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Abstract

We consider the traveling wave problem for the one dimensional Keller-Segel system with
a birth term of either a Fisher/KPP type or with a truncation for small population densities.
We prove that there exists a solution under some stability conditions on the coefficients which
enforce an upper bound on the solution and Ḣ1(R) estimates. Solutions in the KPP case are
built as a limit of traveling waves for the truncated birth rates (similar to ignition temperature
in combustion theory).

We also discuss some general bounds and long time convergence for the solution of the Cauchy
problem and in particular linear and nonlinear stability of the non-zero steady state.

Key-words: Chemotaxis; Traveling waves; Keller-Segel system; Reaction diffusion systems; Non-
linear stability.
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1 The main result

The growth of bacterial colonies undergoes complex biomechanical processes which underly the
variety of shapes exhibited by the colonies. Usually cells divide and undergo active motion resulting
in fronts of bacteria that are propagating. These fronts may be unstable leading to various patterns
that have been studied for a long time, such as, for instance, spiral waves [16], aggregates [18] and
dentrites [1, 10]. At least three elementary biophysical processes play commonly a central role in
these patterns, and have been used in all modeling: (i) cell division which induces the growth of
the colony, (ii) random cell motion – for instance, bacteria can swim in a liquid medium thanks
to flagella, and (iii) chemoattraction through different molecules that the cells may release in their
environment and that diffuse, leading to some kind of (possibly long distance) communication. Our
purpose here is to study the existence of traveling waves and the linear and nonlinear stability of the
steady states for a simple model combining these three effects. The macroscopic model describes the
density of bacteria, denoted by u(t, x) below, and the chemoattractant concentration v(t, x) in the
medium. It is a variant of the Keller-Segel system that has been widely studied in various contexts,
see [5, 12, 19, 20] and references therein.
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We consider the one-dimensional Keller-Segel system with a Fisher-KPP birth term (we will refer
to it as the Keller-Segel-Fisher system){

ut − uxx + χ(uvx)x = u(1− u),

−dvxx + v = u.
(1)

Here the notation ut or ux means time or space derivatives. The boundary conditions for u and v
are

v(−∞) = u(−∞) = 1, v(+∞) = u(+∞) = 0, (2)

that is, there are no bacteria on the left. The two parameters χ and d are, respectively, the sensitivity
of the cells to chemoattraction, and the diffusion coefficient of the chemoattractant. The traveling
wave solutions moving with a speed c (which becomes a new unknown of the problem) for (1) are
special solutions of the form u(x− ct) and v(x− ct) that satisfy{

−cu′ − u′′ + χ(uv′)′ = u(1− u),

−dv′′ + v = u,
(3)

together with the boundary conditions (2). We prove the following result.

Theorem 1.1 Let χ > 0 and d > 0 satisfy

χ < min(1, d). (4)

Then there exists a traveling wave solution (c∗, u, v) of (3) with the boundary conditions(2) and a
constant K(d, χ), such that the functions u(x) and v(x), and the speed c∗ satisfy

0 < u(x), v(x) ≤
(
1− χ

d

)−1
, (5)∫

u(x)
(
1− u(x)

)2
dx+

∫ ∣∣u′(x)∣∣2 +
∫ ∣∣v′(x)∣∣2dx ≤ K(d, χ), (6)

2 ≤ c∗ ≤ 2 +
χ
√
d

d− χ
. (7)

Writing the second equation as a convolution v = Kd ? u, one may see this system as a Fisher
equation with a nonlocal drift. Reaction-diffusion with non-local reaction or diffusion terms has been
recently investigated (see [4, 7, 9, 11]), but this is not the case, as far as we know, for a nonlocal drift
term. Nonlocal terms may make the homogeneous positive state unstable and then create periodic
stable patterns. In this paper, we need some conditions on the coefficients, such as (4), that imply
the stability of the state u = v ≡ 1.

Other situations where traveling waves appear in chemotaxis have been considered in the litera-
ture. For instance, [13] consider a source term for chemoattractant in the equation on v, [8] consider
existence of traveling fronts by a linearization analysis (for small bacterial diffusion). There are also
other related models of biological interest, see for instance the case of haptotaxis in [17]. We also
refer to these papers for further references on the subject of fronts and waves for cell population as
well as to [21, 22] for the general theory of traveling waves.

Our strategy for the proof of Theorem 1.1 is as follows. We introduce a smooth monotonic cut-off
function g0(u) such that g0(u) = 0 for u ≤ 1 and g0(u) = 1 for u ≥ 2 and set g(u) = g0

(
(u− θ0)/θ0

)
– this function has a cut-off θ0 ∈ (0, 1). Consider a regularized system{

−cu′ − u′′ + χ
(
g(u)uv′

)′ = g(u)u(1− u),

−dv′′ + v = u,
(8)
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with the same boundary conditions (2). The system with the cut-off is of an independent interest –
the cut-off means that bacteria feel the chemoattractant and reproduce only if their density exceeds
a critical threshold value. Mathematically, the role of the cut-off is very similar to that of the
ignition temperature in the combustion theory [14]. The first step in the proof of Theorem 1.1 is to
construct a traveling wave solution

(
c(θ0), u(x; θ0), v(x; θ0)

)
of (8) for θ0 > 0 – as we have mentioned,

this result is of an independent interest. We do this for θ0 > 0 sufficiently small and also obtain
uniform in θ0 bounds on c(θ0) and u(x; θ0), v(x; θ0).

Proposition 1.2 Let χ > 0 and d > 0 satisfy

1
χ
>

1
d

+ 1. (9)

Then there exists α0 > 0 so that for all θ0 ∈ (0, α0) there exists a traveling wave solution(
c(θ0), u(x; θ0), v(x; θ0)

)
of (8), (2). In addition, there exists a constant K > 0 which does not

depend on θ0 so that we have the following uniform bounds:
0 < u(x; θ0), v(x; θ0) ≤

(
1− χ

d

)−1
, 0 <

1
K
≤ c(θ0) ≤ K < +∞,∫

u(x; θ0)
(
1− u(x; θ0)

)2
dx+

∫ ∣∣u′(x; θ0)∣∣2dx+
∫ ∣∣v′(x; θ0)∣∣2dx ≤ K.

(10)

Here and throughout the paper we denote by C and K generic constants which may depend on χ
and d but not on the cut-off θ0 or the size a of the approximating finite interval which appears later
in the proof. We recall that in the case of a single equation with no chemoatractant coupling (χ = 0)
the speed c(θ0) is unique for θ0 > 0 [14].

In this general framework it seems difficult to relax the size condition (9) and to achieve the more
general condition (4) that we use in Theorem 1.1. This is possible if we introduce two modifications
in the above procedure. First, we consider another regularization of the system :{

−cu′ − u′′ + χ
(
g(u)uv′

)′ = g(u)u(1− u),

−dv′′ + v = g(u)u,
(11)

that is, the chemoattractant source also now has a small density cut-off. Second, we tune the
truncation function appropriately – we now choose it with the following properties:

g(u) = 0 for u ≤ θ0, g′ ≥ 0, g(u) = 1 for u ≥ 1,

g(u) + ug′(u) ≤ 1 + α(θ0) with α(θ0) −−−−→θ0→0
0,

g(u) increases to 1 for u ∈ (0, 1) as θ0 → 0.

(12)

The reader can esily check that these conditions are satisfied by the function

g(u) = 1 + 2α(1 + ln(u)− u)

with α(θ0) normalized so that g(θ0) = 0.

Proposition 1.3 Assume that the cut-off g satisfies the properties (12) and that χ and d satisfy
the condition (4). Then there exists α0 > 0 so that for all θ0 ∈ (0, α0) there exists a traveling
wave solution

(
c(θ0), u(x; θ0), v(x; θ0)

)
of (11), with the boundary conditions (2) which satisfies the

estimates (5), (6) and

K ≤ c(θ0) ≤ 2 + (1 + α)
χ
√
d

d− χ
, (13)

with a constant K > 0 which does not depend on θ0 ∈ (0, α0).
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This proposition allows us to pass to the limit θ0 → 0 and obtain a traveling wave solution of
the original problem (3) without a cut-off as stated in Theorem 1.1 and with the smallness condition
(4) on the chemotaxis . The traveling waves for a positive cut-off θ0 > 0 in Propositions 1.2 and 1.3
are constructed by first building an approximate solution on a finite interval −a ≤ x ≤ a and then
passing to the limit a→ +∞, the strategy originated in [3].

By construction, the traveling wave solutions in Theorem 1.1 satisfy a nonlinear stability property
with respect to the perturbations of the birth term, under condition (4). This condition arises several
times in our proof but we do not know if it is sharp: it implies the less restrictive condition χ < d
which provides us with the maximum principle for u, but it is also instrumental in deriving the
other fundamental a priori estimates in (10). It is interesting that the linear stability condition
of the steady states solutions (1, 1) of (1) is much weaker than (4). To see that, we linearize the
problem in the neighborhood of (1, 1) and write

u = 1 + U, v = 1 + V, where U, V � 1.

One finds the linearized equations {
Ut − Uxx + χVxx = −U,

−dVxx + V = U.
(14)

Taking the Fourier transfrom we obtain{
Û(k)t + k2Û − χk2V̂ = −Û ,

dk2V̂ + V̂ = Û ,

and since V̂ can be explicitely computed in terms of Û , we reduce it to

Ût +
[
k2 + 1− χk2

1 + dk2

]
Û = 0.

This equation is linearly stable if and only if :

k2 + 1− χk2

1 + dk2
≥ 0 for all k ∈ R.

Setting X = k2 ≥ 0, we find the equivalent condition 1 +X(d+ 1− χ) + dX2 ≥ 0 for X ≥ 0, which
in turn is equivalent to

χ ≤ (1 +
√
d)2. (15)

In this case the steady state (1, 1) is linearly stable. When this condition is violated as in [8] unstable
patterns arise. Condition (4) is of course stronger than (15) and even the sufficient condition χ < d
for the uniform upper bound on u and v in (10) is still stronger than (15). This leaves the question
of the optimal condition for the existence of traveling waves open.

The organization of this paper is as follows. We first consider the problem with cut-off on an
interval [−a, a] and prove the existence by the homotopy argument in Section 2. We also establish
the main estimates in this section. In Section 3 we remove the cut-off and let the interval length a
tend to infinity, the main difficulty being to show that the states (1, 1) and (0, 0) are indeed connected
by the solution obtained by this procedure. In the last section we establish some general bounds on
the solution of the Cauchy problem and prove that the homogeneous solution is stable as soon as it
is linearly stable.

Acknowledgment. The work of LR was supported by NSF grant DMS-0604687. This work
was done during visits by BP to the University of Chicago and by LR to ENS, Paris. We thank
these institutions for their hospitality.
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2 The problem on a finite interval [−a, a]

Our approach follows the traditional methods, see [3] and [22], for instance, that we adapt to our
specific situation. In particular, as usual, specific difficulties arise in showing that the speed c is
controlled from below and above, and that the states u = 1 and u = 0 are indeed reached at infinity
(see [2, 6, 15] for an example where this question is left open in the construction of travelling waves
for a reactive Boussinesq system).

The finite interval approximation

In order to prove Proposition 1.2, we first construct an approximation (ca, ua, va) (we drop θ0 in the
notation for the traveling wave for the moment) on a finite interval −a ≤ x ≤ a:{

−cau′a − u′′a + χ(g(ua)uav
′
a)
′ = g(ua)ua(1− ua),

−dv′′a + va = ua.
(16)

The boundary conditions for ua are

ua(−a) = 1, ua(a) = 0. (17)

Instead of imposing the boundary conditions for va at x = ±a, we extend ua to the whole real line
as

ūa(x) =


1, x < −a,
ua(x), −a ≤ x ≤ a,
0, x ≥ a,

(18)

and then we set

va(x) =
∫ ∞

−∞
Kd(|x− ξ|)ūa(ξ)dξ, Kd(ξ) =

e−|ξ|/
√

d

2
√
d

,

∫
Kd(ξ)dξ = 1. (19)

The function va(x) is defined for all x ∈ R and satisfies

−dv′′a + va = ūa, va(−∞) = 1, va(+∞) = 0. (20)

Three consequences of the representation formula (19) are the bounds

|va(x)| ≤ ‖ua‖∞,

|v′a(x)| =
1
2d

∣∣∣∣∫ e−|x−ξ|/
√

dsgn(ξ − x)ua(ξ)dξ
∣∣∣∣ ≤ 1√

d
‖u‖∞, (21)

|v′′a(x)| ≤ C

d
‖u‖∞,

which we frequently use.
In order to ensure that the solution ua has a non-trivial limit as a → +∞, we normalize it so

that
max
x≥0

ua(x) = θ0. (22)

This constraint indirectly fixes the speed ca. It follows from the maximum principle and (22) that
ua(0) = θ0 and thus ua satisfies the boundary value problem on [0, a]:

−cau′a(x)− u′′a(x) = 0 0 ≤ x ≤ a, ua(0) = θ0, ua(a) = 0.
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Proposition 2.1 With the assumption (9), there exists a solution (ca, ua, va) of (16), (17), (19),
(22) with non-negative functions ua ≥ 0 and va ≥ 0, which in addition satisfies the uniform bounds
(10).

The rest of this section is devoted to the proof of this proposition which uses the homotopy argument.
Accordingly, we introduce the homotopy parameter τ ∈ [0, 1] and consider a family of problems{

−cτ,au
′
τ,a − u′′τ,a + χτ(g(uτ,a)uτ,av

′
τ,a)

′ = τg(uτ,a)uτ,a(1− uτ,a),

−dv′′τ,a + vτ,a = τuτ,a,
(23)

together with the boundary conditions (17), the relation (19) (with the right side multiplied by the
factor τ) and normalization (22). To simplify the notation we drop the subscript τ below.

A uniform upper bound for the traveling speed

We begin with an upper bound for the speed.

Lemma 2.2 If d > χ, then any solution of (17), (19), (22), (23) satisfies

0 ≤ ua(x), va(x) ≤
(
1− χ

d

)−1
, |v′a(x)| ≤ C, (24)

with the constant C > 0 which depends only on d and χ. In addition, there exists a constant
a0(θ0) > 0, and a constant K > 0 which depends only on d and χ but not on a, τ ∈ [0, 1], or
θ0 ∈ (0, 1) so that for all a > a0(θ0) we have

ca ≤ K < +∞. (25)

Proof. Let us re-write the equation (23) for ua as

−cau′a − u′′a + τχg(ua)v′au
′
a + τχg′(ua)uav

′
au

′
a = τg(ua)ua(1− ua)−

τχ

d
g(ua)ua(va − ua)

= τg(ua)ua

(
1− ua +

χ

d
ua −

χ

d
va

)
≤ τg(ua)ua

(
1− ua +

χ

d
ua

)
. (26)

The last inequality holds if va ≥ 0. As g(u) = 0 for u ≤ 0, it follows that ua can not attain an
interior negative minimum on (−a, a) and thus ua ≥ 0, which, in turn, implies that va ≥ 0 and (26)
indeed holds. It also follows from (26) that ua can not attain an interior maximum at a point where
ua ≥ (1 − χ/d)−1. Therefore, we have 0 ≤ ua ≤ (1 − χ/d)−1 and hence the same bound holds for
the function va. The bound for |v′a(x)| in (24) is then a consequence of (21).

Next, we show that the speed ca is uniformly bounded from above by using the super-solution
argument. The function ua(x) satisfies the inequality

−cau′a − u′′a + τχ[g(ua) + g′(ua)ua]v′au
′
a ≤ τua,

which follows from (26) and the condition χ/d < 1. Let us set ψM (x) = Me−x, then the function
ψM satisfies

−caψ′M − ψ′′M + τχ[g(ua) + g′(ua)ua]v′aψ
′
M =

(
ca − 1− τχg(ua)v′a − τχg′(ua)uav

′
a

)
ψM

≥ (ca − 1−K0)ψM ,

with the constant K0 = K0(χ, d), which is independent of a, τ and θ0, chosen so that (using (21))

χ[g(ua) + g′(ua)ua]|v′a| ≤
χ√
d
‖g(σ) + g′(σ)σ‖∞‖ua‖∞ := K0. (27)
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This is possible because of the uniform bounds in (24) and since for u /∈ (θ0, 2θ0) we have g′(u) = 0
while for u ∈ (θ0, 2θ0) the following estimate holds:

|g′(u)u| = u

θ0
g′0

(
u− θ0
θ0

)
≤ 2 max

1≤u≤2
|g′0(u)|.

Now, assume by contradiction that
ca > 2 +K0. (28)

Then ψM satisfies

−caψ′M − ψ′′M + τχ[g(ua) + g′(ua)ua]v′aψ
′
M ≥ ψM ≥ τψM .

Note that the upper bound on ua(x) in (24) implies that ψM (x) > ua(x) for M ≥ ea/(1− χ/d). Let
us define

M0 = inf{M : ψM (x) > ua(x) for all x ∈ [−a, a]},

then M0 > 0 and, in addition, ψM0(x) ≥ ua(x) for all x ∈ [−a, a] and there exists x0 ∈ [−a, a] such
that ψM0(x0) = ua(x0). However, the difference ψM (x)−ua(x) may not attain an interior minimum
at x0 and ψM (a) > 0 = ua(a). Therefore, we have x0 = −a and thus M0 = e−a. As a consequence,
θ0 = ua(0) ≤ ψM0(0) = e−a, which is a contradiction if a is sufficiently large. We conclude that (28)
is impossible and thus (25) holds with K = 2 +K0. �

A lower bound for the traveling speed

Now, we need a lower bound for ca and an upper bound for ‖u′a‖2.

Lemma 2.3 With the assumptions of Lemma 2.2 and (9), there exists a constant a0(θ0) > 0 and
K > 0 which depends only on d and χ but not on a > a0, θ0 ∈ (0, 1) and τ ∈ [0, 1] so that for all
a > a0 and θ0 < 1/3 we have

ca ≥
√
τ

K
− Kθ0

a
, (29)

τ

∫ a

−a
g(ua)ua(1− ua)2dx+

∫ a

−a
|u′a(x)|2dx+

∫ a

−a
|v′a(x)|2dx ≤ K. (30)

Proof. Start with
−cau′a − u′′a + τχ(g(ua)uav

′
a)
′ = τg(ua)ua(1− ua), (31)

and integrate on [−a, a]:

ca − u′a(a) + u′a(−a)− τχv′a(−a) = τ

∫
g(ua)ua(1− ua). (32)

Now, multiply (31) by ua and integrate:

ca
2

+ u′a(−a) +
∫ a

−a
|u′a|2 − τχv′a(−a)− τχ

∫ a

−a
g(ua)uau

′
av
′
a = τ

∫ a

−a
g(ua)u2

a(1− ua).

Combining the last two equalities, we get

ca
2
− u′a(a)−

∫ a

−a
|u′a|2 + τχ

∫
g(ua)uau

′
av
′
aτ

∫ a

−a
g(ua)(ua − u2

a)(1− ua).
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This can be written as

τ

∫ a

−a
g(ua)ua(1− ua)2 +

∫ a

−a
|u′a|2 + u′a(a) =

ca
2

+ τχ

∫ a

−a
g(ua)uau

′
av
′
a. (33)

However, on the interval (0, a) we have g(ua) = 0, and we can find ua explicitly:

ua(x) = θ0
e−cax − e−caa

1− e−caa
, (34)

so that

u′a(a) = −caθ0e
−caa

1− e−caa
− caθ0
ecaa − 1

.

Note that for ca > 0 we have

0 ≤ ca
ecaa − 1

≤ 1
a
,

while for ca < 0 we have

0 ≤ ca
ecaa − 1

=
a|ca|

a(1− e−|ca|a)
≤ 1 + |ca|a

a
=

1
a

+ |ca|.

Therefore, for all ca ∈ R we have

|u′a(a)| ≤
1
a
θ0 + |ca|θ0. (35)

We note that the special case ca = 0 that we did not treat above can be easily considered separately.
We may use the representation formula (19) for v to obtain

v′ = τ Kd ∗ ū′, ‖v′‖L2 ≤ τ ‖ū′‖L2 ≤ ‖u′‖L2 . (36)

Using this in (33) we obtain

τ

∫ a

−a
g(ua)ua(1− ua)2 +

∫ a

−a
|u′a|2 ≤

ca
2
− u′a(a) +

χτ

1− χ
d

∫ a

−a
|u′a|2. (37)

It follows that for 0 ≤ τ ≤ 1 we have, thanks to (35):

τ

∫ a

−a
g(ua)ua(1− ua)2 +M

∫ a

−a
|u′a|2 ≤

ca
2

+ |u′a(a)| ≤
ca
2

+
θ0
a

+ θ0|ca|, (38)

with, according to condition (9),
M = 1− χ

1− χ
d

> 0.

In addition, as ua(−a) = 1 and ua(0) = θ0, there exists a constant K > 0 which does not depend on
θ0 ∈ (0, 1/3) such that (∫

g(ua)ua(1− ua)2
) (∫

|u′a|2
)
≥ K.

Therefore, provided that a > a0 and θ0 ∈ (0, 1/3), we have a lower bound for ca:

ca ≥ c0
√
τ − Cθ0

a
,

with the constants c0 > 0 and C > 0 which do not depend on the cut-off θ0. This is the bound in
(29), while the bounds in (30) follow from the upper bound (25) for the speed, (36) and (38). �
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The homotopy argument

We may now finish the proof of Proposition 2.1 using a homotopy argument. The a priori bounds
obtained in Lemmas 2.2 and 2.3 allow us to use the Leray-Schauder topological degree argument
to prove existence of solutions to the problem (16), (17), (19) with the normalization (22) on the
bounded interval Da = (−a, a). This method of construction of traveling wave solutions goes back
to [3]. We introduce a map (we suppress the subscript a now, resurrecting the subscript τ for the
homotopy parameter)

Kτ : (c, u, v) → (θτ , Uτ , Vτ )

as the solution operator of the linear system{
−cU ′τ − U ′′τ + τχ(g(u)Uτv

′)′ = τg(u)u(1− u),

−dV ′′
τ + Vτ = τ ū.

(39)

The boundary conditions for Uτ are as in (17)

Uτ (−a) = 1, Uτ (a) = 0, (40)

while Vτ is given explicitly as before by

Vτ (x) = τ

∫ ∞

−∞
Kd(|x− ξ|)ū(ξ)dξ, Kd(ξ) =

e−|ξ|/
√

d

2
√
d

, (41)

where ū(x) is again the extension of u(x) to the whole real line as in (18).
The number θτ is defined by

θτ = θ0 −max
x≥0

u(x) + c.

The operator Kτ is a mapping of the Banach space X = R × C1,α(Da) × C1,α(Da), equipped with
the norm ‖(c, u, v)‖X = max(|c|, ‖u‖C1,α(Da), ‖v‖C1,α(Da)), onto itself. A solution sτ = (cτ , uτ , vτ ) of
the finite interval problem (16), (17), (19), (22) is a fixed point of Kτ and satisfies Kτsτ = sτ , and
vice versa: a fixed point of Kτ provides a solution. Hence, in order to establish the existence of a
solution to (16), (17), (19) together with the normalization (22), it suffices to show that the kernel
of the operator Fτ = Id−Kτ is not trivial. The standard elliptic regularity theory implies that the
operator Kτ is compact and depends continuously on the parameter τ ∈ [0, 1]. Thus we may apply
the Leray-Schauder topological degree theory. Let us introduce a ball BM = {‖(c, u, v)‖X ≤ M}.
Then Lemmas 2.2 and 2.3 show that the operator Fτ does not vanish on the boundary ∂BM with
M sufficiently large for any τ ∈ [0, 1]. It remains only to show that the degree deg(F1, BM , 0) in B̄M

is not zero. However, the homotopy invariance property of the degree implies that deg(Fτ , BM , 0) =
deg(F0, BM , 0) for all τ ∈ [0, 1]. Moreover, the degree at τ = 0 can be computed explicitly as the
operator F0 is given by

F0(c, u, v) = (max
x≥0

u(x)− θ0, u− uc
0, v).

Here the function uc
0(x) solves

d2uc
0

dx2
+ c

duc
0

dx
= 0, uc

0(−a) = 1, uc
0(a) = 0

and is given by

uc
0(x) =

e−cx − e−ca

eca − e−ca
.
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The mapping F0 is homotopic to

Φ(c, u, v) = (max
x≥0

uc
0(x)− θ0, u− uc

0, v)

that in turn is homotopic to

Φ̃(c, u, v) = (uc
0(0)− θ0, u− u

c0∗
0 , v),

where c0∗ is the unique number so that uc∗
0 (0) = θ0. The degree of the mapping Φ̃ is the product of

the degrees of each component. The last two have degree equal to one, and the first to −1, as the
function uc

0(0) is decreasing in c. Thus degF0 = −1 and hence degF1 = −1 so that the kernel of
Id−K1 is not empty. This finishes the proof of Proposition 2.1. �

3 Identification of the limit as a → +∞
In this section we first pass to the limit a→ +∞ constructing traveling waves with a positive cut-off
θ0 > 0. In the second step we remove the cut-off and obtain traveling waves for the Fisher-KPP
birth rate. At this stage we only prove a loose lower bound on c∗, the more precise bound stated in
Theorem 1.1 is proved in Section 4.

Passage to the whole line with a cut-off

We now prove Proposition 1.2.
Having established the existence of a solution (ca, ua, va) of (16), (17), (19), (22) on a finite

interval we now pass to the limit a → +∞ and show that (ca, ua, va) converges to a traveling wave
(c, u, v). The L2-bound for u′(x) and v′(x) in Lemma 2.3 together with the uniform bounds in
Lemma 2.2 and the elliptic regularity imply that there exists a sequence an → +∞ so that cn = can

converges to a limit c∗(θ0) and the functions un = uan and vn = van converge locally uniformly
together with their derivatives to the limits u(x; θ0) and v(x; θ0). The functions u(x) and v(x)
satisfy (we drop the dependence on θ0 in the notation):{

−c∗u′ − u′′ + χ(g(u)uv′)′ = g(u)u(1− u),

−dv′′ + v = u,
(42)

and

v(x) =
∫ ∞

−∞
Kd(|x− ξ|)u(ξ)dξ, Kd(ξ) =

e−|ξ|/
√

d

2
√
d

. (43)

Furthermore, the lower bound (2.3) yields that c∗(θ0) ≥ 1
K , where K is a positive constant that

only depends on d and χ. In particular, c∗ is positive.
It remains to prove that u(x) and v(x) satisfy the boundary conditions (2) and, because of (43),

it is sufficient to verify them for the function u(x) only. The L2-bound for the gradient of u in
Lemma 2.3 and elliptic regularity imply that the function u(x) has limits as x→ ±∞:

ul = lim
x→−∞

u(x), ur = lim
x→+∞

u(x).

The functions ua(x) are given by an explicit expression (34) on the interval 0 ≤ x ≤ a. Therefore,
the limit u(x) is given by

u(x) = θ0e
−c∗x, for all x ≥ 0. (44)

10



As c∗ > 0, it follows that ur = 0.
Next, we show that ul = 1 when θ0 is sufficiently small. We first note that according to the

maximum principle the function ua can not attain a minimum at a point x where ua(x) ≤ θ0.
Therefore, ua ≥ θ0 for x ∈ (−a, 0) and thus ul ≥ θ0. On the other hand, the uniform bound∫ a

−a
g(ua)ua(1− ua)2dx ≤ K

in Lemma 2.3 implies that the limit u(x) satisfies∫ ∞

−∞
g(u)u(1− u)2dx ≤ K. (45)

Therefore, we have that either ul = 1 or ul ∈ [0, θ0]. The previous argument implies that the only
two possibilities are ul = θ0 and ul = 1. Let us assume that ul = θ0 and find a contradiction when
θ0 is sufficiently small. With this assumption we integrate the first equation in (42) once to get

c∗θ0 =
∫ ∞

−∞
g(u)u(1− u)dx. (46)

Multiplying the same equation by u and integrating leads to

c∗θ
2
0

2
+

∫ ∞

−∞
|u′|2dx−χ

∫ ∞

−∞
g(u)uu′v′dx =

∫ ∞

−∞
g(u)u2(1−u)dx = c∗θ0−

∫ ∞

−∞
g(u)u(1−u)2dx. (47)

Using the L∞-bound for u and since ‖v′‖2 ≤ ‖u′‖2 we get, still using condition (9),

c∗θ
2
0

2
+K

∫ ∞

−∞
|u′|2dx+

∫ ∞

−∞
g(u)u(1− u)2dx ≤ c∗θ0, (48)

with K > 0, as in the computation leading to (38). Note that since ul = u(0) = θ0 and u(x) can
not attain a local minimum at a value below θ0, the function u(x) attains its maximum at some
point xM – otherwise, g(u) ≡ 0 and c∗ = 0 which would be a contradiction. For the same reason,
uM = u(xM ) > θ0 since the integral in the right side of (46) is positive because c∗ > 0. Observe
that if uM > 1/2 and ul = θ0 < 1/3, then there exists K1 > 0 which does not depend on θ0 so that∫ ∞

−∞
|u′|2 +

∫ ∞

−∞
g(u)u(1− u)2 ≥ K1.

Therefore, as c∗ is bounded from above, it follows from (48) that there exists α0 > 0 so that if
θ0 ∈ (0, α0) then θ0 < uM < 1/2.

Next, assume that θ0 ∈ (0, α0) and integrate the first equation in (42) between −∞ and xM to
get

−c∗(uM − θ0) + χg(uM )uMv
′(uM ) =

∫ xM

−∞
g(u)u(1− u)dx. (49)

As uM < 1/2, the right side above is positive. In addition, we have ‖v′‖L∞ ≤ C‖u‖∞ = CuM and
g(u) satisfies

g(u) = g0

(
u− θ0
θ0

)
≤ C(u− θ0)

θ0

for u ≥ θ0. Then (49) implies

−c∗(uM − θ0) +
Cχ(uM − θ0)u2

M

θ0
≥ 0.
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Therefore, as c∗ > 0 and uM > θ0, we have

u2
M ≥ Kθ0 with K > 0. (50)

In particular, we have uM ≥ 2θ0 when θ0 is sufficiently small. Let x0 be the first point to the left
of xM such that u(x0) = uM/2, that is, u(x) ∈ [uM/2, uM ] for all x ∈ (x0, xM ) and g(u(x)) = 1 on
this interval. Set L = xM − x0, then we have, using (48),

c∗θ0 ≥ K

∫ xM

x0

|u′(x)|2 +
∫ xM

x0

g(u)u(1− u)2 ≥ C

[
(uM )2

L
+ uML

]
≥ Cu

3/2
M .

It follows that uM ≤ Cθ
2/3
0 , which contradicts (50). This contradiction shows that ul = θ0 is

impossible when θ0 is sufficiently small. Therefore, we have ul = 1. This finishes the proof of
Proposition 1.2. �

Proof of Proposition 1.3

We now indicate the additional arguments necessary to arrive to the statement of Proposition 1.3,
that is, how existence of traveling waves can be deduced under the weaker restriction (4) on the
chemotaxis parameter χ.

The entire proof above of Proposition prop-cutoff goes through with the general assumption (12)
on g. We indicate now how we can take advantage of the property

g + σg′ ≤ 1 + α. (51)

First, the upper bound on c∗ in (7) follows clearly from the value K0 computed in (27).
Now, we prove gradient and ”reaction” bounds in (6). To do that we use equation (33) and the

key point is to handle the right hand side more carefully with the help of (51): we split the integral
as

χ

∫ a

−a
τg(ua)uau

′
av
′
a = χ

∫ a

−a
[τg(ua)ua − 1]u′av

′
a + χ

∫ a

−a
u′av

′
a.

We treat separately the two terms on the right side.
Using the equation on v in (11), which now also has the small density cut-off, we have(

χ

∫ a

−a
u′av

′
a

)2

≤ χ2

∫ a

−a
(u′a)

2

∫ a

−a
(v′a)

2 ≤ χ2

∫ a

−a
(u′a)

2

∫ a

−a
[(τg(ua) + uaτg

′(ua))u′a]
2

≤ χ2(1 + α)2
(∫ a

−a
(u′a)

2

)2

.

This term is nicely absorbed for χ < 1 and α (or, equivalently, θ0) small enough by the corresponding
term in the left hand side of (33).

For the other term, we introduce the function

h(u) =
∫ u

1
[τg(σ)σ − 1] dσ for 0 ≤ u ≤ 1

and with h(u) = 0 for u ≥ 1. Note that

0 ≤ h(u) ≤ 1
2
(1− u)2, h(1) = 0.

12



We write

χ

a∫
−a

[τg(ua)ua − 1]u′av
′
a = χ

a∫
−a

h(ua)′v′a = χ

∫ a

−a
h(ua)(−va)′′ + χh(ua)v′a

∣∣
x=a

− χh(ua)v′a
∣∣
x=−a

≤ χ

d

∫ a

−a
h(ua)

(
τg(ua)ua − va

)
≤ τ

χ

2d

∫ a

−a
(1− ua)2g(ua)ua,

because v′a(a) =
(
K ′

d ∗ ūa

)
(a) ≤ 0. for a sufficiently large. Consequently, one has:

τ

∫ a

−a
g(ua)ua(1− ua)2 +

∫ a

−a
|u′a|2 + u′a(a) =

ca
2

+ τχ

∫ a

−a
g(ua)uau

′
av
′
a (52)

≤ ca
2

+ χ(1 + α)
∫ a

−a
(u′a)

2 + τ
χ

2d

∫ a

−a
(1− ua)2g(ua)ua.

It follows that :

τ(1− χ

2d
)
∫ a

−a
g(ua)ua(1− ua)2 + (1− χ(1 + α))

∫ a

−a
|u′a|2 + u′a(a) ≤

ca
2
, (53)

and u′a(a) is still bounded by (35).
Thus if χ < min(1, d) and θ0 is small enough such that χ(1 + α) < 1, the quantities of the left

hand-side are controlled by that of the right-hand side and we can go on the proof and conclude as
before. �

4 Removal of the cut-off

Here we remove the cut-off, letting the parameter θ0 vanish, and prove Theorem 1.1. The traveling
waves (c(θ0), u(x; θ0), v(x; θ0)), constructed in Proposition 1.3 for θ0 > 0, are translationally invariant
and have the left and right limits ul = vl = 1, ur = vr = 0. Therefore, we may translate them and
fix the shift so that u(0; θ0) = 1/2. The uniform estimates in the same proposition allow us to pass
to the limit θ0,n → 0 along a subsequence, so that the traveling wave speeds cn = c∗(θ0,n) converge
to a limit c∗ > 0, and the functions u(x; θ0,n) and v(x; θ0,n) converge to the limits u(x) an v(x). We
also have g(un) → Ψ(x) with Ψ(x) ≡ 1 on the set {u(x) 6= 0}. In addition, the limits satisfy the
system (3):

−c∗u′ − u′′ + χ(Ψ(x)uv′)′ = Ψ(x)u(1− u), (54)
−dv′′ + v = Ψ(x)u,

and the functions u and v are still related by (43). Moreover, as the function p(u) = g(u)u is globally
Lipschitz, the functions u(x; θ0,n) and v(x; θ0,n) are uniformly bounded in C2,α(R) and thus so are
the limits u and v. Therefore, we have u > 0 and thus Ψ(x) ≡ 1 and u and v actually satisfy the
system (3):

−c∗u′ − u′′ + χ(uv′)′ = u(1− u), (55)
−dv′′ + v = u.

It remains only to verify that u and v satisfy the boundary conditions (2) at infinity. As in the
case with θ0 > 0 it suffices to ensure that the function u(x) has the left and right limits ul = 1 and
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ur = 0, respectively. Once again, existence of the limits at infinity follows from the L2-bound on the
gradient ∫ ∞

−∞
|u′(x)|2dx ≤ K,

and standard elliptic regularity estimates. Moreover, in the limit θ0 → 0 the estimate (45) becomes∫ ∞

−∞
u(1− u)2dx ≤ K < +∞.

As a consequence, the only possible values for ul and ur are 0 and 1, hence, in order to show that
ul = 1 and ur = 0 it suffices to show that ul > ur. Integrating the first equation in (55) we obtain

c∗(ul − ur) =
∫
u(1− u),

while multiplying the same equation by u and integrating leads to

c∗(u2
l − u2

r)
2

+
∫
|u′|2 − χ

∫
uu′v′ =

∫
u2(1− u) = c∗(ul − ur)−

∫
u(1− u)2.

As before, we conclude that

c∗(u2
l − u2

r)
2

+
∫
u(1− u)2 +M

∫
|u′|2 ≤ c∗(ul − ur),

which may be re-witten as∫
u(1− u)2 +M

∫
|u′|2 ≤ c∗(ul − ur)

(
1− ul + ur

2

)
.

As u(0) = 1/2 the left side is strictly positive. Moreover, we have c∗ > 0 and (ul + ur)/2 ≤ 1.
As a consequence, ul > ur, thus ul = 1, ur = 0 and the proof of the existence partTheorem 1.1 is
complete.

A lower bound for the traveling speed

We now obtain a more precise lower bound for the propagation speed c∗ in Theorem 1.1. To do so,
we consider a more general birth term f(u) in place of u(1− u) in equation (3). We do not expect
more difficulties in the proof of the existence part of Theorem 1.1 as long as f(u) is of the KPP
type:

f(0) = f(1) = 0, f(u) > 0 for 0 ≤ u ≤ 1, f(u) < 0 for u ≥ 1 and f ′(0) = sup
u≥0

f(u)
u

> 0. (56)

Then, we have

Proposition 4.1 Any traveling wave solution of (2)-(3) in Ḣ1(R) with the nonlinearity f satisfying
(56), and such that u, v ≥ 0, and ∫

u(1− u)2dx <∞ (57)

satisfies c ≥ 2
√
f ′(0).
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Proof. Consider a traveling wave (c, u, v) and choose a sequence xn that increases to +∞ when
n→∞. Set un(x) = u(x+ xn)/u(xn) and vn(x) = v(x+ xn), these functions satisfy{

−u′′n − cu′n + χ(v′nun)′ = f
(
u(xn) un

)
/u(xn),

−dv′′n + vn = u(x+ xn).
(58)

Next, note that u(x+xn) → 0 uniformly in x as n→ +∞. Indeed, choosing A > 0 large enough
so that u(x) ≤ 1/2 for x ≥ A, we deduce from (57) that u ∈ L1(A,+∞) and thus we may write

u2(x) =
∫ x

−∞
uu′ ≤

(∫ A

−∞
u2

)1/2 (∫ A

−∞
u′2

)1/2

−−−−−→
A→∞ 0

so that u(xn) → 0 as n→ +∞.
The right side in the equation on un in (58) is bounded by f ′(0)un. Therefore we use elliptic

regularity and, up to extraction of a subsequence, we know that un → u∞ and vn → v∞ as n→∞
in C2

loc(R). These functions satisfy{
−u′′∞ − cu′∞ + χ(v′∞u∞)′ = f ′(0)u∞,

−dv′′∞ + v∞ = 0.
(59)

As v∞ is non-negative and bounded, we necessarily have v∞ ≡ 0.
Furthermore, as u∞(0) = 1 and u∞ ≥ 0, the maximum principle yields that u∞ > 0. Thus

we can explicitly solve the first equation and the solution can only be of the exponential type:
u∞(x) = µe−λx. Inserting such a λ in the equation for u∞ we find −λ2 + cλ = f ′(0). Hence we have
proved that necessarily c ≥ 2

√
f ′(0). �

5 Time evolution problem

We now consider the problem
ut − uxx + χ(uvx)x = u(1− u),

−dvxx + v = u,

u(t = 0) = u0, with compact support, 0 ≤ u0(x) ≤ (1− χ/d)−1.

(60)

The maximum principle, as already used earlier, implies that we have the uniform bounds

0 ≤ u(x), v(x) ≤ d

d− χ
, |vx(t, x)| ≤ K, |vxx(t, x)| ≤ K.

Our goal in this section is to prove two kinds of results on this problem. Firstly we assume that
χ satisfies the conditions of existence of traveling waves. Then, we derive some bounds expressing
that in the long time limit, the solution converges to 1 on compact sets. Secondly we show that,
under the (weaker) linear stability condition on χ, the state 1 is in fact nonlinearly asymptotically
stable.

5.1 The long time limit of u(t, x)

We have the following
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Theorem 5.1 Assume χ ≤ min(1, d). There exist C > 0 and ε0 > 0 so that for any ε ∈ (0, ε0)
there exists a time t0 so that for all T > t0 the following holds. There exists a set B ⊂ [T, 2T ]
of exceptional times, with |B| ≤ C/ε such that for all non-exceptional t ∈ [T, 2T ] ∩ Bc and all
p ∈ [0, 1/2) we have

|{x : |1− u(t, x)| ≥ εp}| ≤ Cε1−2p

∫
u(t, x)dx. (61)

The constant C > 0 in Theorem 5.1 does not depend on the time T . Therefore, the total set B of
”bad” times between a (large) time T and 2T is bounded independent of T . The right side of (61)
may be loosely interpreted as the size on the support of the function u(t, x) (disregarding the fact
that u(t, x) has an infinite support). Thus, (61) may be interpreted as saying that for large times
the fraction of the support of u(t, x) where u(t, x) is far from 1 is negligible, except for a (relatively)
small set of bad times.

We first prove the following proposition.

Proposition 5.2 Assume that (4) holds and let the initial data u0(x) 6≡ 0 be compactly supported,
0 ≤ u0(x) ≤ 1. There exist two constants K1 and K2 which do not depend on the initial data, and
a time t0 so that

K1(t− t0) ≤
∫
u(t, x)dx ≤ K2(t0 + t).

Proof. First, let u and v be solutions of (60) and consider the function ψ(t, x) = Me−λ(x−ξt). It
satisfies the inequality

ψt − ψxx + χvxψx + χvxxψ − ψ(1− ψ) ≥ ψt − ψxx + χvxψx −
χ

d
(u− v)ψ − ψ

≥ ψt − ψxx −K|ψx| −Kψ
(
λξψ − λ2 −K −Kλ

)
ψ ≥ 0.

This last inequality holds provided that ξ is sufficiently large and λ is chosen appropriately. There-
fore, we may also take M large enough so that ψM (t, x) is a super-solution for u(t, x). Similarly,
φM (t, x) = Meλ(x+ξt) is a super-solution for u. Therefore, we have

u(t, x) ≤ min
(
Me−λ(x−ξt),Meλ(x+ξt)

)
therefore, integrating in x ∫

R
u(t, x) dx ≤ C(t+ t0). (62)

And the upper bounded statement of the Proposition is proved.

To obtain a lower bound on ‖u(t)‖L1 we proceed as in the traveling wave case. We have

d

dt

∫
(u− u2

2
) =

∫
(ux)2 +

∫
u(1− u)2 − χ

∫
uxvxu. (63)

The last integral on the right side may be estimated as

χ

∫
uuxvxdx = χ

∫
(u− 1)uxvxdx+ χ

∫
uxvxdx.

The second term is bounded as(∫
uxvxdx

)2

≤
∫
u2

xdx

∫
v2
xdx ≤

(∫
u2

xdx

)2

,
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while the first one satisfies

χ

∫
(u− 1)uxvxdx =

χ

2

∫ (
(u− 1)2

)
x
vxdx =

χ

2d

∫
(u− 1)2(u− v)dx ≤ χ

2d

∫
(u− 1)2udx.

Using the last two inequalities in (63) leads to

d

dt

∫
(u− u2

2
) ≥

∫
(ux)2 +

∫
u(1− u)2 − χ

∫
u2

x −
χ

2d

∫
(u− 1)2udx (64)

≥M

∫
(ux)2 +M

∫
u(1− u)2.

Integrating in time and combining this with the upper bound in (62) we obtain∫ T

0

∫
(ux)2 +

∫ T

0

∫
u(1− u)2 ≤

∫
u(T, x)dx ≤ C(1 + T ). (65)

Note that if at some time t ∈ [0, T ] there exists x0 such that u(t, x0) > 1/2 then we have

M

∫
u2

x(t, x)dx+M

∫
u(t, x)(1− u(t, x))2dx ≥ K.

On the other hand, if we have 0 ≤ u(t, x) ≤ 1/2 for all x ∈ R then∫
u(t, x)(1− u(t, x))2dx ≥ 1

4

∫
u(t, x)dx.

Let AT = {t ∈ [0, T ] : 0 ≤ u(t, x) ≤ 1/2 for all x ∈ R} – it follows from the above that there exists
a constant K > 0 so that∫

u(T, x) ≥
∫
Ac

T

Kdx+K

∫
AT

(∫
u(t, x)dx

)
dt. (66)

As a consequence, the function

W (t) =
∫
u(t, x)dx

satisfies

W (T ) ≥
∫
Ac

T

Kdx+K

∫
A
W (t)dt ≥ K

∫ T

0
min(1,W (t))dt, (67)

for all T ≥ 0. In addition, W (t) is locally Lipschitz in time:

|Wt(t)| =
∣∣∣∣∫ u(t, x)(1− u(t, x))dx

∣∣∣∣ ≤M

∫
u(t, x)dx ≤ C(1 + t).

Therefore, in particular, there exists τ0 so that W (t) ≥ W (0)/2 > 0 for 0 ≤ t ≤ τ0 and thus there
exists k0 > 0 (which depends on the initial data) such that

W (T ) ≥ K

∫ T

0
min(1,W (t))dt ≥ K

∫ τ0

0
min(1,W (t))dt ≥ k0.

Going back to (66) we see that

W (T ) ≥ K|Ac
T |+ k0K|A| ≥ k0KT.
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In order to get rid of the dependence on the initial data observe that, as a consequence we have
W (T ) ≥ 1 for all T ≥ t0 (the time t0 does depend on the initial data). Hence, it follows from the
second inequality in (67) that

W (T ) ≥ K

∫ T

0
min(1,W (t))dt ≥ K(T − t0). (68)

This finishes the proof of Proposition 5.2. �

Proof of Theorem 5.1. Theorem 5.1 is an easy consequence of Proposition 5.2 and its proof. Let
us start with the inequality (64)

d

dt

∫ (
u− u2

2

)
dx ≥M

∫
u2

xdx+M

∫
u(1− u)2dx. (69)

Consider the set B ⊂ [T, 2T ] of times t ∈ [T.2T ] such that∫
u(t, x)(1− u(t, x))2dx ≥ ε

∫ (
u(t, x)− u2(t, x)

2

)
dx.

Let us set

Q(t) =
∫ (

u(t, x)− u2(t, x)
2

)
dx.

Exactly as in the proof of Proposition 5.2 we deduce that

C1(t− t0) ≤ Q(t) ≤ C2(t0 + t). (70)

As Q(t) is monotonically increasing in time, integrating (69) over B we obtain

Q(2T ) ≥ Q(T )eε|B|.

For t > 10t0 it follows that
4C2T ≥ C1Te

ε|B|,

so that |B| ≤ K/ε with the constant K independent of T > t0. On the other hand, for times
t ∈ [T, 2T ] ∩Bc we have

ε2p |{x : |1− u(t, x)| ≥ εp}| ≤ C

∫
u(t, x)(1− u(t, x))2dx ≤ Cε

∫
u(t, x)dx,

and (61) follows. �

5.2 Nonlinear asymptotic stability of the homogeneous state (1, 1)

In this section, we consider the Keller-Segel-Fisher system and we consider the stability of the state
(1, 1) as discussed in the introduction -see (14)–(15). Therefore, we set u = 1 + U and v = 1 + V
and the system (60) writes

Ut − Uxx + χ(VxU)x = −U(1 + U)− χVxx,

−dVxx + V = U,

U(t = 0, x) = U0(x) := u0 − 1, x ∈ R.

(71)

We prove that the linear stability of the homogeneous equilibrium state (u = 1, v = 1) implies
its nonlinear asymtotic stability. More precisely
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Theorem 5.3 For χ < (1 +
√
d)2, there is a positive constant δ > 0 such that for any initial data

u0 = 1 + U0 with
∫

R U
2
0 < δ, then the solution u of the Cauchy problem (60) converges to 1 in the

L2 norm with an exponetial rate∫
R
(u(t, x)− 1)2dx→ 0 as t→ +∞. (72)

Proof of Theorem 5.3. For (t, x) ∈ R+ × R, we set U(t, x) := u(t, x) − 1, V (t, x) := v(t, x) − 1
and λ := (1 +

√
d)2 − χ > 0. Multiplying equation (71) by U and integrating over R, we find

1
2
d

dt

∫
R
U2dx+

∫
R

(
U2

x − χV 2
x + U2

)
= −

∫
R
U3 + χ

∫
R
UUxVx = −

∫
R
U3 − χ

2

∫
R
U2Vxx

=
( χ

2d
− 1

) ∫
U3 − χ

2d

∫
R
U2V ≤

∣∣∣ χ
2d
− 1

∣∣∣ ∫
|U |3 +

χ

2d

∫
R
U2|V |. (73)

The second term on the left side of (73) can be written as∫
R
(U2

x − χV 2
x + U2)dx =

∫
R

(
ξ2 + 1− χξ2

1 + dξ2

)
|Û(ξ)|2dξ =

∫
R

P (ξ)
(1 + dξ2)(1 + ξ2)

(1 + ξ2)Û(ξ)2dξ,

where P is a fourth order poynomial function which is positive since χ < (1 +
√
d)2.

As p(ξ) = (1 + dξ2)(1 + ξ2) is also a positive fourth order polynomial function, the quotient
P (ξ)/[(1 + dξ2)(1 + ξ2)] has a positive infimum λ > 0. This gives:∫

R

[
(Ux)2 − χV 2

x + U2
]
dx ≥ λ

∫
R
(1 + ξ2)Û(ξ)2dξ ≥ λ

∫
R

(
U2

x + U2
)
dx. (74)

Next, set I(t) =
∫

R U
2dx, the above computation yields that

1
2
d

dt
I(t) + λI(t) + λ

∫
R
U2

x ≤
∣∣∣ χ
2d
− 1

∣∣∣ ∫
|U |3 +

χ

2d

∫
R
U2|V |. (75)

We treat the two terms of the right side separately using Gagliardo-Nirenberg-Sobolev type inequal-
ities : ∫

R
|U |3 ≤ C

(∫
R
U2

x

)1/4 (∫
R
U2

)5/4

≤ λ

2| χ
2d − 1|

∫
R
U2

x +M

(∫
R
U2

)5/3

(76)

(the second inequality follows from the Minkowski inequality). In the same way we obtain∫
R
|U |2|V | ≤

(∫
R
|U |4

∫
R
V 2

)1/2

≤ C1

(∫
R
U2

x

)1/4 (∫
R
U2

)3/4 (∫
R
U2

)1/2

≤ λd

χ

∫
R
U2

x +M ′
(∫

R
U2

)5/3

,

where M ′ is a constant that only depends on C ′, χ, d and λ. This finally gives:

1
2
d

dt
I(t) + λI(t) + λ

∫
R
U2

x ≤ λ

∫
R
U2

x + (M +M ′)I5/3(t), (77)

and thus:
1
2
d

dt
I(t) + λI(t) ≤ (M +M ′)I5/3(t). (78)

Set now δ = (λ/(M +M ′))3/2. Then, for I(0) < δ, the differential inequality (78) yields that
t 7→ I(t) decreases. As it is a nonnegative function it converges to the equilibrium state I ≡ 0. Also,
there is an exponential decay (with rate as close to 2λ as we wish) and the proof is complete. �
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