 2.5.2. Consider a

real valued potential V 2 CL

n

2

and assume it satis�es the bounds

0 � V (t; x) �

C

(1 + jxj)

2+Æ

; x 2 R

n

; n � 3 (2.5.20)

for some C; Æ > 0. Then we an prove that V (t; x) satis�es the assumptions

of Theorem 2.5.2 and hene the loal Strihartz estimates hold (and also the

global ones, under the additional assumption of smallness at in�nity).

Indeed, let W (x) = V (t

0

; x) for an arbitrary �xed t

0

; we must show that

W (x) is of Strihartz type. The existene part of the de�nition is trivial; let

us prove the estimates. Consider the operator H = �� +W (x); H has a

unique selfadjoint extension by standard results, with spetrum ontained in

[0;+1[; by Theorem XIII.58 in [85℄ H has no stritly positive eigenvalues,

sine W is bounded and deays as jxj

�2�Æ

at in�nity; 0 is ertainly not an

eigenvalue sine Hf = 0 implies f = 0 easily. This implies that the operator

H has a purely ontinuous spetrum. Now Theorem 1.4 in [88℄ states that

P



e

itH

satis�es the full set of Strihartz estimates when the potential is

bounded and deays faster than jxj

�2

at in�nity; here P



is the projetion

on the ontinuous subspae of L

2

for H, whih oinides with all of L

2

as

we have just proved. In onlusion, W (x) = V (t

0

; x) is of Strihartz type as

laimed.

Remark 2.5.5. Condition (2.5.10) is quite natural, in view of the following

argument: the standard resaling u

�

(t; x) = u(�

2

t; �x) takes equation (2.5.1)

into the equation

i�

t

u

�

��u

�

+ V

�

(t; x)u

�

= 0; V

�

(t; x) = �

2

V (�

2

t; �x); (2.5.21)

and we have

kV

�

k

L

r

L

s

= �

2

(

1�

1

r

�

n

2s

)

kV k

L

r

L

s

(2.5.22)

so that the L

r

L

s

norm of V

�

is independent of � preisely when r; s satisfy

(2.5.10).

Indeed, by a suitable use of resaling arguments, it is possible to show

that the ondition 1=r + n=(2s) = 1 is neessary in order that the global
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Strihartz estimates be true for any potential belonging to the lasses L

r

L

s

(see Theorem 2.5.3 below).

Conerning the loal Strihartz estimates, the situation is more interest-

ing. When 1=r+n=(2s) < 1, as already observed in Remark 2.5.3, the loal

Strihartz estimates are an elementary onsequene of Theorem 2.5.1. On

the other hand, when 1=r + n=(2s) > 1, it is possible to show that the loal

Strihartz estimates fail. This ase is more deliate; atually it is not even

lear if equation (2.5.1) is well posed in L

2

under this assumption on V .

We ollet our ounterexamples in the following theorem, onerning the

homogeneous equation

iu

t

��u+ V (t; x)u = 0: (2.5.23)

Note that the ase (r; s) = (1; n=2) is almost trivial sine it is based on the

onstrution of a standing wave for (2.5.23); we state it in some length both

for ompleteness, and beause the remaining ounterexamples are based on

it. Thus, in the proof of Theorem 2.5.3 it is essential to use potentials whih

hange sign.

Theorem 2.5.3. Let n � 2. Then we have the following.

(i) (Case r = 1) We an onstrut a potential W (x) 2 C

1

0

(R

n

) and a

funtion u

0

2 H

s

for all s > 0 suh that

��u

0

+W (x)u

0

+ u

0

= 0: (2.5.24)

Hene the funtion u(t; x) = e

�it

u

0

(x) 2 CL

2

solves (2.5.23) with

V (t; x) �W (x) 2 L

1

([0;+1[;L

n=2

(R

n

));

and does not belong to the spae L

p

([0;+1[;L

q

) for all admissible pairs

(p; q) 6= (1; 2). In other words, there exists a potential V (t; x) belonging to

L

1

L

s

for all s 2 [1;1℄ suh that the global Strihartz estimates (2.5.11) on

I = [0;+1[ do not hold for equation (2.5.23).

(ii) (Counterexamples to global estimates) For every pair (r; s) with r 2

[1;1[, s 2℄n=2;1℄ and

1

r

+

n

2s

6= 1; (2.5.25)

we an onstrut a potential V (t; x) 2 L

r

([0;+1[;L

s

) and a sequene of

solutions u

k

(t; x) 2 C([0;+1[;L

2

) to equation (2.5.23) suh that

lim

k!1

ku

k

k

L

p

L

q

ku

k

(0)k

L

2

=1 for every admissible pair (p; q) 6= (1; 2): (2.5.26)

(iii) (Counterexamples to loal estimates) For every pair (r; s) with r 2

[1;1[, s 2℄n=2;1℄ and

1

r

+

n

2s

> 1; (2.5.27)



98

we an onstrut, on any given bounded time interval I = [0; T ℄, a potential

V (t; x) 2 L

r

([0; T ℄;L

s

) and a sequene of solutions u

k

(t; x) 2 C([0; T ℄;L

2

)

to equation (2.5.23) suh that

lim

k!1

ku

k

k

L

p

I

L

q

ku

k

(0)k

L

2

=1 for every admissible pair (p; q) 6= (1; 2): (2.5.28)

We onlude the paper with a result showing that, at least for a re-

strited range of indies r; s, the onlusion of Theorem 2.5.3, part (iii), an

be improved in an essential way. While the above theorem was based on

suitable resaling arguments, Proposition 2.5.4 exploits the pseudoonformal

invariane of the Shr�odinger equation.

Proposition 2.5.4. Let n � 2, and assume r 2 [1;1[ and s 2℄n=2; n[

satisfy

1

2r

+

n

2s

> 1: (2.5.29)

Then we an onstrut a potential V (t; x) 2 L

r

(0; 1;L

s

(R

n

)) and a solution

u(t; x) 2 C([0; 1℄;L

2

) to equation (2.5.23) suh that, for all admissible pairs

(p; q) with p <1, and for any 0 < T < 1, we have

u 2 L

p

(0; T ;L

q

(R

n

)) but u 62 L

p

(0; 1;L

q

(R

n

)):

2.5.1 Proof of Theorem 2.5.1

We shall onsider in detail only the ase n � 3; in the ase n = 2, when the

endpoint fails, it is suÆient to replae in the following arguments the spae

L

2

J

L

2n

n�2

with any L

p

J

L

q

with q arbitrarily large.

We distinguish two ases, aording to the value of r 2 [1;1[.

2.5.2 Case A: r 2 [2;1[

Consider a small interval J = [0; Æ℄, and let Z be the Banah spae

Z = C

J

L

2

\ L

2

J

L

2n

n�2

; kvk

Z

:= max

�

kvk

L

1

J

L

2
; kvk

L

2

J

L

2n

n�2

�

:

Notie that, by interpolation, Z is embedded in all admissible spaes L

p

J

L

q

.

For any v(t; x) 2 Z we de�ne the mapping

�(v) = e

it�

u

0

+

Z

t

0

e

i(t�s)�

[F (s)� V (s)v(s)℄ ds: (2.5.30)

A diret appliation of (2.5.5), (2.5.6) gives

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV vk

L

p

0

0

J

L

q

0

0

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.31)



99

for all admissible (p; q), (p

0

; q

0

), (~p; ~q), and by H�older's inequality we an

write

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV k

L

r

J

L

s

kvk

L

2

J

L

2n

n�2

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.32)

provided we hoose p

0

; q

0

suh that

1

p

0

=

1

2

�

1

r

;

1

q

0

=

n+ 2

2n

�

1

s

:

Note that

1

p

0

+

n

2q

0

=

1

2

+

n+ 2

4

�

�

1

r

+

n

2s

�

�

1

2

+

n+ 2

4

� 1 �

n

4

by our assumptions on r; s, and moreover

r 2 [2;1[ =) p

0

2 [2;1[

so that our hoie of p

0

; q

0

always gives an admissible pair in the ase under

onsideration.

In partiular, hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)), we obtain

k�(v)k

Z

� C

0

ku

0

k

L

2
+ C

0

kV k

L

r

J

L

s

kvk

Z

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.33)

Thus �(v) belongs to all the admissible spaes L

p

J

L

q

, and to prove that

�(v) belongs to Z it remains only to show that u is ontinuous with values

in L

2

. But this is an immediate onsequene of the following simple remark:

Remark 2.5.6. Let G(t; x) 2 L

a

0

J

L

b

0

with (a; b) admissible. Then the funtion

w(t; x) =

Z

t

0

e

i(t�s)�

G(s) ds

belongs to C

J

L

2

. Indeed, this is ertainly true if we know in addition that G

is a smooth funtion, ompatly supported in x for eah t. If we approximate

G by a sequene of suh funtions G

j

in the L

a

0

J

L

b

0

norm, the Strihartz

estimates imply that the orresponding funtions w

j

onverge in L

1

L

2

,

whene the laim follows.

We have thus onstruted a mapping � : Z ! Z. Assume now the

length Æ of the interval J is hosen so small that

C

0

kV k

L

r

J

L

s

�

1

2

; (2.5.34)

this is ertainly possible sine r < 1. With this hoie we obtain imme-

diately two onsequenes: �rst of all, the mapping � is a ontration on Z



100

and hene has a unique �xed point v(t; x) whih is the required solution;

seond, v satis�es

kvk

L

p

J

L

q

� C

0

ku

0

k

L

2
+

1

2

kvk

L

p

J

L

q

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.35)

whene we obtain

kvk

L

p

J

L

q

� 2C

0

ku

0

k

L

2
+ 2C

0

kFk

L

~p

0

J

L

~q

0

(2.5.36)

It is lear that the above argument applies on any subinterval J =

[t

0

; t

1

℄ � I on whih a ondition like (2.5.34) holds; of ourse, we will obtain

an estimate of the form

kvk

L

p

J

L

q

� 2C

0

kv(t

0

)k

L

2
+ 2C

0

kFk

L

~p

0

J

L

~q

0

: (2.5.37)

Notie also that (2.5.37) implies in partiular

kv(t

1

)k

L

2
� 2C

0

kv(t

0

)k

L

2
+ 2C

0

kFk

L

~p

0

J

L

~q

0

: (2.5.38)

Now we an partition the interval I (bounded or unbounded) in a �nite

number of subintervals on whih ondition (2.5.34) holds. Applying indu-

tively the estimates (2.5.37) and (2.5.38) we easily obtain (2.5.11) and the

laimed estimate for the Strihartz onstant.

The last remark (2.5.12) onerning the onservation of energy an be

proved by approximation as follows: let V

j

(t; x) be a sequene of real valued

smooth potentials, ompatly supported in x, and let v

j

be the orrespond-

ing solutions; then the di�erenes w

j

= v � v

j

satisfy (in suitable integral

sense)

i�

t

w

j

��w

j

+ V w

j

= (V � V

j

)v

j

� F

j

:

Now we observe that the smooth solutions v

j

have a onserved energy; more-

over, we an hoose the approximating potentials V

j

in suh a way that they

onverge to V in L

r

I

L

s

and their Strihartz onstants do not exeed the above

onstruted onstant for V . Indeed, if we an partition I in a �nite set of

subintervals satisfying (2.5.34), we an hoose exatly the same subintervals

for eah V

j

provided we onstrut V

j

by a onvolution with standard molli-

�ers, so that their Lebesgue norm does not inrease. In onlusion, the v

j

satisfy uniform Strihartz estimates, and this implies that the nonhomoge-

neous terms F

j

= (V � V

j

)v

j

tend to 0 in the (dual) admissible spaes, by

estimates idential to the above ones. Thus in partiular w

j

! 0 in L

1

L

2

and this shows that also v(t; x) satis�es the onservation of energy.

2.5.3 Case B: r 2 [1; 2℄

The method in this ase is quite similar to the above one, but instead of

(2.5.31) we use the estimate

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV vk

L

r

J

L

2s

s+2

+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.39)
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where (p; q) and (~p; ~q) are arbitrary admissible pairs, while the pair (r; 2s=(s+

2)) is the dual of (r

0

; 2s=(s� 2)) and this last pair is admissible sine

1

r

0

+

n

2

�

s� 2

2s

=

n

2s

+

n

2

�

s� 2

2s

=

n

4

where we have used the assumption 1=r + n=(2s) = 1; notie also that

r 2 [1; 2℄ and hene 2s=(s+ 2) 2 [1; 2℄ too.

Thus by H�older's inequality we obtain

k�(v)k

L

p

J

L

q

� C

0

ku

0

k

L

2
+ C

0

kV k

L

r

J

L

s

kvk

L

1

J

L

2
+ C

0

kFk

L

~p

0

J

L

~q

0

(2.5.40)

and hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)) and proeeding as above we

arrive at

k�(v)k

Z

� C

0

ku

0

k

L

2
+

1

2

kvk

Z

+ C

0

kFk

L

~p

0

J

L

~q

0

: (2.5.41)

From this point on, the proof is idential to the �rst ase.

2.5.4 Proof of Theorem 2.5.2

The proof follows the same lines as the preeding one; indeed, the ontinuity

in time of the potential allows to onsider V (t; x) as a small perturbation of

V (t

0

; x) for t near t

0

.

Let J = [0; Æ℄ be a small interval, and onsider again the spae

Z = C

J

L

2

\ L

2

J

L

2n

n�2

; kvk

Z

:= max

�

kvk

L

1

J

L

2
; kvk

L

2

J

L

2n

n�2

�

:

On Z we onstrut a map � de�ned as follows:

�(v) = e

itH

u

0

+

Z

t

0

e

i(t�s)H

[F (s)�W (s)v(s)℄ ds; (2.5.42)

where

H = �� V (0; x); W (t; x) = V (t; x)� V (0; x): (2.5.43)

We have used the assumption that V (0; x) is of Strihartz type (De�nition

2.5.2) to make meaningful the operators e

itH

; on the other hand this implies

also that the full Strihartz estimates (2.5.5), (2.5.6) hold for the group e

itH

,

hene we an write

k�(v)k

L

p

J

L

q

� C ku

0

k

L

2
+ C kWvk

L

2

J

L

2n

n+2

+ C kFk

L

~p

0

J

L

~q

0

(2.5.44)

for all admissible pairs (p; q) and (~p; ~q). Notie that here C is a onstant

depending on V and the interval J only, and an be assumed to be non

inreasing when Æ # 0. This implies

k�(v)k

L

p

J

L

q

� C ku

0

k

L

2
+C kWk

L

1

J

L

n=2

kvk

L

2

J

L

2n

n�2

+C kFk

L

~p

0

J

L

~q

0

(2.5.45)
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and if Æ is so small that

C kWk

L

1

J

L

n=2

�

1

2

(2.5.46)

whih is possible by the ontinuity of V (t; x) as an L

n=2

-valued funtion, we

arrive at

k�(v)k

Z

� C ku

0

k

L

2
+

1

2

kvk

Z

+ C kFk

L

~p

0

J

L

~q

0

: (2.5.47)

This guarantees, as above, the existene of a unique loal solution belonging

to the spae Z and satisfying the Strihartz estimates with some onstant

C(0) for some time interval [0; Æ).

The same argument an be applied near eah point t

0

2 I. More pre-

isely, let J = [t

0

� Æ; t

0

+ Æ℄ \ I and assume Æ > 0 is so small that the

potential

W (t; x) = V (t; x)� V (t

0

; x)

satis�es

kW (t; �)k

L

n=2

� (2C(V (t

0

; x)))

�1

for t 2 J; (2.5.48)

where C(V (t

0

; x)) is the Strihartz onstant orresponding to the potential

V (t

0

; x) and relative to the interval [0; t

0

+1℄. Then we may argue as above,

and we obtain that for any given initial time t

1

2 J and for any f 2 L

2

, the

Cauhy problem

i�

t

u�Hu = F (t; x)�W (t; x)u; u(t

1

) = f; H = �� V (t

0

; x)

(interpreted as usual in integral form via the group e

itH

) has a unique solu-

tion in Z = C

J

L

2

\ L

2

J

L

2n

n�2

, whih satis�es the Strihartz estimates

k�(v)k

Z

� 2C(t

0

) ku

0

k

L

2
+ 2C(t

0

) kFk

L

~p

0

J

L

~q

0

: (2.5.49)

for some onstant C(t

0

) depending on the point t

0

but not on the initial

time t

1

2 J .

Now we may proeed by a ontinuation argument as follows. Extend

the loal solution onstruted on [0; Æ℄ to a maximal interval [0; T

�

[; i.e.,

onsider the union of all intervals [0; Æ℄ on whih a solution u 2 C([0; Æ℄;L

2

)\

L

2

(0; Æ;L

2n

n�2

) exists and satis�es (for all admissible pairs) the Strihartz

estimates with some onstant C

Æ

. Assume by ontradition that T

�

< T .

Then the above loal argument applied at t

0

= T

�

on a suitable interval of

the form J = [T

�

� "; T

�

+ "℄ shows that we an path the maximal solution

and extend it to [0; T

�

+ "℄. Moreover, we laim that the extended solution

satis�es the Strihartz estimates on [0; T

�

+ "℄: indeed, hosen any t

1

suh
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that T

�

� " < t

1

< T

�

, by onstrution we see that the estimates hold both

on I

1

= [0; t

1

℄, with initial data at t = 0:

kuk

L

p

I

1

L

q

� C

0

ku(t

0

)k

L

2
+ C

0

kFk

L

~p

0

I

1

L

~q

0

; (2.5.50)

and on J = [T

�

� "; T

�

+ "℄, with initial data at t = t

1

:

kuk

L

p

J

L

q

� C

0

ku(t

1

)k

L

2
+ C

0

kFk

L

~p

0

J

L

~q

0

; (2.5.51)

for a suitable onstant C

0

. Sine ku(t

1

)k

L

2
an be estimated exatly by

(2.5.50) (p = 2; q = 1), we easily onlude the proof of our laim. This

ontradits the assumption T

�

< T and we obtain that T

�

= T .

The modi�ations required to prove the �nal remark onerning the ase

I = [0;1[, and also Remark 2.5.4, are obvious.

2.5.5 Proof of the ounterexamples

An eigenvalue problem.

The �rst step in our onstrution requires to �nd a potential V (x) suh

that the operator ��+ V (x) has a negative eigenvalue, i.e., suh that the

equation

��u

0

+ V (x)u

0

+ 

2

u

0

= 0 (2.5.52)

admits a solution u

0

2 H

1

for some  > 0. There are many results on this

problem, and in general there is a lear onnetion between the number of

suh eigenvalues and the size of the negative part of V , in a suitable norm.

This is true both in the negative sense (expliit bounds on the number of

the eigenvalues) and in the positive sense, whih is our main fous here.

For instane, it is known that (see [85℄) if V (x) 2 L

n=2

(R

n

) satis�es the

assumption

the set fx 2 R

n

: V (x) < 0g has a positive measure, (2.5.53)

then there exists �

0

> 0 suh that, for all � > �

0

, the equation

��u

0

+ �V (x)u

0

+ 

2

u

0

= 0 (2.5.54)

admits at least a solution f 2 H

1

for some  > 0. It an also be proved that

the dimension of the eigenspae grows to in�nity as � tends to in�nity.

However, for our purposes here we need only a muh less preise result,

whih an be proved diretly by an elementary variational argument. Both

this result and the proof we give here are ompletely standard, but we prefer

to inlude it here for the onveniene of the reader. Indeed, take any smooth
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ompatly supported funtion w(x) suh that w(x

0

) > 0 at least in one point

x

0

. Then onsider the minimization problem with a onstraint

min

f2M

Z

R

n

�

jrf j

2

+ jf j

2

�

dx on M =

�

f 2 H

1

:

Z

R

n

w(x) jf j

2

dx = 1

�

:

(2.5.55)

Note that M is not empty, thanks to the assumption w(x

0

) > 0. The

existene of a solution to problem (2.5.55) an be proved easily by a standard

ompatness argument, sine we an work on the (bounded) support of w(x).

On the other hand, the Euler-Lagrange equation of the problem is

��f + f = �w(x)f (2.5.56)

(where � is a Lagrange multiplier); hene, hoosing W (x) = ��w(x) and

u

0

= f , we see that u

0

solves the equation

��u

0

+W (x)u

0

+ u

0

= 0 (2.5.57)

and hene

u(t; x) = e

�it

u

0

(x) solves iu

t

��u+W (x)u = 0: (2.5.58)

Note also that a trivial bootstrapping argument gives u

0

2 H

s

for all s > 0.

This onludes the proof of Theorem 2.5.3, part (i).

Proof of Theorem 2.5.3, ase 1=r + n=(2s) < 1, r 6=1

We start from the funtion (2.5.58) and we apply the standard resaling

u(t; x) 7! u

�

(t; x) = u(�

2

t; �x) � e

�i�

2

t

u

0

(�x): (2.5.59)

Then the funtion u

�

solves globally

i�

t

u

�

��u

�

+W

�

(x)u

�

= 0; W

�

(x) = �

2

W (�x): (2.5.60)

Consider now two monotone sequenes of positive real numbers

0 = T

0

< T

1

< � � � < T

k

" +1; 0 < �

k

# 0; k = 0; 1; 2; 3; : : :

(2.5.61)

and de�ne a potential V (t; x) on [0;+1[�R

n

by pathing the potentials V

�

as follows:

V (t; x) =W

�

k

(x) for t 2 [T

k

; T

k+1

[; k = 0; 1; 2; : : : : (2.5.62)

Thus u

�

k

solves the equation

i�

t

u��u+ V (t; x)u = 0 (2.5.63)
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on the interval [T

k

; T

k+1

[.

Choose now r and s satisfying

1

r

+

n

2s

< 1; r 6=1; (2.5.64)

and assume we an hoose the parameters T

k

; �

k

in suh a way that

kV k

L

r

L

s

� kWk

L

s

X

k�0

(T

k+1

� T

k

)

1=r

�

2�n=s

<1; (2.5.65)

then V (t; x) 2 L

r

([0;+1[;L

s

). On the other hand by Theorem 2.5.1 we an

extend (uniquely) u

�

k

to a global solution of (2.5.63) in C([0;+1[;L

2

(R

n

))

whih we shall denote by u

k

(t; x). Notie that, by the same theorem, we

have

ku

k

(t; �)k

L

2 � onst. � ku

�

k

(T

k

)k

L

2 � �

�n=2

ku

0

k

L

2 (2.5.66)

realling the expliit expression (2.5.59) of u

�

. On the other hand, we an

write

ku

k

k

L

p

(R;L

q

)

� ku

k

k

L

p

(T

k

;T

k+1

;L

q

)

� ku

�

k

k

L

p

(T

k

;T

k+1

;L

q

)

� (T

k

�T

k+1

)

1=p

�

�n=q

k

ku

0

k

L

q

(2.5.67)

by an elementary alulation. The Strihartz esimates are violated when

ku

k

k

L

p

(R;L

q

)

ku

k

(0)k

L

2

is unbounded, (2.5.68)

and this holds provided the parameters T

k

; �

k

satisfy the ondition

ku

k

k

L

p

(R;L

q

)

ku

k

(0)k

L

2

�

ku

�

k

k

L

p

(T

k

;T

k+1

;L

q

)

ku

�

k

(0)k

L

2

�

ku

0

k

L

q

ku

0

k

L

2

(T

k

� T

k+1

)

1=p

�

n

2

�

n

q

k

!1:

(2.5.69)

In onlusion, we only need to adjust the parameters (2.5.61) so to satisfy

the two onditions (2.5.65) and (2.5.69):

X

k�0

(T

k+1

� T

k

)

1=r

�

2�n=s

k

<1; (T

k

� T

k+1

)

1=p

�

n

2

�

n

q

k

!1; (2.5.70)

given an admissible pair (p; q) with p 6= 1 and (r; s) as in (2.5.64). With

the speial hoies

T

0

= 0; T

k+1

= T

k

+ k

�

; �

0

= 1; �

k

= k

��=2

; k = 1; 2; 3; : : :

(2.5.71)

for some �; � > 0, the onditions redue to

�

r

+ �

n

2s

< � � 1;

�

p

+ �

n

2q

> �

n

4

: (2.5.72)
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Sine (p; q) is admissible, the seond ondition simpli�es to � > �, and

rearranging the �rst one we are redued to

�� �

r

+ �

�

1

r

+

n

2s

�

< � � 1; � > �: (2.5.73)

The term in brakets is smaller then 1 by assumption, hene if we hoose

any

� > � >

�

1�

�

1

r

+

n

2s

��

�1

(2.5.74)

with � lose enough to �, we onlude the proof of the �rst part of Theorem

2.5.2, (ii).

2.5.6 Proof of Theorem 2.5.3, ase 1=r + n=(2s) > 1, r 6=1

As in ase 2.5.5 the proof is based on a resaling argument. First of all

we prove part (ii). Consider again the resaled solution (2.5.59) whih

solves equation (2.5.60) globally with a smooth ompatly supported po-

tential W

�

(x) = �

2

W (�x). Now, take two monotone sequenes of positive

real numbers

1 = �

0

< �

1

< � � � < �

k

" +1; 0 < Æ

k

# 0; k = 0; 1; 2; 3; : : : (2.5.75)

and de�ne a potential V (t; x) on [0;+1[�R

n

as follows:

V (t; x) =

(

W

�

k

(x) if t 2 [k; k + Æ

k

℄, x 2 R

n

,

0 elsewhere.

(2.5.76)

Note that V (t; x) 2 L

1

I

L

1

for any bounded time interval I, while globally

kV k

L

r

L

s

� kWk

L

s

X

k�0

Æ

1=r

k

�

2�n=s

k

: (2.5.77)

As above, the funtion u

�

k

solves the equation

i�

t

u��u+ V (t; x)u = 0 (2.5.78)

on the interval t 2 [k; k + Æ

k

℄, and an be extended to a global solution

u

k

(t; x) of the same equation thanks to the existene part of Theorem 2.5.1

(reall that V 2 L

1

I

L

1

). Moreover, u

k

has a onserved energy

ku

k

(t; �)k

L

2
� ku

k

(k; �)k

L

2
� �

�n=2

ku

0

k

L

2
: (2.5.79)

Then, as before, we an estimate

ku

k

k

L

p

(R;L

q

)

ku

k

(0)k

L

2

�

ku

�

k

k

L

p

(k;k+Æ

k

;L

q

)

ku

�

k

(0)k

L

2

�

ku

0

k

L

q

ku

0

k

L

2

Æ

1=p

k

�

n

2

�

n

q

k

: (2.5.80)
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Again, in order to violate the Strihartz estimates for an admissible ouple

(p; q) and the potential V 2 L

r

L

s

, it is suÆient to satisfy the two onditions

X

k�0

Æ

1=r

k

�

2�n=s

k

<1; Æ

1=p

k

�

n

2

�

n

q

k

!1: (2.5.81)

With the speial hoies

Æ

k

= k

��

; �

k

= k

�=2

; (2.5.82)

the parameters �; � > 0 to be preised, we are redued to

�

�

r

+

�

1�

n

2s

�

� < �1; �

�

p

+

�

n

4

�

n

2q

�

� > 0: (2.5.83)

Sine (p; q) is an admissible pair, the seond ondition is equivalent to � < �

and we an rewrite the onditions as

�� �

r

+

�

1

r

+

n

2s

�

� > � + 1; � < �: (2.5.84)

Reall now that we are onsidering the ase

1

r

+

n

2s

> 1; (2.5.85)

hene we may hoose any � suh that

� >

��

1

r

+

n

2s

�

� 1

�

�1

(2.5.86)

and hoosing then any � < � lose enough to �, we easily satisfy the ondi-

tions (2.5.84).

This onludes the proof of part (ii) of Theorem 2.5.3.

Part (iii) an be proved by a simple modi�ation of the preeding proof.

Indeed, onsider again the sequene Æ

k

= k

��

onstruted above, and notie

that it is not restritive to assume that � > � > 1. Thus the series

P

Æ

k

onverges, and the sequene of partial sums

T

k

=

k

X

j=0

Æ

k

(2.5.87)

is positive, stritly inreasing, and onverges to

lim

k!1

T

k

= T �

X

k�0

Æ

k

: (2.5.88)
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We an now modify the de�nition (2.5.76) of the potential V (t; x) as follows:

V (t; x) =

(

W

�

k

(x) if t 2 [T

k

; T

k

+ Æ

k

℄, x 2 R

n

,

0 if t 2 [0; Æ

0

[.

(2.5.89)

This de�nes a potential on I � R

n

= [0; T ℄� R

n

, whose L

r

I

L

s

is given again

by (2.5.77). The remaining arguments of the preeding proof apply without

modi�ation.

The proof of Theorem 2.5.3 is onluded.

2.5.7 Proof of Proposition 2.5.4

The main tool of the proof is the pseudoonformal transform

u(t; x) 7! U(T;X) = e

�i

jXj

2

4T

T

�

n

2

u

�

�

1

T

;

X

T

�

(2.5.90)

whih takes a solution u(t; x) of the Shr�odinger equation in the variables

t; x into another solution of the same equation, in the variables T;X. If we

apply the transform to the solution (2.5.58), we obtain a funtion U(T;X)

whih solves

i�

T

U ��

X

U + V (T;X)U = 0; U(1;X) = e

i�ijXj

2

u

0

(X); (2.5.91)

where the potential V (T;X) is given by

V (T;X) =

1

T

2

W

�

X

T

�

: (2.5.92)

It is easy to ompute expliitly the norm of V on the interval [0; 1℄:

kV k

L

r

(Æ;1;L

s

)

=

�

Z

1

Æ

T

r(n=s�2)

dT

�

1=r

kWk

L

s

<1 (2.5.93)

and this integral onverges sine our assumption (2.5.29) on the pair (r; s)

is equivalent to

r

�

n

s

� 2

�

> �1:

On the other hand, the L

p

I

L

q

norm of U(T;X) on an interval of the form

[Æ; 1℄ with 0 < Æ < 1 is given by

kUk

L

p

I

L

q

=

�

Z

1

Æ

T

p

�

n

q

�

n

2

�
�

1=p

kWk

L

q

�

�

Z

1

Æ

T

�2

�

1=p

kWk

L

q

(2.5.94)

sine admissible pairs (p; q) satisfy p(n=q � n=2) � �2. This implies that

U(T;X) belongs to all L

p

I

L

q

spaes for I = [Æ; 1℄ for all 0 < Æ < 1, but not

for I = [0; 1℄ where the integral diverges. Note also that

kU(1; �)k

L

2
� ku

0

k

L

2
:

It is suÆient now to apply to U(T;X) a reetion and a translation

in time T to obtain exatly the ounterexample required in Theorem 2.5.4.

The proof is onluded.



Chapter 3

Equations on nonompat

manifolds with negative

urvature

3.1 Introdution

This hapter is devoted to the study of the perturbed Shr�odinger equation

on some manifolds with onstant negative urvature:

iu

t

��

M

u+ V (t; x)u = F (t; x);

where ��

M

denotes the Laplae-Beltrami operator of the manifold M .

More preisely, we shall onsider the speial ase M = H

n

, the hyperboli

spae of dimension n, and the more general lass of Damek-Rii spaes.

Our �rst goal is to prove the analogous of Strihartz estimates on H

n

;

the e�et of negative urvature is that in the estimates new weights appears,

inreasing as jxj ! 1. Thus in the presene of negative urvature the esti-

mates are stronger than in the at ase. If a large time dependent potential

V (t; x) is present, we an extend the results of Setion [lavoroonNiola℄ to

this ase, and we an prove the Strihartz estimates provided V satis�es

a suitable weighted L

r

t

L

s

x

ondition. We then apply these estimates to the

semilinear Shr�odinger equation with a power nonlinearity depending also

on the spae variables:

iu

t

��

H

n

u+ V (t; x)u = g(jxj; u):

We prove results of both loal and global well-posedness for radial solutions

in the energy lass. The behaviour of the nonlinearity for whih we have

global existene is similar to the at ase, but here we an allow a growth of

the nonlinear term as jxj ! 1, whih is more general than in the at ase.

109



110

In the next setion we investigate the ase of Damek-Rii spaes S, and

we onsider the free Shr�odinger and wave equations

iu

t

��

S

u = F (t; jxj); u

tt

��

S

u = F (t; jxj):

For these equations, in the radial ase, we prove generalized Strihartz esti-

mates with weights; again, these estimates are stronger than the orrespond-

ing ones on R

n

, as an e�et of urvature. We notie also that in the ase

of the three dimensional hyperboli spae H

3

we reobtain (with a simpler

proof) a weighted dispersive estimate proved by Bania in [5℄.

The results of this hapter are ontained in the papers [76℄ and [77℄.

3.2 Strihartz estimates

For the onveniene of the reader, we ollet here the Strihartz estimates

for the Shr�odinger and the wave equations on R

n

, whih we shall extend

to more general manifolds in the following setions. Standard referenes are

[98℄, [51℄, and [66℄.

The Strihartz estimates for the Shr�odinger equation on R

n

an be

written in the following form:

ke

it�

fk

L

p

(I;L

q

(R

n

))

� kfk

L

2

(R

n

)

(3.2.1)

for any f 2 L

2

, any (bounded or unbounded) time interval I � R, and for

all sharp

n

2

-admissible ouples (p; q):

1

p

+

n

2q

=

n

4

; p; q � 2 and (p; q) 6= (2;1): (3.2.2)

The ase (p; q) = (2;

2n

n�2

) is alled the endpoint; estimate (3.2.1) is true also

at the endpoint for n � 3. When n = 2 the endpoint is exatly (p; q) =

(2;1); in this ase the estimate is still true when f is a radial funtion, but

is known to be false in general.

The equivalent nonhomogeneous form of (3.2.1) is









Z

t

0

e

i(t�s)�

F (s; x)ds









L

p

(I;L

q

(R

n

))

� CkFk

L

~p

0

(I;L

~q

0

(R

n

))

(3.2.3)

for all (p; q) and (~p; ~q) admissible, ~p

0

and ~q

0

being dual to p, q respetively.

The Strihartz estimates for the wave equation on R

n

��

2

t

u+�u = F (t; x); u(0; x) = u

0

(x); �

t

u(0; x) = u

1

(x); (3.2.4)

under the assumption that the dimensional analysis (or "gap") ondition

1

p

+

n

q

=

n

2

�  =

1

~p

0

+

n

~q

0

� 2; (3.2.5)
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holds, are the following

kuk

L

p

t

L

q

x

� Cku

0

k

_

H



+ Cku

1

k

_

H

�1

+ CkFk

L

~p

0

t

L

~q

0

x

; (3.2.6)

for any data u

0

2

_

H



, u

1

2

_

H

�1

, F 2 L

~p

0

I

L

~q

0

, any (bounded or unbounded)

time interval I � R, and for all

n�1

2

-admissible ouples (p; q), (~p; ~q), i.e. suh

that

1

p

+

n� 1

2q

�

n� 1

4

; p 2℄2;1℄ and q 2 [2;

2(n� 1)

n� 3

�

; n � 3: (3.2.7)

Estimate (3.2.6) is true also at the endpoint (p; q) = (2;

2(n�1)

n�3

) for n � 4,

but is false when n = 3.

3.3 Hyperboli spaes

We onsider here the Shr�odinger equation on the hyperboli spae

(

i�

t

u+�

H

n

u = 0;

u(0; x) = f(
); 
 2 H

n

:

(3.3.1)

See the following setion for the main properties of H

n

and its Laplae-

Beltrami operator �

H

n

. The solution u an be represented using the unitary

operators e

it�

H

n

as

u(t;
) = e

it�

H

n

f: (3.3.2)

It is natural to expet that the urvature of the manifold has some inu-

ene on the dispersive properties. Indeed, in [5℄ the following estimate was

proved for u(t;
) = e

it�

H

n

f , n � 3 odd,

ju(t;
)j � C

 

1

jtj

n

2

+

1

jtj

3

2

!

Z

H

3

jf(


0

)j

�

�

sinh�

�

n�1

2

d


0

; (3.3.3)

where by � we denoted the hyperboli distane between the points 
 and 


0

.

If we ompare (3.3.3) with the standard dispersive estimate on R

n

, we see

that the e�et of the urvature is a weight in the right hand side of (3.3.3).

If we restrit to radial data f , then (3.3.3) implies the weighted estimate

w(
)ju(t;
)j �

C

jtj

n

2

Z

H

n

jf(


0

)jw

�1

(


0

)d


0

(3.3.4)

where the weight funtion w(
) is given by

w(
) =

sinhd(0;
)

d(0;
)

: (3.3.5)
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Here we denote by 0 the origin of the hyperboli spae, 0 = (1; 0; : : : ; 0), and

the L

p

spae on H

n

as

L

p

= L

p

(H

n

) = L

p

(d
);

where d
 is the measure on the hyperboli spae H

n

(see the following

setion for the preise de�nitions).

Thus by using interpolation and the standard TT

�

argument of [51℄, [66℄,

it is easy to obtain the weighted Strihartz estimates

ke

it�

H

n

fk

L

p

(I;L

q

(w

q�2

))

� Ckfk

L

2
; (3.3.6)

whih an be written also

kw

1�

2

q

e

it�

H

n

fk

L

p

(I;L

q

)

� Ckfk

L

2 : (3.3.7)

Moreover, the TT

�

argument gives the equivalent estimate









w

1�

2

q

Z

t

0

e

i(t�s)�

H

n

F (s;
)ds









L

p

(I;L

q

)

� Ckw

1�

2

~q

0

Fk

L

~p

0

(I;L

~q

0

)

(3.3.8)

for all admissible ouples (p; q) and (~p; ~q), for all radial funtions f(
) and

F (t;
), and for all unbounded interval I � R when n = 3 and bounded

interval I � R when n > 3 odd.

Consider now a perturbed Shr�odinger equation of the form

i�

t

u+�

H

n

u+ V (t;
)u = 0: (3.3.9)

This an be regarded as a �rst step to the general equation with variable

oeÆients. As it was observed in [39℄, a perturbation of the form (3.3.9) an

be treated if we assume that the potential V satis�es suitable integrability

properties in spae and time.

The main result of this setion is the following

Theorem 3.3.1. Let I be an interval of the form [0;+1[ in three dimension

and [0; T ℄ bounded when n > 3 odd. Let V : I � H

n

! C be a funtion suh

that

kw(
)

�

2

s

V k

L

r

(I;L

s

)

< +1 (3.3.10)

and indies r; s satisfying

1

r

+

n

2s

= 1; r 2 [1;1℄ and s 2 [

n

2

;1℄: (3.3.11)

Moreover, assume that

i) V is a radial funtion in 
;

ii) in the endpoint ase (r; s) = (1;

n

2

), the norm kw

�

4

n

V k

L

1

(I;L

n

2

)

is small

enough.
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Let f 2 L

2

and F suh that w

1�

2

~q

0

F 2 L

~p

0

(I;L

~q

0

) be two funtions radial

in 
, with (~p; ~q) admissible. Then the Cauhy problem

(

i�

t

u+�

H

n

u+ V (t;
)u = F (t;
);

u(0;
) = f(
);

(3.3.12)

has a unique solution u 2 C(I;L

2

) satisfying for all admissible ouples (p; q)

the weighted Strihartz estimates

kw

1�

2

q

uk

L

p

(I;L

q

)

� Ckfk

L

2
+ Ckw

1�

2

~q

0

Fk

L

~p

0

(I;L

~q

0

)

(3.3.13)

with p; q; ~p; ~q as above.

When F � 0, the norm kuk

L

2
is onstant in time.

Remark 3.3.1. Note that for a singular oeÆient V (t;
) it is not lear in

general if the Cauhy problem (3.3.12) is well posed. Thus in the proof

of Theorem 3.3.1 we must also obtain the existene and uniqueness of the

solution u(t;
).

Remark 3.3.2. By iterating the argument of the proof, one an treat easily

the ase of a general potential

V = V

1

+ : : :+ V

k

suh that eah V

1

; : : : ; V

k

satis�es the assumptions of the Theorem 3.3.1

(with possibly di�erent values of r; s).

Remark 3.3.3. In the ase of a bounded time interval I = [0; T ℄, we an easily

extend the results of Theorem3.3.1 to any potential satisfying (ii) with

1

r

+

n

2s

� 1:

Indeed, by H�older inequality we see immediately that a suh V satis�es (ii)

for a di�erent ouple (~r; ~s).

In the seond part of the paper we shall onsider an appliation of

Theorem3.3.1 to a nonlinear Shr�odinger equation of the form

i�

t

u+�

H

n

u = g(
; u): (3.3.14)

Notie that our weighted estimate (3.4.20) makes it possible to onsider

oeÆients g(
; u) whih are unbounded as j
j ! 1. Our result is the

following:

Theorem 3.3.2. Let n � 3 odd. Let V be as in Theorem 3.3.1. Assume

g : H

n

� C ! C is suh that:

(i) Im(g(
; u)) = 0 (gauge invariane);
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(ii) if 1 �  < 1 +

4

n

, the following inequalities hold:

jg(
; u)j � Cw(
)

4

n

juj



; (3.3.15)

jg(
; v) � g(
; w)j � Cw(
)

4

n

(jvj+ jwj)

�1

jv � wj; (3.3.16)

(iii) g is a radial funtion of 
.

Then the Cauhy problem

(

i�

t

u+�

H

n

u+ V (t;
)u = g(
; u);

u(0;
) = f(
) radial;

(3.3.17)

has a unique global solution u 2 C(R; L

2

) suh that w

1�

2

q

u 2 L

p

(R;L

q

) for

all admissible ouples (p; q).

Moreover, when  = 1 +

4

n

the result is still true provided the L

2

norm

of data kfk

L

2
is suÆiently small and without hypothesis (i).

3.3.1 Basi properties of H

n

We reall briey some properties of the hyperboli spae that we shall use in

the following. We shall represent H

n

as the upper branh of the hyperboloid:

H

n

= f
 = (t; x) 2 R

n+1

; (t; x) = (osh r; ! sinh r); r � 0; ! 2 S

n�1

g:

This an be written in an equivalent way as follows:

H

n

= fx = (x

0

; x

1

; : : : ; x

n

) 2 R

n+1

; x

0

> 0; [x; x℄ = 1g

where [x; y℄ denotes the inner produt on R

n+1

[x; y℄ = x

0

y

0

� x

1

y

1

� � � � � x

n

y

n

:

If we restrit to H

n

the Lorentz metri on R

n+1

dl

2

= �dt

2

+ dx

2

we obtain the following riemannian metri on the hyperboli spae

ds

2

= dr

2

+ sinh

2

rd!

2

as it follows immediately from the relations

dt = sinh rdr; dx = osh r!dr + sinh rd!:

The distane between two points in this metri an be written expliitly,

using the above de�ned inner produt

d(
;


0

) = osh

�1

([
;


0

℄):
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A useful speial ase is the distane of a point from the origin 0 whih or-

responds to (x

0

; x

1

; : : : ; x

n

) = (1; 0; : : : ; 0) or equivalently to (t; r) = (1; 0):

d(
; 0) = d((osh r; sinh r!); (1; 0)) = osh

�1

(osh r � 0) = r:

Finally, the orresponding measure an be written in the oordinates r; ! as

follows:

Z

H

n

f(
)d
 =

Z

1

0

Z

S

n�1

f(r; !) sinh

n�1

rdrd!:

The Laplae-Beltrami operator on the hyperboloid has a simple expres-

sion in terms of the laplae operator on the sphere:

�

H

n

= �

2

r

+ (n� 1)

osh r

sinh r

�

r

+

1

sinh

2

r

�

S

n�1
:

3.3.2 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 follows losely the ideas of [39℄. For the bene�t of

the reader we give here a omplete proof, with the neessary modi�ations.

In the following for simpliity we write only � instead of �

H

n

. We shall

also introdue the notation

L

p

J

L

q

= L

p

(J ;L

q

(d
))

for the mixed spaes on the produt J � H

n

, where J is any time interval

[0;1[ when n = 3, and [0; T ℄ bounded when n > 3 odd.

We distinguish two ases, aording to the value of r 2 [1;1[.

3.3.3 Case A: r 2 [2;1[

Consider a small interval J = [0; Æ℄ and the norm

kvk

Z

:= max

�

kvk

L

1

J

L

2
; kw(
)

2

n

vk

L

2

J

L

2n

n�2

�

;

note that

1�

2

r

=

2

n

for r =

2n

n� 2

:

Let Z be the Banah spae

Z = ff 2 C

J

L

2

: kfk

Z

<1g

with the norm kvk

Z

. Then, by interpolation, Z is embedded in all admissible

spaes L

p

J

L

q

.

For any v(t;
) 2 Z we de�ne the mapping

�(v) = e

it�

H

n

f +

Z

t

0

e

i(t�s)�

H

n

[F (s)� V (s)v(s)℄ ds: (3.3.18)
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A diret appliation of the weighted Strihartz estimates (3.3.8) gives

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2 + C

0

kw

1�

2

q

0

0

V vk

L

p

0

0

J

L

q

0

0

+ C

0

kw

1�

2

q

0

Fk

L

~p

0

J

L

~q

0

(3.3.19)

for all admissible (p; q), (p

0

; q

0

), (~p; ~q). Now, by H�older's inequality we have

kw

1�

2

q

0

0

V vk

L

p

0

0

J

L

q

0

0

� kw

1�

2

q

0

0

�

2

n

V k

L

r

J

L

s

kw

2

n

vk

L

2

J

L

2n

n�2

and this gives

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2
+C

0

kw

�

2

s

V k

L

r

J

L

s

kw

2

n

vk

L

2

J

L

2n

n�2

+C

0

kw

1�

2

q

0

Fk

L

~p

0

J

L

~q

0

(3.3.20)

provided we hoose p

0

; q

0

suh that

1

p

0

=

1

2

�

1

r

;

1

q

0

=

n+ 2

2n

�

1

s

:

Indeed, our hoie gives in partiular (see the weight for V )

1�

2

q

0

0

�

2

n

= �

2

s

:

Note that

1

p

0

+

n

2q

0

=

1

2

+

n+ 2

4

�

�

1

r

+

n

2s

�

�

1

2

+

n+ 2

4

� 1 �

n

4

by our assumptions on r; s, and moreover

r 2 [2;1[ =) p

0

2 [2;1[

so that our hoie of p

0

; q

0

always gives an admissible pair in the ase under

onsideration.

In partiular, hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)), we obtain

kw

1�

2

q

�(v)k

Z

� C

0

kfk

L

2
+C

0

kw

�

2

s

V k

L

r

J

L

s

kvk

Z

+ C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

(3.3.21)

Thus �(v) belongs to all the admissible weighted spaes L

p

J

L

q

, and to

prove that �(v) belongs to Z it remains only to show that u is ontinuous

with values in L

2

. But this is an immediate onsequene of the following

simple remark:

Remark 3.3.4. Let G be suh that w

1�

2

b

0

G(t;
) 2 L

a

0

J

L

b

0

with (a; b) admis-

sible. Then the funtion

~w(t;
) =

Z

t

0

e

i(t�s)�

H

n

G(s) ds
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belongs to C

J

L

2

. Indeed, this is ertainly true if we know in addition that G

is a smooth funtion, ompatly supported in 
 for eah t. If we approximate

G by a sequene of suh funtions G

j

so that w

1�

2

b

0

G

j

onverges to w

1�

2

b

0

G

in the L

a

0

J

L

b

0

norm, the Strihartz estimates imply that the orresponding

funtions w

j

onverge in L

1

L

2

, whene the laim follows.

We have thus onstruted a mapping � : Z ! Z. Assume now the

length Æ of the interval J is hosen so small that

C

0

kw

�

2

s

V k

L

r

J

L

s

�

1

2

; (3.3.22)

this is ertainly possible sine r < 1. With this hoie we obtain imme-

diately two onsequenes: �rst of all, the mapping � is a ontration on Z

and hene has a unique �xed point v(t;
) whih is the required solution;

seond, v satis�es

kw

1�

2

q

vk

L

p

J

L

q

� C

0

kfk

L

2 +

1

2

kw

1�

2

q

vk

L

p

J

L

q

+ C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

(3.3.23)

whene we obtain

kw

1�

2

q

vk

L

p

J

L

q

� 2C

0

kfk

L

2
+ 2C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

(3.3.24)

It is lear that the above argument applies on any subinterval J =

[t

0

; t

1

℄ � I on whih a ondition like (3.3.22) holds; of ourse, we will obtain

an estimate of the form

kw

1�

2

q

vk

L

p

J

L

q

� 2C

0

kv(t

0

)k

L

2
+ 2C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

: (3.3.25)

Notie also that (3.3.25) implies in partiular

kw

1�

2

q

v(t

1

)k

L

2
� 2C

0

kv(t

0

)k

L

2
+ 2C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

: (3.3.26)

Now we an partition the interval I (bounded or unbounded) in a �-

nite number of subintervals on whih ondition (3.3.22) holds. Applying

indutively the estimates (3.3.25) and (3.3.26) we easily obtain (3.3.13).

The last remark onerning the onservation of energy an be proved by

approximation as follows: let V

j

(t;
) be a sequene of real valued smooth

potentials, ompatly supported in 
, and let v

j

be the orresponding solu-

tions; then the di�erenes w

j

= v � v

j

satisfy (in suitable integral sense)

i�

t

w

j

��

H

n

w

j

+ V w

j

= (V � V

j

)v

j

� F

j

:

Now we observe that the smooth solutions v

j

have a onserved energy; more-

over, we an hoose the approximating potentials V

j

in suh a way that

w

�

2

s

V

j

they onverge to w

�

2

s

V in L

r

I

L

s

and their Strihartz onstants do
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not exeed the above onstruted onstant for V . Indeed, if we an partition

I in a �nite set of subintervals satisfying (3.3.22), we an hoose exatly the

same subintervals for eah V

j

provided we onstrut V

j

by a onvolution

with standard molli�ers, so that their Lebesgue norm does not inrease. In

onlusion, the v

j

satisfy uniform Strihartz estimates, and this implies that

the nonhomogeneous terms F

j

= (V � V

j

)v

j

tend to 0 in the (dual) admis-

sible spaes, by estimates idential to the above ones. Thus in partiular

w

j

! 0 in L

1

L

2

and this shows that also v(t;
) satis�es the onservation

of energy.

3.3.4 Case B: r 2 [1; 2℄

The method in this ase is quite similar to the above one, but instead of

(3.3.19) we use the estimate

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2
+ C

0

kw

�

2

s

V vk

L

r

J

L

2s

s+2

+ C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

(3.3.27)

where (p; q) and (~p; ~q) are arbitrary admissible pairs, while the pair (r; 2s=(s+

2)) is the dual of (r

0

; 2s=(s� 2)) and this last pair is admissible sine

1

r

0

+

n

2

�

s� 2

2s

=

n

2s

+

n

2

�

s� 2

2s

=

n

4

where we have used the assumption 1=r + n=(2s) = 1; notie also that

r 2 [1; 2℄ and hene 2s=(s+ 2) 2 [1; 2℄ too.

Thus by H�older's inequality we obtain

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2 +C

0

kw

�

2

s

V k

L

r

J

L

s

kvk

L

1

J

L

2 +C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

(3.3.28)

and hoosing (p; q) = (1; 2) or (2; 2n=(n � 2)) and proeeding as above we

arrive at

k�(v)k

Z

� C

0

kfk

L

2 +

1

2

kvk

Z

+ C

0

kw

1�

2

~q

0

Fk

L

~p

0

J

L

~q

0

: (3.3.29)

>From this point on, the proof is idential to the �rst ase.

3.3.5 Case C: (r; s) = (1; n=2)

In the last ase we assume the potential to be small in the following sense:

kw

�

4

n

V k

L

1

L

n

2

< �:

The proof is similar to Case A, with the same hoie of the indies; we obtain

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2
+C

0

kw

�

4

n

V k

L

1

J

L

n

2

kw

2

n

vk

L

2

J

L

2n

n�2

+C

0

kw
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2

q

0

Fk

L

~p

0

J

L

~q

0

(3.3.30)
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and by the smallness assumption we an write

kw

1�

2

q

�(v)k

L

p

J

L

q

� C

0

kfk

L

2 + C

0

�kw

2

n

vk

L

2

J

L

2n

n�2

+ C

0

kw

1�

2

q

0

Fk

L

~p

0

J

L

~q

0

:

(3.3.31)

Choosing (p; q) = endpoint we easily onlude the proof of the Theorem.

3.3.6 Proof of Theorem 3.3.2

We begin by the ritial ase  = 1+ 4=n. We de�ne �(v) as the solution u

of the Cauhy problem

(

i�

t

u+�

H

n

u+ V (t;
)u = g(
; v);

u(0;
) = f(
) radial:

(3.3.32)

By Theorem 3.3.1 the following weighted Strihartz estimate holds

kw

1�

2

q

uk

L

p

(I;L

q

)

� Ckfk

L

2
+ Ckw

1�

2

~q

0

g(
; v)k

L

~p

0

(I;L

~q

0

)

(3.3.33)

with p; q; ~p; ~q as above. By (3.3.15) we have

kw

1�

2

q

uk

L

p

(I;L

q

)

� Ckfk

L

2
+ Ckw

1�

2

~q

0

+

4

n

jvj



k

L

~p

0

(I;L

~q

0

)

and we obtain that

kw

1�

2

q

uk

L

p

(I;L

q

)

� Ckfk

L

2 + Ckw

�

vk



L

~p

0



(I;L

~q

0



)

(3.3.34)

where

� =

1



�

1�

2

~q

0

+

4

n

�

:

We have to require the admissibility of ouples (p; q) and (~p; ~q); moreover we

must hoose ~p, ~q in suh a way that the last norm in the above inequality

is the same as the norm at the left hand side. We an express all these

onditions by the following system:

8

>

>

>

>

<

>

>

>

>

:

~p

0

 = p;

~q

0

 = q;

1

p

+

n

2q

=

n

4

; p; ~p 2 [2;1℄

1

~p

+

n

2~q

=

n

4

; q; ~q 2 [2;

2n

n�2

℄;

(3.3.35)

i.e.

1

~p

+

n

2~q

= 1�



p

+

n

2

(1�



q

) = 

n

4

+ 1�

n

2

=

n

4

: (3.3.36)

Now, if we know that

 = 1 +

4

n
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we see that we an hoose admissible ouples (p; q) and (~p; ~q) as above.

Moreover, if we substitute in the de�nition of � the above relations, we

obtain

� =

1



�

1 +

4

n

�

2

~q

0

�

= 1�

2

q

and thus we have proved that � maps the Banah spae X with norm

kvk

X

:= kw

1�

2

q

vk

L

p

(I;L

q

)

into itself.

We show now that � is a ontration on the spae X. Let v

1

; v

2

2 X

suh that �(v

i

) = u

i

; i = 1; 2; then we an apply the weighted Strihartz

estimate to the di�erene v

1

� v

2

and we get the following:

ku

1

� u

2

k

X

� kw

1�

2

~q

0

(jv

1

j



� jv

2

j



)k

L

~p

0

(I;L

~q

0

)

:

By (3.3.16) we have

� kw

1�

2

~q

0

+

4

n

jv

1

� v

2

j(jv

1

j

�1

+ jv

2

j

�1

)k

L

~p

0

(I;L

~q

0

)

and as before we obtain

ku

1

� u

2

k

X

� kv

1

� v

2

k

X

k(jv

1

j+ jv

2

j)k

�1

X

: (3.3.37)

If we assume now that v

i

2 X suh that kv

i

k

X

< ", with " small enough,

and also that kfk

L

2
< Æ, by (3.3.34) we note that

kuk

X

� CÆ + C"



= CÆ + C"("

�1

) < ";

provided "; Æ are suh that C"

�1

<

1

2

and CÆ <

"

2

. We have also

ku

1

� u

2

k

X

� kv

1

� v

2

k

X

C2"

�1

�

1

2

kv

1

� v

2

k

X

provided " is so small that 2C"

�1

<

1

2

. Thus, if initial data are small

i.e. kfk

L

2
< Æ, the map � is a ontration and this implies that there

exists a unique solution u(t;
) of the Cauhy problem (3.3.2) suh that

w

1�

2

q

u(t;
) 2 L

p

(I;L

q

) with a admissible ouple (p; q) when  = 1+

4

n

: As

observed above one see easily that this is the unique solution in u(t;
) 2

C(R;L

2

) with radial initial data in L

2

:

In the subritial ase, i.e., when  < 1 +

4

n

, we proeed as above and

using the H�older inequality in time on I = [0; T ℄ we an prove that � is a

map from X

M

:= fw

1�

2

q

v 2 L

p

(I;L

q

) : kw

1�

2

q

vk

L

p

(I;L

q

)

� Mg into itself,

provided the time T is small enough. Indeed, hoosing the indies as above

and applying H�older's inequality in time we have

kw

1�

2

q

uk

L

p

(I;L

q

)

� Ckfk

L

2
+CT

�

kw

1�

2

q

vk



L

p

(I;L

q

)

; � > 0 (3.3.38)
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for some � > 0. We must to prove that � is a ontration on the spae X

M

.

By hypothesis (ii) we obtain that

ku

1

� u

2

k

X

M

� Ckv

1

� v

2

k

X

M

T

�

(kv

1

k

�1

X

M

+ kv

2

k

�1

X

M

) (3.3.39)

Let v

i

2 X

M

and let kfk 2 L

2

, by (3.3.38) we note that

kuk

X

M

� Ckfk

L

2
+ CM



T

�

= Ckfk

L

2
+ CM(M

�1

) < M;

providedM is so large that C

M

2

� Ckfk

2

L

and T is so small that CT

�

M

�1

<

1

2

. Thus we have also

ku

1

� u

2

k

X

M

� kv

1

� v

2

k

X

M

C2T

�

M

�1

�

1

2

kv

1

� v

2

k

X

M

if 2CT

�

M

�1

<

1

2

: In onlusion, if M � 2Ckfk

L

2
and T � (

1

4CM

�1

)

1

�

,

then the map � : X

M

! X

M

is a ontration and as onsequene there exists

a unique solution u 2 X

M

to Cauhy problem (3.3.17) when  < 1 +

4

n

for

radial initial data large f 2 L

2

. Notie that T depends only by L

2

-norm of

initial data i.e.

T =

 

1

8C

2

kfk

�1

L

2

!

1

�

= T (kfk

L

2
);

and thanks to the onservation of harge, i.e., ku(t)k

L

2
� kfk

L

2
for all t,

we an iterate the above argument starting at t = T and we an solve up

to time 2T , then up to time 3T , and so on. In other words, the solution

exists for all times. Thus we have proved the global existene of a unique

solution to Cauhy problem (3.3.17) for large radial initial data in L

2

when

 < 1 +

4

n

.

3.4 Damek-Rii spaes

In this setion we study the Sh�rodinger and wave equations in the more

general ontext of Damek-Rii spaes, also known as Harmoni AN groups;

these spaes have been studied by several authors in the past 15 years ([4℄,

[89℄, [11℄, [10℄, [29℄, [30℄, [33℄, [35℄, [36℄, [87℄, [100℄ and others). As Rie-

mannian manifolds, these solvable Lie groups inlude all symmetri spaes

of nonompat type and rank one, namely the hyperboli spaes H

n

(R),

H

n

(C ), H

n

(H ), H

2

(O ), but most of them are not symmetri, thus providing

numerous ounterexemples to the Linhnerowiz onjeture [35℄. This was

impliitely formulated in 1944 by Linhnerowiz, who showed that every

harmoni manifold of dimension at most 4 is a symmetri spae, leaving

open the question if this assertion remains true in every dimension. Though

in 1990, Szabo proved it true for any simply onneted ompat harmoni

manifold ([99℄), in 1992, Ewa Damek and Fulvio Rii found a large lass
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of non-ompat harmoni manifolds whih are not symmetri spaes. More

details on Damek-Rii spaes are ontained in the following setion.

Our goal here is to extend the Strihartz estimates for the radial Shr�odinger

and wave equations on Damek-Rii spaes.

The idea of the proof is to transform the equation into a new perturbed

one with a suitable potential V on R

n

; then, using the results of the pertur-

bative theory of Burq, Planhon, Stalker and Tahvildar-Zadeh [19℄, we an

obtain the Strihartz estimates. More preisely, the radial operator ��

M

an be redued to an operator of the form ��+

e

V , where the potential

e

V

has a ritial deay � jxj

�2

and an be treated by the methods of [21℄.

It is interesting to note that we obtain the results on these nonompat

manifolds as appliation of the perturbative theory on R

n

, thus avoiding the

diÆulties aused by the geometry of these spaes.

Our �rst result onerns the Shr�odinger equation on S; we an prove

the following weighted Strihartz estimates

kw

q

uk

L

p

(R;L

y

(S))

� Ckw

2

u

0

k

L

2

(S)

+Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

;

with the weight

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

:

Also for the wave equation on S we are able to prove the following

weighted Strihartz estimates

kw

q

uk

L

p

(R;L

q

(S))

� C







u

0

�







H



(S)

+ C







u

1

�







H

�1

(S)

+Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

;

with the weights

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

;

and

�(r) = r

�+

1

2

(sinh r)

�(�+

1

2

)

(osh r)

�(�+

1

2

)

:

3.4.1 Harmoni analysis assoiated to L

�;�

Jaobi operator

In this setion we reall the spherial harmoni analysis on Damek-Rii

spaes S = AN , developed in [36℄ ([4℄, [89℄), in aord with the general

framework of Jaobi analysis [71℄.

First of all we reall briey the struture of these spaes. Let n be a

two-step nilpotent Lie algebra equipped with an inner produt h ; i. Denote

by z the enter of n and by v the orthogonal omplement of z in n. So that

n = v� z; [v; v℄ � z; [v; z℄ = 0 and [z; z℄ = 0:
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For Z 2 z let J

Z

: v! v be the linear map de�ned by

hJ

Z

X ; Y i = hZ ; [X;Y ℄i; (3.4.1)

for every X;Y 2 v. If, for every Z 2 z, X 2 v,

J

2

Z

X = �kZk

2

X; (3.4.2)

where k � k is the norm de�ned by an inner produt, then n is a algebra of

Heisenberg type. Denoting by m = dimv and k = dim z, for k � 1 there

exists a algebra of Heisenberg type if and only if the possible dimensions

m; k are the values in the following table:

k 8a+ 1 8a+ 2 8a+ 3 8a+ 4 8a+ 5 8a+ 6 8a+ 7 8a+ 8

m 2

4a+1

b 2

4a+2

b 2

4a+3

b 2

4a+4

b 2

4a+5

b 2

4a+6

b 2

4a+7

b 2

4a+8

b

where a � 0 and b � 1 are arbitrary integers. In partiular m is always

even.

The orresponding (onneted) and simply onneted Lie groups N are

alled groups of Heisenberg type. We shall identify them with their Lie

algebra n via the exponential map exp : n ! N . Thus multipliation in

N � n reads

(X;Z) � (X

0

; Z

0

) = (X +X

0

; Z + Z

0

+

1

2

[X;X

0

℄): (3.4.3)

We will not develop here the geometry and the analysis onN ; see for example

[10℄ hapter 2; [36℄ hapter 3. Consider ([11℄, [10℄, [29℄, [30℄, [33℄, [34℄, [35℄,

[36℄, [100℄) the semi-produt S = N � R

�

+

de�ned by

(X;Z; a)(X

0

; Z

0

; a

0

) = (X + a

1

2

X

0

; Z + aZ

0

+

1

2

a

1

2

[X;X

0

℄: (3.4.4)

S is a solvable (onneted and) simply onneted Lie group, with Lie algebra

s = v� z� R and Lie braket

[(X;Z; `); (X

0

; Z

0

; `

0

)℄ = (

1

2

`X

0

�

1

2

`

0

X; `Z

0

� `

0

Z + [X;X

0

℄; 0): (3.4.5)

S is equipped with left-invariant Riemnnian metri indued by

h(X;Z; `); (X

0

; Z

0

; `

0

)i = hX;X

0

i+ hZ;Z

0

i+ ``

0

(3.4.6)

on s. The assoiated left-invariant (Riemannian-Haar) measure on S is given

by

a

�Q

dXdZ

da

a

: (3.4.7)

Here Q =

m

2

+ k is the homogeneous dimension of N . Thus we have the

following de�nition.



124

De�nition 3.4.1. We all Damek-Rii spaes the (onneted and) simply

onneted Lie groups S = AN for whih Lie algebra is s = n � R with the

Lie braket (3.4.5), provided with left-invariant Riemnnian metri indued

by inner produt (3.4.6) on s.

Most Riemannian symmetri spaes G=K of nonompat type and rank

one �t into this framework. Aording to the Iwasawa deomposition G =

NAK, they an be realized indeed as S = NA = AN , with A = R. N is

abelian for real hyperboli spaes G=K = H

n

(R) and of Heisenberg type in

the other ases G=K = H

n

(C ); H

n

(H ); H

2

(O ). Notie that these lassial

examples form only a very small sublass of harmoni AN group, as an be

seen by looking at the dimension:

H

n

(R) H

n

(C ) H

n

(H ) H

2

(O )

k [0℄ 1 3 4

m [n� 1℄ 2(n� 1) 4(n� 1) 8

In the ball model B(s), the geodesis passing trough the origin are the

diameters, the geodesi distane to the origin is given by

r = d(x

0

; 0) = log

1 + kx

0

k

1� kx

0

k

; i:e: � = kx

0

k = tanh

r

2

; (3.4.8)

and the Riemannian volume writes

dV = 2

m+k

(sinh

r

2

)

m+k

(osh

r

2

)

k

drd�; (3.4.9)

where d� denotes the surfae measure on the unit sphere �B(s) in s and

n = dimS = m + k + 1. In partiular, the volume density in normal

oordinates at the origin, and by translation at any point, is a purely radial

funtion, whih means that S is a harmoni manifold ([35℄, [99℄). Like all

harmoni manifolds, S is an Einstein manifold. A lenghty omputation

yields the atual onstant:

Rii urvature = �(

m

4

+ k)� Riemannian metri: (3.4.10)

The setional urvature, as far as it is onerned, is nonpositive, with min-

imum = �1 ([10℄). Notie that it may vanish, ontrairly to the hyperboli

spae ase.

Now, we reall the prinipal tehniques of harmoni analysis on these

spaes. The ommutativity of the onvolution on bi-K-invariant objets

on G is basilar for the harmoni analysis on symmetri spaes G=K. If
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one replae bi-K-invariane by radiality, a similar phenomenum appears on

general S. As established in [36℄, for the onvolution on S:

(u � v)(x) =

Z

S

u(y)v(y

�1

x)dy;

the radial integrable funtions on S form a ommutative Banah algebra

L

1

(S)

℄

. We note that for distribution, invariant di�erential operators, : : :

radiality is de�ned by means of an averaging operator over spheres, whih

an be written

f

℄

(x

0

) =

�(

n

2

)

2�

n

2

Z

�B(s)

d�f(��)

in the ball model and generalizes K averages on rank one symmetri spaes

G=K. The algebra of invariant di�erential operators on S whih are radial is

a polynomial algebra with a single generator, the Laplae-Beltrami operator

L.

De�nition 3.4.2. We de�ne a spherial funtion on S as a radial eigen-

funtion ' of L (and thus automatially analyti), normalized by '(0) = 1.

The radial part (in geodesi polar oordinates) of the Laplae-Beltrami

operator L on S writes

radL =

�

2

�s

2

+

�

m+ k

2

oth

s

2

+

k

2

tanh

s

2

�

�

�s

: (3.4.11)

By substituting r =

s

2

, 4radL beomes the Jaobi operator [71℄

radL =

�

2

�r

2

+ f(2�+ 1) oth r + (2� + 1) tanh rg

�

�r

; (3.4.12)

with indies � =

m+k+1

2

and � =

k�1

2

, � > � > �

1

2

. For every � 2 C there

exists a unique radial C

1

funtion '

�

suh that

L'

�

= �(�

2

+ �

2

)'

�

and '(0) = 1: (3.4.13)

Note that '

�

= '

�

if and only if � = ��. Moreover

'

�

(r) =

2

F

1

(�� i�; �+ i�;

n

2

;� sinh

2

r

2

); (3.4.14)

where

2

F

1

is the hypergeometri funtion

2

F

1

(a; b; ; z) =

1

X

k=0

(a)

k

(b)

k

()

k

z

k

k!

; (3.4.15)

with (a)

0

= 1, (a)

k

= a(a + 1)

_

(a + k � 1) if k � 1; the funtion

2

F

1

is

extended analytial to C n[1;1℄.
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For Re(i�) = �Im� > 0, we have the following asymptoti behaviour:

'

�

(x) � (�)e

i��

Q

2

)r

as r = r(x)! +1; (3.4.16)

where (�) =

�(m+k)

�(

m+k

2

)

�(i2�)

�(i2�+

m

2

)

�(i�+

m

4

)

�(i�+

m

4

+

k

2

)

: Notie that spherial funtions on

S are Jaobi funtions:

'

�

(r) = �

(�;�)

2�

(

r

2

):

The spherial Fourier transform is de�ned by

~

f(�) =

Z

S

dx'

�

(x)f(x) =

2

n

�

n=2

�(n=2)

Z

+1

0

dr(sinh

r

2

)

m+k

(osh

r

2

)

k

'

�

(r)f(r);

(3.4.17)

for radial funtions f = f(x) on S, whih we shall identify with funtions

f = f(r) of the geodesi distane to the origin r = d(x; 0) 2 [0;+1). The

spherial Fourier transform onides with the Jaobi transform:

~

f(�) = 2

2�k

�

n=2

�(

n

2

)

[

f(2�)

(�;�)

(2�):

3.4.2 Weighted Strihartz estimates for the Shr�odinger equa-

tion on S

We obtain the following result.

Theorem 3.4.1. Assume n > 3. Let u

0

and F be two funtions radial in

x 2 S, suh that w

2

u

0

2 L

2

(S) and w

eq

0

F 2 L

~p

0

(R;L

~q

0

(S)). Consider the

Cauhy problem

(

i�

t

u+ L

�;�

u = F (t; x);

u(0; x) = u

0

(r);

(3.4.18)

then for all

n

2

-admissible ouples (p; q) and (~p; ~q), i.e. suh that

1

p

+

n

2q

=

n

4

; p 2℄2;1℄; and q 2

�

2;

2n

n� 2

�

; (3.4.19)

the following weighted Strihartz estimates holds

kw

q

uk

L

p

(R;L

q

(S))

� Ckw

2

u

0

k

L

2

(S)

+ Ckw

eq

0

Fk

L

~p

0

(R;L

~q

0

(S))

; (3.4.20)

with the weight

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

; (3.4.21)

and � =

m+k�1

2

; � =

k�1

2

; � � � � �

1

2

:
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In the speial ase � =

1

2

, the spae S is the three-dimensional real

hyperboli spae H

3

(R), the following weighted dispersive estimate holds

�

sinh r

r

�

ju(t; x)j �

C

t

3

2







u

0

�

r

sinh r

�







L

1

(H

3

(R))

: (3.4.22)

Proof. Let L

�;�

be the Jaobi operator de�ned as

L

�;�

= �

2

r

+B(r)�

r

+ �

2

; (3.4.23)

where we have set

B(r) = (2�+ 1) oth r + (2� + 1) tanh r (3.4.24)

and

� = (�+ � + 1); � =

m+ k � 1

2

; � =

k � 1

2

; � � � � �

1

2

: (3.4.25)

Notie that (3.4.23) inludes the radial part of the Laplae-Beltrami operator

on hyperboli spaes and more generally on Damek-Rii spaes S de�ned

above. Reall that the radial part of the Laplae operator in R

n

is

� = �

2

r

+

n� 1

r

�

r

:

The idea of the proof is to onstrut a transformation whih maps the Jaobi

operator on S into the radial part of the Laplae operator de�ned on R

n

by

imposing the following

u(t; r) = �(r)v(t; r): (3.4.26)

We have then

L

�;�

u(t; r) = �

2

r

u(t; r) +B(r)�

r

u(t; r) + �

2

u(t; r) =

�

2

r

(�(r)v(t; r)) +B(r)�

r

(�(r)v(t; r)) + �

2

�(r)v(t; r) =

�(r)

�

�

2

r

v(t; r) +

�

2

�

0

(r)

�(r)

+B(r)

�

�

r

v(t; r) +

�

�

00

(r)

�(r)

+B(r)

�

0

(r)

�(r)

+ �

2

�

v(t; r)

�

:

(3.4.27)

The ruial point is imposing the following ondition

2

�

0

(r)

�(r)

+B(r) =

2�+ 1

r

; (3.4.28)

and solving this di�erential ordinary equation we obtain

�(r) = r

�+

1

2

(sinh r)

�(�+

1

2

)

(osh r)

�(�+

1

2

)

: (3.4.29)

Replaing (3.4.29) in the oeÆient of v(t; r) in (3.4.27), after some ompu-

tations, we obtain the potential

V (r) =

�

�

2

�

1

4

�

1

r

2

�

B

0

(r)

2

�

B

2

(r)

4

+ �

2

:
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Thus, using formula (3.4.24) we ahieve

V (r) =

�

�

2

�

1

4

�

1

r

2

�

�

�

2

�

1

4

�

oth

2

r�

�

�

2

�

1

4

�

tanh

2

r+

�

�

2

+ �

2

�

1

2

�

:

(3.4.30)

Notie that V 2 C

1

[0;1) and it tends to zero as r ! 1. As a result, we

have obtained the perturbed Shr�odinger equation

i�

t

v +�v �

e

V v = 0 (3.4.31)

on R

2�+2

, where

e

V = �V . Now, we aim to study the behavior of

e

V . It is

not diÆult to hek that our potential satis�es the inequality

e

V (r) > �

a

r

2

; (3.4.32)

where a =

(n�2)

2

4

. This allows us to apply the result of Burq, Planhon,

Stalker and Tahvildar-Zadeh (see [19℄), where they prove Strihartz esti-

mates for the Shr�odinger and wave equations perturbed with the potential

satisfying inequality (3.4.32). Thus, if we onsider the Cauhy problem

(

i�

t

v +�v �

e

V v =

F (t;r)

�(r)

;

v(0; x) = v

0

;

(3.4.33)

with radial initial data, we obtain the following Strihartz estimates

kvk

L

p

(R;L

q

(R

2�+2

))

� Ckv

0

k

L

2

(R

2�+2

)

+ C









F

�









L

ep

0

(R;L

eq

0

(R

2�+2

))

(3.4.34)

If we put (3.4.26) we obtain the following inequality







u

�







L

p

(R;L

q

(R

2�+2

))

� C







u

0

�







L

2

(R

2�+2

)

+ C









F

�









L

ep

0

(R;L

eq

0

(R

2�+2

))

: (3.4.35)

Writing expliitely the left hand one has







u

�







L

p

(R;L

q

(R

2�+2

))

=

 

Z

R

�

Z

R

2�+2

ju(t; x)�(x)

�1

j

q

dx

�

p

q

dt

!

1

p

=

replaing (3.4.29) into the weight � in polar oordinates we have

=

0

�

Z

R

 

Z

S

n�1

Z

R

�

�

�

�

�

u(t; r; !)

�

sinh r

r

�

�+

1

2

(osh r)

�+

1

2

�

�

�

�

�

q

r

n�1

drd!

!

p

q

dt

1

A

1

p

;
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where � =

m+k�1

2

; � =

k�1

2

; � � � � �

1

2

; for simpliity let us onsider

only the radial omponent

=

0

�

Z

R

 

Z

R

�

�

�

�

�

u(t; r)

�

sinh r

r

�

m+k

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

�

�

�

�

�

q

sinh r

m+k

osh r

k

dr

!

p

q

dt

1

A

1

p

;

sine on the Damek-Rii spaes S the Riemannian volume is

dV = 2

m+k

sinh r

m+k

osh

k

drde!;

where de! denotes the surfae measure on the unit sphere �B(s) in s and

n = dimS = m+ k + 1; we obtain

= C

0

�

Z

R

 

Z

S

�

�

�

�

�

u(t; r)

�

sinh r

r

�

m+k

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

�

�

�

�

�

q

dr

!

p

q

dt

1

A

1

p

;

thus denoting w

q

(r) our weight

�

sinh r

r

�

m+k

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

we have

= Ckw

q

uk

L

p

(R;L

q

(S))

:

In an analogous way, writing expliitly the right hand side of (3.4.35), by

similar omputations we onlude the proof of all weighted Strihartz esti-

mates in Theorem 3.4.1.

In the speial ase � =

1

2

our Damek-Rii spae is the real hyperboli

spae of dimension threeH

3

(R) when � = �

1

2

. In this asem = 2 and k = 0.

To prove the weighted dispersive estimate (3.4.42) we proeed as above; we

notie that after our transformation (3.4.26) the potential (3.4.30) beomes

V (r) = 0;

thus we obtain a linear Cauhy problem

(

i�

t

v +�v = 0;

v(0; x) = v

0

;

(3.4.36)

whih satis�es the dispersive estimate

kv(t)k

L

1

(R

3

)

�

C

t

3=2

kv

0

k

L

1

(R

3

)

:

Using the inverse transformation and omputing as before we prove the

following

�

sinh r

r

�

ju(t; x)j �

C

t

3

2







r

sinh r

u

0







L

1

(H

3

(R))

;

and this onludes the proof of Theorem 3.4.1.
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3.4.3 Weighted Strihartz estimates for the Wave equation

on S

Theorem 3.4.2. Assume n > 3. Let u

0

and F be two funtions radial in

x 2 S, suh that

u

0

�

2 H



(S),

u

1

�

2 H

�1

(S) and w

eq

0

F 2 L

~p

0

(R;L

~q

0

(S)).

Consider the Cauhy problem

8

>

<

>

:

��

2

t

u+ L

�;�

u = F (t; x);

u(0; x) = u

0

(r);

u

t

(0; x) = u

1

(r);

(3.4.37)

then for all

n�1

2

-admissible ouples (p; q) and (~p; ~q), i.e. suh that

1

p

+

n� 1

2q

�

n� 1

4

; p 2℄2;1℄; and q 2

�

2;

2(n� 1)

n� 3

�

; (3.4.38)

the following weighted Strihartz estimates holds
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+ Ckw

eq

0
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L
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0

(R;L

~q

0
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;

(3.4.39)

with the weights

w

q

(r) =

�

sinh r

r

�

(m+k)

2

(1�

2

q

)

(osh r)

k

2

(1�

2

q

)

; (3.4.40)

and

�(r) = r

�+

1

2

(sinh r)

�(�+

1

2

)

(osh r)

�(�+

1

2

)

: (3.4.41)

In the speial ase � =

1

2

, the spae S is the three-dimensional real

hyperboli spae H

3

(R), the following weighted dispersive estimate holds

�

sinh r

r

�

ju(t; x)j �

C

t







r

sinh r

u

1







B

1;1

(H

3

(R))

: (3.4.42)

The proof is based again on the hange of variables (3.4.26), (3.4.29)

whih redues Jaobi operator to a standard Laplae operator perturbed

with a potential. Sine the result of [19℄ are valid also for the wave equation,

we an proeed exatly as in the proof of Theorem 3.4.1.



Chapter 4

Nonlinear Shr�odinger

equations on ompat

manifolds with positive

urvature

4.1 Introdution

We have seen that, on a manifold, negative urvature has the e�et of im-

proving the dispersive properties of evolution equations. In this hapter we

examine a model situation when the urvature is positive, by studying some

nonlinear Shr�odinger equations on the four dimensional sphere S

4

; we also

onsider the more general ase of ompat four-dimensional manifolds. In

ontrast with the negative urvature ase, the positive urvature tends to

destroy the deay properties of the equation, and in general the results both

from the point of view of deay and regularity are worse than in the at

ase.

In partiular, the situation for ompat manifolds has been investi-

gated in a reent series of papers ( [22℄, [24℄, [25℄, see also [26℄, [46℄) by

Burq-G�erard-Tzvetkov. They studied the Cauhy problem for nonlinear

Shr�odinger equations (NLS) on Riemannian ompat manifolds, generaliz-

ing the work of Bourgain on tori ([14℄, [15℄). In [22℄, Strihartz estimates

with frational loss of derivatives were established for the Shr�odinger group.

They led to global wellposedness of NLS on surfaes with any defousing

polynomial nonlinearity. On three-manifolds, these estimates also provided

global existene and uniqueness for ubi defousing NLS, but they failed to

prove the Lipshitz ontinuity of the ow map on the energy spae. These

results were improved in [24℄, [25℄ for spei� manifolds suh as spheres, tak-

ing advantage of new multilinear Strihartz inequalities for the Shr�odinger

group (see also [23℄). In partiular, on suh three-manifolds the Lipshitz
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ontinuity and the smoothness of the ow map on the energy spae were

established for ubi NLS, as well as global existene on the energy spae

for every defousing subquinti NLS.

However, none of the above methods provided global wellposedness results in

the energy spae for NLS on four-dimensional manifolds. This is in strong

ontrast with the Eulidean ase (see [50℄, [65℄, [27℄). The only available

global existene result on a ompat four-manifold seems to be the one

of Bourgain in [15℄, whih onerns defousing nonlinearities of the type

juju and Cauhy data in H

2

(T

4

). Let us disuss briey the reasons of this

diÆulty. On the one hand, Strihartz estimates of [22℄ involve a too large

loss of derivative in four spae dimension ; typially, for ubi NLS, they

lead to loal wellposedness in H

s

for s > 3=2, whih is not suÆient in

view of the energy and L

2

onservation laws. Moreover, these estimates are

restrited to L

p

t

L

q

x

norms with p � 2 and the admissibility ondition

1

p

+

2

q

= 1 ;

so that the analysis does not improve when the nonlinearity beomes subu-

bi. On the other hand, the analysis based on bilinear Strihartz estimates

is urrently restrited to nonlinearities of ubi type, and on S

4

it only yields

loal wellposedness in H

s

for s > 1. In fat, this obstrution an be made

more preise by ombining two results from [22℄ and [24℄. Indeed, from

Theorem 4 in [22℄, we know that the estimate

Z

2�

0

Z

S

4

je

it�

f (x)j

4

dt dx . kfk

4

H

1=2

(S

4

)

is wrong, whih, by Remark 2.12 in [24℄, implies that the ow map of ubi

NLS annot be C

3

near the Cauhy data u

0

= 0 in H

1

(S

4

).

The goal of this setion is to provide further results on four-dimensional

manifolds. We shall study two types of NLS equations. In setion 4.2.1, we

study NLS with the following nonloal nonlinearity,

(

i�

t

u+�u =

�

(1��)

��

juj

2

�

u;

u(0; x) = u

0

(x)

(4.1.1)

where � > 0. Notie that the homogeneous version of this nonlinearity on

the Eulidean spae R

d

reads

�

1

jxj

d�2�

� juj

2

�

u

so that (4.1.1) an be seen as a variant of Hartree's equation on a ompat

manifold. Combining the onservation laws for (4.1.1) with suitable bilinear

estimates, we obtain the following result.
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Theorem 4.1.1. Let (M; g) be a ompat Riemannian manifold of dimen-

sion 4 and let � >

1

2

. There exists a subspae X of C(R;H

1

(M)) suh

that, for every u

0

2 H

1

(M), the Cauhy problem (4.1.1) has a unique global

solution u 2 X. Moreover, in the speial ase M is the four-dimensional

standard sphere M = S

4

, the same result holds for all values � > 0 of the

parameter.

The proof of Theorem 4.1.1 relies on the following quadrilinear estimates

sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(m(N

1

; � � � ; N

4

))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

for every � 2 C

1

0

(R), for every s

0

< 1 and for f

1

; f

2

; f

3

; f

4

satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4:

Here and in the sequel m(N

1

; � � � ; N

4

) denotes the produt of the smallest

two numbers among N

1

; N

2

; N

3

; N

4

. Moreover u

j

and f

j

are linked by

u

j

(t; x) = S(t)f

j

(x); j = 1; 2; 3; 4;

where S(t) = e

it�

: Notie that, ompared to the multilinear estimates used

in [25℄, a frequeny variable � is added in the equation. It would be interest-

ing to know if the smallest value of � for whih these estimates (and hene

Theorem 4.1.1) are valid depends or not on the geometry of M .

In Setion 4.2.2, we ome bak to power nonlinearities. Sine we want to

go below the ubi powers and at the same time we want to use multilinear

estimates, we are led to deal with quadrati nonlinearities. In other words,

we study the following equations,

i�

t

u+�u = q(u); (4.1.2)

where q(u) is a homogeneous quadrati polynomial in u; u

q(u) = au

2

+ bu

2

+ juj

2

:

Notie that a sublass of these equations onsists of Hamiltonian equations

q(u) =

�V

�u

where V is a real-valued homogeneous polynomial of degree 3 in u; u; with

the above notation, this orresponds to  = 2a. In this ase, the following

energy is onserved,

E =

Z

M

jruj

2

+ V (u) dx :
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A typial example is

V (u) =

1

2

juj

2

(u+ u) ; q(u) = juj

2

+

1

2

u

2

:

Notie that this Hamiltonian struture does not prevent from blow up in

general. In the above example, a purely imaginary onstant as Cauhy data

leads to a blow up solution ! Therefore we an only hope for loal-in-time

existene. Our results are the following.

Theorem 4.1.2. If (M; g) is the four-dimensional standard sphere , then the

Cauhy problem (4.1.2) is (loally in time) uniformly well-posed in H

s

zonal

(S

4

)

for every s >

1

2

, where H

s

zonal

(S

4

) denotes the H

s

spae of zonal funtions

relative to some pole ! 2 S

4

: f(x) =

~

f(hx; !i) .

The main tool in the proof of Theorem 4.1.2 is the following trilinear

estimate on linear solutions u

j

(t) = S(t)f

j

,

sup

�2R

�

�

�

�

Z

R

Z

S

4

�(t) e

it�

T ( u

1

(t; x); u

2

(t; x); u

3

(t; x)) dx dt

�

�

�

�

� C (min(N

1

; N

2

; N

3

))

s

0

kf

1

k

L

2

(S

4

)

kf

2

k

L

2

(S

4

)

kf

3

k

L

2

(S

4

)

;

(4.1.3)

for every R-trilinear expression T on C

3

, for every � 2 C

1

0

(R), for every

s

0

> 1=2 and for zonal funtions f

1

; f

2

; f

3

satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3 :

It would be interesting to know whether the above estimate holds with non

zonal funtions for some s

0

< 1 ; this would extend the above theorem to

any �nite energy Cauhy data.

Moreover we give a lassi�ation for all the Hamiltonian quadrati non-

linearities for whih the Cauhy problem assoiated to (4.1.2) has a unique

global solution for suitable small initial data in H

1

zonal

(S

4

).

Corollary 4.1.1. Assume (M; g) is the four-dimensional standard sphere

and  = 2a. Then the following assertions are equivalent.

i) There exists a subspae X of C(R; H

1

zonal

(S

4

)) suh that, for every small

initial data ku

0

k

H

1

zonal

(S

4

)

� ", the Cauhy problem (4.1.2) has a unique

global solution u 2 X.

ii) The parameters a; b satisfy

a

2

a

= b: (4.1.4)

It would be interesting to know whether blowing up solutions exist for

non small data under property (4.1.4).

When property (4.1.4) is not satis�ed, our blowing up solutions are par-

tiularly simple, sine they are solutions of the ordinary di�erential equation
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dedued from (4.1.2) for spae-independent solutions. Another open prob-

lem is of ourse to �nd a wider variety of blowing up solutions for equation

(4.1.2) in this ase.

4.2 Wellposedness via multilinear estimates

The main step of this setion is to prove a result of loal existene in time

for initial data in H

1

(M) using some multilinear estimates assoiated to the

nonlinear Shr�odinger equation, that we will establish in Setion 4.2.2 with

a speial attention to the ase of the sphere. For that purpose we follow

losely the ideas of Burq, G�erard and Tzvetkov ([26℄, [24℄). In those papers,

the authors extended to general ompat manifolds the nonlinear methods

introdued by Bourgain ([14℄, [15℄, [17℄) in the ontext of tori R

d

=Z

d

. Finally,

we ahieve the global wellposedness thanks to the onservation laws.

4.2.1 Well-posedness in Sobolev spaes for the Hartree non-

linearity

In this subsetion we prove that the uniform wellposedness of (4.1.1) on

M an be dedued from quadrilinear estimates on solutions of the linear

equation. Firstly, we reall the notion of wellposedness we are going to

address.

De�nition 4.2.1. Let s 2 R. We shall say that the nonlinear Shr�odinger

equation (4.1.1) is (loally in time) uniformly well-posed on H

s

(M) if, for

any bounded subset B of H

s

(M), there exists T > 0 and a Banah spae

X

T

ontinuously ontained into C([�T; T ℄;H

s

(M)), suh that

i For every Cauhy data u

0

2 B, (4.1.1) has a unique solution u 2 X

T

.

ii If u

0

2 H

�

(M) for � > s, then u 2 C([�T; T ℄;H

�

(M)).

iii The map u

0

2 B 7! u 2 X

T

is uniformly ontinuous.

The following theorem stresses the general relationship between uniform

wellposedness for equation (4.1.1) and a ertain type of quadrilinear esti-

mates.

Theorem 4.2.1. Suppose that there exists C > 0 and s

0

� 0 suh that for

any f

1

; f

2

; f

3

; f

4

2 L

2

(M) satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4; (4.2.1)
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one has the following quadrilinear estimates
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4

))
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kf

1
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(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

u

j

(t) = S(t)f

j

; j = 1; 2; 3; 4;

(4.2.2)

where � 2 C

1

0

(R) is arbitrary, and m(N

1

; � � � ; N

4

) denotes the produt of

the smallest two numbers among N

1

; N

2

; N

3

; N

4

. Then the Cauhy problem

(4.1.1) is uniformly well-posed in H

s

(M) for any s > s

0

.

Proof. The proof follows essentially the same lines as the one of Theorem 3

in [24℄ and relies on the use of a suitable lass X

s;b

of Bourgain-type spaes.

We shall sketh it for the ommodity of the reader. We �rst show that (4.2.2)

is equivalent to a quadrilinear estimate in the spaes X

s;b

. We then prove

the ruial nonlinear estimate, from whih uniform wellposedness an be

obtained by a ontration argument in X

s;b

T

. Sine this spae is ontinuously

embedded in C([�T; T ℄;H

s

(M)) provided b >

1

2

, this onludes the proof of

the loal well posedness result.

Following the de�nition in Bourgain [14℄ and Burq, G�erard and Tzvetkov

[26℄, we introdue the family of Hilbert spaes

X

s;b

(R �M) = fv 2 S

0

(R �M) : (1 + ji�

t

+�j

2

)

b

2

(1��)

s

2

v 2 L

2

(R �M)g

(4.2.3)

for s; b 2 R. More preisely, with the notation

hxi =

p

1 + jxj

2

;

we have the following de�nition :

De�nition 4.2.2. Let (M; g) be a ompat Riemannian manifold, and on-

sider the Laplae operator �� on M . Denote by (e

k

) an L

2

orthonormal

basis of eigenfuntions of ��, with eigenvalues �

k

, by �

k

the orthogonal

projetor along e

k

, and for s � 0 by H

s

(M) the natural Sobolev spae

generated by (I ��)

1

2

, equipped with the following norm

kuk

2

H

s

(M)

=

X

k

h�

k

i

s

k�

k

uk

2

L

2

(M)

: (4.2.4)

Then, the spae X

s;b

(R�M) is de�ned as the ompletion of C

1

0

(R

t

;H

s

(M))

for the norm

kuk

2

X

s;b

(R�M)

=

X

k

kh� + �

k

i

b

h�

k

i

s

2

d

�

k

u(�)k

2

L

2

(R

�

;L

2

(M))

= kS(�t)u(t; �)k

2

H

b

(R

t

;H

s

(M))

;

(4.2.5)

where

d

�

k

u(�) denotes the Fourier transform of �

k

u with respet to the time

variable.
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Denoting by X

s;b

T

the spae of restritions of elements of X

s;b

(R�M) to

℄� T; T [�M , it is easy to prove the embedding

8b >

1

2

; X

s;b

T

� C([�T; T ℄;H

s

(M)): (4.2.6)

Moreover, we have the elementary property

8f 2 H

s

(M); 8b > 0; (t; x) 7! S(t)f(x) 2 X

s;b

T

: (4.2.7)

We next reformulate the quadrilinear estimates (4.2.2) in the ontext of

X

s;b

spaes.

Lemma 4.2.1. Let s 2 R. The following two statements are equivalent:

i) For any f

j

2 L

2

(M); j = 1; 2; 3; 4; satisfying (4.2.1), estimate (4.2.2)

holds;

ii) For any b >

1

2

and any u

j

2 X

0;b

(R �M); j = 1; 2; 3; 4; satisfying

1

p

1��2[N

j

;2N

j

℄

(u

j

) = u

j

;

one has

�

�

�

�

Z

R

Z

M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(m(N

1

; � � � ; N

4

))

s

0

4

Y

j=1

ku

j

k

X

0;b

(R�M)

:

(4.2.8)

Proof. We sketh only the essential steps of the proof of ii) assuming i), sine

we follow losely the argument of Lemma 2.3 in [26℄. The reverse impliation

is easier and will not be used in this paper.

Suppose �rst that u

j

are supported in time in the interval (0; 1) and we

selet � 2 C

1

0

(R) suh that � = 1 on [0; 1℄; then writing u

℄

j

(t) = S(�t)u

j

(t)

we have easily

�

(1��)

��

(u

1

u

2

)u

3

u

4

�

(t) =

1

(2�)

4

Z

R

Z

R

Z

R

Z

R

e

it(�

1

��

2

+�

3

��

4

)

� (1��)

��

(S(t)bu

℄

1

(�

1

)S(t)bu

℄

2

(�

2

))S(t)bu

℄

3

(�

3

)S(t)bu

℄

4

(�

4

) d�

1

d�

2

d�

3

d�

4

;

where bu

℄

j

denotes the Fourier transform of u

℄

j

with respet to time. Using

i) and the Cauhy-Shwarz inequality in (�

1

; �

2

; �

3

; �

4

) (here the assumption

b >

1

2

is used, in order to get the neessary integrability) yields

�

�

�

�

Z

R�M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

. m(N

1

; � � � ; N

4

)

s

0

4

Y

j=1

kh�i

b

bu

℄

j

k

L

2

(R�M)

. m(N

1

; � � � ; N

4

)

s

0

4

Y

j=1

ku

j

k

X

0;b

(R�M)

:
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Finally, by deomposing u

j

(t) =

P

n2Z

 (t �

n

2

)u

j

(t) with a suitable  2

C

1

0

(R) supported in (0; 1), the general ase for u

j

follows from the speial

ase of u

j

supported in the time interval (0; 1).

Returning to the proof of Theorem 4.2.1, there is another way of esti-

mating the L

1

norm of the produt ((1��)

��

(u

1

u

2

)u

3

u

4

).

Lemma 4.2.2. Assume � as in Theorem 1 and that u

1

; u

2

; u

3

; u

4

satisfy

1

p

1��2[N;2N ℄

(u

j

) = u

j

: (4.2.9)

Then, for every s

0

> s

0

there exists b

0

2℄0;

1

2

[ suh that

�

�

�

�

Z

R

Z

M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� Cm(N

1

; � � � ; N

4

)

s

0

4

Y

j=1

ku

j

k

X

0;b

0

:

(4.2.10)

Proof. We split the proof in several steps.

First of all we prove that, for � > 0,

�

�

�

�

Z

R

Z

M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� Cm(N

1

; � � � ; N

4

)

2

4

Y

j=1

ku

j

k

X

0;1=4

:

(4.2.11)

By symmetry we have to onsider the following three ases:

m(N

1

; � � � ; N

4

) = N

1

N

2

;m(N

1

; � � � ; N

4

) = N

3

N

4

; m(N

1

; � � � ; N

4

) = N

1

N

3

:

In the �rst ase, by a repeated use of H�older's inequality, we obtain

�

�

�

�

Z

R

Z

M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� Ck(1��)

��

(u

1

u

2

)k

L

2

(R;L

1

(M))
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3

u

4

k

L

2

(R;L

1

(M))

;

� Cku

1

u

2

k

L

2

(R;L

1

(M))

ku

3

u

4

k

L

2

(R;L

1

(M))

� Cku

1

k

L

4

(R;L

1

(M))

ku

2

k

L

4

(R;L

1

(M))

ku

3

k

L

4

(R;L

2

(M))

ku

4

k

L

4

(R;L

2

(M))

;

where we also used that (1��)

��

is a pseudodi�erential operator of negative

order, hene ats on L

1

(M). By Sobolev inequality, we infer

�

�

�

�

Z

R

Z

M

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(N

1

N

2

)

2

4

Y

j=1

ku

j

k

L

4

(R;L

2

(M))

:

By the Sobolev embedding in the time variable for the funtion v(t) =

S(�t)u(t), we have X

0;1=4

� L

4

(R; L

2

(M)), and this onlude the proof of

the �rst ase.
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In the seond ase m(N

1

; � � � ; N

4

) = N

3

N

4

we an proeed in the same

way by writing the integral in the form

�

�

�

�

Z

R

Z

M

u

1

u

2

(1��)

��

(u

3

u

4

)dxdt

�

�

�

�

:

Finally, when m(N

1

; � � � ; N

4

) = N

1

N

3

, we write the integral as follows

�

�

�

�

Z

R

Z

M

(1��)

�

�

2

(u

1

u

2

)(1��)

�

�

2

(u

3

u

4

)dxdt

�

�

�

�

;

and by Cauhy-Shwarz and H�older's inequalities we estimate it by

� k(1��)

�

�

2
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1

u

2
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L

2
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2

(M))
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�
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(u
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u

4
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2
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� Cku
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u
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k
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u
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k
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3

k

L

4
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1
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4

k

L

4

(R;L

2

(M))

:

Finally we onlude the proof of (4.2.11) by means of Sobolev's inequality

in both spae and time variables as above.

The seond step onsists in interpolating between (4.2.8) and (4.2.11) in

order to get the estimate (4.2.10). To this end we deompose eah u

j

as

follows

u

j

=

X

K

j

u

j;K

j

; u

j;K

j

= 1

K

j

�hi�

t

+�i<2K

j

(u

j

);

where K

j

denotes the sequene of dyadi integers. Notie that

ku

j

k

2

X
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'

X
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j

K

2b

j
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j
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(R�M)

'

X

K

j
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j
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2

X

0;b

:

We then write the integral in the left hand side of (4.2.10) as a sum of the

following elementary integrals,

I(K

1

; � � � ;K

4

) =

Z

R

Z

M

(1��)

��

(u

1;K

1

u

2;K

2

)u

3;K

3

u

4;K

4

dxdt :

Using suessively (4.2.8) and (4.2.11), we estimate these integrals as

jI(K

1

; � � � ;K

4

)j � Cm(N

1
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4
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�

X

K

1

;K

2

;K

3
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K

3

K

4

)
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4
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j

k

L

2
;

(4.2.12)

where either (�; �) = (s

0

; b) for every b > 1=2, or (�; �) = (2; 1=4). There-

fore, for every s

0

> s

0

, there exists b

1

< 1=2 suh that (4.2.12) holds for

(�; �) = (s

0

; b

1

). Choosing b

0

2℄b

1

; 1=2[, this yields
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;
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whih ompletes the proof, sine the right hand side is a onvergent series.

We are �nally in position to prove Theorem 4.2.1. We an write the

solution of the Cauhy problem (4.1.1) using the Duhamel formula

u(t) = S(t)u

0

� i

Z

t

0

S(t� �)

�

(1��)

��

(ju(�)j

2

)u(�)

�

d� : (4.2.13)

The next lemma ontains the basi linear estimate.

Lemma 4.2.3. Let b; b

0

suh that 0 � b

0

<

1

2

, 0 � b < 1 � b

0

. There exists

C > 0 suh that, if T 2 [0; 1℄, w(t) =

R

t

0

S(t� �)f(�)d�; then

kwk

X

s;b

T

� CT

1�b�b

0

kfk

X

s;�b

0

T

: (4.2.14)

We refer to [52℄ for a simple proof of this lemma.

The last integral equation (4.2.13) an be handled by means of these

spaes X

s;b

T

using Lemma 4.2.3 as follows
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�

(1��)
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(ju(�)j
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T

:

(4.2.15)

Thus to onstrut the ontration � : X

s;b

T

! X

s;b

T

; �(v

i

) = u

i

; i = 1; 2 and

to prove the propagation of regularity ii) in De�nition 4.2.1, it is enough to

prove the following result.

Lemma 4.2.4. Let s > s

0

. There exists (b; b

0

) 2 R

2

satisfying

0 < b

0

<

1

2

< b; b+ b

0

< 1; (4.2.16)

and C > 0 suh that for every triple (u

j

); j = 1; 2; 3 in X

s;b

(R �M),

k(1��)

��

(u

1

u

2

)u

3

k
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s;�b

0

� Cku

1

k

X
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2

k

X
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3

k

X
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: (4.2.17)

Moreover, for every � > s, there exists C

�

suh that

k(1 ��)

��

(juj

2

)uk

X

�;�b

0

� C

�

kuk

2

X

s;b

kuk

X

�;b

: (4.2.18)

Proof. We only sketh the proof of (4.2.17). The proof of (4.2.18) is similar.

Thanks to a duality argument it is suÆient to show the following
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�

�
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1
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k

X
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0

:

(4.2.19)
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The next step is to perform a dyadi expansion in the integral of the left

hand-side of (4.2.19), this time in the spae variable. We deompose u

1

; u

2

; u

3

; u

4

as follows:

u

j

=

X

N

j

u

j;N

j

; u

j;N

j

= 1

p

1��2[N

j

;2N

j

℄

(u

j

):

In this deomposition we have
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'
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j
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j
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2
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:

We introdue now this deomposition in the left hand side of (4.2.19), and

we are left with estimating eah term

J(N

1

; � � � ; N

4

) =

Z

R

Z

M

(1��)

��

(u
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1

u
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)u
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3

u
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4

dxdt :

Consider the terms with N

1

� N

2

� N

3

(the other ases are ompletely

similar by symmetry). Choose s

0

suh that s > s

0

> s

0

. By Lemma 4.2.2

we an �nd b

0

suh that 0 < b

0

<

1

2

and
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: (4.2.20)

This is equivalent to
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�
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:

In this series we separate the terms in whih N

4

� CN

3

from the others.

For the �rst ones the series onverges thanks to a simple argument of sum-

mation of geometri series and Cauhy-Shwarz inequality. To perform the

summation of the other terms, it is suÆient to apply the following lemma,

whih is a simple variant of Lemma 2.6 in [24℄.

Lemma 4.2.5. Let � a positive number. There exists C > 0 suh that, if

for any j = 1; 2; 3, C�

k

j

� �

k

4

, then for every p > 0 there exists C

p

> 0

suh that for every w

j

2 L

2

(M), j = 1; 2; 3; 4,

Z

M
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k

1

w
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�
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2
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p
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Y
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2
:

Remark 4.2.1. Notie that if M = S

4

the above lemma is trivial sine in

that ase, by an elementary observation on the degree of the orresponding

spherial harmonis, we obtain that if k

4

> k

1

+ k

2

+ k

3

then the integral

(4.2.20) is zero.
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Finally, the proof of Lemma 4.2.4 is ahieved by hoosing b suh that

1

2

<

b < 1� b

0

and by merely observing that

ku

j

k

X

s;b

0

� ku

j

k

X

s;b

; j = 1; 2; 3:

4.2.2 Loal wellposedness for the quadrati nonlinearity

In this subsetion, we study the wellposedness theory of the quadrati non-

linear Shr�odinger equation posed on S

4

i�

t

u+�u = q(u); q(u) = au

2

+ bu

2

+ juj

2

; (4.2.21)

with zonal initial data u(0; x) = u

0

(x).

In fat we shall prove Theorem 4.1.2 on every four-manifold satisfying the

trilinear estimates (4.1.3). This is a result of independent interest that we

state below.

Theorem 4.2.2. Let M be a Riemannian manifold, let G be a subgroup of

isometries of M . Assuming that there exists C > 0 and s

0

suh that for any

u

1

; u

2

; u

3

2 L

2

(S

4

) G-invariant funtions on M satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; (4.2.22)

one has the trilinear estimates

sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

T (u

1

; u

2

; u

3

)dxdt

�

�

�

�

� C(min(N

1

; N

2

; N

3

))

s

0

3

Y

j=1

kf

j

k

L

2
;

(4.2.23)

where T (u

1

; u

2

; u

3

) = u

1

u

2

u

3

or T (u

1

; u

2

; u

3

) = u

1

u

2

u

3

and � 2 C

1

0

(R)

is arbitrary. Then, for every s > s

0

, the Cauhy problem (4.2.21) is uni-

formly well-posed on the subspae of H

s

(M) whih onsists of G-invariant

funtions.

Proof. It is lose to the one of Theorem 4.2.1 above, so we shall just survey

it. We denote by L

2

G

(M), H

s

G

(M), X

s;b

G

(R �M) the subspaes of L

2

(M),

H

s

(M), X

s;b

(R �M) whih onsist of G-invariant funtions. For the sake

of simpliity, we shall fous on the ase

q(u) = juj

2

+

1

2

u

2

:

The general ase follows from straightforward modi�ations. As in the proof

of Theorem 4.2.1, it is enough, for every s > s

0

, to show that there exists

b; b

0

suh that

0 < b

0

<

1

2

< b < 1� b

0
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with the following estimates,

ku

1

u

2

k

X

s;�b

0

� Cku

1

k

X

s;b

ku

2

k

X

s;b

; ku

1

u

2

k

X

s;�b

0

� Cku

1

k

X

s;b

ku

2

k

X

s;b

;

ku

2

k

X

�;�b

0

� C

�

kuk

X

s;b

kuk

X

�;b

; kjuj

2

k

X

�;�b

0

� C

�

kuk

X

s;b

kuk

X

�;b

; � > s ;

where u

1

; u

2

; u are G -invariant. As before, we fous on the �rst set of

estimates. Thanks to a duality argument, these estimates are equivalent to

�

�

�

�

Z

R

Z

M

u

1

u

2

u

3

dxdt

�

�

�

�

� Cku

1

k

X

s;b

ku

2

k

X

s;b

ku

3

k

X

�s;b

0

;

�

�

�

�

Z

R

Z

M

u

1

u

2

u

3

dxdt

�

�

�

�

� Cku

1

k

X

s;b

ku

2

k

X

s;b

ku

3

k

X

�s;b

0

;

(4.2.24)

In this way, writing the solution of the Cauhy problem (4.2.21) using

the Duhamel formula

u(t) = S(t)u

0

� i

Z

t

0

S(t� �)(ju(�)j

2

+

1

2

u

2

(�)) d�; (4.2.25)

and applying Lemma 4.2.3, we obtain a ontration on X

s;b

T

proving a re-

sult of loal existene of the solution to (4.2.21) on H

s

(M); s > s

0

: Thus

the proof of this theorem is redued to establishing the trilinear estimates

(4.2.24) for suitable s; b; b

0

. We just prove the �rst inequality in (4.2.24).

The proof of the seond one is similar.

First we reformulate trilinear estimates (4.2.23) in the ontext of Bourgain

spaes.

Lemma 4.2.6. Let s

0

2 R. The following two statements are equivalent:

- For any f

1

; f

2

; f

3

2 L

2

G

(M) satisfying (4.2.22), estimate (4.2.23) holds.

- For any b >

1

2

and any u

1

; u

2

; u

3

2 X

0;b

G

(R �M) satisfying

1

p

1��2[N

j

;2N

j

℄

(u

j

) = u

j

; j = 1; 2; 3; (4.2.26)

one has

�

�

�

�

Z

R

Z

M

(u

1

u

2

u

3

)dxdt

�

�

�

�

� C(min(N

1

; N

2

; N

3

))

s

0

3

Y

j=1

ku

j

k

X

0;b

: (4.2.27)

Proof. The proof of this lemma follows lines of Lemma 4.2.1 above. First we

assume that u

1

; u

2

; u

3

are supported for t 2 [0; 1℄, and we selet � 2 C

1

0

(R)

suh that � = 1 on [0; 1℄. We set u

℄

j

(t) = S(�t)u

j

(t). Using the Fourier

transform, we an write

�

�

�

�

Z

R

Z

M

u

1

u

2

u

3

dxdt

�

�

�

�

� C

Z

�

1

Z

�

2

Z

�

3

�

�

�

�

�

�

Z

R

Z

M

�(t)e

it�

3

Y

j=1

S(t)bu

℄

j

(�

j

)dxdt

�

�

�

�

�

�

d�

1

d�

2

d�

3

;
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where � = (�

1

+�

2

��

3

). Supposing for instane N

1

� N

2

� N

3

and applying

(4.2.23) we obtain that the right hand side is bounded by

� CN

s

0

1

Z

1

�1

Z

1

�1

Z

1

�1

kbu

℄

1

(�

1

)k

L

2

(M)

kbu

℄

2

(�

2

)k

L

2

(M)

kbu

℄

3

(�

3

)k

L

2

(M)

d�

1

d�

2

d�

3

:

We onlude the proof as in the proof of Lemma 4.2.1 in setion 2, using

the Cauhy-Shwarz inequality in (�

1

; �

2

; �

3

), and �nally deomposing eah

u

j

by means of the partition of unity

1 =

X

n2Z

 

�

t�

n

2

�

;

where  2 C

1

0

([0; 1℄).

Lemma 4.2.7. For every s

0

> s

0

there exist b

0

suh that 0 < b

0

<

1

2

and,

for every G-invariant funtions u

1

; u

2

; u

3

satisfying (4.2.26),

�

�

�

�

Z

R

Z

M

(u

1

u

2

u

3

)dxdt

�

�

�

�

� Cmin(N

1

; N

2

; N

3

)

s

0

3

Y

j=1

ku

j

k

X

0;b

0

: (4.2.28)

Proof. Following the same lines of the proof of Lemma 4.2.2, it is enough to

establish

�

�

�

�

Z

R

Z

M

(u

1

u

2

u

3

)dxdt

�

�

�

�

� Cmin(N

1

; N

2

; N

3

)

2

3

Y

j=1

ku

j

k

X

0;

1

6

(R�M)

: (4.2.29)

Then the lemma follows by interpolation with (4.2.27). Indeed, assuming

for instane N

1

� N

2

� N

3

, we apply the H�older inequality as follows,

�

�

�

�

Z

R

Z

M

(u

1

u

2

u

3

)dxdt

�

�

�

�

� Cku

1

k

L

3

(R;L

1

(M))

ku

2

k

L

3

(R;L

2

(M))

ku

3

k

L

3

(R;L

2

(M))

and using the Sobolev embedding we obtain

� C(N

1

)

2

ku

1

k

L

3

(R;L

2

(M))

ku

2

k

L

3

(R;L

2

(M))

ku

3

k

L

3

(R;L

2

(M))

:

By the Sobolev embedding in the time variable for funtion v(t) = S(�t)u(t),

we know that

kuk

L

3

(R;L

2

(M))

� kuk

X

0;

1

6

(R�M)

and this ompletes the proof.

Let us sketh the last part of the proof of Theorem4.2.2. We deompose

u

1

; u

2

; u

3

as follows:

u

j

=

X

N

j

u

j;N

j

; u

j;N

j

= 1

p

1��2[N

j

;2N

j

℄

(u

j

):
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We introdue this deomposition in the left hand side of (4.2.24) and we

use Lemma 4.2.7. Supposing now for simpliity that N

1

� N

2

, we obtain

that for any s

0

> s

0

we an �nd b

0

suh that 0 < b

0

<

1

2

and

�

�

�

�

Z

R

Z

M
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u
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k
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(4.2.30)

for any s > s

0

> s

0

. Notie that the summation over N

1

an be performed via

a rude argument of summation of geometri series. As for the summation

over N

2

; N

3

, following the same proof as in Setion 4.2.1, we onlude by

observing that the main part of the series orresponds to the onstraint

N

3

. N

2

.

4.2.3 Conservation laws and global existene for the Hartree

nonlinearity

Next we prove that for an initial datum u

0

2 H

1

(M), the loal solution

of the Cauhy problem (4.1.1) obtained above an be extended to a global

solution u 2 C(R; H

1

(M)).

By the de�nition of uniform wellposedness, the lifespan T of the loal

solution u 2 C([0; T );H

1

(M)) depends only on the H

1

norm of the initial

datum. Thus, in order to prove that the solution an be extended to a global

one, it is suÆient to show that the H

1

norm of u remains bounded on any

�nite interval [0; T ). This is a onsequene of the following onservation

laws, whih an be proved by means of the multipliers u and u

t

,

Z

M

ju(t; x)j

2

dx = Q

0

;

Z

M

jru(t; x)j

2

g

+

1

2

j(1��)

��=2

(juj

2

)(t; x)j

2

dx = E

0

:

(4.2.31)

Remark 4.2.2. Notie that a similar argument an be applied in the ase of

an attrative Hartree nonlinearity, at least when � > 1. Indeed, onsider

the fousing Shr�odinger equation

iu

t

+�u = �(1��)

��

(juj

2

)u;

where the nonlinear term has the opposite sign. Computing as above, we

obtain the onservation of energy

kruk

2

L

2

(M)

�

1

2

k(1 ��)

��=2

(juj

2

)k

2

L

2

= onst;

but now the energy E(t) does not ontrol the H

1

norm of u. However, we

an write

kruk

2

L

2

� C + Ck(1��)

��=2

(juj

2

)k

2

L

2

;
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and by Sobolev embedding we have

k(1��)

��=2

(juj

2

)k

2

L

2

� Ck juj

2

k

2

L

q

� Ckuk

4

L

2q

;

1

q

=

1

2

+

�

4

;

so that we obtain, with p = 2q,

kruk

L

2
� C + Ckuk

2

L

p

;

1

p

=

1

4

+

�

8

:

We now use the Gagliardo-Nirenberg inequality (for d = 4)

kwk

p

L

p

� C(kwk

p�(p�2)

d

2

L

2

krwk

(p�2)

d

2

L

2

+ kwk

p

L

2

)

and we obtain

kruk

L

2
� C(1 + kuk

2

L

2

) + Ckuk

2�4(p�2)=p

L

2

kruk

4(p�2)=p

L

2

:

Notie that, as in the defousing ase above, the L

2

norm of u is a onserved

quantity. If the power 4(p� 2)=p is stritly smaller than 1, we infer that the

H

1

norm of u must remain bounded. In other words, we have proved global

existene provided

4 �

p� 2

p

< 1 () � > 1:

4.2.4 Studying the global existene for the quadrati nonlin-

earity

Proposition 4.2.8. Let (M; g) be a four-dimensional Riemannian manifold

satisfying the assumptions of Theorem 4.2.2. There exists " > 0 and a

subspae X of C(R;H

1

G

(M)) suh that, for every initial data u

0

2 H

1

G

(M)

satisfying ku

0

k

H

1
� ", the Cauhy problem (4.1.2), where q(u) = (Re u)

2

,

has a unique global solution u 2 X.

Proof. By Theorem 4.2.2, we obtain that for an initial datum u

0

2 H

1

G

(M),

there exists a loal solution of the Cauhy problem

(

i�

t

u+�u = (Re u)

2

;

u(0; x) = u

0

(x):

By the de�nition of uniform wellposedness, the lifespan T of the loal solu-

tion u 2 C([0; T );H

1

G

(M)) only depends on a bound of the H

1

norm of the

initial datum. Thus, in order to prove that the solution an be extended to

a global one, it is suÆient to show that the H

1

norm of u remains bounded
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on any �nite interval [0; T ). This is a onsequene of the following onser-

vation laws and of a suitable assumption of smallness on the initial data.

Notie that

�

t

�

Z

M

u(t; x) dx

�

= �i

Z

M

(Re u)

2

dx;

from whih

Z

M

Re u(t; x) dx = onst: (4.2.32)

Moreover the following energy is onserved,

Z

M

jru(t; x)j

2

+

2

3

(Reu(t; x))

3

dx = E

0

: (4.2.33)

Consequently we an write

kruk

2

L

2

� E

0

+ C

�

�

�

�

Z

M

(Re u)

3

�

�

�

�

:

Sine by Gagliardo-Nirenberg inequality we have

�

�
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3
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�

�

�

�
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2
kr(Re u)k
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+ k(Re u)k
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;

and by the following inequality
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L
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�
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�

�

+ kr(Re u)k

L

2
;

we dedue that
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Re u dx

�

�
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�

kruk
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2

:

Thanks to (4.2.32) we know that

�

�

�

�

Z

M

Re u dx

�

�

�

�

� ku

0

k

L

1

(M)

� Cku

0

k
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;

thus we obtain

kruk

2

L

2

� E

0

+C (ku

0

k
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1
+ kruk

L

2
) kruk

2
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:

Assuming that

ku

0

k

H

1
� ";

we infer, by a lassial bootstrap argument, that kruk annot blow up, as

well as kRe uk

L

2
. Using again the evolution law of the integral of u, this

implies that this integral annot blow up, and ompletes the proof of the

proposition.
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Notie that the proof above extends without diÆulty to q(u) = (Re u)

2

,

for any real number . If (M; g) satis�es the assumptions of Theorem 4.2.2,

we an now prove that the onlusions of Corollary 4.1.1 hold on M .

Proof. Let q(u) = au

2

+ bu

2

+2ajuj

2

. The idea is to transform the equation

into an equivalent one using the hange of unknown u = !v, with j!j = 1,

and then impose onditions on a; b suh that the transformed equation is

of the speial type orresponding to q(u) = (Re u)

2

for whih, thanks to

Proposition 4.2.8, we know that the solution is global. Thus we try to impose

q(!v) = !(Re v)

2

for some  2 R and some ! with j!j = 1, and we obtain the polynomial

identity

a!

2

v

2

++b!

2

v

2

+ 2ajvj

2

=

!

4

(v + v)

2

:

Equating the oeÆients of the two polynomials we obtain

a = 

!

4

; b = 

!

3

4

and this is equivalent to

a

2

a

= b :

Conversely, we prove that if this ondition is not satis�ed, it is always pos-

sible to onstrut small energy solutions whih blow up in a �nite time. We

take as initial datum a onstant in the form

u

0

(x) = !y

0

; y

0

2 R n f0g ; j!j = 1;

and then the equation redues to the ordinary di�erential equation

iu

t

= q(u); u(0) = !y

0

:

De�ning y(t) = u(t)=!, we see that y(t) is a solution of the equation

i!y

0

(t) = q(u) = y

2

q(!)

whih an be written

y

0

(t) = �iq(!)! y

2

; y(0) = y

0

2 R

The solution an be written expliitly as

y(t) =

1

y

�1

0

+ iq(!)!t
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and is not global if and only if q(!)! is purely imaginary. Thus to onlude

the proof it is suÆient to show that we an �nd an ! suh that

q(!)! � a! + b!

3

+ 2a! is purely imaginary (and not 0):

Writing a = Ae

i�

, b = Be

i�

, ! = e

i�

with A;B � 0, this is equivalent to

�nding a simple zero for the following funtion

f(�) = 3A os(�+ �) +B os(� � 3�):

Observe that the average of f vanishes. A point where the sign of f hanges

annot be a double zero unless it is a triple zero, and a straightforward

alulation shows that this orresponds exatly to the ase A = B and

3�+� = 2k�, namely

a

2

a

= b. Hene, if this ondition is not satis�ed, f has

a simple zero. This ompletes the proof.

4.3 Multilinear estimates

In this setion we establish multilinear estimates, whih, ombined with

Theorems 4.2.1 and 4.2.2, yield Theorems 4.1.1 and 4.1.2. We reall that

S(t) = e

it�

:

4.3.1 Quadrilinear estimates

This subsetion is devoted to the proof of quadrilinear estimates (4.2.2) with

s

0

< 1 on arbitrary four-manifolds with � > 1=2, and on the sphere S

4

with

� > 0. In view of subsetions 4.2.1 and 4.2.3, this will omplete the proof

of Theorem 4.1.1.

Lemma 4.3.1. Let � >

1

2

, s

0

=

�

3

2

� �

�

and let (M; g) a ompat four-

dimensional Riemannian manifold. Then there exists C > 0 suh that for

any f

1

; f

2

2 L

2

(M) satisfying

1

p

1��2[N;2N ℄

(f

1

) = f

1

; 1

p

1��2[L;2L℄

(f

2

) = f

2

; (4.3.1)

one has the following bilinear estimate:

k(1��)

�

�

2

(u

1

u

2
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2
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kf

2

k

L

2

(M)

;

(4.3.2)

with u

j

(t) = S(t)f

j

.

Proof. By symmetry, it is not restritive to assume thatN � L. The Sobolev

embedding implies

k(1 ��)

�

�

2

(u
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u

2

)k

L

2

((0;1)�M)

� Cku

1

u

2

k

L

2

((0;1);L

q
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;

1

q
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1

2

+

�

4

;
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and applying the Hold�er inequality we obtain

k(1��)

�

�

2

(u

1

u

2

)k

L

2

((0;1)�M)

� Cku

1

k

L

2

((0;1);L

4

�

(M))

ku

2

k

L

1

((0;1);L

2

(M))

:

Thanks to the onservation of the L

2

norm we an bound the last fator with

the L

2

norm of f

2

; on the other hand, the L

2

L

4=�

term an be bounded using

the Strihartz inequality on ompat manifolds established by Burq, G�erard,

Tzvetkov in [22℄ (see Theorem 1), whih reads, in this partiular ase,

ku

1

k

L

2

((0;1);L

4

(M))

� C N

1=2

kf

1

k

L

2

(M)

:

Combining this estimate with the Sobolev inequality, we obtain (4.3.2) as

laimed.

Proposition 4.3.2. Let � >

1

2

, s

0

>

�

3

2

� �

�

and let (M; g) a ompat four

dimensional Riemannian manifold. Then there exists C > 0 suh that for

any f

1

; f

2

; f

3

; f

4

2 L

2

(M) satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4;

one has the following quadrilinear estimate for u

j

(t) = S(t)f

j

:

sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� C(m(N

1

; � � � ; N

4

))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

(4.3.3)

where � 2 C

1

0

(R) is arbitrary and m(N

1

; � � � ; N

4

) is the produt of the small-

est two numbers among N

1

; N

2

; N

3

; N

4

.

Proof. The proof of our quadrilinear estimate (4.3.3) whenm(N

1

; � � � ; N

4

) =

N

1

N

3

follows diretly by the Cauhy-Shwarz inequality and Lemma 4.3.1.

In fat, assuming for instane that � is supported into [0; 1℄, we have

I � sup

�2R

�

�

�

�

Z

R

Z

M

�(t) e

it�

(1��)

��

(u

1

u

2

)u

3

u

4

dxdt

�

�

�

�

� Ck(1��)

�

�

2

(u

1

u

2

)k

L

2

((0;1)�M)

k(1 ��)

�

�

2

(u

3

u

4

)k

L

2

((0;1)�M)

� C(m(N

1

; � � � ; N

4

))

s

0

kf

1

k

L

2

(M)

kf

2

k

L

2

(M)

kf

3

k

L

2

(M)

kf

4

k

L

2

(M)

;

by applying (4.3.2). By symmetry, it remains to onsider only the ase

m(N

1

; � � � ; N

4

) = N

1

N

2

:

By the self-adjointness of (1��), H�older's inequality and Sobolev's inequal-

ity we have

I � Cku

1

u

2

k

L

1

((0;1);L

q

0

(M))

k(1��)
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(u

3

u

4

)k

L

1

((0;1);L

q

(M))

� Cku

1

u

2

k

L

1

((0;1);L

q

0

(M))

ku

3

u

4

k

L

1

((0;1);L

1

(M))

;
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provided

1

q

> 1�

�

2

. Using again H�older's inequality, we infer

I � C

Y

j=1;2

ku

j

k

L

2

((0;1);L

2q

0

(M))

Y

k=3;4

ku

k

k

L

1

((0;1);L

2

(M))

:

Conservation of energy implies that ku

k

k

L

1

((0;1);L

2

(M))

= kf

k

k

L

2

(M)

. On

the other hand by Sobolev embedding we have

ku

j

k

L

2

((0;1);L

2q

0

(M))

� CN

2

q

�1

j

ku

j

k

L

2

((0;1);L

4

(M))

:

Now we an apply the above-mentioned Strihartz estimate of [22℄ to obtain

ku

j

k

L

2

((0;1);L

2q

0

(M))

� CN

2

q

�

1

2

j

kf

j

k

L

2

(M))

:

Sine

s

0

=

2

q

�

1

2

>

3

2

� �;

and s

0

an be arbitrarily lose to

3

2

� �, the proof is omplete.

Remark 4.3.1. In this ase, an iteration sheme for solving an be per-

formed as in [22℄, avoiding the use of Bourgain spaes, making in X

T

=

C([0; T ℄;H

1

) \ L

2

([0; T ℄;H

�

4

) .

On the four dimensional sphere, endowed with its standard metri, the pre-

ise knowledge of the spetrum �

k

= k(k + 3); k 2 N makes it possible

to improve our quadrilinear estimate. We proeed in several steps, starting

with an estimate on the produt of two spherial harmonis.

Lemma 4.3.3. Let � 2℄0;

1

2

℄ and let s

0

= 1�

3�

4

. There exists C > 0 suh

that for any H

n

;

e

H

l

spherial harmonis on S

4

of degree n; l respetively, the

following bilinear estimate holds:

k(1��)

�

�

2

(H

n

e

H

l

)k

L

2

(S

4

)

� C(1 + min((n; l))

s

0

kH

n

k

L

2

(S

4

)

k

e

H

l

k

L

2

(S

4

)

:

(4.3.4)

Proof. It is not restritive to assume that 1 � n � l. We shall adapt the

proof of multilinear estimates in [23℄,[25℄, using the approah desribed in

[26℄.

Writing

h = (n(n+ 3))

�1=2

;

e

h = (l(l + 3)

�1=2

;

the equations satis�ed by the eigenfuntions H

n

;

e

H

l

read

h

2

�H

n

+H

n

= 0 ;

~

h

2

�

e

H

l

+

e

H

l

= 0 :

In loal oordinates, these are semilassial equations, with prinipal symbol

p(x; �) = 1� g

x

(�; �) :
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We now deompose H

n

and H

l

using a miroloal partition of unity with

semi-lassial ut-o� of the form �(x; hD), e�(x;

e

hD) respetively. When

supp�(x; �) \ fg

x

(�; �) = 1g = ;;

i.e. in the "ellipti" ase, the estimates are quite strong : we have, for all s,

p,

kjD

x

j

s

�(x; hD

x

)H

n

k

L

2

(S

4

)

� C

s;p

h

p

kH

n

k

L

2

(S

4

)

; (4.3.5)

with similar estimates for

~

H

l

. Consequently, it is suÆient to estimate

k(1��)

�

�

2

(�(x; hD

x

)H

n

e�(x;

e

hD

x

)

e

H

l

)k

L

2

(S

4

)

(4.3.6)

when ut-o� funtions �; e� are loalized near the harateristi set

fg

x

(�; �) = 1g :

Re�ning the partition of unity, we may assume that the supports of �, e� are

ontained in small neighborhoods of (m;!), (m; e!) where m 2 M and !; e!

are ovetors suh that

g

m

(!; !) = g

m

(e!; e!) = 1 :

Notie that funtions u = �(x; hD

x

)H

n

; eu = e�(x;

e

hD

x

)

e

H

l

are ompatly

supported and satisfy

p

w

(x; hD)u = hF ; p

w

(x;

e

hD)eu =

e

h

e

F ;

where kFk

L

2
. kH

n

k

L

2
and k

e

F k

L

2
. k

e

H

l

k

L

2
.

Set g

x

(x; �) = hA(x)�; �i. Choose any system (x

1

; : : : ; x

4

) of linear oor-

dinates on R

4

suh that

hA(m)!; dx

1

i 6= 0 and hA(m)e!; dx

1

i 6= 0 :

Then, on the supports of � and e�, one an fatorize the symbol of the

equation as

p(x; �) = e(x; �)(�

1

� q(x; �

0

)) ; p(x; �) = ee(x; �)(�

1

� eq(x; �

0

));

where e; ee are ellipti symbol while q; eq are real valued symbols. In other

words, we an redue the equations for u; eu to evolution equations with

respet to the variable x

1

. Notie that �

0

2 R

d�1

= R

3

, i.e., the spatial

dimension of these evolution equations is 3. Moreover, sine the seond

fundamental form of the harateristi ellipsoid f� : g

m

(�; �) = 1g is non

degenerate, the Hessian of q; eq with respet to the �

0

variables does not

vanish on the supports of �; e� respetively.

Therefore we an apply to this equation the (loal) three-dimensional

Strihartz estimates (see Corollary 2.2 of [26℄ for more details). We onlude
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that u satis�es the 3-dimensional semilassial Strihartz estimates in the

following form:

kuk

L

p

x

1

L

q

x

0

� Ch

�

1

p

kH

n

k

L

2 . n

1

p

kH

n

k

L

2 ; (4.3.7)

for all (p; q) satisfying the admissibility ondition

2

p

+

3

q

=

3

2

; p � 2:

An idential argument is valid for eu. In fat, for eu we shall only need the

energy estimate

keuk

L

1

x

1

L

2

x

0

� Ck

e

H

l

k

L

2
: (4.3.8)

Finally, we estimate the produt ueu as follows. By the Sobolev inequality,

k(1��)

�

�

2

(u~u)k

L

2
� Cku~uk

L

q

;

1

q

=

1

2

+

�

4

:

Applying the H�older inequality we obtain
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2
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L

q
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1

L

4

�

x

0
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1

x

1

L

2

x

0

Notiing that q < 2 and using the ompatness of the support of u, we have
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L

q

x

1

L

4

�

x

0

� Ckuk

L

2

x

1

L

4

�

x

0

:

Applying the Strihartz estimate (4.3.7) with p = 2 and the Sobolev embed-

ding in the x

0

variables, we obtain
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L

2

x

1

(L

4

�

x

0

)

� Cn
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�
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4
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L

6

x

0

� Cn

1�
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4

kH

n

k

L

2
: (4.3.9)

Combining with the L

1

L

2

estimate (4.3.8) on ~u, this ompletes the proof.

We now ome to a quadrilinear estimate on spherial harmonis.

Lemma 4.3.4. Let � 2℄0;

1

2

℄ and s

0

= 1�

3�

4

. There exists C > 0 suh that

for any H

(j)

n

j

; j = 1; � � � ; 4, spherial harmonis on S

4

of degree n

j

respe-

tively, the following quadrilinear estimate holds:

Z

S

4

(1��)

��

(H

(1)

n

1

H
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)H
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dx � C(1 +m((n

j

))

s

0

4

Y
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kH

(j)

n

j

k

L

2

(S

4

)

:

(4.3.10)
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Proof. By symmetry, it is suÆient to onsider the two ases

m(n

1

; � � � ; n

4

) = n

1

n

3

; m(n

1

; � � � ; n

4

) = n

1

n

2

:

In the �rst ase, the proof follows diretly by the Cauhy-Shwarz inequality

and Lemma 4.3.3. It remains to onsider only the ase m(n

1

; � � � ; n

4

) =

n

1

n

2

. We use the same idea as in Lemma 4.3.3 to deompose, if n

j

� 1,

eah H

(j)

n

j

into a sum of terms of the form

u

j

= �

j

(x; h

j

D

x

)H

(j)

n

j

; h

j

= (n

j

(n

j

+ 3))

�1=2

; j = 1; 2; 3; 4 :

As before, eah u

j

may be miroloalized either into the ellipti zone, in

whih ase we have muh stronger semilassial estimate (4.3.5), in parti-

ular an L

1

bound, or near the harateristi set, and for these terms we

an use the Strihartz type estimate (4.3.7). Notie that the very speial

ase n

j

= 0 an be inluded into the ellipti ase. Thus we have several

possibilities to onsider.

If at least two u

j

's are miroloalized in the ellipti zone, then the quadri-

linear estimate holds trivially (with s

0

= 0) by a simple appliation of the

Cauhy-Shwarz inequality.

If u

3

or u

4

is miroloalized in the ellipti zone, then, again by the

Cauhy- Shwarz inequality, the quadrilinear estimate is a onsequene of

estimate (4.3.4) of Lemma 4.3.3, with � replaed by 2�.

It remains to deal with the ases when only u

1

or u

2

is miroloalized in

the ellipti zone, and when all the u

j

's are miroloalized near the hara-

teriti set. In both ases, we shall make use of the following variant of the

Sobolev inequality.

Lemma 4.3.5. Let A be a pseudodi�erential operator of order �2� on R

4

,

and let B be a bounded subset of R

4

. For any smooth funtion F on R

4

with

support in B, we have the estimate

kA(F )k

L

1

x

1

(L

q

x
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)

� CkFk

L

1

x

1

(L

1

x
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)

(4.3.11)

provided

1

q

> 1� 2�=3.

Proof. The kernel K(x; y) of A admits an estimate like

jK(x; y)j �

C

(jx� yj)

4�2�

�

C

(jx

1

� y

1

j+ jx

0

� y

0

j)

4�2�

: (4.3.12)

The laim is then a onsequene of Young's inequality in variables x

0

.

By the self-adjointness of (1 ��) the terms to estimate an be written

as follows:

I =

�

�

�

�

Z

S

4

(u

1

u

2

)� (1��)

��

(u

3

u

4

) dx

�

�

�

�

: (4.3.13)
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As in the proof of Lemma 4.3.3 we selet a splitting x = (x

1

; x

0

) of the

loal oordinates suh that u

2

; u

3

; u

4

are solutions of semilassial evolution

equations, and therefore satisfy Strihartz estimates (4.3.7). Using the L

1

bound on u

1

, we have
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)
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)
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q

x

0

)

;

and by Lemma 4.3.5 we obtain

I � CkH

(1)

n

1

k

L

2

(S

4

)

ku

2

k

L

1

x

1

(L

q

0

x

0

)

ku

3

u

4

k

L
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1

x
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)

provided

1

q

> 1�

2�

3

. H�older's inequality gives
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)
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2

x
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)

;

and, applying estimate (4.3.8) on u

3

; u

4

and estimate (4.3.7) with p = 2 on

u

2

, we obtain
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Y
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L
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;

with

s = max

�

1

2

; 1�

3

q

0

�

< s

0

;

sine q

0

is arbitrary with

1

q

0

<

2�

3

.

Finally, we treat the ase when all the fators are miroloalized near

the harateristi set. One again, we selet a splitting x = (x

1

; x

0

) of the

loal oordinates for whih Strihartz estimates (4.3.7) are valid for eah u

j

.

By H�older's inequality and Lemma 4.3.5 we have
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)

:

By estimates (4.3.7) with p = 2 on u

1

; u

2

and (4.3.8) on u

3

; u

4

, we onlude
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1
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Y
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L
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;

with

s = max

�

1

2

; 1�

3

2q

0

�

< s

0

;

sine q

0

is arbitrary with

1

q

0

<

2�

3

. This ompletes the proof.
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Remark. It is lear that Lemma 4.3.3 and Lemma 4.3.4 extend to Laplae

eigenfuntions on arbitrary ompat four-manifolds. Moreover, a re�nement

of the study of the ellipti ase shows that, as in [23℄, [25℄, eigenfuntions

an be replaed by funtions belonging to the range of spetral projetors of

the type 1

[n;n+1℄

(

p

��):

We now ome to the main result of this subsetion.

Proposition 4.3.6. For every � > 0, for every s

0

> 1�

3�

4

, the quadrilinear

estimate (4.2.2) holds on S

4

.

Proof. Let f

1

; � � � ; f

4

be funtions on S

4

satisfying the spetral loalization

property

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; 4 : (4.3.14)

This implies that one an expand

f

j

=

X

n

j

H

(j)

n

j

;

where H

(j)

n

j

are spherial harmonis of degree n

j

, and where the sum on n

j

bears on the domain

N

j

=2 � 1 + n

j

� 2N

j

: (4.3.15)

Consequently, the orresponding solutions of the linear Shr�odinger equation

are given by

u

j

(t) = S(t)f

j

=

X

n

j

e

�itn

j

(n

j

+3)

H

(j)

n

j

and we have to estimate the expression
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Z
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Z
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=

X

n

1

;��� ;n

4

b�(

4

X

j=1

"

j

n

j

(n

j

+ 3)� �) I(H

(1)

n

1

; � � � ;H

(4)

n

4

) ;

with "

j

= (�1)

j�1

and

I(H

(1)

n

1

; � � � ;H

(4)

n

4

) =

Z

S

4

(1��)

��

(H

(1)

n

1

H

(2)

n

2

)H

(3)

n

3

H

(4)

n

4

dx :

Appealing to Lemma 4.3.4, we have, with s = 1� 3�=4,

jI(H

(1)

n

1

; � � � ;H

(4)

n

4

)j � Cm(N

1

; � � � ; N

4

)

s

4

Y

j=1

kH

(j)

n

j

k

L

2
:



157

Using the fast deay of b� at in�nity, we infer

jQ(f

1

; � � � ; f

4

; �)j � C m(N

1

; � � � ; N

4

)

s

X

`2Z

(1 + j`j

2

)

�1

X

�([� ℄+`)

4

Y

j=1

kH

(j)

n

j

k

L

2

. m(N

1

; � � � ; N

4

)

s

sup

k2Z

X

�(k)

4

Y

j=1

kH

(j)

n

j

k

L

2
;

where �(k) denotes the set of (n

1

; � � � ; n

4

) satisfying (4.3.15) for j = 1; 2; 3; 4

and

4

X

j=1

"

j

n

j

(n

j

+ 3) = k :

Now we write

f1; 2; 3; 4g = f�; �; ; Æg

with m(N

1

; � � � ; N

4

)) = N

�

N

�

, and we split the sum on �(k) as

jQ(f

1

; � � � ; f

4

; �)j . m(N

1

; � � � ; N

4

)

s

sup

k2Z

X

a2Z

S(a)S

0

(k � a) (4.3.16)

where

S(a) =

X

�(a)

kH

(�)

n

�

k

L

2
kH

()

n



k

L

2
; S

0

(a

0

) =

X

�

0

(a

0

)

kH

(�)

n

�

k

L

2
kH

(Æ)

n

Æ

k

L

2
;

�(a) = f(n

�

; n



) : (4.3.15) holds for j = �; ;

X

j2f�;g

"

j

n

j

(n

j

+ 3) = ag;

�

0

(a

0

) = f(n

�

; n

Æ

) : (4.3.15) holds for j = �; Æ;

X

j2f�;Æg

"

j

n

j

(n

j

+ 3) = a

0

g:

Now we appeal to the following elementary result of number theory (see e.g.

Lemma 3.2 in [24℄).

Lemma 4.3.1. Let � 2 f�1g. For every " > 0, there exists C

"

suh that,

given M 2 Z and a positive integer N ,

#f(k

1

; k

2

) 2 N

2

: N � k

1

� 2N ; k

2

1

+ �k

2

2

=Mg � C

"

N

"

:

A simple appliation of Lemma 4.3.1 implies, for every " > 0,

sup

a

#�(a) � C

"

N

"

�

; sup

a

0

#�

0

(a

0

) � C

"

N

"

�

;
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and onsequently, by a repeated use of the Cauhy-Shwarz inequality,

X

a

S(a)S

0

(k � a) � C
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�

N

�

)

"

�

0
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a

X
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�
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1
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�

X

a

X
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0

(k�a)

kH
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n

�

k

2

L
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(Æ)

n
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k
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�
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L

2
;

where, in the last estimate, we used the orthogonality of the H

(j)

n

j

's as n

j

varies. Coming bak to (4.3.16), this ompletes the proof.

Remark. Using the remark before the statement of this proposition, the

proof above extends easily to any ompat four-dimensional Zoll manifold

(see [24℄ for more details).

4.3.2 Trilinear estimates on the sphere

In this subsetion, we prove trilinear estimates (4.2.23) on S

4

, for every s

0

>

1=2, for zonal solutions of the Shr�odinger equation. In view of subsetions

2.2 and 2.4, this will omplete the proof of Theorem 4.1.2 and of Corollary

4.1.1, by hoosing for G the group of rotations whih leave invariant a given

pole on S

4

.

First we reall the de�nition of zonal funtions.

De�nition 4.3.1. Let d � 2, and let us �x a pole on S

d

. We shall say

that a funtion on S

d

is a zonal funtion if it depends only on the geodesi

distane to the pole.

The zonal funtions an be expressed in terms of zonal spherial harmonis

whih in their turn an be expressed in terms of lassial polynomials (see

e.g. [92℄). As in [25℄, we an represent the normalized zonal spherial

harmoni Z

p

in the oordinate � (the geodesi distane of the point x to

our �xed pole) as follows:

Z

p

(x) = C(sin �)

�

d�1

2

�

os[(p+ �)� + �℄ +

O(1)

p sin �

�

;



p

� � � � �



p

(4.3.17)

with �; � independent of p, and C uniformly bounded in p. On the other

hand, near the onentration points � = 0; � we an write

jZ

p

(x)j � Cp

d�1

2

; � 62 [=p; � � =p℄: (4.3.18)

and kZ

p

k

L

2

(S

d

)

= 1.
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With this notation, we have the following trilinear eigenfuntion esti-

mates.

Lemma 4.3.7. There exists a onstant C > 0 suh that the following tri-

linear estimate holds:

kZ

p

Z

q

Z

l

k

L

1

(S

4

)

� C(min(p; q; l))

1=2

: (4.3.19)

Proof. It is not restritive to assume that p � q � l. Moreover, by Cauhy-

Shwarz inequality it is suÆient to prove (4.3.19) in the speial ase q = l.

Then we have

kZ

p

Z

2

q

k

L

1

(S

4

)

= 

Z

�

0

jZ

p

(�)jZ

q

(�)

2

(sin �)

3

d� ;

where  is some universal onstant. We split the interval [0; �℄ into the

intervals I

1

= [0; =q℄, I

2

= [=q; =p℄, I

3

= [=p; �=2℄ and I

4

= [�; 2; �� =p℄,

I

5

= [��=p; ��=q℄, I

6

= [��=p; �℄. Clearly, by symmetry, it is suÆient

to estimate the integral on the �rst three intervals I

1

; I

2

; I

3

.

On I

1

we an use (4.3.18) for both harmonis Z

p

; Z

q

and the simple

estimate sin � � �, and we obtain

Z

=q

0

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

3=2

q

3

Z

=q

0

�

3

d� � Cp

3=2

q

3

q

�4

� Cp

1=2

sine q � p.

On the seond interval I

2

we use (4.3.17) for Z

p

and (4.3.18) for Z

q

:

Z

=p

=q

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

3=2

Z

=p

=q

�

1 +

1

q sin �

�

2

d�

and by the elementary inequality

�

1 +

1

q sin �

�

2

� C +

C

q

2

�

2

(4.3.20)

we have immediately

Z

=p

=q

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

3=2

�



p

�



q

+

C

q

2

(q= � p=)

�

� Cp

1=2

:

Finally, in the interval I

3

we must use (4.3.17) for both harmonis:

Z

�=2

=p

jZ

p

jZ

2

q

(sin �)

3

d� � C

Z

�=2

=p

�

1 +

1

p sin �

��

1 +

1

q sin �

�

2

(sin �)

�3=2

d�:

Using again (4.3.20), the inequality sin � � C� on [0; �=2℄, and the fat that

q � p, we have easily

�

1 +

1

p sin �

��

1 +

1

q sin �

�

2

(sin �)

�3=2

� C�

�3=2

+ Cp

�3

�

�9=2

:
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Then integrating on I

3

we obtain

Z

�=2

=p

jZ

p

jZ

2

q

(sin �)

3

d� � Cp

1=2

and this onludes the proof.

We now ome to the main result of this subsetion, whih asserts that tri-

linear estimates (4.2.23) hold for every s

0

> 1=2 onM = S

4

in the partiular

ase of zonal Cauhy data.

Proposition 4.3.8. Let s

0

>

1

2

and � 2 C

1

0

(R). There exists C > 0 suh

that for any f

1

; f

2

; f

3

2 L

2

(S

4

) are zonal funtions and satisfying

1

p

1��2[N

j

;2N

j

℄

(f

j

) = f

j

; j = 1; 2; 3; (4.3.21)

one has the following trilinear estimate for u

j

(t) = S(t)f

j

,
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:

(4.3.22)

Proof. The proof is very similar to the one of Proposition 4.3.6. We write

u

j

(t) =

X

n

j

e

�itn

j

(n

j

+3)



j

(n

j

)Z

n

j

;

where n

j

is subjet to the ondition (4.3.15) and

X

n

j

j

j

(n
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2

� kf

j

k

2

L

2

:

Thus we an write the integral of the left hand-side of (4.3.22) as

J =

X

n

1

;n
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where "

1

= "

2

= 1 and "

3

= �1. Using the fast deay of the Fourier

transform b� and the estimate of Lemma 4.3.7, we obtain
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where

�

k

= f(n

1

; n

2

; n

3

) : (4.3.15) holds for j = 1; 2; 3 ;

3

X
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"

j

n

j
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+ 3) = k g :

Suppose for instane that min(N

1
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2

; N

3
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1
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2
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3

in the above sum as
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:

To omplete the proof, it remains to appeal one again to Lemma 4.3.1,

whih yields the estimate

#�

�;`

(n

3

) � C

Æ

(min(N

1

; N

2

))

Æ

;

for every Æ > 0. If N

3

is min(N

1

; N

2

; N

3

), the proof is similar, by speializing

the sum with respet to n

1

, say.
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