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Abstract. We study the growth and divergence of quotients of Kleinian groups G
(i.e. discrete, torsionless groups of isometries of a Cartan–Hadamard manifold with
pinched negative curvature). Namely, we give general criteria ensuring the divergence
of a quotient group Ḡ of G and the ‘critical gap property’ δḠ < δG . As a corollary, we
prove that every geometrically finite Kleinian group satisfying the parabolic gap condition
(i.e. δP < δG for every parabolic subgroup P of G) is growth tight. These quotient groups
naturally act on non-simply connected quotients of a Cartan–Hadamard manifold, so the
classical arguments of Patterson–Sullivan theory are not available here; this forces us to
adopt a more elementary approach, yielding as by-product a new elementary proof of the
classical results of divergence for geometrically finite groups in the simply connected case.
We construct some examples of quotients of Kleinian groups and discuss the optimality of
our results.

1. Introduction
A Kleinian group G is a discrete, non-elementary, torsion-free group of isometries of an
n-dimensional Cartan–Hadamard space X with pinched negative curvature (i.e. a
complete, simply connected Riemannian manifold with sectional curvature bounded
between two negative constants −K 2

0 ≤ kX ≤−k2
0). In this paper, we shall be concerned

with quotients of such groups. Considering quotients of G is equivalent to considering
all possible normal coverings of the manifold X0 = G\X ; actually, any quotient
group Ḡ = N\G by a normal subgroup is the automorphism group of the Riemannian
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covering X̄ = N\X→ X0, endowed with the quotient distance

d̄(x̄, ȳ)= inf{d(x, ny); n ∈ N }

for x ∈ x̄, y ∈ ȳ, where d is the Riemannian distance of X .
The normal coverings of X0 form a countable family Cov(X0). Then, every fixed

Riemannian invariant gives rise, when applied to elements of Cov(X0), to a whole
spectrum of associated numbers: for instance, the spectrum Ent(X0) of volume entropies
of all normal coverings of X0, or the spectrum Exp(X0) of critical exponents of their
automorphism groups.

Recall that the volume entropy of a covering X and the critical exponent of its
automorphism group Ḡ are the asymptotic invariants defined respectively as

ω(X)= lim sup
R→+∞

1
R

ln vol(B X (x̄, R)),

δḠ = lim sup
R→+∞

1
R

ln ]{ḡ ∈ ,̄G | ¯d(x̄, ḡx̄)≤ R}

where B X (x̄, R) denotes the ball of radius R in X centred at x̄; see [2, 7, 11, 15]. Both
numbers are independent of the choice of the point x̄ ∈ X̄ ; moreover, the critical exponent
δḠ coincides with the abscissa of convergence of the Poincaré series of Ḡ,

PḠ(s, x̄)=
∑
ḡ∈Ḡ

e−sd̄(x̄,ḡx̄), s ∈ R+,

and, if kX ≥−K 2
0 , we know that

δḠ ≤ ω(X)≤ (n − 1)K0 <+∞

by the standard comparison theorems of Riemannian geometry.
The invariants ω(X) and δḠ (hence, the aforementioned spectra Ent(X0) and Exp(X0))

coincide if X0 is compact, but they may differ when X0 has finite volume (see [7]). The
critical exponent is considerably more interesting than volume entropy when G has infinite
volume: for instance, for every geometrically finite hyperbolic manifold X0 = G\H of
infinite volume, the spectrum of entropies Ent(X0) is always reduced to the value n − 1
(since X0 and all its coverings contain a funnel); on the other hand, the spectrum of critical
exponents Exp(X0) is a particular subset of the interval [0, n − 1] which strongly depends
on X0, and whose top value δG is related to the dynamics of the geodesic flow on UX0.

In this paper we shall be interested in the spectrum Exp(X0), namely in comparing δḠ
with δG . We shall say that Ḡ satisfies the critical gap property when the strict inequality
δḠ < δG holds, and that G is growth tight when δḠ < δG for any proper quotient Ḡ of G;
that is, when the top value δG of the spectrum of critical exponents Exp(X0) is a value of
multiplicity one.

The notion of growth tightness was introduced by Grigorchuk and de la Harpe in [10]
for finitely generated groups endowed with word metrics; in this context, the fourth
author [17] proved growth tightness for amalgamated free products (exhibiting the first
examples of groups of exponential growth whose minimal growth is not attained by any
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generating set), while Arzhantseva and Lysenok in [1] proved the same property for
Gromov hyperbolic groups without finite normal subgroups. Growth tightness was first
investigated in the Riemannian setting in [16], for hyperbolic surfaces, and in [18] for
general cocompact Kleinian groups, where the fourth author shows that a positive critical
gap 1(G, Ḡ) := δG − δḠ > 0 produces estimates on the systole and on the bottom of the
spectrum of the covering X .

Let us stress the fact that, though growth tightness of groups with respect to word
metrics and with respect to Riemannian metrics are closely related problems, neither
of them can be deduced from the other (not even for cocompact groups) as the critical
exponent is not invariant by quasi-isometries.

Our study is on the stream of [18], and we consider here the case of
geometrically finite groups: these are the Kleinian groups G acting on some
ε-neighbourhood of the convex hull of their limit set 3G with quotient of finite volume
(see §3 for details and their main properties). As we will see, growth tightness no longer
holds in general due to the presence of parabolic elements, but it is still true for most of
them (see Theorem 1.4 below).

We will see that, for a proper quotient Ḡ of G, the positivity of the critical gap1(G, Ḡ)
is related to the divergence of Ḡ, which means that PḠ(δḠ , x̄)=+∞ (otherwise Ḡ is
said to be convergent). This sheds new light on the divergence property of a group.
It is now classic that the divergence/convergence of G is of interest when studying the
ergodic properties of the geodesic flow (φt )t on the unit tangent bundle of the quotient
manifold G\X ; namely, the divergence of G is a necessary condition for the existence
and unicity of an invariant probability measure of maximal entropy for (φt )t [12]. It is
also of interest when comparing the critical exponent of a Kleinian group G with that of a
subgroup H : if H is divergent and its limit set3H is a proper subset of3G , then the strict
inequality δG > δH holds [6].

In general, it is not easy to decide wether or not a Kleinian group G acting on X
is convergent or divergent; quite surprisingly, there exist only partial answers to this
natural question. It is well known that any convex cocompact group G (i.e. a group
acting cocompactly on the convex hull of its limit set 3G) is divergent [19]. The same
problem was studied in the case of geometrically finite groups; these groups are not so
far from the convex cocompact groups, nevertheless the tools to investigate them are more
sophisticated. Sullivan proved that any geometrically finite group G of constant curvature
is divergent, using refined arguments based on Patterson–Sullivan measures [19]. The
same approach in [6] allowed Dal’Bo et al to extend this result to the variable curvature
case, under mild hypotheses on the maximal parabolic subgroups: a geometrically finite
group G is divergent if for every parabolic subgroup P one has δP < δG . In the present
text we obtain, as a by-product, an elementary proof of this result (Theorem 1.2), which
does not require the theory of Patterson–Sullivan measures.

Actually, Patterson–Sullivan’s theory gives an analytical description of the way the orbit
Gx accumulates on the limit set, via Sullivan’s shadowing lemma. Now this lemma is
related to the fact that visual and Busemann compactifications of X coincide, so that the
action of G on X can be ‘read’ through the action on the boundary; but this identification
is no longer true when considering a non-simply connected manifold X̄ = N\X (for
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instance, there may exist fellow geodesics going to infinity but yielding different Busemann
functions), so that the notion of shadow which is central in Patterson–Sullivan is not
relevant here.

For a given quotient Ḡ = N\G of G and any subgroup H of G, we shall denote
by H = (H ∩ N )\H the quotient subgroup. Then, we shall say that G (Ḡ) satisfies
the parabolic gap condition, denoted by (PGC), if δP < δG (δP < δḠ) for all parabolic
subgroups P of G. We are then in position to state the main results of this paper.

THEOREM 1.1. (Critical gap criterion) Let G be a Kleinian group of a Cartan–Hadamard
manifold with pinched negative curvature, and let Ḡ = N\G be a proper quotient of G.
If Ḡ is divergent, then δḠ < δG .

As will be clear from the proof, the gap δA∗{h} − δA will depend on the length of the
shortest closed geodesic of X , but we do not concentrate on this point in this work.

Theorem 1.1 suggests that growth tightness and divergence of quotient groups are
related problems; in this perspective, we prove the following criterion of divergence for
quotients of geometrically finite groups generalizing the aforementioned Dal’Bo et al
result [6].

THEOREM 1.2. (Divergence criterion) Let G be a geometrically finite Kleinian group of
a Cartan–Hadamard manifold with pinched negative curvature, and let Ḡ = N\G be a
quotient of G. If Ḡ satisfies the parabolic gap condition, then Ḡ is divergent.

Remark 1.3. We will see in Example 1 of §5 that, when (PGC) fails for Ḡ, then the
group Ḡ may well be of convergent type. Example 1 will also show that when Ḡ is
convergent then the equality δḠ = δG may occur.

It may be of interest to stress the generality of the above theorem; actually, Ḡ can be
virtually any finitely generated group, since any finitely generated group can be represented
as the quotient of a free Schottky (hence geometrically finite) group of H2.

Combining Theorems 1.1 and 1.2, we deduce the following theorem.

THEOREM 1.4. (Growth tightness of geometrically finite groups) Let G be a
geometrically finite Kleinian group of a Cartan–Hadamard manifold with pinched negative
curvature. If G is convex cocompact or G satisfies the parabolic gap condition, then G is
growth tight, i.e. δḠ < δG for any proper quotient Ḡ of G.

In other words, the universal covering of a geometrically finite manifold X0 = G\X,
with G satisfying (PGC), is characterized by the property of being the normal covering
whose automorphism group has maximal critical exponent.

An interesting question which remains unsettled is whether the top value δG of the
spectrum Exp(X0) of critical exponents of a geometrically finite manifold is isolated,
that is,

1(G) := inf
Ḡ 6=G
{δG − δḠ}> 0,

or possibly to find examples where 1(G)= 0.
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Remarks 1.5.

(i) As will be clear from the Examples 2–3 of §5, the divergence and condition (PGC)
for G are independent of the corresponding properties for Ḡ: that is, (PGC) (or
divergence) holding for G does not imply that (PGC) (or divergence) is satisfied
for Ḡ, and vice versa.

(ii) Recall that the parabolic groups of rank-one symmetric spaces are divergent [5], and
that (as a consequence of [6]) this implies condition (PGC); it then follows that all
geometrically finite groups of rank-one symmetric spaces are growth tight.

The paper is organized as follows. Section 2 deals with a criterion of comparison
for the critical exponent of free products of sets and Schottky groups. Section 3 is
devoted to the proof of the critical gap criterion (Theorem 1.1), for a divergent quotient,
using a variation of Klein’s table-tennis argument. In §4 we give the proof of the
divergence criterion (Theorem 1.2) for geometrically finite groups, showing a quasi-
submultiplicativity property for the growth of annuli in the orbits of these groups (see
Proposition 4.1); then we use the divergence criterion to prove Theorem 1.4. Finally, in
§5 we give examples of geometrically finite groups G with quotients Ḡ in the following,
distinct situations:

(1) Ḡ is convergent and δḠ = δG ;
(2) (PGC) holds for G (divergent), but not for Ḡ (convergent);
(3) conversely, (PGC) holds for Ḡ (divergent), but not for G (convergent).

2. Critical exponent comparison for free products

In this section, we establish a simple criterion of critical gap for free products of sets of
isometries A ∗ B acting on X , which we will use later. We will need the following, classical
facts on the geometry of a Cartan–Hadamard manifold X of strictly negative curvature
kX ≤−k2

0 (see, for instance, [9]). In the following, we shall always use the notation [x, y]
for a geodesic segment joining x, y.

FACT 2.1. For any θ > 0, there exists a constant c = c(θ, k0) > 0 such that every geodesic
triangle T in X with vertices x, y, z ∈ X and angle at y greater than θ satisfies d(x, z)≥
d(x, y)+ d(y, z)− c.

FACT 2.2. There exists a function ε = ε(k0, L) such that if γ is a curve in X with
endpoints x, y and whose length satisfies `(γ )≤ `([x, y])+ L, then γ is included in the
closed ε-neighbourhood of [x, y].

Recall that any h ∈ Isom(X) without fixed points in X has one or two fixed points
on the boundary at infinity X (∞) and, accordingly, h is respectively called parabolic or
hyperbolic. When h is parabolic, we will denote by ξh its unique fixed point (i.e. ξh :=

limn→±∞ hn
· x for any x ∈ X ), while when h is hyperbolic we will denote its repulsive

and attracting fixed points respectively by ξ−h , ξ+h (i.e. ξ±h := limn→±+∞ h±n
· x, for any

x ∈ X ). The axis of a hyperbolic element h will be denoted by h̃ = [ξ−h , ξ+h ], and we let
|h| = d(x, hx), x ∈ h̃, the displacement of h along its axis.
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FACT 2.3. Let h be a hyperbolic isometry of X, and let V− and V+ be two
neighbourhoods of ξ−h and ξ+h respectively in X (∞). Then, there exists n0 ≥ 1 such that
hn(X (∞)\V−)⊂ V+ and h−n(X (∞)\V+)⊂ V− for any n ≥ n0.

Now let A and B be two non-empty subsets of Isom(X) intersecting at most in the
identity. We set A∗ := A\{Id}, B∗ := B\{Id}, and we say that a finite sequence (a word)
(g1, . . . , gn) on the alphabet A∗ ∪ B∗ is admissible with respect to (A, B) if, for all i , gi

and gi+1 do not belong to the same set A or B. We will denote by A(A, B) the union of
such admissible sequences, for any n ∈ N∗, and by A ∗ B the subset of Isom(X) defined by

A ∗ B := {g1 · · · gn | (gi )1≤i≤n ∈ A(A, B), n ≥ 1} ∪ {Id}.

The critical exponent makes sense for any general countable subset S of Isom(X) (and
not only for discrete subgroups), and is the abscissa of convergence δS of the associated
‘Poincaré series’ PS(s, x)=

∑
g∈S exp(−sd(x, g · x)), where x ∈ X and s ∈ R. With this

notation, we clearly have δA∗B ≥max(δA, δB); the question whether or not the inequality
is strict is more delicate.

CRITERION 2.4. Let A be a countable subset of Isom(X) and h a non-trivial isometry
of X, h 6∈ A. Assume that the natural evaluation map

φ : A(A, {h})→ A ∗ {h}

(gi )1≤i≤n 7→ g1 · · · gn

is one-to-one. If P A(s, x) diverges at its critical exponent, then δA∗{h} > δA.

Proof. Since φ is one-to-one, for any s ≥ 0 and x ∈ X we get∑
g∈A∗{h}

exp(−sd(x, gx)) ≥
∑
k≥1

∑
a1,...,ak∈A∗

exp(−sd(x, a1ha2h · · · akhx))

≥

∑
k≥1

∑
a1,...,ak∈A∗

exp(−s[d(x, a1hx)+ · · · + d(x, akhx)])

≥

∑
k≥1

(∑
a∈A∗

exp(−sd(x, ay))
)k

for y= hx. As
∑

a∈A∗ exp(−δAd(x, ax))=+∞ at s = δA, we may choose s0 > δA such
that

∑
a∈A∗ exp(−s0d(x, ay)) > 1, so

∑
g∈A∗{h} exp(−sd(x, g · x)) diverges for s = s0.

It then follows that δA∗{h} ≥ s0 > δA. 2

3. The critical gap property for divergent quotients
Let G be a Kleinian group of a Cartan–Hadamard manifold X of pinched, negative
curvature, and let Ḡ = N\G be the quotient of G by a normal subgroup N . In the following
we shall systematically use the following notation:
• X for the quotient manifold N\X , with Riemannian distance d given by the quotient

distance of d;
• π : X→ X , ρ : G→ Ḡ for the natural projections, but we shall often use x̄= π(x)

and g = ρ(g)= gN for the projections of x ∈ X , g ∈ G on X , Ḡ respectively;
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• GN for a symmetric set of minimal representatives of Ḡ in G, which means that for
any ḡ ∈ Ḡ, there exists a unique g ∈ GN such that π(g)= ḡ and

g−1
∈ GN d(o, go)= d̄(ō, ḡō)

(notice that Id ∈ GN , and the first condition can be satisfied since N is normal).
We need to establish a ping-pong lemma for a non-trivial quotient of a Kleinian group.

LEMMA 3.1. Let h ∈ N be a hyperbolic isometry and let o belong to its axis h̃. There
exist two disjoint compact neighbourhoods W− and W+ in X ∪ X (∞) of ξ−h and ξ+h
respectively, and numbers p0 ∈ N∗, θ0 ∈ R+∗ such that:

(i) GN o ∩ (W− ∪W+)= ∅;
(ii) for any g ∈ GN and w ∈ (W− ∪W+), we have gw 6∈ (W− ∪W+);
(iii) for any g ∈ G∗N and any w ∈ (W− ∪W+), we have 6 o(go, w)≥ θ0;
(iv) for any p ≥ p0, we have

h p((X ∪ X (∞)\W−))⊂W+ and h−p((X ∪ X (∞)\W−))⊂W+.

Proof. (i) Suppose that there exists a sequence (gp)p≥1 in GN such that (gpo)p≥1 converges
to ξ+h . By minimality, d(o, gpo)≤ d(no, gpo) for any n ∈ N , and consequently we have

d(o, h · o)= Bξ+h
(o, ho)= lim

p→+∞
(d(o, gpo)− d(ho, gpo))≤ 0

where Bξ+h
(o, ·) is the Busemann function centred at ξ+h ∈ X (∞); this contradicts the fact

that ξ+h is the attractive fixed point of h. The same contradiction appears if we replace ξ+h
by ξ−h .

(ii) Suppose that (ii) does not hold; we can find sequences (wp)p≥1 ∈ X ∪ X (∞) and
(gp)p≥1 with gp ∈ GN such that wp→ ξ , gpwp→ ξ ′ with ξ, ξ ′ ∈ {ξ+h , ξ

−

h }. Moreover,
by (i), we know that gpo→ ξ ′′ 6∈ {ξ+h , ξ

−

h }. Since ξ ′ 6= ξ ′′, the distance between o and the
geodesic [gpo, gpwp] (hence d(g−1

p o, owp)) remains uniformly bounded. But the geodesic

passing through o and wp converges to the axis h̃ so that the limit points of the sequence
(g−1

p o)p≥1 must necessarily be equal to either ξ+h or ξ−h . As GN is symmetric, this
contradicts (i).

(iii) and (iv). These are respectively consequences of (i) and of Fact 2.3. 2

Let us now explain the ideas behind the proof of Theorem 1.1. Given the group G
and a proper quotient Ḡ = N\G, we choose a hyperbolic isometry h ∈ N (notice that,
G being non-elementary, N always contains a hyperbolic element), a point o on its axis
and a symmetric set of minimal representatives GN as in the above lemma. Then, roughly
speaking, by combining alternatively elements of GN with a large power of h, we may
construct a free subset GN ∗ {h p

} of G, for p� 0, whose elements may be written uniquely
as admissible words with respect to (GN , h p). We will then deduce, by Criterion 2.4, that
δG ≥ δGN ∗{h p} > δGN = δḠ . In order to have the unicity of expression mentioned above,
we actually need to take a subset of GN whose elements stay at a large enough distance
from each other. We summarize these ideas in the following proposition.
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PROPOSITION 3.2. For any p� 0, there exists λ= λ(θ0, k0, |h|, p) > 0 such that for any
l, l ′ ≥ 1 and g1, . . . , gl , g′1, . . . , g′l ′ in GN satisfying

g1h p
· · · h pgl = g′1h p

· · · h pg′l ′

we have d(g1o, g′1o)≤ λ.

We will need the following lemma.

LEMMA 3.3. There exists a constant c = c(θ0, k0) > 0 such that for any p ≥ p0, l ≥ 2
and g1, . . . , gl in GN , we have

d(o, g1h pg2 · · · h
pglo)≥ d(o, g1o)+ d(o, h po)+ d(o, g2 · · · h

pglo)− c.

Proof. We know that o 6∈W− ∪W+, as GN o ∩ (W− ∪W+)= ∅ and Id ∈ GN . By repeat-
edly applying (ii) and (iv) of Lemma 3.1, we deduce that h pg2 · · · h pglo ∈ (W− ∪W+),
so by (iii) and by Fact 2.1, we deduce the existence of a constant c1 > 0 such that for l ≥ 2,

d(o, g1h pg2 · · · h
pglo) = d(g−1

1 o, h pg2 · · · h
pglo)

≥ d(o, g1o)+ d(o, h pg2 · · · h
pgl0)− c1

and, analogously,

d(o, h pg2 · · · h
pgl0)≥ d(o, h po)+ d(o, g2 · · · h

pglo)− c1.

Therefore taking c = 2c1 completes the proof. 2

Proof of Proposition 3.2. Let p ≥ p0, set g := g1h p
· · · h pgl = g′1h p

· · · h pg′l and let
A := g1o, B := g1h po, A′ := g′1o, B′ := g′1h po. By Lemma 3.3, we get

d(o, go)≥ d(o, A)+ d(A, B)+ d(B, go)− c,

where the constant c does not depend on g1, . . . , gl and l ≥ 1. Applying Fact 2.2,
the arc [o, A] ∪ [A, B] ∪ [B, go] is included in an ε-neighbourhood of [o, go], for
some constant ε depending on c. Let us now choose x, y, x′, y′ ∈ [o, go] such that
d(x, A), d(y, B), d(x′, A′) and d(y′, B′) are smaller than ε.

Step 1. For p� 0, we get x ∈ [o, y] and x′ ∈ [o, y′]. Actually, we have

|d(o, x)− d(o, A)| ≤ ε,

|d(o, y)− d(o, B)| ≤ ε,

|d(x, y)− d(A, B)| ≤ 2ε,

with d(A, B)= d(o, h po)= pd(o, ho), and the same inequalities hold, replacing x, y, A
and B with x′, y′, A′ and B′ respectively. Now, if y ∈ [o, x], we get d(o, x)= d(o, y)+
d(x, y) and so

d(o, A) ≥ d(o, x)− ε

≥ d(o, y)+ d(x, y)− ε

≥ d(o, B)+ pd(o, h · o)− 4ε.
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Since g1 is minimal and N is normal in G, we know that d(o, A)≤ d(o, g1h po)= d(o, B),
and therefore p ≤ 4ε/d(o, ho). In the following we will fix p > 4ε/d(o, ho); so, we have
x ∈ [o, y], x′ ∈ [o, y′] and, without loss of generality, we assume that x ∈ [o, x′].

Step 2. When p� 0, the geodesic segments [x, x′] and [y, y′] are disjoint. In fact, we have
Ā= B̄, so d̄(x̄, ȳ)≤ 2ε and

d(x, y)− d̄(x̄, ȳ)≥ d(o, h p
· o)− 4ε.

Let p1 ≥ 0 such that ε′ := d(o, h p1o)− 4ε > 2ε ; if p ≥ p1, we get

d(x, y)≥ d̄(x̄, ȳ)+ ε′.

Now assume, for instance, that y ∈ [x, x′]; we would thus have

d(o, A′) ≥ d(o, x′)− ε

≥ d(o, x)+ d(x, y)+ d(y, x′)− ε

≥ d(ō, x̄)+ d̄(x̄, ȳ)+ d̄(ȳ, x̄′)+ ε′ − ε

≥ d(ō, x̄′)+ ε′ − ε

≥ d(ō, Ā′)+ ε′ − 2ε

and, by the choice of p1, we would deduce ε′ − 2ε > 0, a contradiction. The same
argument proves that y′ /∈ [x, x′].

Finally, to complete the proof of Proposition 3.2, we note that

d(A, A′) ≤ d(A, x)+ d(x, x′)+ d(x′, A′)

≤ 2ε + d(x, y)≤ 4ε + d(o, h po)

so it is enough to set λ := 4ε + d(o, h po). 2

Proof of Theorem 1.1. Let h ∈ N be a hyperbolic isometry, and let o ∈ h̃, GN , p� 0, λ as
in Lemma 3.1 and Proposition 3.2. Then consider a maximal λ-separated net of GN , that
is, a subset S such that:
• d(ao, a′o) > λ for all a, a′ ∈ A;
• for all g ∈ GN there exists a ∈ A : d(go, ao)≤ λ.
Notice that such a subset always exists by the Zorn lemma, since the space of λ-separated
nets forms a partially ordered space where every chain has a majorant. Clearly, we have
δA = δGN ; that is to say, for any s ∈ R+, we get∑

g∈GN

exp(−sd(o, g · o)) ≤
∑
a∈A

∑
g∈GN

d(go,ao)≤λ

exp(−sd(o, g · o))

≤ M exp(sλ)
∑
a∈A

exp(−sd(o, ao))

for M := ](Go ∩ B X (o, λ)); so δA ≥ δGN , and thus δA = δGN as A ⊂ GN . Furthermore,
the series

∑
a∈A exp(−sd(o, ao)) diverges at s = δA since Ḡ is divergent. Now, a

repeated application of Proposition 3.2 tells us that the evaluation map φ : A(A, {h p
})→

A ∗ {h p
} ⊂ G is one-to-one. Then, by Criterion 2.4 we conclude that

δG ≥ δA∗{h p} > δA = δGN = δḠ . 2
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4. Quotients of geometrically finite groups

We first recall the definition and some well-known properties of geometrically finite
groups [4]. Let G be a Kleinian group of X and let 3G its limit set (that is, the set of
accumulation points on the boundary at infinity X (∞) of any orbit Gx of G). The convex
hull CG of 3G is the smallest G-invariant closed subset of X , and the quotient space
CG := CG/G is called the Nielsen core of the quotient manifold X = G\X . The group G
is geometrically finite if some (or equivalently any) ε-neighbourhood of CG in X has finite
volume.

There are two cases:

• either CG is compact, and then G is called convex cocompact;
• or CG is not compact, in which case it can be decomposed into a disjoint union of a

compact part C0 and finitely many ‘cuspidal ends’ C1, . . . , Cl : each Ci is isometric
to the quotient, by a maximal parabolic group Pi ⊂ G, of the intersection between
CG and some horoball Hi preserved by Pi .

Equivalently, G is geometrically finite if its limit set 3G is the union of its radial subset
and of finitely many orbits Gξ1, . . . , Gξl of points, called bounded parabolic fixed points:
each point ξi is fixed by a maximal parabolic subgroup Pi of G (corresponding to an end
Ci of CG), the group Pi preserves the horoballs Hi centred at ξi with quotient Ci , and acts
cocompactly on ∂Hi ∩ CG . Moreover, by Margulis’ lemma (see [4]), there exist closed
horoballs Hξ1 , . . . , Hξl centred respectively at ξ1, . . . , ξl , such that all the horoballs gHξi ,
for 1≤ i ≤ l and for all g ∈ G, are disjoint or coincide.

We fix a convex Borel fundamental domain D for the action of G in CG and a point
x ∈ CG such that the geodesic rays [o, ξ1), . . . , [o, ξl) are included in D. For each
1≤ i ≤ l, we set Ci = D ∩Hξi , thus obtaining fundamental domains for the action of
the group Pi on Hi ∩ CG ; moreover, we may assume that the set C0 = D\(

⋃l
i=1Ci ) is

relatively compact and that x belongs to its interior. Notice that C0 and the ends C1, . . . , Cl

of the quotient manifold C are the projections on CG of the domains C0 and C1, . . . , Cl

respectively.

Throughout this section, we will use the following notation. If Ḡ = N\G is the quotient
of a geometrically finite Kleinian group G by the normal subgroup N , and X = N\X , we
denote by:

• CG , D, C0, C1, . . . , C l the projections of CG , D, C0, C1, . . . , Cl on X respec-
tively (notice that, as the projection π : X→ X is equivariant with respect to ρ :
G→ Ḡ, we have that Ḡ D = CG);

• BḠ(x̄, R) and AḠ(x̄, α, R) respectively the ball of radius R and the ‘annulus’ of the
same radius and width 21 in the orbit Ḡ,

BḠ(x̄, R) := {ȳ ∈ Ḡ · x̄ | d̄(x̄, ȳ)≤ R},

AḠ(x̄, 1, R) := {ȳ ∈ Ḡ · x̄ | R −1< d̄(x̄, ȳ)≤ R +1};

• vḠ(x̄, R)= ]BḠ(x̄, R) and vḠ(x̄, 1, R)= ]AḠ(x̄, 1, R) the growth functions for
balls and annuli;

• ws
Ḡ
(x̄, 1, R)= e−s RvḠ(x̄, 1, R) the growth function renormalized by es R .
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Notice that, as

1
21

∑
n≥0

∑
g∈AḠ (x̄,1,n)

e−s(n+1)
≤ PḠ(x̄, s)≤

∑
n≥0

∑
g∈AḠ (x̄,1,n)

e−s(n−1),

the series PḠ(x̄, s) and P̂Ḡ(x̄, s)=
∑

n≥0 e−snvḠ(x̄, 1, n) have the same critical
exponent δḠ and the same behaviour for s = δḠ . Moreover, from this it easily follows
that we also have

δḠ = lim sup
R→+∞

1
R

ln vḠ(x̄, 1, R). (1)

We will prove the following (quasi-)submultiplicative result, which is the key to the
divergence criterion. As far as the authors are aware, the submultiplicativity of the function
vḠ(x̄, 1, R) is due, in the cocompact case, to Robert [14] (unpublished).

PROPOSITION 4.1. Let Ḡ = N\G be the quotient of a geometrically finite Kleinian group
G, and let x̄ ∈ X = N\X. There exists 1> 0 such that:
• if G is convex cocompact, then

vḠ(x̄, 1, A + B)≤ vḠ(x̄, 1, A) · vḠ(x̄, 1, B) for all A, B� 0 (2)

• if G satisfies (PGC), i.e. δP̄ < δḠ for every parabolic subgroup P < G, then

ws
Ḡ
(x̄, 1, A + B) ≤ c ·

(dAe∑
a=1

ws
Ḡ
(x̄, 1, a)

)
·

(dBe∑
b=1

ws
Ḡ
(x̄, 1, b)

)
for all A, B� 0 (3)

for any fixed s >max{δP̄1
, . . . , δP̄l

} and for some constant c = c(Ḡ, s).

Proof of Proposition 4.1. Fix 10 ≥ 2 greater than the diameter of the compact region C0

of the fundamental domain D for the action of Ḡ on C . We shall show that

AḠ(x̄, 310, A + B)⊂
⋃

gx̄∈AḠ (x̄,310,A)

AḠ(gx̄, 310, B) (4)

in the convex cocompact case, while

AḠ(x̄, 310, A + B)⊂
⋃

a,b≥1
a≤dAe,b≤dBe

⋃
(g,p)∈Ia,b

AḠ(g px̄, 310, b) (5)

in the geometrically finite case, where

Ia,b = {(g, p) | gx̄ ∈AḠ(x̄, 310, a), px̄ ∈ B P i
(x̄, A + B − a − b + 310),

i = 1, . . . , n}.

Actually, let ȳ ∈AḠ(x̄, 310, A + B): we write d(x̄, ȳ)= A + B + 3λ with −10 <

λ≤10, and we consider a minimizing geodesic [x̄, ȳ] and a point z̄ ∈ [x̄, ȳ] such that

d(x̄, z̄)= A + 3
2λ, d(z̄, ȳ)= B + 3

2λ.

We lift x̄, ȳ, z̄ and [x̄, ȳ] to points x, y, z ∈ [x, y] in X , still satisfying d(x, z)= A + 3
2λ

and d(z, y)= B + 3
2λ. As CG is convex, we know that [x, y] and z lie in CG , hence [x̄, ȳ]

and z̄ lie in CG .
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Now if G is convex cocompact we have D = C0, so z̄ ∈ Ḡ C0, hence we can find some
g ∈ Ḡ such that d(z̄, gx̄)≤10. Therefore gx̄ ∈AḠ(x̄, 310, A) and ȳ ∈AḠ(gx̄, 310, B),
so (4) holds.

On the other hand, if Ḡ is geometrically finite, z̄ may belong to Ḡ C0 or to CG\Ḡ C0 =⋃n
i=1 Ḡ C i . In the first case, the argument above shows that z̄ belongs to the right-hand

side of (5) (as (4) implies (5)). Otherwise, the lift z of z̄ belongs to some horoball H fixed
by the conjugate of one maximal parabolic subgroup Pi . Thus, we can cut the geodesic
[x, y] into three pieces [x, u] ∪ [u, v] ∪ [v, y], where z ∈ [u, v] = [x, y] ∩H and
u ∈ gC0, v ∈ gpC0, for some g ∈ G and p ∈ Pi . We then consider the projections g, p
in Ḡ and ū ∈ gC0, v̄ ∈ pC0 (so d(gx̄, ū)≤10, d(g px̄, v̄)≤10). Setting α = d(x̄, ū)−
3
2λ, β = d(ȳ, v̄)− 3

2λ and a = dαe ≤ dAe, b = dβe ≤ dBe, we have:
(i) gx̄ ∈AḠ(x̄, 310, a);
(ii) ȳ ∈AḠ(gpx̄, 310, b);
(iii) d(x̄, px̄)= d(gx̄, gpx̄)≤ d(ū, v̄)+ 210 ≤ (A − a)+ (B − b)+ 310,
which proves (5).

In the convex cocompact case, from (4) we immediately infer (2).
In the general geometrically finite case, from (5) we deduce

vḠ(x̄, 310, A + B) ≤
dAe∑
a=0

dBe∑
b=0

l∑
i=1

vḠ(x̄, 310, a)vḠ(x̄, 310, b)

× vP̄i
(x̄, A + B − a − b + 310).

Since we know that vP̄i
(x̄, R)≤ c0es R for any fixed s >max{δP1 , . . . , δPl } (for some

constant c0 = c0(Ḡ, s)), we obtain

vḠ(x̄, 1, A + B)e−s(A+B)
≤ c ·

dAe∑
a=0

dBe∑
b=0

e−s AvḠ(x̄, 1, a)e−s BvḠ(x̄, 1, b)es(A+B−a−b)

≤ c ·

(dAe∑
a=0

e−savḠ(x̄, 1, a)

)
·

(dBe∑
b=0

e−sbvḠ(x̄, 1, b)

)
that is, formula (3). 2

We are now ready to prove Theorems 1.2 and 1.4.

Proof of Theorem 1.2. Beginning with the convex cocompact case, we apply the following
elementary lemma to the sequence vn := vḠ(x̄, 1, n), which satisfies the submultiplicative
condition (2) of Proposition 4.1 above.

LEMMA 4.2. (Fekete [13]) Let (vn)n≥1 be a sequence of positive numbers such that

vn+m ≤ vnvm for all n, m ≥ n0.

Then limn→∞(1/n) ln vn = L ∈ R ∪ {−∞} and vn ≥ eLn for all n ≥ n0.

As limR→∞(1/R) ln vḠ(x̄, 1, R)= δḠ , this shows that vḠ(x̄, 1, n)≥ eδḠ n for n� 0, so
that the series P̂Ḡ(x̄, s) (and therefore PḠ(x̄, s)) is divergent.

Turning to the geometrically finite case, if the group G contains parabolic elements, we
again use Proposition 4.1, with a refined version of Fekete’s lemma.
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LEMMA 4.3. Let (wn)n≥1 be a sequence of positive numbers such that

wn+m ≤ c ·

( n∑
k=1

wk

)
·

( m∑
k=1

wk

)
for all n, m ≥ n0

for some positive constant c. Then, setting Wn =
∑n

k=1 wk , we have:
(i) limn→∞(1/n) ln Wn = L ∈ R ∪ {−∞} and Wn ≥ eLn/2cn for all n� 0;
(ii) if L > 0 then the series

∑
n Wne−sn and

∑
n wne−sn have the same critical exponent

L, and for s = L they are divergent.

Let us for a moment assume Lemma 4.3 and conclude the proof of Theorem 1.2. As Ḡ
satisfies the parabolic gap condition by assumption, we can choose s such that δP̄ <

s < δḠ for every parabolic subgroup P ⊂ G. Then, by Proposition 4.1, the sequence
wn := w

s
Ḡ
(x̄, 1, n)= e−snv Ḡ(x̄, 1, n) satisfies the assumption of the previous lemma,

with L = limn→∞(1/n) ln ws
Ḡ
(x̄, 1, n)= δḠ − s > 0 by (1). Hence, the series∑

n
wne−Ln

=

∑
n

e−snv Ḡ(x̄, 1, n)e−(δḠ−s)n
= P̂Ḡ(x̄, δḠ)

diverges, as well as PḠ(x̄, δḠ). 2

Proof of Lemma 4.3. We prove the lemma when n0 = 1 (the argument for n0 > 1 being
analogous), and we may assume that c > 1. We set

W̃n := 1+W1 + · · · +Wn

and

vn := cwn, Vn :=

n∑
k=1

vk = cWn, Ṽn := cW̃n ≥ 1+
n∑

k=1

Vk,

so we obtain
vn+m ≤ VnVm for all n, m ≥ 1.

This in turn yields Vn+m ≤ VnṼm and, consequently,

Ṽn+m = Ṽn + Vn+1 + · · · + Vn+m ≤ Ṽn Ṽm for all n, m ≥ 1.

So (Ṽn)n≥1 satisfies the assumption of Fekete’s lemma. Hence the sequences ((ln Ṽn)/n)n
and ((ln W̃n)/n)n converge to some L ∈ R ∪ {−∞} with Ṽn ≥ eLn and W̃n ≥ (1/c)eLn

for n large enough. As (1/n)(W̃n − 1)≤Wn ≤ W̃n , the sequence ((ln Wn)/n)n converges
also to L and the series

∑
n e−snWn has critical exponent equal to L . Moreover, for n large

enough, we get

Wn ≥ 1+
1
n
(W̃n − 1)≥

1
2cn

eLn

so the series
∑

n e−snWn diverges at s = L . Now∑
n≥1

e−snWn =
∑
k≥1

( ∞∑
n=k

e−sn
)
wk =

∑
k≥1

(
e−sk

1− e−s

)
wk =

(
1

1− e−s

)∑
k≥1

e−skwk,

so the series
∑

k e−skwk has the same critical exponent L as
∑

n e−snWn and, if L > 0, it
diverges at s = L . 2
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Proof of Theorem 1.4. Let G be a geometrically finite group of X satisfying the parabolic
gap condition, and let Ḡ be a proper quotient of G. There are two cases to consider:
• either there exists a parabolic subgroup P < G such that δP = δḠ , and then δḠ ≤

δP < δG by assumption;
• or δP < δḠ for all parabolic subgroups P < G (or G is convex cocompact), in which

case Theorem 1.2 ensures that Ḡ is divergent, and we deduce from Theorem 1.1 that
δḠ < δG . 2

5. Examples
We will consider here geometrically finite groups G which are free products of Kleinian
groups A, B in Schottky position. Recall that two Kleinian groups A and B are in Schottky
position if there exist two disjoint open subsets UA and UB in X (∞) such that

a(X (∞)\UA)⊂UA and b(X (∞)\UB)⊂UB for all a ∈ A∗, b ∈ B∗,

and for some x ∈ X the angle θ := infξ∈UA,η∈UB
6 x(ξ, η) > 0. We will say that A and B

are in (x, θ)-Schottky position when the point x and the value of θ are of importance.
By Klein’s table-tennis lemma, two Kleinian groups A, B in Schottky position generate

a discrete subgroup of Isom(X)which is the free product of A and B (see, for instance, [8]).
Any g ∈ A ∗ B can then be uniquely written as the product g = g1 · · · gn , where (gi )n≥1

is an admissible sequence with respect to (A, B) (see [3] for more details about groups of
this kind). We shall denote by ρA, ρB the natural projections of G = A ∗ B on its factors.

Moreover, notice that, when A, B are in (x, θ)-Schottky position, we can find a positive
constant ck0(θ) (depending on θ and on the upper bound k0 of the curvature of X ) such
that for every (g1, . . . , gn) ∈ A(A, B) we have

d(x, g1 · · · gnx)≥
n∑

i=1

d(x, gi x)− (n − 1)ck0(θ).

We shall then say that B is ck0(θ)-sparse if

d(x, bx)≥ 2ck0(θ) for all b ∈ B∗;

this condition implies that, for any (g1, . . . , gn) ∈ A(A, B), we have

d(x, g1 · · · gnx)≥
∑
gi∈A

d(x, gi x). (6)

From this, we deduce the following preliminary lemma.

LEMMA 5.1. Let G = A ∗ B be the free product of two Kleinian groups of X in (x, θ)-
Schottky position, and assume that B is ck0(θ)-sparse. Let N be a normal subgroup of G.
Then

d(x̄, gx̄)≥ inf
g′∈ρA(Ng)

d(x, g′x).

As a consequence, if ρA(N )= {Id}, then δA = δ Ā.
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Proof. The class g = Ng satisfies

g ⊂

{
g1 · · · gn

∣∣∣∣ (gi )1≤i≤n ∈ A(A, B), n ≥ 1,
∏

gi∈A

gi ∈ ρA(Ng)

}
so, by (6) and by the triangular inequality,

d̄(x̄, gx̄) ≥ inf
{∑

gi∈A

d(x, gi x)
∣∣∣∣ (gi )1≤i≤n ∈ A(A, B), n ≥ 1,

∏
gi∈A

gi ∈ ρA(Ng)

}

≥ inf
{

d(x, g′x)
∣∣∣∣ (gi )1≤i≤n ∈ A(A, B), n ≥ 1, g′=

∏
gi∈A

gi ∈ ρA(Ng)

}
which proves (i). On the other hand, from (i) we deduce that if ρA(N )= {Id} then

d(x̄, ax̄)≥ d(x, ρA(a) · x)= d(x, ax)

for every a ∈ A, hence d(x̄, ax̄)= d(x, ax); thus the quotient map ρA gives an isometry
between the orbits Ax and Ax̄, which implies that δA = δ Ā. 2

5.1. A convergent quotient Ḡ with δḠ = δG . We take a Kleinian group G of H2

generated by two parabolic isometries a and b acting on H2 with fixed points ξa 6= ξb in
H2(∞), with A = 〈a〉 and B = 〈b〉 in (x, θ)-Schottky position. By suitably modifying
the metric of G\H2 along the cusp associated with A, we can make G become a
convergent, geometrically finite Kleinian group of a new, variable curvature Cartan–
Hadamard manifold X with pinched negative curvature. The details of this construction
can be found in [6]: first, the authors construct a ‘convergent cusp’, associated with the
subgroup A; then, they show that taking B with δB < δA and replacing the generators a, b
with am and bm for m large enough, they can make G convergent with critical exponent
δG = δA. The group G will still be a θ -Schottky product of the two maximal parabolic
subgroups A, B and, up to replacing b with bm , for m� 0 we may as well assume that B
is ck0(θ)-sparse.

Now, if we take N equal to the normal closure of B, we have Ḡ = N\G ∼= A = A and
ρA(N )= {Id}; so, by Lemma 5.1, we deduce that δḠ = δA = δA = δG . Also notice that Ḡ
is convergent, by Theorem 1.1.

5.2. A convergent quotient Ḡ, with (PGC) holding for G but not for Ḡ. This is the
simplest case, and occurs for instance when taking the quotient by N collapses G and a
parabolic subgroup to the same group. We take G = A ∗ B for two parabolic subgroups
A and B as above (A convergent and B ck0(θ)-sparse), but here we let both δA, δB < δG .
So, in this case, G satisfies (PGC) and is divergent (by Theorem 1.2, or by [6]). Again
we define N = 〈〈B〉〉 so that Ḡ = A and δḠ = δA by Lemma 5.1; therefore (PGC) does not
hold for Ḡ. Notice that Ḡ is convergent as its orbit on X is isometric to the orbit of the
convergent group A on X .

5.3. A divergent quotient Ḡ, with (PGC) holding for Ḡ but not for G. In [6], the
authors show how to produce, in dimension greater than 2, two Kleinian groups A, B

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 07 May 2011 IP address: 193.52.212.189

850 F. Dal’Bo et al

of a Cartan–Hadamard manifold X with pinched negative curvature k(X)≤−k2
0 in (x, θ)-

Schottky position, such that:
(i) B is parabolic abelian of rank two, generated by p, p′;
(ii) G = A ∗ B is geometrically finite, with maximal parabolic subgroups conjugated

to B;
(iii) the groups B and G are convergent, with δB = δG .
It is also straightforward to check that for B we have

d(x, pk p′lx)≥ d(x, pkx) for all k, l ∈ Z. (7)

Without essentially modifying this construction we can also make

δ〈p〉 < δA. (8)

To obtain this condition, we may for instance choose two hyperbolic isometries h, h′

with fixed points distinct from each other and different from ξp = ξp′ , and then set
A = 〈hnph−n, h′n〉; then A and B will be in (x, θ)-Schottky position for n� 0, and (8)
will be satisfied by Criterion 2.4.

Up to taking sufficiently high powers of p, p′, h, h′ we may furthermore assume that
A and B are ck0(θ)-sparse.

Now consider the normal subgroup N generated by p′: we have Ḡ ∼= A ∗ 〈p〉, A ∼= A,
B ∼= 〈p〉. Since ρB(N )= 〈p′〉 and A is θ -sparse, by Lemma 5.1 and by (7) we get

d(x̄, pk x̄)≥ inf
g∈〈p′〉pk

d(x, gx)= inf
l∈Z

d(x, pk p′lx)= d(x, pkx).

So d(x̄, pk x̄)= d(x, pkx) for all k, and δB = δ〈p〉. Moreover, since ρA(N )= {Id} and B
is θ -sparse, Lemma 5.1 also yields δA = δA. It follows that Ḡ satisfies (PGC) as

δB̄ = δ〈p〉 < δA = δ Ā ≤ δḠ . 2
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