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Abstract
For any fixed real a > 0 and x ∈ R

d , d ≥ 1, we consider the real-valued random
process (Sn)n≥0 defined by S0 = a, Sn = a + ln |gn · · · g1x |, n ≥ 1, where the
gk, k ≥ 1, are i.i.d. nonnegative random matrices. By using the strategy initiated
by Denisov and Wachtel to control fluctuations in cones of d-dimensional random
walks, we obtain an asymptotic estimate and bounds on the probability that the process
(Sn)n≥0 remains nonnegative up to timen and simultaneously belongs to somecompact
set [b, b + �] ⊂ R

+∗ at time n.

Keywords Local limit theorem · Random walk · Product of random matrices ·
Markov chains · First exit time

Mathematics Subject Classification (2020) 60B15 · 60F15

1 Introduction andMain Results

1.1 Motivation

Random walks conditioned to staying positive is a popular topic in probability. In
addition to their own interest, such as information about the maxima and the minima,
the ladder variables and the ladder epoch of randomwalks onR, they are also important
in view of their applications, for instance in queuing theory, in coding the genealogy
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of Galton–Watson trees or else as models for polymers and interfaces; we refer to [1]
and references therein.

The first interesting question is to determine the asymptotic behavior of the exit
time from the half line [0,+∞[ and then to prove limit theorems for the process
restricted to this half line or conditioned to remain there. More precisely, let (Sn)n≥1
be a random walk in R whose increments are independent with common distribution.
Assume that (Sn)n≥1 is centered and let τ be its exit time from [0,+∞[. Then, for
any a, b, � > 0, as n → +∞,

Pa(τ > n, Sn ∈ [b, b + �[) ∼ c
h+(a)h−(b)

n3/2 �,

where c is a positive constant and h+ and h− are the renewal functions associated
with (Sn)n≥1, based on ascending and descending ladder heights (in particular these
functions are positive). The increments being independent and identically distributed,
the classical approach relies on the Wiener–Hopf factorization and related identities
associated with the names of Baxter, Pollaczek and Spitzer; important references in
the field are given by Feller and Spitzer in their books [2, 3].

Important conceptual difficulties arise both when the random walk (Sn)n≥1 is Rd -
valued with d ≥ 2 (the half line being replace by a general cone of the Euclidean
space), or when the increments of the random walk are no longer independent. As far
as we know, equivalent theory based on factorizations for these processes does not
exist. In dimension d ≥ 2, the Wiener–Hopf factorization method works when the
cone is a half space but breaks down for more general cones. Any attempt to develop
a theory of fluctuations for higher-dimensional random walks deals with the question:
what would play the role of ladder epochs and ladder variables? [4]; Kingman showed
in particular the impossibility of extending Baxter and Spitzer approach to random
walks in higher dimension [5].

In 2015, Denisov andWachtel developed a new approach to study the exit time from
a cone of a random walk and several consequent limit theorems [6]. Their strategy,
based on the approximation of these walks suitably normalized by a Brownianmotion,
with a strict control of the speed of convergence, is promising, powerful and flexible.
It allows in particular to approach the random walks whose jumps are not i.i.d.

This flexible approach could be adapted to the quantity Sn(x) := ln |gn · · · g2g1x |,
where (gk)k≥1 is a sequence of i.i.d. random matrices, x is a non-nul vector in Rd and
| · | is the �1 norm in R

d ; this process falls within the general framework of Markov
walks on R satisfying some spectral gap assumption. The behavior of the tail of the
distribution of τx,a := inf{n ≥ 1 : a + ln |gn · · · g2g1x | ≤ 0} is known for a few
years when the random matrices are invertible or nonnegative [7, 8]. This is extended
by Grama et al. [9] to the case of Markov walks, under a spectral gap assumption.
Nevertheless, the question of a local limit theorem for ln |gn · · · g2g1x | confined in a
half line still resists. In [10], such a statement holds for conditioned Markov walks
over a finite state space, in which case the dual driving Markov chain also satisfies
nice spectral gap properties; unfortunately, such a property does not hold for product
of random matrices since it is not realistic to assume that the random matrices Mn act
projectively on a finite set.
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1.2 Notations and Assumptions

We endowR
d with the L1 norm |·| defined by |x | :=

∑d

i=1
|xi | for any column vector

x = (xi )1≤i≤d . Let 1 (resp., 0) be the column vector ofRd whose all coordinates equal
1 (resp., 0).

Let S be the set of d × d matrices with positive entries. We endow S with the
standard multiplication of matrices, and then, the set S is a semigroup. For any g =
(g(i, j))1≤i, j≤d ∈ S, we define v, endow | · | a norm on S and define N as follows,

v(g) := min
1≤ j≤d

( d∑

i=1

g(i, j)
)
; |g| :=

d∑

i, j=1

g(i, j) and N (g) := max

(
1

v(g)
, |g|

)
.

Notice that N (g) ≥ 1 for any g ∈ S.
Let C be the cone of column vectors defined by C := {x ∈ R

d | ∀1 ≤ i ≤ d, xi ≥ 0}
and X be the limited standard simplex defined by X := {x ∈ C | |x | = 1}. For any
x ∈ C, we denote by x̃ the corresponding row vector and set C̃ = {x̃ | x ∈ C} and
X̃ = {x̃ | x ∈ X}.

We consider the following actions:

• the linear action of S on C (resp. C̃) defined by (g, x) �→ gx (resp. (g, x̃) �→ x̃ g)

for any g ∈ S and x ∈ C,
• the projective action of S on X (resp. X̃) defined by (g, x) �→ g · x := gx

|gx |
(resp. (g, x̃) �→ x̃ · g = x̃ g

|x̃ g| ) for any g ∈ S and x ∈ X.

It is noticeable that 0 < v(g) |x | ≤ |gx | ≤ |g| |x | for any x ∈ C.
From now on, we consider a sequence (gk)k≥1 of i.i.d. random variables with

values in S, and with common distribution μ and set Ln,1 := gn · · · g2g1 for n ≥ 1.
For any fixed x ∈ X and a > 0, we denote by τx,a the first time the random process
(a + ln |Ln,1x |)n becomes negative, i.e.

τx,a := min{n ≥ 1 : a + ln |Ln,1x | ≤ 0}.

We impose the following assumptions on μ.
Hypotheses

P1 Moment assumption: There exists δ1 > 0 such that
∫

S
N (g)δ1μ(dg) < +∞.

P2 Irreducibility assumption:There exists no affine subspaces A ofRd such that A∩C
is non-empty and bounded and invariant under the action of all elements of the support
of μ.
This assumption is classical in the context of product of positive random matrices;
it ensures in particular that the central limit theorem satisfied by these products is
meaningful since the variance is positive (see Corollary 3 in [11]).
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P3 There exists B > 0 such that for μ-almost all g in S and any 1 ≤ i, j, k, l ≤ d

g(i, j)

B
≤ g(k, l) ≤ B g(i, j). (1)

This is a classical assumption for product of random matrices with positive entries; it
was first introduced by Furstenberg and Kesten [12].
P4 Centering: The upper Lyapunov exponent γμ is equal to 0.
P5 There exists δ5 > 0 such that μ{g ∈ S : ∀x ∈ X, ln |gx | ≥ δ5} > 0.
Condition P5 ensures that uniformly in x ∈ X, the probability that the process (a +
ln |Ln,1x |)n≥1 remains in the half line ]0,+∞[ is positive. It is satisfied for instance
when μ{g | v(g) > 1} > 0.

As it is usual in studying local probabilities, one has to distinguish between “lattice”
and “non-lattice” cases. The “non-lattice” assumption ensures that the R-component
of the trajectories of the Markov walk (Xn, Sn)n≥0 does not live in the translation of a
proper subgroup of R; in the contrary case, when μ is lattice, a phenomenon of cyclic
classes appears which involves some complications which are not interesting in our
context. We refer to equality (4) in Sect. 2 for a precise definition in the context of
products of random matrices.
P6 Non-lattice assumption: The measure μ is non-lattice.

The tail of the distribution of τx,a has been the subject of an extensive study in [8]:
under hypotheses P1–P5, there exists a positive Borel function V : X × R

+ → R
+

such that as n → +∞,

P(τx,a > n) ∼ 2

σ
√
2πn

V (x, a).

In the sequel, we also need to consider the process (b − ln |x̃ R1,n|)n , x̃ ∈ X̃, b ∈ R
+,

where R1,n denotes the “right random walk” R1,n := g1g2 · · · gn for n ≥ 1. We thus
also consider the stopping time

τ̃x̃,b := min{n ≥ 1 : b − ln |x̃ R1,n| ≤ 0}.

As above, there exists a positive Borel function Ṽ : X × R
+ → R

+ such that as
n → +∞,

P(τ̃x̃,b > n) ∼ 2

σ
√
2πn

Ṽ (x̃, b).

At last, as n → +∞, the sequence

(
a + ln |Ln,1x |

σ
√

n

)

n
conditioned to the event (τx,a >

n) converges weakly toward the Rayleigh distribution on R
+ whose density equals

y e−y2/21R+(y). Properties of the function V are precisely stated in Sect. 2.
The natural question is to get a local limit theorem for the process (a+ln |Ln,1x |)n≥1

forced to stay positive up to time n, in other words to describe the behavior of the
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quantity P(τx,a > n, a + ln |Ln,1x | ∈ [b, b + �]) as n → +∞, where a, b > 0 and
� > 0.

1.3 Main Statements

We first state a version of the Gnedenko local limit theorem.

Theorem 1 Assume hypotheses P1–P6. Then, as n → +∞, for any x ∈ X, a, b > 0
and � > 0,

lim
n→+∞

∣∣∣nP(τx,a > n, a + ln |Ln,1x | ∈ [b, b + �]) − 2
√
2π

σ 2
√

n
V (x, a) b e−b2/2n �

∣∣∣ = 0,

the convergence being uniform in x ∈ X and b ≥ 0.

Notice that Theorem 1 says only that the probability

P(τx,a > n, a + ln |Ln,1x | ∈ [b, b + �])

is o(n−1). The following theorem describes an asymptotic behavior of this quantity;
the constant� that appears in this statement is� := ln δ where δ is defined in Lemma
4.

Theorem 2 Assume hypotheses P1–P6. There exist strictly positive constants c and C
such that for any x ∈ X, a, b ≥ 0 and � > 0,

n3/2
P(τx,a > n, a + ln |Ln,1x | ∈ [b, b + �]) ≤ C V (x, a) Ṽ (x, b) �. (2)

Furthermore, there exist strictly positive constants �0 and � such that, for � > �0 and
b ≥ �,

lim inf
n→+∞ n3/2

P(τx,a > n, a + ln |Ln,1x | ∈ [b, b + �]) ≥ c V (x, a) Ṽ (x, b) �. (3)

As for random walks with i.i.d. increments, it is expected that this probability is in
fact equivalent to n3/2 up to a positive constant. The argument relies on a combination
of what is sometimes called “reverse time" and “duality" in the classical theory of
random walks; roughly speaking, it relies on the fact that, for a classical random
walk (Sn)n≥1 with i.i.d. increments, the vectors (S1, S2, . . . , Sn) and (Sn − Sn−1, Sn −
Sn−2, . . . , Sn) have the same distribution. In [9], this idea is developed in the context of
Markov walks over a Markov chain with finite state space, it is technically much more
difficult and so far, it escapes from the framework of random matrix products (see the
paragraph before Lemma 5 for more detailed explanations). In the case of nonnegative
randommatrices, the difference between ln |Ln,1x | and ln |Ln,1| is uniformly bounded
(see Lemma 4), one can thus avoid the precise study of the associated dual chain1 to

1 This study would require restrictive conditions on μ, for example the existence of a density.
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obtain the above result, a bit less precise but still worth of interest. There are in
particular interesting and deep applications in the theory of branching processes (see
for instance [13]).

Notation. Let c be a strictly positive constant and φ,ψ be two functions of some

variable x ; we denote by φ
c� ψ (or simply φ � ψ) when φ(x) ≤ c ψ(x) for any

value of x . The notation φ
c� ψ (or simply φ � ψ) means φ

c� ψ
c� φ.

2 Preliminaries

2.1 The KilledMarkovWalk onX× R and its Harmonic Function

Weconsider a sequence of i.i.d.S-valuedmatrices (gk)k≥1 with commondistributionμ

and denote the left and right product ofmatrices Ln,k := gn · · · gk and Rk,n = gk · · · gn

for any n ≥ k ≥ 1.
We fix a X-valued random variable X0 and consider the Markov chain (Xn)n≥0

defined by X X0
n := Ln,1 · X0 for any n ≥ 1; when X0 = x , we set for simplicity

Xn = X x
n . Similarly, the X̃-valuedMarkov chain (X̃n)n≥0 is defined by X̃n := X̃0·R1,n

for any n ≥ 1, where X̃0 is a fixed X̃-valued random variable.
Notice that the sequence (gn+1, X x

n )n≥0 (resp. (gn+1, X̃ x̃
n )n≥0) is a S×X valued (resp.

S × X̃ valued) Markov chain with initial distribution μ ⊗ δx (resp. μ ⊗ δx̃ ), where
δx is the Dirac distribution at x . Their respective transition probability P and Q are
defined by: for any (g, x) ∈ S × X and any bounded Borel function ϕ : S × X →
C, φ : S × X̃ → C,

Pϕ(g, x) :=
∫

S
ϕ(h, g · x)μ(dh) and Qφ(g, x̃) :=

∫

S
φ(h, x̃ · g)μ(dh).

We denote by (� = (S × X)⊗N,F = B(S × X)⊗N, (gn+1, X x
n )n≥0, θ,Px ) the

canonical probability space associated with (gn+1, X x
n )n≥0, where θ is the classical

“shift operator” on (S × X)⊗N. Similarly, (�̃, F̃ , (gn+1, X̃ x̃
n )n≥0, θ̃ ,Px̃ ) denotes the

canonical probability space associated with (gn+1, X̃ x̃
n )n≥0.

We introduce next the functions ρ ant ρ̃ defined for any g ∈ S and x ∈ X by

ρ(g, x) := ln |gx | and ρ̃(g, x̃) := ln |x̃ g|.

Notice that gx = eρ(g,x)g · x and that ρ satisfies the “cocycle property”:

ρ(gh, x) = ρ(g, h · x) + ρ(h, x), ∀g, h ∈ S and x ∈ X.

This yields to the following basic decomposition

ln |Ln,1x | =
n−1∑

k=0

ρ(gk+1, X x
k ) and ln |x̃ R1,n| =

n−1∑

k=0

ρ(gk+1, X̃ x̃
k ).
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Thus, it is natural to introduce the following Markov walks on X × R and X̃ × R

defined by Sn = S0 +
∑n−1

k=0
ρ(gk+1, X x

k ) and S̃n = S̃0 −
∑n−1

k=0
ρ̃(gk+1, X̃ x̃

k ) where

S0 and S̃0 are real-valued random variables.
Notice that the sequences (Xn, Sn)n≥0 and (X̃n, S̃n)n≥0 areMarkov chains onX×R

and X̃ × R, respectively, with transition probability P̂ and Q̂ defined by: for any
(x, a) ∈ X×R and any bounded Borel functions � : X×R → C, � : X̃×R → C,

P̂�(x, a) =
∫

S
�(g · x, a + ρ(g, x))μ(dg) and

Q̂�(x̃, a) =
∫

S
�(x̃ · g, a − ρ̃(g, x̃))μ(dg).

For any (x, a) ∈ X × R, we denote by Px,a the probability measure on (�,F)

conditioned to the event (X0 = x, S0 = a) and byEx,a the corresponding expectation;
for simplicity, we set Px,0 = Px and Ex,0 = Ex .
Hence for any n ≥ 1,

P̂n�(x, a) = E[�(Ln,1 · x, a + ln |Ln,1x |)] = Ex,a[�(Xn, Sn)].

Next we consider the restriction P̂+ to X × R
+ of P̂ defined for any bounded Borel

functions � : X × R → C and any (x, a) ∈ X × R by:

P̂+�(x, a) = P̂(�1X×R+)(x, a).

Let us emphasize that P̂+ may not be aMarkov kernel onX×R
+. Furthermore, if τ :=

min{n ≥ 1 : Sn ≤ 0} is the first time the random process (Sn)n≥1 becomes negative,
it holds for any (x, a) ∈ X × R

+ and any bounded Borel function � : X × R → C,

P̂+�(x, a) = Ex,a[�(X1, S1); τ > 1] = E[�(g1 · x, a + ln |g1x |); a + ln |g1x | > 0].

A positive P̂+-harmonic function V is any function from X × R
+ to R

+ satisfying
P̂+V = V . We extend V by setting V (x, a) = 0 for (x, a) ∈ X×R

−∗ . In other words,
the function V is P̂+-harmonic if and only if for any x ∈ X and a ≥ 0,

V (x, a) = Ex,a[V (X1, S1); τ > 1].

Similarly, if τ̃ := min{n ≥ 1 : S̃n ≤ 0} is the first time the random process (S̃n)n≥1

becomes negative, then for any (x, b) ∈ X̃ × R
+ and any bounded Borel function

� : X̃ × R → C,

Q̂+�(x, a) = Ex̃,b[�(X̃1, S̃1); τ̃ > 1] = E[�(x̃ · g1, b − ln |x̃ g1|); b − ln |x̃ g1| > 0].

From Theorem II.1 in [14], when the support of μ contains matrices with positive
entries (in particular when condition P3 holds), there exists a unique probability
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measure ν on X such that for any bounded Borel function ϕ from X to R,

(μ ∗ ν)(ϕ) =
∫

S

∫

X

ϕ(g · x)ν(dx)μ(dg) =
∫

X

ϕ(x)ν(dx) = ν(ϕ).

Such a measure is said to be μ-invariant. When
∫

S
| ln |g||μ(dg) < +∞, the upper

Lyapunov exponent associated with μ is finite and is expressed by

γμ =
∫

S

∫

X

ρ(g, x)ν(dx)μ(dg).

We are now able to give a precise definition of a lattice distribution μ. We say that
the measure μ is lattice if there exist t > 0, ε ∈ [0, 2π [ and a function ψ : X → R

such that

∀g ∈ Tμ,∀x ∈ X, exp {i tρ(g, x) − iε + i(ψ(g · x) − ψ(x))} = 1, (4)

where Tμ is the closed sub-semigroup generated by the support of μ.
It is also noticeable that the process (Xn, Sn)n is a semi-Markovian random walk

on X × R with the strictly positive variance σ 2 := lim
n→+∞

1

n
Ex [S2

n ], for any x ∈ X.

Condition P2 implies that σ 2 > 0; we refer to Theorem 5 in [11].
In [8], C. Pham establishes the asymptotic behavior of P(τx,a > n) by studying the

P̂+-harmonic function V . Firstly, she proves the existence of a P̂+-harmonic function
and describes some of its properties (Proposition 1.1), then obtains the behavior of
the tail distribution of τx,a and a conditional central limit theorem (Theorems 1.2 and
1.3). We summarize all these results in the following statement.

Proposition 3 Assume hypotheses P1–P5. Then, there exists a P̂+-harmonic Borel
function V : X × R

+ → R
+ such that the function a �→ V (x, a) is increasing on

R
+ for any x ∈ X and satisfies the following properties: there exist strictly positive

constants c, C and A such that for any x ∈ X and a ≥ 0,

c ∨ (a − A) ≤ V (x, a) ≤ C (1 + a) and lim
a→+∞

V (x, a)

a
= 1.

Furthermore, for any x ∈ X, a ≥ 0 and n ≥ 1,

√
nP(τx,a > n) ≤ C V (x, a)

and as n → +∞,

P(τx,a > n) ∼ 2

σ
√
2πn

V (x, a).
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At last, as n → +∞, the sequence

(
a + ln |Ln,1x |

σ
√

n

)

n
conditioned to (τx,a > n)

converges weakly toward the Rayleigh distribution on R
+ whose density equals

y e−y2/21R+(y), relatively to Px,a for any x ∈ X and a ≥ 0.

2.2 Product of Positive RandomMatrices

Products of random matrices are first studied by Furstenberg and Kesten [12] for
matrices satisfying condition (1) and then being extended to elements of S by several
authors (see [11] and references therein). The restrictive condition of Furstenberg and
Kesten considerably simplifies the study. The following statement (see [12] Lemma
2) is a key argument in the sequel to control the asymptotic behavior of the norm of
products of matrices satisfying condition (1).

Lemma 4 Let g be a product of positive matrices satisfying condition (1).
Then, for any 1 ≤ i, j, k, l ≤ d,

g(i, j)
B2

� g(k, l).

In particular, there exists δ > 1 such that for any products g, h of matrices satisfying
condition (1) and any x ∈ X, ỹ ∈ X̃,

1. |gx | δ� |g| and |ỹg| δ� |g|,
2. |̃ygx | δ� |g|,
3. |g||h| δ� |gh| ≤ |g||h|.
As a direct consequence, properties 1., 2. and 3. above are satisfied for any elements
g, h of the closed sub-semigroup Tμ generated by the support of μ; hence, P-almost
surely, the sequence (ln |Ln,1x | − ln |Ln,1|)n≥0 is bounded uniformly in x ∈ X. This
property is crucial in the sequel in order to apply the “reverse time" trick, an essential
argument in the proofs of our main results.

When studying fluctuations of random walks (Sn)n≥1 with i.i.d. increments Yk

on R
d , d ≥ 1, it is useful to “reverse time” as follows. For any 1 ≤ k ≤ n, the

random variables Sn − Sk = Yk+1 + · · · + Yn and Sn−k = Y1 + · · · + Yn−k have the
same distribution. In the case of products of random matrices, the cocycle property
Sn(x) = ln |Ln,1(x)| = Sk(x) + Sn−k(Xk) is more subtle and the same argument
cannot be applied directly. The fact that the gk do satisfy condition (1) comes to our
rescue here, but the price to pay is the appearance of the constant � = ln δ (where δ

is the constant which appears in Lemma 4) that disturbs the estimates as follows. Up
to this constant �, we can compare the distribution of Sn(x) − Sk(x) =: Sn−k(Xk) to
the one of ln |gk+1 · · · gn|, then to the one of ln |g1 · · · gn−k | and at last to the one of
ln |ỹg1 · · · gn−k | =: −S̃n−k(y), for any x, y ∈ X (notice here that for this last quantity,
the non-commutativity of the product of matrices forces us to consider the right linear
action of the matrices R1,n−k). It is the strategy that we apply repeatedly to obtain the
following result.
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NotationWhen the starting couple (x, a) or (x̃, b) is well indicated, we may shorten
the notation by writing τ or τ̃ .

Lemma 5 For any x, y ∈ X, a, b, � > 0 and n ≥ 1

Px,a(τ > n, Sn ∈ [b, b + �]) ≤ Pỹ, b+�+�(τ̃ > n, S̃n ∈ [a, a + � + 2�]). (5)

Similarly, for a ≥ � > 2� > 0 and b ≥ �,

Px,a(τ > n, Sn ∈ [b, b + �]) ≥ Pỹ, b−�(τ̃ > n, S̃n ∈ [a − �, a − 2�]). (6)

Proof We begin with the demonstration of (5). For any n ≥ 1 and a, b > 0, � > 0, it
holds

Px,a(τ > n, Sn ∈ [b, b + �])
= Px (a + S1 > 0, . . . , a + Sn−1 > 0, a + Sn ∈ [b, b + �])
= Px (a + Sn − Sn−1 ◦ θ > 0, . . . , a + Sn − S1 ◦ θn−1 > 0, a + Sn ∈ [b, b + �])
≤ Px (b + � − Sn−1 ◦ θ > 0, . . . , b + � − S1 ◦ θn−1 > 0, b + � − Sn ∈ [a, a + �]),

where θ is the shift operator and Sn−k ◦ θk = ln |Ln,k+1X x
k | Px -a.s. for 0 ≤ k < n.

By Lemma 4, for any ỹ ∈ X̃ and 0 ≤ k ≤ n − 1, the quantities ln |Ln,k+1X x
k |

and ln |ỹLn,k+1| both belong to the interval [ln |Ln,k+1| − �, ln |Ln,k+1|]. Therefore,
Sn−k ◦ θk ∈ [ln |ỹLn,k+1| − �, ln |ỹLn,k+1| + �] and as a result

Px,a(τ > n, Sn ∈ [b, b + �])
≤ P(b + � + � − ln |ỹLn,2| > 0, . . . , b + � + � − ln |ỹLn,n| > 0,

b + � + � − ln |ỹLn,1| ∈ [a, a + � + 2�])
= P(b + � + � − ln |ỹ R1,n−1| > 0, . . . , b + � + � − ln |ỹ R1,1| > 0,

b + � + � − ln |ỹ R1,n| ∈ [a, a + � + 2�])
by using the fact that (g1, . . . , gn) and (gn, . . . , g1) have the same distribution

= Pỹ, b+�+�(τ̃ > n, S̃n ∈ [a, a + � + 2�]).

Similarly, for a > � > 2� > 0 and b > 0, we obtain the proof of (6) as follows.

Px,a(τ > n, Sn ∈ [b, b + �])
= Px (a + S1 > 0, . . . , a + Sn−1 > 0, a + Sn ∈ [b, b + �])
= Px (a + Sn − Sn−1 ◦ θ > 0, . . . , a + Sn − S1 ◦ θn−1 > 0, b ≤ a + Sn ≤ b + �)

≥ Px (b − Sn−1 ◦ θ > 0, . . . , b − S1 ◦ θn−1 > 0, a − � ≤ b − Sn ≤ a)

≥ P(b − � − ln |ỹLn,2| > 0, . . . , b − � − ln |ỹLn,n| > 0,

a − � ≤ b − � − ln |ỹLn,1| ≤ a − 2�)

= P(b − � − ln |ỹ R1,n−1| > 0, . . . , b − � − ln |ỹ R1,1| > 0,
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b − � − ln |ỹ R1,n| ∈ [a − �, a − 2�])
= Pỹ, b−�(S̃1 > 0, . . . , S̃n−1 > 0, S̃n ∈ [a − �, a − 2�])
= Pỹ, b−�(τ̃ > n, S̃n ∈ [a − �, a − 2�]).

Since a > � > 2� > 0, the interval [a − �, a − 2�] is not empty. ��

2.3 Limit Theorem for Product of Positive RandomMatrices

In this section, we state some classical results and preparatory lemmas, useful for the
demonstration of Theorems 1 and 2. The following result plays a crucial role in this
article.

Theorem 6 ([15], Theorem 3.2.2) Assume hypotheses P1–P6 hold. Then for any con-
tinuous function u : X → R and any continuous function with compact support
ϕ : R → R, it holds

lim
n→+∞

∣∣∣
√

nEx,a [u(Xn)ϕ(Sn)] − ν(u)

σ
√
2π

∫

R

ϕ(y)e−(y−a)2/2σ 2ndy
∣∣∣ = 0,

where the convergence is uniform in (x, a) ∈ X × R
∗+.

Other necessary elementary estimations are proved below.

Lemma 7 There exist constants c, C > 0 such that for every x ∈ X, a, b in R, � >

0, n ≥ 1,

Px,a(Sn ∈ [b, b + �]) ≤ c√
n

� (7)

and, for any t > 0,

lim sup
n→+∞

sup
|a−b|>t

√
n

√
n Px,a(Sn ∈ [b, b + �]) ≤ C � e−ct2 . (8)

Proof Assertion (7) is a consequence of Theorem 6. Assertion (8) is more precise than
(7) for large values of the starting point a, namely when a � √

n, as proved below.
We fix �, t > 0 and let m := �n/2� be the lower round of n/2. We decompose
Px,a(Sn ∈ [b, b + �]) as follows.

Px,a(Sn ∈ [b, b + �]) = Px (a + Sn ∈ [b, b + �])
= Px (a + Sn ∈ [b, b + �], |Sm | > t

√
n/2)︸ ︷︷ ︸

P1(n,x,a,b,�)

+ Px (a + Sn ∈ [b, b + �], |Sm | ≤ t
√

n/2)︸ ︷︷ ︸
P2(n,x,a,b,�)

.
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On the one hand, from the Markov property and inequality (7), there exists a strictly
positive constant c1 such that, uniformly in x, a and b,

P1(n, x, a, b, �) =
∫

X×[−t
√

n/2,t
√

n/2]c
Px ′(a + a′ + Sn−m

∈ [b, b + �]) Px (Xm ∈ dx ′, Sm ∈ da′)

≤ c1
�√

n − m
Px (|Sm | > t

√
n/2). (9)

On the other hand, when |a − b| > t
√

n, conditions |Sm | ≤ t
√

n/2 and a + Sn ∈
[b, b + �] yield |Sn − Sm | ≥ t

√
n/2 − �. Hence,

P2(n, x, a, b, �) ≤ Px (a + Sn ∈ [b, b + �], |Sn − Sm | > t
√

n/4)

= Px (a + Sm + Sn−m ◦ θm ∈ [b, b + �], |Sn−m ◦ θm | > t
√

n/4)

= Px (a + ln |Lm,1X0| + ln |Ln,m+1Xm | ∈ [b, b + �], ln |Ln,m+1Xm | > t
√

n/4)

≤ P(a + ln |Lm,1x | + ln |Ln,m+1x | ∈ [b − �, b + � + �],
| ln |Ln,m+1x || > t

√
n/4 − �) by Lemma 4

≤
∫

{|α|>t
√

n/4−�}
P(a + ln |Lm,1x | + α ∈ [b − �, b + � + �])︸ ︷︷ ︸

≤ c
� + 2�√

n
by(7)

P(ln |Ln,m+1x | ∈ dα)

≤ c
� + 2�√

n
Px (|Sn−m | > t

√
n/4 − �). (10)

Weconclude the proof by combining (9), (10) and the central limit theorem for products
of random matrices [11]. ��

The next statement is analogous to the previous lemma when the random walk
(a + Sn)n is forced to remain positive up to time n. For this reason, we assume here
a, b > 0.

Lemma 8 There exists a constant C > 0 such that for all x ∈ X, a, b, � > 0 and
n ≥ 1,

Px,a(τ > n, Sn ∈ [b, b + �]) ≤ C
1 + a

n
�. (11)

Furthermore, there exists a constant C > 0 such that for any �, t > 0,

lim sup
n→+∞

sup
x∈X

sup
a>t

√
n+�+2�

b>t
√

n+�

√
n Px,a(τ ≤ n, Sn ∈ [b, b + �]) ≤ C � e−ct2 . (12)

Proof For any 1 ≤ m ≤ n,

Px,a(τ > n, Sn ∈ [b, b + �]) ≤ Px,a(τ > m, Sn ∈ [b, b + �])
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=
∫

X×R
+∗
Px ′,a′(Sn−m ∈ [b, b + �]) Px,a(τ > m, (Xm, Sm) ∈ dx ′da′)

� Px,a(τ > m)√
n − m

� by (7)

≤ c
1 + a

n
� by Proposition 3.

The proof of assertion (12) is decomposed in two steps. Let m = �n/2�.
Step 1. When b > t

√
n, by using the Markov property, we get

Px,a(τ ≤ m, Sn ∈ [b, b + �])

=
m∑

k=1

Px,a(τ = k, Sn ∈ [b, b + �])

=
m∑

k=1

∫

X×R−
Px ′,a′(Sn−k ∈ [b, b + �]) Px,a(τ = k, (Xk, Sk) ∈ dx ′da′)

≤ max
n−m≤k′≤n

⎛

⎜⎝ sup
x ′∈X

|a′−b|>t
√

n

Px ′,a′(Sk′ ∈ [b, b + �])
⎞

⎟⎠

m∑

k=1

∫

X×R−
Px,a(τ = k, (Xk, Sk) ∈ dx ′da′)

︸ ︷︷ ︸
=Px,a(τ≤m)

≤ max
n−m≤k′≤n

⎛

⎜⎜⎝ sup
x ′∈X

|a′−b|>t
√

k′

Px ′,a′(Sk′ ∈ [b, b + �])

⎞

⎟⎟⎠ .

Hence, by (8), there exists c, C > 0 such that, for any x ∈ X and a > 0

lim sup
n→+∞

√
n Px,a(τ ≤ m, Sn ∈ [b, b + �]) ≤ C � e−ct2 .

Step 2. We control the term Px,a(m < τ ≤ n, Sn ∈ [b, b + �]). By using the same
argument to prove (5), it follows that

Px,a(m < τ ≤ n, Sn ∈ [b, b + �])
= Px (∃k ∈ {m + 1, . . . , n − 1} : a + Sk ≤ 0, a + Sn ∈ [b, b + �])
= P(∃k ∈ {m + 1, . . . , n − 1} : a + ln |Ln,1x | − ln |Ln,k+1X x

k |
≤ 0, a + ln |Ln,1x | ∈ [b, b + �])
≤ P(∃k ∈ {m + 1, . . . , n − 1} : b − � − ln |ỹLn,k+1|
≤ 0, a + ln |ỹLn,1| ∈ [b − �, b + � + �])
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= P(∃k ∈ {m + 1, . . . , n − 1} : b − � − ln |ỹ R1,n−k |
≤ 0, a + ln |ỹ R1,n| ∈ [b − �, b + � + �])

(by using again the fact that since again (g1, . . . , gn) and (gn, . . . , g1) have the same

distribution)

≤ P(∃� ∈ {1, . . . , m} : b − � − ln |ỹ R1,�|
≤ 0, b − � − ln |ỹ R1,n| ∈ [a − � − 2�, a])

= Pỹ,b−�(τ̃ ≤ m, S̃n ∈ [a − � − 2�, a]).

Now, when a − � − 2� > t
√

n and b > �, we may apply Step 1 with the couple
(τ̃ , S̃n) instead of (τ, Sn). This achieves the proof. ��

3 Proof of Theorem 1

We adapt the proof of Theorem 5 in [6] and point out on the main differences. We fix
two positive constants A and ε such that A > 2ε > 0 and splitR+∗ into three intervals:
[A

√
n;+∞[, ]0, 2ε√n[ and In,ε,A = [2ε√n, A

√
n[. The proof is decomposed

into three steps.
Step 1.

lim
A→+∞ lim sup

n→+∞

⎡

⎢⎣n sup
x∈X

b≥A
√

n

Px,a(τ > n, Sn ∈ [b, b + �])
⎤

⎥⎦ = 0.

Step 2.

lim
ε→0

lim sup
n→+∞

⎡

⎢⎣n sup
x∈X

0<b≤2ε
√

n

Px,a(τ > n, Sn ∈ [b, b + �])
⎤

⎥⎦ = 0.

Step 3. For any A > 0,

lim
ε→0

lim sup
n→+∞

sup
x∈X

b∈In,ε,A

∣∣∣nPx,a(τ > n, Sn ∈ [b, b+�])− 2

σ
√
2πn

V (x, a)b � e−b2/2n
∣∣∣ = 0.

Theorem 1 follows by combining these three steps; the convergence is obviously
uniform over x .

We set m = �n/2�.
Proof of Step 1. Let a > 0 and b ≥ A

√
n. We write

Px,a(τ > n, Sn ∈ [b, b + �]) = Pn(x, a, b, A) + Qn(x, a, b, A)

where

Pn(x, a, b, A) = Px,a(τ > n, Sm ≤ A
√

m, Sn ∈ [b, b + �])
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and

Qn(x, a, b, A) = Px,a(τ > n, Sm > A
√

m, Sn ∈ [b, b + �]).

By the Markov property,

Pn(x, a, b, A) ≤ Px,a(τ > m, Sm ≤ A
√

m, Sn ∈ [b, b + �])
≤

∫

X×]0,A
√

m]
Px,a(τ > m, Xm ∈ dx ′, Sm ∈ da′) Px ′,a′ (Sn−m ∈ [b, b + �])

≤ Px,a(τ > m, Sm ≤ A
√

m) sup
x ′∈X

0<a′≤A
√

m

Px ′,a′ (Sn−m ∈ [b, b + �])

≤ Px,a(τ > m) sup
x ′∈X

|b−a′ |>A
√

n/4

Px ′,a′ (Sn−m ∈ [b, b + �]).

Consequently, by Proposition 3 and inequality (8), there exist constants c, C > 0 such
that, for any x ∈ X and a > 0,

lim sup
n→+∞

n sup
b≥A

√
n

Pn(x, a, b, A) ≤ C(1 + a) � e−cA2
. (13)

Similarly,

Qn(x, a, b, A) ≤ Px,a(τ > m, Sm > A
√

m, Sn ∈ [b, b + �])
≤ Px,a

(
Sm > A

√
m

∣∣∣τ > m
)
Px,a(τ > m)

sup
(x ′,a′)∈X×R

+∗
Px ′,a′ (Sn−m ∈ [b, b + �])

� Px,a

(
Sm

σ
√

m
>

A

σ

∣∣∣τ > m

)
1 + a√

m

�√
n − m

with lim
m→+∞Px,a

(
Sm

σ
√

m
>

A

σ

∣∣∣τ > m

)
=

∫ +∞

A/σ

te−t2/2dt = e−A2/2σ 2
. Thus, there

exists C > 0 such that, for any x ∈ X and a, b > 0,

lim sup
n→+∞

n Qn(x, a, b, A) ≤ C(1 + a) � e−A2/2σ 2
. (14)

We conclude, by combining (13) and (14).
Proof of Step 2. Assume now 0 < b < 2ε

√
n. The Markov property and Proposition

3 yield

Px,a(τ > n, Sn ∈ [b, b + �])
≤

∑

i∈N
Px,a(τ > n, Sm ∈ [i, i + 1[, Sn ∈ [b, b + �])
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≤
∑

i∈N
Px,a(τ > m, Sm ∈ [i, i + 1[) sup

x ′∈X
a′∈[i,i+1[

Px ′,a′(τ > n − m, Sn−m ∈ [b, b + �])

by (5)≤
∑

i∈N
Px,a(τ > m, Sm ∈ [i, i + 1[) Px̃,b+�+�(τ̃ > n − m, S̃n−m ∈

[i, i + � + 2� + 1])
by (11)≤ C

1 + a

m

∑

i∈N
Px̃,b+�+�(τ̃ > n − m, S̃n−m ∈ [i, i + � + 2� + 1])

� 1 + a

n
Px̃,b+�+�(τ̃ > n − m)

� 1 + a

n
× 1 + b + � + �√

n − m
� (1 + a)(1 + 2ε

√
n)

n3/2 .

We conclude the proof of Step 2 letting n → +∞, then ε → 0.
Proof of Step 3. We assume b ∈ In,ε,A and set mε = �ε3n�. We rewrite Px,a(τ >

n, Sn ∈ [b, b + �]) as follows.

Px,a(τ > n,Sn ∈ [b, b + �])
= Px,a(τ > n, |Sn−mε − b| > ε

√
n, Sn ∈ [b, b + �])︸ ︷︷ ︸

�1(n,ε)

+ Px,a(τ > n, |Sn−mε − b| ≤ ε
√

n, Sn ∈ [b, b + �])︸ ︷︷ ︸
�2(n,ε)

On the one hand, by the Markov property,

�1(n, ε)

=
∫

X×[b−ε
√

n,b+ε
√

n]c
Px ′,a′(τ > mε, Smε ∈ [b, b + �])

Px,a

(
τ > n − mε, (Xn−mε , Sn−mε ) ∈ dx ′da′)

≤ sup
x ′∈X

|a′−b|>ε
√

n

Px ′,a′(τ > mε, Smε

∈ [b, b + �]) Px,a(τ > n − mε, Sn−mε ∈ [b − ε
√

n, b + ε
√

n]c)

≤ sup
x ′∈X

|a′−b|> 1√
ε

√
mε

Px ′,a′(Smε ∈ [b, b + �]) Px,a(τ > n − mε)︸ ︷︷ ︸
� 1+a√

n−mε

.

By (8), there exist constants c, C > 0 such that

lim sup
n→+∞

√
n sup

x ′∈X
|a′−b|> 1√

ε

√
mε

Px ′,a′(Smε ∈ [b, b + �]) ≤ C �
e−c/ε

ε3/2
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Therefore,

lim
ε→0

lim sup
n→+∞

sup
x∈X

b∈In,ε,A

|n�1(n, ε)| � lim
ε→0

(1 + a) �
e−c/ε

ε3/2
√
1 − ε3

= 0. (15)

On the other hand, we rewrite �2(n, ε) as

�2(n, ε)

=
∫

X×[b−ε
√

n,b+ε
√

n]
Px ′,a′(τ > mε, Smε ∈ [b, b + �])

Px,a

(
τ > n − mε, (Xn−mε , Sn−mε ) ∈ dx ′da′)

= �′
2(n, ε) − �′′

2 (n, ε), (16)

where

�′
2(n, ε) :=

∫

X×[b−ε
√

n,b+ε
√

n]
Px ′,a′(Smε ∈ [b, b + �])

Px,a

(
τ > n − mε, (Xn−mε , Sn−mε ) ∈ dx ′da′)

and

�′′
2 (n, ε)

:=
∫

X×[b−ε
√

n,b+ε
√

n]
Px ′,a′(τ ≤ mε, Smε ∈ [b, b + �])

Px,a

(
τ > n − mε, (Xn−mε , Sn−mε ) ∈ dx ′da′).

We first treat the term �′′
2 (n, ε). Since b ≥ 2ε

√
n, it holds a′ ≥ ε

√
n ≥

√
mε

ε
for any

a′ ∈ [b − ε
√

n, b + ε
√

n]. Hence, by (12), there exist constants c, C > 0 such that

lim sup
n→+∞

sup
x ′∈X

sup
a′∈[b−ε

√
n,b+ε

√
n]

b≥2ε
√

n

√
n Px ′,a′(τ ≤ mε, Smε ∈ [b, b + �]) ≤ C�

e−c/ε

ε3/2
.

Consequently,

n�′′
2 (n, ε) ≤

⎛

⎜⎜⎝ sup
x ′∈X

sup
a′∈[b−ε

√
n,b+ε

√
n]

b≥2ε
√

n

√
n Px ′,a′(τ ≤ mε, Smε ∈ [b, b + �])

⎞

⎟⎟⎠

∫

X×[b−ε
√

n,b+ε
√

n]
√

n Px,a(τ > n − mε, (Xn−mε , Sn−mε ) ∈ dx ′da′).
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≤

⎛

⎜⎜⎝ sup
x ′∈X

sup
a′∈[b−ε

√
n,b+ε

√
n]

b≥2ε
√

n

√
n Px ′,a′(τ ≤ mε, Smε ∈ [b, b + �])

⎞

⎟⎟⎠

√
n Px,a(τ > n − mε)

which implies

lim
ε→0

lim sup
n→+∞

sup
x∈X

b∈In,ε,A

|n�′′
2 (n, ε)| � (1 + a) � lim

ε→0

e−c/ε

ε3/2
√
1 − ε3

= 0. (17)

It remains to control the term �′
2(n, ε). By Theorem 6, uniformly in b ∈ In,ε,A,

�′
2(n, ε) =

∫

X×[b−ε
√

n,b+ε
√

n]
Px ′,a′(Smε ∈ [b, b + �])

Px,a(τ > n − mε, (Xn−mε , Sn−mε ) ∈ dx ′da′)

=
∫

X×[b−ε
√

n,b+ε
√

n]
1

σ
√
2πmε

e−(b−a′)2/2σ 2mε � (1 + on(1))

Px,a(τ > n − mε, (Xn−mε , Sn−mε ) ∈ dx ′da′)
(with on uniform in b, a′, ε)

= �

σ
√
2πmε

(1 + on(1))Ex,a

[
e−(b−Sn−mε )2/2σ 2mε ; b − ε

√
n

≤ Sn−mε ≤ b + ε
√

n; τ > n − mε

]

= 1

σ 2π
V (x, a)

�√
mε(n − mε)

(1 + on(1))

× Ex,a

[
e−(b−Sn−mε )2/2σ 2mε1[b−ε

√
n, b+ε

√
n](Sn−mε )/τ > n − mε

]
. (18)

The limit theorem for (Sn)n conditioned to stay in R
+ (see Proposition 3) combined

with the second Dini’s theorem yields: for every fixed ε > 0, as n → +∞,

sup
(x,b)∈X×In,ε,A

∣∣∣Ex,a

[
e−(b−Sn−mε )2/2σ 2mε1[b−ε

√
n, b+ε

√
n](Sn−mε )/τ > n − mε

]

−
∫

|√1−ε3t− b√
n
|<ε

te−t2/2e−(b/
√

n−√
1−ε3t)2/2ε3dt

∣∣∣ −→ 0.

(19)

Since this last integral equals b√
n

e−b2/2n(2πε)3/2 + o(ε3/2) (see [6] for the details),
by combining (18) and (19), we obtain

lim
ε→0

lim sup
n→+∞

sup
(x,b)∈X×In,ε,A

∣∣∣n�′
2(n, ε) − 2

√
2π

σ 2 V (x, a)
b �√

n
e−b2/2n

∣∣∣ = 0. (20)
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The proof of Step 3 is complete by combining (15), (16), (17) and (20).

4 Proof of Theorem 2

Inequality (2) is proved in [16] Corollary 3.7. The proof of the lower bound (3) is
based on Theorem 1 and is valid for � > 2� + 1 and b ≥ �. As previously, we set
m = �n/2�. By the Markov property and (6),

Px,a(τ > n, Sn ∈ [b, b + �])
≥ Px,a(τ > n, Sm ∈ [√n,

√
2n], Sn ∈ [b, b + �])

≥
∑

k∈N√
n≤k≤√

2n−1

Px,a

(
τ > n, k ≤ Sm ≤ k + 1[, b ≤ Sm + Sn−m ◦ θm ≤ b + �

)

≥
∑

k∈N√
n≤k≤√

2n−1

∫

X×[k,k+1]
Px,a(τ > m, (Xm, Sm) ∈ dx ′da′)

Px ′,a′(τ > n − m, b ≤ Sn−m ≤ b + �)

≥
∑

k∈N√
n≤k≤√

2n−1

∫

X×[k,k+1]
Px,a

(
τ > m, (Xm, Sm) ∈ dx ′da′)

Px̃,b−�(τ̃ > n − m, a′ − � ≤ S̃n−m ≤ a′ − 2�)

≥
∑

k∈N√
n≤k≤√

2n−1

Px,a

(
τ > m, k ≤ Sm ≤ k + 1

)

Px̃,b−�

(
τ̃ > n − m, k + 1 − � ≤ S̃n−m ≤ k − 2�

)
. (21)

By Theorem 1, there exists a constant C0 > 0 such that for any k ∈ N satisfying√
n ≤ k ≤ √

2n − 1,

lim inf
n→+∞ nPx,a

(
τ > m, k ≤ Sm ≤ k + 1

)
≥ C0

and

lim inf
n→+∞ nPx̃,b−�

(
τ̃ > n − m, k − 1 ≤ S̃n−m ≤ k − 2�

)
≥ C0(� − 2� − 1).

Hence, inequality (21) yields, for n large enough,

n2
Px,a(τ > n, Sn ∈ [b, b + �]) ≥ C2

0

2
(
√
2n − √

n)(� − 2� − 1),
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which implies, for such n,

Px,a(τ > n, Sn ∈ [b, b + �]) � � − 2� − 1

n3/2 .

This achieves the proof of inequality (3), taking for instance �0 = 4� + 2.
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