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Abstract This paper deals with the generalized principal eigenvalue of the parabolic oper-
ator Lφ = ∂tφ − ∇ · (A(t, x)∇φ) + q(t, x) · ∇φ − µ(t, x)φ, where the coefficients are
periodic in t and x . We give the definition of this eigenvalue and we prove that it can be
approximated by a sequence of principal eigenvalues associated to the same operator in a
bounded domain, with periodicity in time and Dirichlet boundary conditions in space. Next,
we define a family of periodic principal eigenvalues associated with the operator and use
it to give a characterization of the generalized principal eigenvalue. Finally, we study the
dependence of all these eigenvalues with respect to the coefficients.
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270 G. Nadin

1 Introduction

We are interested in the eigenvalues of parabolic operators of the form:

Lφ = ∂tφ − ∇ · (A(t, x)∇φ)+ q(t, x) · ∇φ − µ(t, x)φ (1)

The coefficients A, q, µ are supposed to be periodic in t and x , namely, there exist some
positive constants T, L1, . . . , L N such that for all t, x, i :

A(t + T, x) = A(t, x), q(t + T, x) = q(t, x), µ(t + T, x) = µ(t, x)
A(t, x + Li ) = A(t, x), q(t, x + Li ) = q(t, x), µ(t, x + Li ) = µ(t, x)

(2)

The periods T, L1, . . . , L N will be fixed in the sequel and when a function is said to be
periodic in t or in x , this periodicity will always refer to these given periods.

This kind of operators appears in the context of reaction–diffusion in space-periodic media,
that is to say equation of the form:

∂t u − ∇ · (A(t, x)∇u)+ q(t, x) · ∇u = f (t, x, u) in R × R
N (3)

where f may satisfies the following hypotheses:

∀x ∈ R
N ,∀t ∈ R, s → f (t, x, s)/s decreases on R

+∗ (4)

∃ M > 0 | ∀x ∈ R
N ,∀t ∈ R,∀s ≥ M, f (t, x, s) ≤ 0 (5)

This kind of equation arises in population genetics, combustion and population dynam-
ics models (see [3,11,22]). It is a generalization of the following homogeneous equation
∂t u − �u = u(1 − u). The case of the heterogeneous equation is of particular interest in
population dynamics and we would like to investigate the influence of the environment on
the species survival.

In [4], Berestycki et al. proved that if q ≡ 0, under these hypotheses, there exists a unique
positive stationary state, which is periodic and attractive, if and only if the principal eigenvalue
associated to the linearized problem around zero was negative. Setting µ(t, x) = f ′

u(t, x, 0),
this linearized operator is of the form (1). In [7], Berestycki et al. extended these results to a
more general class of operators.

In [21], Pinsky studied the principal eigenvalue of a space-periodic elliptic operator,
their positive harmonic functions and their dependence to perturbations. In [5], using their
preceding results, Berestycki et al. stated that these equations have solutions of a partic-
ular form: the pulsating traveling f ronts solutions. These fronts admit a minimal
speed, which can be characterized, under some additional hypotheses, using the principal
eigenvalues of a family of space-periodic elliptic operators. This minimal speed is use-
ful to compute the spreading speed of a solution with compactly supported initial data
(see [6,12]).

Recently, in [20], Nolen et al. proved that the existence of pulsating traveling f ronts
and the characterization of their minimal speed can be extended to space–time periodic par-
abolic operator. They assumed that the reaction term is nonnegative and has only to zeros: 0
and 1. It is left to prove that these results can be extended to a more general class of reaction
terms. The first part of this work is the study of the space–time periodic states of the reaction–
diffusion equation. This is carried out in [19]. In this article, we prove that the sign of the two
generalized eigenvalues plays an important role. During this work, many problems occurred
and it was not always possible to extend the methods that were used in [4]. An interesting
issue occurred: is it possible to approximate a space–time periodic principal eigenvalue with
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The principal eigenvalue of a space–time periodic parabolic operator 271

time-periodic principal eigenvalues in increasing bounded domains? We answer this question
in this article.

In the other hand, many studies have been carried out on time-periodic parabolic operator
in bounded domains (see [15–17]). These results cannot always be extended to unbounded
domain, as we will see.

Lastly, we will study the effects of perturbations on this principal eigenvalue. Some of the
results we prove are only extensions of well-known results in the case of a periodic elliptic
operator or of a time-periodic parabolic operator in a bounded domain, but some of them are
totally new, sometimes even in those simpler cases.

2 Approximation and characterization of the generalized principal eigenvalue

2.1 Definition of the generalized principal eigenvalue λ1

The diffusion matrix A is supposed to be uniformly elliptic and continuous: there exist some
positive constants γ and � such that for all ξ ∈ R

N , (x, t) ∈ R
N × R one has:

γ ‖ξ‖2 ≤
∑

1≤i, j≤N

ai, j (x, t)ξiξ j ≤ �‖ξ‖2 (6)

where ‖ξ‖ = (|ξ1|2 + · · · + |ξN |2)1/2.
We need the following Holder-regularity for the coefficients: there exists 0 < δ < 1 such

that q ∈ C δ
2 ,δ(R × R

N ,RN ), µ ∈ C δ
2 ,δ(R × R

N ,R) and A ∈ C δ
2 ,1+δ(R × R

N ,SN (R)).
Under these hypotheses, we are able to define the generalized principal eigenvalue λ1:

Definition 2.1 The generalized principal eigenvalue λ1 is defined by:

λ1 = sup{λ ∈ R | ∃φ ∈ C1,2(R × R
N ), φ > 0, φ is T-periodic and Lφ ≥ λφ in R × R

N }
(7)

This eigenvalue is related to uniqueness problems for the entire solutions of equation (3)
(see [19]). We underline that we do not take the supremum over the functions that are periodic
in x , but that we force the periodicity in t . It is not possible to define this eigenvalue if we do not
assume that the functions φ are periodic in t . In fact, since (L−λ)(φeαt ) = (L+α−λ)(φ)eαt

for all α ∈ R, if we do not force the periodicity in t , this would yield that λ1 = λ1 + α for
all α.

We will also investigate the set of the generalized principal eigenfunctions associated to
λ1, which are defined by:

Definition 2.2 A function φ ∈ C1,2(R×R
N ) is called a generalized principal eigenfunction

if it satisfies:

⎧
⎪⎨

⎪⎩

Lφ = λ1φ in R × R
N

φ > 0 in R × R
N

φ is T-periodic

(8)
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272 G. Nadin

In the case of a bounded and smooth domain, one can consider the eigenvalue associated
with the same operator but in a bounded domain with Dirichlet boundary conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lφ = λ1(
)φ

φ > 0 in R ×


φ is T-periodic

φ = 0 in R × ∂


(9)

It has been proved (see [15] for example) that the eigenvalueλ1(
) is well-defined and unique
and that φ is unique up to multiplication by a positive constant. Moreover, this eigenvalue
can be characterized with a formula similar to (7):

λ1(
) = sup{λ | ∃φ ∈ C1,2(R ×
) ∩ C1,1(R ×
), φ > 0 and Lφ ≥ λφ in R ×
} (10)

The first issue we investigate is that of the approximation of the generalized principal
eigenvalue λ1 by a sequence of eigenvalues associated to increasing domains. We state the
following result:

Proposition 2.3 Let (
n)n∈N be a sequence of nonempty bounded open sets such that:


n ⊂ 
n+1,
⋃

n∈N


n = R
N

Then λ1(
n) ↘ λ1 as n → +∞.

The proof of this theorem includes the proof of the existence of a generalized principal
eigenfunction:

Proposition 2.4 There exists a generalized principal eigenfunction associated with λ1.

This means that one can replace the supremum in formula (7) by a maximum. One deduces
from Definition 7 and Proposition 2.4 that:

Proposition 2.5 One has:

λ1 = max
φ>0, φ is T −periodic,

inf
(t,x)∈R×RN

Lφ
φ
.

We are not able to be more precise about this eigenfunction. All the theorems stated in
this section will be proved in a more general case (see Sect. 2.4).

2.2 Characterization of λ1 with the help of the periodic principal eigenvalues kα

In the case of a space periodic operator, there already exist periodic principal eigenvalues
associated with the whole domain R

N . We would like to compare the generalized princi-
pal eigenvalue with the periodic principal eigenvalues. First of all, we need to define these
periodic principal eigenvalues.

Set Lα the following modified operator:

Lαφ = e−α·xL(eα·xφ)
= ∂tφ − ∇ · (A∇φ)− 2αA∇φ + q · ∇φ − (αAα + ∇ · (Aα)− q · α + µ)φ

where βAα = ∑N
i, j=1 βi ai, jα j .
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The principal eigenvalue of a space–time periodic parabolic operator 273

Definition 2.6 A periodic principal eigenfunction of the operator Lα is a function φ ∈
C1,2(R × R

N ) such that it exists a constant k so that:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lαφ = kφ

φ > 0

φ(., .+ T ) = φ

φ(.+ Li ei , .) = φ for i = 1, . . . , N

(11)

Such a k is called a periodic principal eigenvalue.

We first prove the existence and the uniqueness of these eigenelements:

Theorem 2.7 There exists a couple (k, φ) that satisfies (11). Furthermore, k is unique and
φ is unique up to multiplication by a positive constant.

We define kα = k and φα = φ the eigenelements associated with Lα and normalized by
‖φα‖∞ = 1.

The proof of this theorem includes the proof of the following proposition, which is of
independent interest:

Proposition 2.8 For all α ∈ R
N , there exists some β0 ∈ R such that for all β > β0, g ∈

C0
per(R × R

N ), there exists a unique function u ∈ C1,2
per (R × R

N ) that satisfies:

Lαu + βu = g

We now state a variational characterization for the periodic principal eigenvalues and an
important concavity result that we will need several times in the sequel:

Proposition 2.9 One has the following characterization for the periodic principal
eigenvalues kα:

kα = max
φ>0 in (t,x), φ is T −periodic.

min
R×RN

(
Lαφ

φ

)
= min
φ>0 in (t,x), φ is T −periodic.

max
R×RN

(
Lαφ

φ

)
.

Proposition 2.10 For all A, q, set F the map:

R
N × C0

per(R
N × R) → R

(α, µ) �→ kα(µ)

Then F is concave and continuous.

This eigenelements family enables us to characterize the generalized principal eigenele-
ments of (7):

Theorem 2.11 If ϕ ∈ C1,2(R × R
N ) is a generalized principal eigenfunction of (2.2), then

it exists α ∈ R
N such that φαeα·x is a generalized principal eigenvalue of (2.2).

Theorem 2.12 One has the following equality:

λ1 = max
α∈RN

kα.

Furthermore, there exists a unique α that satisfies λ1 = kα .
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274 G. Nadin

2.3 Comparison with another generalized principal eigenvalue

We now define another generalized principal eigenvalue with:

λ′
1 = inf{λ | ∃φ ∈ C1,2(R × R

N ) ∩ W 1,∞(R × R
N ), φ is periodic in t,

φ > 0 and Lφ ≤ λφ in R × R
N } (12)

This second generalized principal eigenvalue is related to the existence problems for the
periodic positive solutions of Eq. (3). Since the first one was associated with the unique-
ness properties of these periodic solutions, this is interesting to investigate when the equality
λ1 = λ′

1 holds: this is the case where the periodic solution is unique when it exists. In the
case of a time-homogeneous domain, if q ≡ 0, then one has λ′

1 = λ1 (see [7]). We now
investigate if this assertion is still true in our context. First, we characterize the generalized
principal eigenvalue λ′

1 with the help of the periodic principal eigenvalues kα .

Theorem 2.13 One has the following equality:

λ′
1 = k0.

With the help of this characterization, we are now able to try to find some cases where
λ′

1 = λ1.

Proposition 2.14 If A, q and µ have a common symmetry axis in t or in x, in other words
if:

∃x0 | ∀t, x, A(t, x0 + x) = A(t, x0 − x), q(t, x0 + x) = q(t, x0 − x)
and µ(t, x0 + x) = µ(t, x0 − x),

or if ∃t0 | ∀t, x, A(t0 + t, x) = A(t0 − t, x), q(t0 + t, x) = q(t0 − t, x)
and µ(t0 + t, x) = µ(t0 − t, x),

(13)

and if q can be written q = A∇Q where Q ∈ C0,1(R × R
N ) with

∫
(0,T )×C A−1q = 0, then

λ′
1 = λ1.

This result is not true in general, even in the case of constant coefficients. It is easy to see
that the inequality λ′

1 ≤ λ1 is always true using Theorems 2.12 and 2.13. But it is possible
to get λ′

1 < λ1. For example, take:

Lφ = −φ′′ + φ′.

Taking φ ≡ 1, one easily gets λ′
1 ≤ 0 (in fact the equality holds). One can remark that:

e− x
2 L(e x

2ψ) = L′ψ = −ψ ′′ + 1

4
ψ.

This modified operator is self-adjoint, thus one has λ1(L′) = λ1(L) = 1
4 > λ′

1.
In the case of elliptic space-periodic operator, one has λ1 = λ′

1 for general A, µ if q
satisfies the same conditions as in proposition 2.14 (see [7]). It is not clear whether this
assertion is still true in the case of space–time periodic parabolic operators and this would
be interesting to prove it or to find a counterexample.
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The principal eigenvalue of a space–time periodic parabolic operator 275

2.4 The case of general unbounded domains

We can wonder if the results that we have stated in the previous sections can be generalized
to more general unbounded domains. Obviously, this will not be the case for the results that
are related to the periodic principal eigenvalues kα . Nevertheless, we are able to extend the
other results to very general unbounded domains. The results of the first section are indeed
particular cases of those which follow.

We define the principal eigenvalue of the operator L in the domain 
 as the quantity:

λ1(
) = sup{λ | ∃φ ∈ C1,2(R ×
) ∩ C1,1(R ×
), φ > 0,

φ is T-periodic and Lφ ≥ λφ in R ×
} (14)

Obviously, this eigenvalue is nonincreasing with respect to 
: if 
 ⊂ 
′ then λ1(
) ≥
λ1(


′). We also notice that if 
 is bounded and smooth, this definition is equivalent to the
definition we gave in (9). First of all, we prove that this definition makes sense for general
unbounded domains:

Proposition 2.15 The principal eigenvalue is well-defined in any nonempty open domain

and λ1(
) < +∞.

Next, we prove that the approximation result still holds in the case of general domains.
Furthermore, we can approximate such a domain with general, maybe unbounded or irregular,
domains:

Theorem 2.16 Let 
 be a general domain in R
N and (
n)n∈N be a sequence of nonempty

open sets such that:


n ⊂ 
n+1,
⋃

n∈N


n = 


Then λ1(
n) ↘ λ1(
) as n → +∞.

This result is a generalization of the theorem for elliptic operators that was first proved
for a bounded but not necessarily smooth domain in [8] and then for general domain in [7].

Lastly, we can define the generalized principal eigenfunctions in the same way as in
definition 2.2. We are able to prove that such a function always exists:

Proposition 2.17 For any general domain
, there exists a generalized principal eigenfunc-
tion associated with λ1(
).

This proposition gives the following max − in f characterization for λ1:

Proposition 2.18 One has:

λ1 = max
φ>0, φ is T −periodic.

inf
(t,x)∈R×RN

Lφ
φ
.

3 Dependence with respect to the coefficients

Let us denote λ′
1(A, q, µ) and λ1(A, q, µ) the two generalized eigenvalues associated with

the diffusion matrix A, the advection term q and the intrinsic growth rateµ. We prove in [19]
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276 G. Nadin

that the sign of λ′
1(A, q, µ) determines the existence of a positive periodic solution of Eq. (3)

and that the sign of λ1(A, q, µ) determines the convergence of the solution of the associated
Cauchy problem to this periodic solution. Thus decreasing these eigenvalues enhances the
possibility for the species to survive. Hence it is of particular interest to investigate how the
diffusion matrix A, the advection term q and the growth rate µ affect these two eigenvalues.
In this section, we will give results on the influence of the shape and the amplitude on these
eigenvalues. We might omit A, q or µ in the notations if these quantities are not the main
subject of our investigation.

Many of the following results can be extended to the periodic principal eigenvalues
kα(A, q, µ). When this is possible, we state the results for the generalized principal eigen-
values in order to simplify the statements, but we prove the results for kα and then use
Theorem 2.12.

3.1 Particular cases

We first give the two particular cases of space-homogeneous environment and of the time-
homogeneous environment without drift. These particular cases will be useful to get counter-
examples in the sequel. The proof of these results can be found in [4,15].

Proposition 3.1 If µ, q and A do not depend on x, one has:

λ′
1(A, q, µ) = − 1

T

T∫

0

µ.

Thus, the dependence between the environment and the generalized principal eigenvalues
is very simple. In this case, the shape of the environment, the diffusion matrix A and the
advection term q do not play any role.

In the case of a time-homogeneous environment, with no advection term, the operator is
self-adjoint. This yields the following characterization for the principal eigenvalue:

Proposition 3.2 If A and µ do not depend on t and q ≡ 0 then:

λ1 = λ′
1 = min

φ∈C2
per(R

N ), φ>0

∫
C

(∇φA(x)∇φ − µ(x)φ2
)

dx∫
C φ

2dx
(15)

In [4], Berestycki et al. analyzed the influence of the growth rate µ on the principal eigen-
value and obtained many results using this formula. The methods they used are not available
now that there are two first-order terms. Nevertheless, we will now generalize these results
using other methods.

3.2 Influence of the amplitude of the growth rate

Theorem 3.3 Take φα an eigenfunction associated with Lα and φ̃α the eigenfunction asso-
ciated with the adjoint problem, normalized by

∫
(0,T )×C φαφ̃α = 1:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tφα−∇ · (A∇φα)− 2αA∇φα + q · ∇φα − (∇ · (Aα)+ αAα − q · α + µ)φα

=kα(µ)φα,− ∂t φ̃α−∇ · (A∇φ̃α)+ 2αA∇φ̃α−∇· (qφ̃α)+ (∇ · (Aα)−αAα+ q · α−µ)φ̃α
= kα(µ)φ̃α,

φα > 0, φ̃α > 0,

φα and φ̃α are both periodic in t and x .
(16)
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The principal eigenvalue of a space–time periodic parabolic operator 277

Take η a periodic continuous function. If
∫
(0,T )×C ηφαφ̃α > 0, then the function B →

kα(µ + Bη) is decreasing over R
+. If

∫
(0,T )×C ηφαφ̃α = 0, then B → kα(µ + Bη) is

nonincreasing.

Remark 3.4 (1) In [4], this result was stated for a constant growth rateµ0 and for α = 0. In
this case, φ0 ≡ φ̃0 ≡ 1 and the condition for the monoticity is simpler:

∫
(0,T )×C η ≥ 0.

(2) In the general case, the weight φαφ̃α corresponds to the invariant measure of the sto-
chastic process associated with the operator Lα .

This means that if the heterogeneity is favorable or neutral in average, then the more you
increase the amplitude of the favorable and the unfavorable zone, the more the environment
is globally favorable for the species.

In the case of a time-homogeneous environment, it has been proved in [4] that if the envi-
ronment is unfavorable in average (i.e.

∫
C µ < 0), but if there exists a favorable zone (i.e.

∃x0| µ(x0) > 0), then for a large enough amplitude, the principal eigenvalue was negative
(i.e. ∃B0| ∀B > B0, λ1(Bµ) < 0). This was a result with an interesting biological inter-
pretation. This result does not hold true anymore in the case of a time-dependent system,
because of proposition 3.1.

Nevertheless, the following proposition, which is the analogue of the result of [4], hold
true:

Theorem 3.5 If
∫
(0,T ) maxx∈RN η(t, x)dt > 0 and (A, q, µ) are constant, then for all α,

for B large enough, one has kα(A, q, µ+ Bη) < 0.

This result has been proved in the case of a bounded domain in [15]. We use this case to
prove the theorem.

3.3 Influence of the diffusion

In the case of a time-homogeneous environment, the formula (15) yields that if γ > γ ′, then
λ1(γ A, 0, µ) > λ1(γ

′ A, 0, µ). This result does not hold true in a time-dependent environ-
ment, as it was proved in [16]. It is only left to investigate the asymptotic behavior when
γ → 0 and γ → +∞.

Theorem 3.6 For all A, q, µ, set:

A(t) = 1

|C |
∫

C

A(t, x)dx, q(t) = 1

|C|
∫

C

q(t, x)dx, µ(t) = 1

|C|
∫

C

µ(t, x)dx.

The following convergences holds as γ → +∞:

λ′
1(γ A, q, µ) → − 1

T |C |
∫

(0,T )×C

µ = λ′
1(A, q, µ)

λ1(γ A, q, µ) → λ1(A, q, µ).

For all A, q, µ, one has λ′
1(γ A,

√
γ q, µ) → − maxx∈RN

1
T

∫
(0,T ) µ(t, x)dt as γ → 0.

This result means that a very large diffusion is favorable and a very small one is unfavor-
able, even if there is no monotonicity between those two limit cases. It was proved in the
case of bounded environment in [15], in the particular case where A and q can be written as
products a(t)A0(x) and p(t)q0(x), and in [10] in the case of time-independent coefficients.
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3.4 Effect of the spatial variations

First of all, we discuss the influence of a heterogeneous function µ compared to the case
where µ is constant in t , with the same average as µ.

Theorem 3.7 For all (A, q, µ), if ∇ · q = 0, the following comparisons holds:

λ′
1(A, q, µ) ≤ λ′

1(A, q, µ) = −1

|C |T
∫

(0,T )×C

µ.

This means that the spatial heterogeneity, in some sense, can enhance the possibility of
a survival of the species. This result was proved in [4] in the case where the coefficients do
not depend on t and in [16] in the case of a bounded domain, with A = IN and q ≡ 0. This
generalization is new.

Next, we study the influence of the shape of the heterogeneity. To state our result, we
first need to introduce the notion of Schwarz and Steiner periodic symmetrizations. For more
details and properties about these notions, we refer the reader to [18].

Definition 3.8 [18] Assume that µ is a bounded measurable L-periodic function on the real
line R. Then there exists a unique bounded measurable L-periodic function µ∗ such that:

(i) µ∗ is symmetric with respect to L/2,
(ii) µ∗ is nondecreasing on (0, L/2),

(iii) µ∗ has the same distribution function as µ, for all α ∈ R:

meas{x, µ(x) > α} = meas{x, µ∗(x) > α}.
The function µ∗ is called the Schwarz periodic symmetri zation of the function µ.

Consider now a function µ periodic on the set R
N , with the period cell C . Fixing

(x1, . . . , xk−1, xk, . . . , xN ), one can rearrange the function xk �→ µ(x1, . . . , xk, . . . , xN ).
This is called the Steiner rearrangement of the function µ in xk . Performing successive rear-
rangement with respect to x1, . . . , xN , one obtains a periodic functionµ∗ which is symmetric
with respect to the planes xk = Lk/2, nondecreasing in xk on the set {xk ∈ (0, Lk/2)}, with
the same distribution function as µ. We underline that these conditions do not give a unique
function µ∗ and the way the symmetrization is carried out can lead to different rearranged
functions. In the sequel, we will call µ∗ the function that is obtained after succesive rear-
rangements in x1, . . . , xN .

In [4], the authors proved that, if A = IN , q ≡ 0 and µ does not depend on t , then
λ′

1(µ) ≥ λ′
1(µ

∗). The proof was based on the variational characterization of the principal
eigenvalue as a Rayleigh quotient, which does not hold true anymore in the case of a time-
dependent problem. Nevertheless, we give an alternate proof of this result in the case of a
time-dependent problem, which is based on a strong result on Steiner periodic rearrangement
that has been stated by Alvino et al. [2].

Theorem 3.9 If A = γ IN and q ≡ 0, one has:

λ1(µ
∗) ≤ λ1(µ)

where µ∗ is the successive Steiner periodic symmetrizations in x1, . . . , xN of the function µ.

This is another way to compare two fragmented environments.
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3.5 Effect of the temporal variations

We now study the influence of the amplitude of the first order term in t :

Theorem 3.10 Set λ1(κ) the eigenvalue defined by:

λ1(κ) = sup{λ ∈ R, ∃φ ∈ C1,2(R × R
N ), φ > 0, φ is T-periodic,

κ∂tφ − ∇ · (A∇φ)+ q · ∇ − µφ − λφ ≥ 0 in R × R
N } (17)

Then λ1(κ) → λ1( Â, q̂, µ̂) as κ → +∞, where:

Â(x) = 1

T

T∫

0

A(t, x)dt, q̂(x) = 1

T

T∫

0

q(t, x)dt, µ̂(x) = 1

T

T∫

0

µ(t, x)dt.

This result is new. In [16], some numerical computations had been carried out and sug-
gested the existence of such a limit. It also suggested that the eigenvalue λ1(κ) was increas-
ing in κ . This conjecture remains as an open problem. It is easy to prove that λ1(κ) =
κλ1(

A
κ
,

q
κ
,
µ
κ
) and this formula and the theorem give another homogenization result.

Finally, we underline as another open problem the influence of the Steiner periodic rear-
rangement in t on the principal eigenvalue λ′

1(µ). This seems to be a difficult issue. The
classical methods all use the symmetry of the solutions of the rearranged problems, which
does not hold true in this case. This problem is linked to that of the influence of a drift on a
rearrangement problem. As far as we know, there are only results for a time homogeneous
problem with Dirichlet boundary conditions on this issue (see [1] and [13]).

3.6 An optimization result

Next, we state an optimization result for the generalized principal eigenvalues when the
maximum, the minimum and the average of the function µ are fixed. This result was proved
in [9] in the case of a time-homogeneous problem. We give here an alternate, simpler proof,
which use classical optimization arguments.

Theorem 3.11 Set

F =

⎧
⎪⎨

⎪⎩
µ ∈ L∞([0; T ] × C);α ≤ µ(t, x) ≤ β a.e. t, x,

1

|C |T
∫

(0,T )×C

µ = m

⎫
⎪⎬

⎪⎭
,

where α, β and m are such that F is not empty.
Then, the functions µ �→ λ1(µ) and µ �→ λ′

1(µ) reach their minima over F when µ is a
function of the type µ = α1A + β1(0,T )×C\A, where A is a measurable subset of (0, T )× C
such that α |A| + β |(0, T )× C\A| = m |C |T .

This means that it is better for the species survival to consider an environment with very
favorable areas and very unfavorable areas, instead of a smooth environment, with slow
evolution from an area to another.

This result leads to another issue. Namely, we would like to find the set A that minimizes
the generalized principal eigenvalues λ1(α1A +β1(0,T )×C−A) and λ′

1(α1A +β1(0,T )×C−A).
In the case of a time-homogeneous environment with Dirichlet boundary conditions, it is
well-known that this set is the ball when the shape of the domain is free and its measure
is given. In the case of periodic boundary condition, even when the environment does not
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depend on t , there is no general result on this issue. We prove in the sequel that such a set
must be Steiner-symmetric in x , but there are many Steiner-symmetric sets for a given area.
In [14], Hamel and Roques give some numerical and theoretical results on this issue in the
case of a time-homogeneous environment.

4 Proofs of the properties of the principal generalized eigenvalue

In this section, we prove Propositions 2.15, 2.16 and 2.17. The proofs of these propositions
immediately give the proofs of propositions 2.3 and 2.4.

Proof of Proposition 2.15 As the function µ is bounded in R ×
, there exists a constant ν
such that supR×
(µ+ ν) ≤ 0. Considering the function φ ≡ 1, one gets Lφ = −µφ ≥ νφ,
which prove that ν ∈ {λ|∃φ ∈ C1,2(R ×
)∩ C1,1(R ×
), φ > 0 and Lφ ≥ λφ in R ×
}.
Thus this set is not empty and λ1(
) is defined in R ∪ {+∞}.

On the other hand, observe that if 
′ ⊂ 
′′, then λ1(

′) ≥ λ1(


′′) by definition. As 

is an open set, there exists an open ball B ⊂ 
. The principal eigenvalue λ1(B) corresponds
with the classical eigenvalue defined by (9), thus λ1(
) ≤ λ1(B) < +∞. This ends the
proof.

Proof of proposition 2.16 and Theorem 2.17 We reproduce the proof of proposition 4.2 of
[7], which holds in the case of space-periodic elliptic operators. It is more convenient to
deal with bounded and smooth domains. So consider a family (
̃n)n∈N of bounded, smooth
domains such that:


̃n ⊂ 
̃n+1, 
̃n ⊂ 
n and
⋃

n∈N


̃n = 
.

Callλ1,n = λ1(
n), λ̃n = λ1(
̃n) and λ1 = λ1(
). The sequences (λ1,n)n∈N and (̃λn)n∈N

are nonincreasing and bounded from below by λ1, so that they converge and:

λ1 ≤ lim
n→∞ λ1,n ≤ lim

n→∞ λ̃n,

thus we are back to the case of bounded, smooth domains. We define λ̃ = limn→∞ λ̃n .
Next, fix x0 ∈ 
̃0 and consider the sequence (φ̃n)n∈N of the time-periodic principal eigen-

functions of −L in 
̃n with Dirichlet boundary conditions, normalized by φ̃n(0, x0) = 1.
Since the sequence (̃λn)n∈N is bounded, using the Krylov–Safonov Harnack inequality, for
all m, we can find a positive constant C(m) such that:

∀n > m, sup
t∈[−T,0],x∈
̃m

φ̃n(t, x) ≤ C(m) inf
x∈
̃m

φ̃n(0, x) ≤ C(m).

Thus, the periodicity in t and the standard Schauder estimates yield that for all m there exists

a subsequence of (φ̃n)n>m that converges in C1+ δ̃
2 ,2+δ̃ (R × 
̃m−1), for any δ̃ ∈ [0, δ), to a

function φ∞ satisfying:

Lφ∞ − λ̃φ∞ = 0 in R × 
̃m−1.

Finally, using a diagonal extraction method, we can find a particular sub-sequence of (φ̃n)n∈N

converging to φ∞ in C1+ δ̃
2 ,2+δ̃

loc (R ×
). Furthermore, φ∞(0, x0) = 1, φ∞ ≥ 0 and Lφ∞ −
λ̃φ∞ = 0 in R ×
 and then the strong maximum principle yields φ∞ > 0 in R ×
. Then
φ∞ is a generalized principal eigenfunction. Lastly, taking φ∞ as a test super-solution in (7),
one finds λ̃ ≤ λ1.
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Proof of Proposition 2.18 Set

� = sup
φ>0,φ is T−periodic

inf
(t,x)∈R×RN

Lφ
φ
. (18)

Taking φ∞ a generalized principal eigenfunction as a test function in this formula, it is
obvious that λ1 ≤ �.

Let us now assume that λ1 < � and set ε = �− λ1 > 0. Then there exists a T -periodic
function φ ∈ C1,2(R × R

N ) such that

λ1 + ε ≤ Lφ
φ
.

This contradicts the definition ofλ1 and thus one hasλ1 = �. Furthermore, as Lφ∞ = λ1φ∞,
the supremum in (18) is in fact a maximum.

5 Characterization of the principal generalized eigenvalue

First, we define the periodic principal eigenvalues associated with the parabolic operator Lα
for all α.

Proof of Theorem 2.7 Take β a positive real number such that:

η = β − ‖αAα‖∞ − ‖µ‖∞ − ‖q · α‖∞ − 1

2
‖∇ · q‖∞ > 0.

We are looking for a T-periodic solution of:
⎧
⎪⎨

⎪⎩

Lαu + βu = g(t, x)

u(0, x) = u0(x)

u(t, x + Li ei ) = u(t, x) for all i

(19)

where u0 ∈ L2
per(R

N ) is a given initial data and g ∈ C0
per(R × R

N ).
The classical parabolic theory yields the existence and uniqueness of a weak solution of

(19) for all t ≥ 0 in C0
per(R × R

N ), which continuously depends on g. Then we can set:

G : L2
per(R

N ) �→ L2
per(R

N )

u0 �→ u(T, .)

Take u1, u2 ∈ L2
per(R

N ) and set U (x, t) = (u1(t, x)− u2(t, x))eηt , then U satisfies:

∂tU − ∇ · (A∇U )+ q · ∇U − 2αA∇U − (αAα + ∇ · (Aα)− q · α + µ+ η − β)U = 0

Multiplying by U and integrating over [0, T ] × C , one gets:

1

2

⎛

⎝
∫

C

U 2(T, .)−
∫

C

U 2(0, .)

⎞

⎠

=
∫

[0,T ]×C

(
−∇U A∇U +

(
1

2
∇ · q + αAα − q · α + µ+ η − β

)
U 2

)

123



282 G. Nadin

Using the ellipticity property (6) and the definition of η, one gets:
∫

C

U 2(0, .) ≥
∫

C

U 2(T, .)

This implies that:

‖u1(T, .)− u2(T, .)‖L2(C) ≤ e−ηT ‖u1(0, .)− u2(0, .)‖L2(C)

Then the map G is a contraction from L2
per(R

N ) into itself, and it admits a unique fixed

point, which continuously depends on g. Furthermore, for all u0 ∈ L2
per(R

N ), the Schauder

regularity theorem and the classical Sobolev injections yield that u(T, .) ∈ C2
per(R

N ). So,

necessarily, the fixed point u0 belongs to C2
per(R

N ) and the associated T-periodic function

belongs to C1,2
per (R × R

N ).
We now set:

T : C0
per(R × R

N ) �→ C0
per(R × R

N )

g �→ u

where u is the unique fixed point associated with g. Obviously, T is a continuous compact
linear map.

We want to apply the Krein–Rutman theorem to T in the cone K of the non-negative
functions. It remains to prove that T is strongly positive on K . Set g ∈ C0

per(R
N × R)−{0} a

non-negative function and u the associated function. Then multiplying the evolution equation
by u− = max(−u, 0) and integrating on [0, T ] × C leads to:

−
∫

[0,T ]×C

(
∇u− A∇u−−

(
1

2
(∇ · q+∇ · (αA))+αAα−q · α+µ−β

)
u−2

)
=

∫

[0,T ]×C

gu−

Since the left member is non-positive and the right member is non-negative, we have u− = 0
and u is non-negative. The strong maximum principle and the T-periodicity yields that u ∈
Int(K ). This shows that T is strongly positive.

We then get a positive eigenfunction φ unique up to multiplication and a unique positive
scalar r so that Tφ = rφ. Set k = 1

r − β, then k is a principal eigenvalue, which is unique.

Proof of Proposition 2.9 Since an eigenfunction φα belongs to C1,2
per (R × R

N ), it is obvious
that

kα ≤ max
φ>0,φ∈C1,2

per (R×RN )

inf
R×RN

(
Lαφ

φ

)

Let us now assume that there exists φ ∈ C1,2
per (R × R

N ) such that

kα < inf
R×RN

(
Lαφ

φ

)

This implies that there exists a positive constant η such that:

Lαφ − kαφ ≥ ηφ in R × R
N

Let w = φ/φα , then w is continuous and periodic with respect to t and x , so w reaches its
minimum m on R × R

N . A straightforward computation leads to:

∂tw − ∇.(A∇w)+ q · ∇w − 2
∇φα
φα

A∇w − 2αA∇w ≥ ηw > 0
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The parabolic strong maximum maximum principle and the periodicity in t yields thatw ≡ m,
i.e. φ ≡ mφα . Putting this into the inequation Lαφ − kαφ ≥ ηφ leads to 0 ≥ ηφ, which is
impossible because both η and ψ are positive.

This proves that kα ≥ infR×RN

(
Lαφ
φ

)
for all φ ∈ C1,2

per (R × R
N ). Moreover, any eigen-

function reaches this infimum, so this infimum is a minimum and the property is proved.
The min–max characterization can be proved in a similar way.

Proof of Proposition 2.10 Let α1, α2 be two real numbers, µ1, µ2 ∈ C0
per(R

N × R) and
r ∈ [0, 1]. We want to show that:

F(r(α1, µ1)+ (1 − r)(α2, µ2)) ≥ r F(α1, µ1)+ (1 − r)F(α2, µ2)

Set α = rα1 + (1 − r)α2 and µ = rµ1 + (1 − r)µ2. Set:

Eα = {φ ∈ C2,1(RN × R), φ > 0, φeα·x is periodic}
Let φ1, φ2 be arbitrarily chosen in Eα1 and Eα2 , respectively. Define z1 = ln(φ1), z2 =

ln(φ2), z = r z1 + (1−r)z2 and φ = ez ∈ Eα . Therefore, it follows from the characterization
of kα(µ) that:

kα(µ) ≥ inf
RN ×R

(
∂tφ − ∇ · (A∇φ)+ q · ∇φ

φ
− µ

)

One the other hand, one can compute that:

∂tφ − ∇ · (A∇φ)+ q · ∇φ
φ

= ∂t z − ∇ · (A∇z)− ∇z A∇z + q · ∇z

and:

∇z A∇z = r∇z1 A∇z1 + (1 − r)∇z2 A∇z2 − r(1 − r)(∇z1 − ∇z2)A(∇z1 − ∇z2)

≤ r∇z1 A∇z1 + (1 − r)∇z2 A∇z2

Hence,

∂tφ − ∇ · (A∇φ)+ q · ∇φ
φ

− µ ≥ r(∂t z1 − ∇ · (A∇z1)− ∇z1 A∇z1 + q∇z1 − µ1)

+(1 − r)(∂t z2 −∇ · (A∇z2)−∇z2 A∇z2 + q∇z2 −µ2)

≥ r

(
∂tφ1 − ∇ · (A∇φ1)+ q · φ1

φ1
− µ1

)

+(1 − r)

(
∂tφ2 − ∇.(A∇φ2)+ q · φ2

φ2
− µ2

)

Then,

kα(µ) ≥ infRN ×R

(
∂tφ−∇.(A∇φ)

φ
− µ

)

≥ r inf
RN ×R

(
∂tφ1 − ∇ · (A∇φ1)+ q · ∇φ1

φ1
− µ1

)

+(1 − r) inf
RN ×R

(
∂tφ2 − ∇.(A∇φ2)+ q · ∇φ2

φ2
− µ2

)

Since φ1 and φ2 are arbitrarily chosen, this leads to

kα(µ) ≥ rkα1(µ1)+ (1 − r)kα2(µ2)

Then F is concave. This gives the continuity in α.

The first step of the proof of theorem 2.12 is the proof of theorem 2.11.
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Proof of Theorem 2.11 Let ϕ a generalized principal eigenfunction associated with λ1. Set
ψ(t, x) = ϕ(t,x+L1e1)

ϕ(t,x) , then ψ satisfies:

∂tψ − ∇ · (A(t, x)∇ψ)+ q(t, x) · ∇ψ − 2
∇ϕ
ϕ

A(t, x)∇ψ = 0

The Harnack inequality and the periodicity in t yield that ψ is bounded. Set m =
supR×RN ψ > 0 and (xn, tn) ∈ [0, T ] × R

N such that: ψ(xn, tn) → m as n → ∞.
There exists yn ∈ C so that for all n, xn − yn ∈ L1Z × · · · × L N Z. We may assume that

yn → y∞ ∈ C and tn → t∞ ∈ [0, T ].
Set ψn(t, x) = ψ(t + tn, x + xn) and φn(t, x) = ϕ(t+tn ,x+xn)

ϕ(tn ,xn)
. The function φn satisfies:

∂tφn − ∇ · (A(t + tn, x + yn)∇φn)

+q(t + tn, x + yn) · ∇ − µ(t + tn, x + yn)φn = λ1φn

Using the classical parabolic estimates, we may suppose, up to extraction, that φn → φ∞
in C1,2

loc (R × R
N ). The function φ∞ satisfies:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tφ∞ − ∇ · (A(t + t∞, x + y∞)∇φ∞)+ q(t + t∞, x + y∞) · ∇φ∞
−µ(t + t∞, x + y∞)φ∞ = λ1φ∞
φ∞ periodic in t,

φ∞ > 0, φ∞(0, 0) = 1

In the other hand, ψn satisfies:

∂tψn −∇ · (A(t+tn, x+yn)∇ψn)+ q(t+tn, x+yn) · ∇ψn −2
∇φn

φn
A(x+yn, t+tn)∇ψn =0

So, we may assume, up to extraction, that ψn → ψ∞, where ψ∞ satisfies:

∂tψ∞ − ∇ · (A(t + t∞, x + y∞)∇ψ∞)+ q(t + t∞, x + y∞) · ∇ψ∞

−2
∇φ∞
φ∞

A(t + t∞, x + y∞)∇ψ∞ = 0

Furthermore, ψ∞ ≤ m and, as ψn(0, 0) = ψ(tn, xn) → m, ψ∞(0, 0) = m. Using the
strong parabolic maximum principle, we get ψ∞ ≡ m.

As m > 0, we can define α1 = 1
L1

ln(m). Then the function φ∞exp(−α1x1) is L1-peri-
odic in x1. Going on the construction, one can find a αi for all i and then get a function θ
satisfying:
{
∂tθ −∇ · (A(t + r∞, x + z∞)∇θ)+ q(t + r∞, x + z∞) · ∇θ − µ(t + r∞, x + z∞)θ = λ1θ

θ(t, x)exp(−α · x) is periodic in t, x1, . . . , xN , θ > 0, θ(0, 0) = 1

where (r∞, z∞) ∈ R × R
N .

Therefore, since the periodic principal eigenvalue kα is invariant under a translation in
(t, x) of the coefficients, there exists a positive constant C such that the function θe−α·x is
equal to Cφα and λ1 = kα . This ends the proof.

Next, proposition 2.17 yields that there exists a generalized principal eigenfunction φ
associated with the generalized principal eigenvalue λ1. The preceding theorem yields that
there exists α ∈ R

N such that λ1 = kα .
In the other hand, for all α ∈ R

N , the positive function ψα = φαeα·x satisfies Lψα =
kαψα . Taking ψα as a test-function in (7), one finds that λ1 ≥ kα for all α ∈ R

N .
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Next, assume that

kα + min
(t,x)∈R×RN

(αAα + ∇ · (Aα)− q · α + µ) > 0,

then the zero order term of Lα−kα is negative. The weak maximum principle yields that there
cannot exists a periodic function φ such that (Lα − kα)φ = 0, which gives a contradiction.
Thus:

kα ≤ − min
(t,x)∈R×RN

(αAα + ∇ · (Aα)− q · α + µ) ≤ −|α|2γ + ‖∇ · (Aα)− q · α + µ‖∞.

This finally gives the following inequality:

kα ≤ −γα2 + ‖∇ · (Aα)− q · α + µ‖∞. (20)

Using the classical perturbation theory, it is possible to prove (see [21]) that α �→ kα is
analytic. As it is not constant, this function reaches its maximum for a unique α. This ends
the proof of theorem 2.12.

6 Comparison between λ1 and λ′
1

Proof of Proposition 2.13 Taking ϕ0 a periodic principal eigenfunction associated with k0

and using (12), one gets λ′
1 ≤ k0. Next, take λ < k0 and assume that there exists a function

φ ∈ C1,2(R × R
N ) ∩ W 1,∞(R × R

N ) such that φ is periodic in t , positive and satisfies
Lφ ≤ λφ. We now search for a contradiction in order to prove that such a λ does not exist
and that λ′

1 ≥ k0.
Set γ = sup(0,T )×C

φ
ϕ0

, then 0 < γ < ∞ and one can define z = γ ϕ0 − φ. This function
is nonnegative and inf z = 0. Set ε = (k0 − λ)min ϕ0 > 0. One has (L − λ)(z) ≥ γ ε.

Consider a nonnegative function θ ∈ C2(RN ) that satisfies:

θ(0) = 0, lim|x |→+∞ θ(x) = 1, ‖θ‖C2 < ∞.

There exists κ > 0 sufficiently large such that:

∀y ∈ R
N , (L − λ)(τyθ) > −κγ ε/2,

where we denote τyθ = θ(.− y).
Since inf z = 0, one can find some (t0, x0) ∈ R × R

N such that:

z(t0, x0) < min

{
1

κ
,

γ ε

2‖µ‖∞

}

where ‖µ‖∞ = +∞ if µ ≡ 0. Since lim|x |→+∞ θ(x) = 1, there exists a positive constant R
such that τx0θ(x)/κ > z(t0, x0) if |x − x0| ≥ R. Consequently, setting z̃ = z + τx0θ(x)/κ ,
one finds for all |x − x0| ≥ R, that:

z̃(t, x) ≥ τx0θ(x)/κ > z(t0, x0) = z̃(t0, x0).

Hence, if α = minR×RN z̃, this infimum is reached in BR(x0). Moreover,

α ≤ z̃(t0, x0) = z(t0, x0) <
γ ε

2‖µ‖∞
.
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One can compute:

(L − λ)(̃z − α) = (L − λ)(z)+ 1

κ
(L − λ)(τx0θ(x))− µ(t, x)α + λα

> γ ε − γ ε

2
− ‖µ− λ‖∞α

> 0

for all (t, x) ∈ R × BR(x0). Thus, the strong maximum principle and the periodicity yield
that z̃ ≡ α, which contradicts (L − λ) (̃z − α) > 0.

Proof of Proposition 2.14 First case: symmetry in x , q ≡ 0
First of all, we assume that q ≡ 0 and that A and µ have a common symmetry axis in x .

Up to translation, we can assume that A and µ are even in x .
Set φα the eigenfunction defined by:

{
∂tφα − ∇ · (A∇φα)− 2α · A∇φα − (αAα − ∇ · (Aα)+ µ)φα = kαφα

φα > 0, φα is periodic in t and x, ‖φα‖∞ = 1
(21)

Set: ψα(t, x) = φ−α(t,−x), this function satisfies:

{
(∂tψα−∇ · (A∇ψα)−2α · A∇ψα − (αAα − ∇ · (Aα)+ µ)ψα) (t,−x) = kαψα(t,−x)

ψα > 0, ψα is periodic in t and x, ‖ψα‖∞ = 1
(22)

Since A and µ are even in x , the uniqueness of the principal eigenfunction yields that
φα = ψα and then kα = k−α . Asα �→ kα is concave, this givesλ′

1 = k0 = maxα∈RN kα = λ1.

Second case: symmetry in t , q ≡ 0

We now assume that q ≡ 0 and that A and µ have a common symmetry axis in t . Up to
translation, we can assume that A and µ are even in t .

We consider the adjoint operator:

P∗
α φ = −∂tφ − ∇ · (A(t, x)∇φ)+ 2α · A∇φ − (αA(t, x)α − ∇ · (A(t, x)α)+ µ(t, x))φ.

Set ψα(t, x) = φ−α(−t, x), where φ−α is defined as in the first case. This new function
is positive, periodic in t and x and using the symmetry in t , one can prove that it satisfies:

P∗
αψα = k−αψα.

Thus, the uniqueness property of the principal eigenvalue yields that k(−α) = k(α)∗.
But the principal eigenvalue associated with the adjoint operator is equal to the principal
eigenvalue. This proves that kα is even. We end the proof as in the first case.

The general case

We first prove that such a function Q is periodic. The periodicity in t is obvious since
∇Q = A−1q is periodic in t . Set Qi (t, x) = Q(t, x + Li ei ) − Q(t, x). Since q and A are
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periodic in x , the functions Qi are constant. Next, one can compute:

∫

(0,T )×C

Qi (t, x)dxdt =
∫

(0,T )×C

dxdt

Li∫

0

ei .∇Q(t, x + sei )ds

=
Li∫

0

ds
∫

(0,T )×C

(A−1q)i (x + sei )dxdt = 0.

Hence Qi ≡ 0. This means that Q is periodic in x .
Next, set φα a positive eigenfunction associated with kα andψα(t, x) = φα(t, x)e−Q(x)/2.

This new function satisfies:
⎧
⎪⎪⎨

⎪⎪⎩

Lαψα − ( 1
2∇ · (A∇Q)+ 1

2∂t Q − 1
4∇Q A∇Q

)
ψα = kαψα,

ψα > 0,

ψα is periodic in t and x.

(23)

In other words, we wrote kα as the periodic principal eigenvalue of an operator with q ≡ 0.
We are then back to the first or the second case, which yields that maxα∈RN kα = k0.

7 Proofs of the dependence results

7.1 Influence of the amplitude and the diffusion

Proof of Theorem 3.3 The concavity of the function µ �→ k0(µ) yields that the function
f : B �→ kα(µ + Bη) is concave. Take an arbitrary sequence Bn → 0. Setting φα(B) the
eigenfunction associated with the zero order term µ+ Bη, one has:

∫

(0,T )×C

(∂t −∇ · A∇−2αA∇+q · ∇−(∇ · (Aα)+αAα−q · α + µ))(φα(B)− φα(0))φ̃α(B)

= kα(µ+ Bη)− kα(µ)+ B
∫

(0,T )×C

ηφα(0)φ̃α(B).

The definition of φ̃α(B) yields that the left member is null. Thus, f is of class C1 in 0 and
using the continuity of B �→ φ̃α(B), one can easily get:

f ′(0) = −
∫

(0,T )×C

ηφα(0)φ̃α(0)dtdx .

If
∫
(0,T )×C ηφαφ̃αdtdx > 0, then f ′(0) < 0 and the concavity of f gives its monoticity in

R
+. If

∫
(0,T )×C ηφαφ̃αdtdx = 0, then f ′(0) = 0 and f is nonincreasing in R

+.

Proof of Theorem 3.5 Take B = B(0, 1) the ball of center 0 and of radius 1. For all α ∈ R
N ,

one has kα(A, q, µ+ Bη) ≤ λ1(A, q, µ+ Bη,B). It has already been proved (see Lemma
15.4 in [15]) that the right member goes to −∞ as B → +∞. Thus, the inequality yields
that for all α:

kα(Bη) → −∞ as B → +∞.
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In particular, for B large enough, one has kα(Bη) < 0.

Proof Theorem 3.6 (1) We first prove that for all α ∈ R
N , one has kα(γ A, q, µ) → − 1

T |C |∫
(0,T )×C µ when γ → +∞. We begin with the case α = 0. We follow the proof of [16].

Take φγ a positive eigenfunction that satisfies:
⎧
⎪⎪⎨

⎪⎪⎩

∂tφ
γ − γ∇ · (A∇φγ )+ q · ∇φγ − µφγ = k0(γ )φ

γ

φγ is periodic in t and x

1
|C |

∫
(0,T )×C φ

γ 2 = 1

(24)

where k0(γ ) = k0(γ A, q, µ). Multiplying Eq. (24) by φγ and integrating, one gets:

γ

∫

(0,T )×C

∇φγ A∇φγ =
∫

(0,T )×C

(µ+ ∇ · q + k0(γ ))φ
γ 2.

Thus there exists c1 which does not depend on γ such that:
∫

(0,T )×C

∇φγ A∇φγ ≤ c1

γ
.

Setψγ = φγ−φγ , whereφγ (t) = 1
|C |

∫
C φ

γ (t, x)dx . Then∇ψγ = ∇φγ and
∫

C ψ
γ = 0,

thus the Poincaré’s inequality yields that there exists a constant c > 0 depending only on C
such that

∫
C ∇ψγ A∇ψγ ≥ c

∫
C ψ

γ 2.
Now, integrating (24) over C , one gets:

∂tφγ − (µ+ k0(γ ))φγ = 1

|C |
∫

C

(µ− ∇ · q)ψγ

and the preceding computations yield that:
∫

(0,T )×C

ψγ 2 ≤ c1

cγ
.

Thus, one can compute:

φγ (t) = φγ (0)e
∫ t

0 (µ+k0(γ )) + O(1/
√
γ ).

As φγ (T ) = φγ (0), we must have either
∫ T

0 (µ+ k0(γ )) → 0 or φγ (0) → 0 as γ → ∞. If
φγ (0) → 0, then φγ (t) → 0 uniformly in t and thus ‖φγ ‖L2 → 0. This finally gives that
φγ = ψγ+φγ converges to 0 in L2 as t goes to +∞, which is impossible since ‖φγ ‖2 = 1 for
all γ . This yields that

∫ T
0 (µ+ k0(γ )) → 0. This gives λ′

1(γ, A, q, µ) → − 1
T |C |

∫
(0,T )×C µ

as γ → +∞.
As kα(γ A, q, µ) = λ′

1(γ A, q − 2αγ A, αγ Aα + ∇ · (γ Aα)− q · α + µ), we have:

kα(γ A, q, µ) → − 1

T |C |
∫

(0,T )×C

(−αAα − ∇ · (Aα)+ q · α + µ) = kα(A, q, µ)

as γ → +∞.
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As α �→ kα(γ A, q, µ) is concave for all γ , the Dini’s theorem yields that this convergence
is locally uniform in α ∈ R

N . For all γ , let αγ be such that kαγ (A, q, µ) = λ1(A, q, µ).
Inequality (20) gives:

k0(γ A, q, µ) ≤ kαγ (γ A, q, µ) ≤ −γ |αγ |2 + ‖γ∇ · (Aαγ )− q · αγ + µ‖∞.

Thus for all γ , one has:

γ (|αγ |2 − ‖∇ · (Aαγ )‖∞)− ‖q · αγ ‖∞ ≤ µ‖∞ − k0(γ A, q, µ).

For all γ ≥ 1, if αγ is large enough, this gives:

|αγ |2 − ‖∇ · (Aαγ )‖∞ − ‖q · αγ ‖∞ ≤ µ‖∞ − k0(γ A, q, µ).

As the right-hand side converges when γ goes to +∞, this inequality yields that the left-hand
side is bounded and thus the family (αγ )γ≥1 is bounded. We now take some subsequence
(αγn )n that converges to some α∞ where γn → +∞ as n → +∞. As the convergence of
kα(γ A, q, µ) is locally uniform in α, one has:

λ1(γn A, q, µ) = kαγn
(γn A, q, µ) → kα∞(A, q, µ).

Furthermore, for all α, one has kα(γn A, q, µ) ≤ λ1(γn A, q, µ). Letting n → +∞, this
gives:

kα(A, q, µ) ≤ kα∞(A, q, µ).

Thus kα∞(A, q, µ) = λ1(A, q, µ) and α∞ is the unique α for which kα(A, q, µ) =
λ1(A, q, µ). As the limit of a converging subsequence (αn)n is necessarily equal to this
unique α, one knows that the full family (kαγ (γ A, q, µ))γ>0 converges to λ1(A, q, µ) as
γ → +∞.

(2) Set λ′
1,n = λ′

1(γn A,
√
γnq, µ) ≥ 0 for all n, this sequence is bounded by ‖µ‖∞ so

that one can assume, up to extraction, that it converges: λ′
1,n → λ′

1,∞. Take some x0 ∈ R
N .

For all n, set φn the eigenfunction associated with λ′
1,n and normalized by φn(0, x0) = 1. Set

ψn(t, x) = φn(t, x0 + √
γn x) for all n, these functions satisfy:

∂tψn − ∇ · (An∇ψn)+ qn∇ψn − µnψn = λ′
1,nψn

where An(t, x) = A(t, x0 + √
γn x), qn(t, x) = q(t, x0 + √

γn x) and µn(t, x) = µ(t, x0 +√
γn x). As An(t, x) → A(t, x0), qn(t, x) → q(t, x0) andµn(t, x) → µ(t, x0) uniformly on

compact sets as n → ∞, the Schauder classical estimates yields that one can assume, up to
extraction, that (ψn)n converges to a function ψ∞ in C1,2

loc (R × R
N ). This function satisfies:

∂tψ∞ − ∇ · (A(t, x0)∇ψ∞)+ q(t, x0)∇ψ∞ − µ(t, x0)ψ∞ = λ′
1,∞ψ∞

Furthermore, the function ψ∞ is periodic in t , nonnegative and satisfies ψ∞(0, 0) = 1. The
strong parabolic maximum principle yields that ψ∞ is positive.

Thus, going back to the definition of the generalized principal eigenvalue λ1, one gets:

λ′
1,∞ ≤ λ1(A(., x0), q(., x0), µ(., x0)).

But in this case, as the coefficients do not depend on t , this eigenvalue is equal to
− 1

T

∫ T
0 µ(t, x0)dt , thus:

λ′
1,∞ ≤ − 1

T

T∫

0

µ(t, x0)dt
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for all x0 ∈ R
N . One finally gets:

lim sup
γ→0

λ′
1(γ A,

√
γ q, µ) ≤ − min

x∈RN

1

T

T∫

0

µ(t, x)dt = − max
x∈RN

µ̂(x). (25)

In the other hand, for all n, we can change the normalization and assume that ‖φn‖∞ = 1.
There exists some (tn, xn) ∈ [0, T ] × C such that φn(tn, xn) = 1 for all n. Up to extraction,
one may assume that (tn, xn) → (t, x) as n → +∞. Set ϕn(t, x) = φn(t,

√
γn x + xn).

These functions satisfy:

∂tϕn − ∇ · (A(t, xn + √
γn x)∇ϕn)+ q(t, xn + √

γn x)∇ϕn

−µ(t, xn + √
γn x)ϕn = λ′

1,nϕn .

The Schauder parabolic estimates yield that one can assume that the sequence (ϕn)n con-
verges, up to extraction, to some nonnegative function ϕ∞ which satisfies:

∂tϕ∞ − ∇ · (A(t, x)∇ϕ∞)+ q(t, x)∇ϕ∞ − µ(t, x)ϕ∞ = λ′
1,∞ϕ∞,

where ϕ∞(t, 0) = 1 = ‖ϕ∞‖∞. The definition of the generalized principal eigenvalue
λ′

1(A(., x), q(., x), µ(., x)) yields that

− 1

T

T∫

0

µ(t, x)dt = λ′
1(A(., x), q(., x), µ(., x)) ≤ lim inf

γ→0
λ′

1(γ A, q, µ). (26)

Thus, the minimum that appears in the right hand-side of (25) is reached and (25) and (26)
give the conclusion.

7.2 Distribution effects

This section is dedicated to the proof of theorem 3.9.

Proof of Theorem 3.9 Using the notations of part , we define the linear operator Gµ by:

Gµ : L∞
per → L∞

per

u0 �→ u(T, .)
(27)

where u is the solution of:
{
∂t u − γ�u − µ(t, x)u = 0

u(0, x) = u0(x)
(28)

and we consider the eigenelements (u0, r0(µ)) ∈ C2
per(R

N )× R defined by :
⎧
⎪⎨

⎪⎩

Gµu0 = r0(µ)u0

u0 > 0

‖u0‖∞ = 1

(29)

Finally, we define u as the solution of the Cauchy problem (28) associated with u0. Next,
consider the solution V ∈ C1,2

per (R × R
N ) of the equation:

{
∂t V − γ�V − µ∗(t, x)V = 0

V (0, x) = u∗
0(x)
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Then, a result from [2] yields that

∀t, ‖u(t, .)‖∞ ≤ ‖V (t, .)‖∞.

Thus, one gets the following inequality:

∀n ∈ N
∗, r0(µ) = ‖Gn

µ(u0)‖1/n∞ ≤ ‖Gn
µ∗(u∗

0)‖1/n∞ ≤ ‖Gn
µ∗‖1/n

L(L∞
per)

When n goes to +∞, the spectral radius formula yields that the right member converges to
the principal eigenvalue of the operator Gµ∗ , that is to say r0(µ

∗). Finally, we have obtained:

r0(µ) ≤ r0(µ
∗).

It can easily be seen (see [15]) that:

λ1(µ) = − 1

T
lnr0(µ).

This gives the conclusion.

7.3 Effect of the variations

Proof of Proposition 3.7 Consider some eigenfunction φ:

∂tφ − ∇ · (A∇φ)+ q · ∇φ − µφ = k0φ.

Dividing this equation by φ, integrating over (0, T )× C and using the periodicity of φ, one
gets:

−
∫

(0,T )×C

∇φA∇φ
φ2 −

∫

(0,T )×C

(∇ · q)lnφ −
T∫

0

µ = T |C |k0.

As A is elliptic this gives:

−
T∫

0

µ ≥ T |C |k0.

Proposition 3.1 gives that − ∫ T
0 µ = k0(A, q, µ).

Proof of Theorem 3.10 Take α so that λ1( Â, q̂, µ̂) = kα( Â, q̂, µ̂) and κn → +∞ and
(φn, kn) the eigenelements defined by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κn∂tφn −∇ · (A∇φn)−2αA∇φn + q · ∇φn − (αAα + ∇(Aα)− q · α + µ)φn = knφn,

φn is periodic in t and x,

φn > 0,

‖φn‖L2((0,T )×C = 1.
(30)

First of all, |kn | is bounded by ‖αAα + ∇(Aα)− q.α + µ‖L∞ , thus one can assume, up to
extraction, that kn → k as n → +∞.
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Multiplying Eq. (30) by φn and integrating over (0, T )× C , one gets:

kn = −
∫

(0,T )×C

∇(A.∇φn)φn +
∫

(0,T )×C

(q − 2αA)∇ φ
2
n

2

−
∫

(0,T )×C

(µ+ αAα + ∇.(Aα)− q.α)φ2
n

=
∫

(0,T )×C

∇φn A.∇φn −
∫

(0,T )×C

(µ+ αAα − ∇.(Aα)− q.α + ∇.q)φ2
n

by integrating by parts. Using the uniform ellipticity, one gets:

γ ‖∇φn‖2
L2 ≤ kn + ‖µ+ αAα − ∇.(Aα)− q.α + ∇.q‖L∞

Multiplying Eq. (30) by ∂tφn and integrating, one gets:

κn

∫

(0,T )×C

(∂tφn)
2 −

∫

(0,T )×C

∇(A.∇φn)∂tφn +
∫

(0,T )×C

(q − 2αA)∇φn∂tφn

−
∫

(0,T )×C

(µ+ αAα + ∇.(Aα)− q.α)∂t
φ2

n

2

= κn

∫

(0,T )×C

(∂tφn)
2 − 1

2

∫

(0,T )×C

∇φn∂t A.∇φn +
∫

(0,T )×C

(q − 2αA)∇φn∂tφn

+
∫

(0,T )×C

∂t (µ+ αAα − ∇.(Aα)− q.α + ∇.q)φ
2
n

2
= 0

This yields the following estimates:

κn

∫

(0,T )×C

(∂tφn)
2 ≤ 1

2
‖∂t A‖L∞‖∇φn‖2

L2 + ‖q − 2αA‖L∞
∫

(0,T )×C

|∂tφn ||∇φn |

+1

2
‖∂t (µ+ αAα − ∇.(Aα)− q.α + ∇.q)‖L∞

≤ 1

2
‖∂t A‖L∞‖∇φn‖2

L2 + ‖q − 2αA‖L∞

×( κn

2‖q − 2αA‖L∞

∫

(0,T )×C

(∂tφn)
2 + ‖q − 2αA‖L∞

2κn
‖∇φn‖2

L2)

+1

2
‖∂t (µ+ αAα − ∇.(Aα)− q.α + ∇.q)‖L∞

and finally:

κn‖∂tφn‖2
L2 ≤

(
‖∂t A‖L∞ + ‖q − 2αA‖2

L∞
κn

)
‖∇φn‖2

L2

+‖∂t (µ+ αAα − ∇.(Aα)− q.α + ∇.q)‖L∞
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These two estimates yield that ‖∇φn‖L2 is bounded and that ‖∂tφn‖L2 → 0 as n → +∞.
Thus, up to extraction, one may assume that φn → w in L2, ∇φn ⇀ ∇w and ∂tφn ⇀ ∂tw

in L2. One has ‖∂tw‖L2 ≤ limin f ‖∂tφn‖L2 = 0 and thus w does not depend on t .
Passing to the limit n → +∞ in (30), one gets that w is a weak solution of:

−∇.(A∇w)− 2αA∇w + q.∇w − (αAα + ∇(Aα)− q.α + µ)w = kw

One can integrate over (0, T ), this yields:

−∇.( Â∇w)− 2α Â∇w + q̂.∇w
−

(
α Âα + ∇( Âα)− q̂.α + µ̂

)
w = kw

The regularity Shauder estimates yield that w ∈ C2(RN ). Using the elliptic strong
maximum principle, one gets w > 0. Thus w is the principal eigenfunction associated
with kα( Â, q̂, µ̂). The uniqueness of the principal eigenvalue leads to k = kα( Â, q̂, µ̂) =
λ1( Â, q̂, µ̂). This ends the proof.

7.4 The optimization result

Lemma 7.1 Assume that (An, qn, µn) is a bounded sequence in (L∞)3 , then one can
extract a subsequence (An′ , qn′ , µn′) and find some coefficients (A, q, µ) ∈ (L∞)3 such
that kα(An′ , qn′ , µn′) → kα(A, q, µ).

Proof of Lemma 7.1 First of all, we can find some coefficients (A, q, µ) ∈ (L∞)3 such that,
up to extraction, (An, qn, µn) ⇀

∗ (A, q, µ) for the weak-* L∞ topology. Set ϕn the ei-
genfunction associated with (An, qn, µn) such that ‖ϕn‖H1

per
= 1. Up to extraction, we may

assume that ϕn → ψ in L2 and ϕn ⇀ ψ for the weak topology in H1
per.

In the other hand, as (An, qn, µn) is a bounded sequence in (L∞)3, kα(An, qn, µn) is also
a bounded sequence. Up to extraction, we can assume that kα(An, qn, µn) → k.

Choose θ ∈ D((0, T )× C) a test-function, then (θϕn)n strongly converges to θψ in L1,
and:

kα(An, qn, µn) < ϕn, θ >D′×D→ k < ψ, θ >D′×D,

< µnϕn, θ >D′×D=< µn, ϕnθ >L∞×L1→< µ,ψθ >L∞×L1=< µψ, θ >D′×D,

as n → +∞. This gives:

< ∂tφn − ∇ · (An∇φn)− 2αAn∇φn + qn · ∇φn − (αAnα + ∇ · (Anα)

−qn · α + µn)φn, θ >→< ∂tψ − ∇ · (A∇ψ)− 2αA∇ψ + q · ∇ψ
−(αAα + ∇ · (Aα)− q · α + µ)ψ, θ >D′×D .

Then the uniqueness of the limit yields that

∂tψ − ∇ · (A∇ψ)− 2αA∇ψ + q · ∇ψ − (αAα + ∇ · (Aα)− q · α + µ)ψ = kψ

in D′((0, T )× C). Furthermore, one knows that ψ is nonnegative.
In the other hand, a bootstrap method proves that, as (kα(µn))n converges, up to extrac-

tion, one can assume that φn → ψ in H1
per. Thus ‖ψ‖H1

per
= 1 and ψ is not null. The strong

maximum principle yields that ψ > 0. The uniqueness property for the principle eigenvalue
gives k = kα(A, q, µ), which ends the proof.
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Lemma 7.2 Set Ex F the set of the extremal points of F. We have the following equality:

Ex F = {γ 1A + β1(0,T )×C\A; γ |A| + β|(0, T )× C\A| = m|C |T }
Proof of Lemma 7.2 Set G the right hand-side set. Take µ ∈ Ex F , we want to prove that
µ ∈ G. It is sufficient to prove that, almost everywhere µ = γ or β. Set Z = {µ ∈]γ ;β[}
and for all n, Zn = {µ ∈]γ + 1

n ;β− 1
n [}. Assume that the measure of Zn is not equal to zero.

In this case it exists a splitting of Z in two sets X and Y which have the same measure. Set
µ1 = µ+ 1

n 1X − 1
n 1Y and µ2 = µ− 1

n 1X + 1
n 1Y . Then µ1 ∈ F , µ2 ∈ F and µ = µ1+µ2

2 ,
this is in contradiction with the fact that µ is an extremal point. Thus |Z | = lim|Zn | = 0.

In the other hand, set µ ∈ G, and assume that there exists µ1 and µ2 in F such that
µ = µ1+µ2

2 . Then a.e x, µ1(x) + µ2(x) ∈ {2γ ; 2β}, and necessarily, µ1 and µ2 take the
same value γ orβ, thus these functions are equal almost everywhere. This givesµ1 = µ2 = µ

and µ is an extremal point.

Proof of Theorem 3.11 F is a closed, convex and bounded subset of L∞([0; T ]×C), so it is
compact for the weak-* topology. The Krein–Milman theorem implies that F is the closure
of the convex hull of its extremal points.

The set Ex F is obviously closed and bounded in L∞([0; T ] × C). Thus it is a compact
set for the weak-* topology. Lemma 7.1 yields that the function µ → kα(µ) is continuous
on F for this topology, it raises its minimum over this set. Set µ0 the associated extremal
function.

Set µ = ∑
i tiµi , where ∀i, µi ∈ Ex F, ti ≥ 0 and

∑
i ti = 1. Then:

kα(µ) ≥
∑

i

ti kα(µi ) ≥
∑

i

ti kα(µ0) = kα(µ0)

As kα is continuous, this inequality holds for the closure of the convex hull of the extremal
points of F. This gives the conclusion.
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