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Abstract

This paper investigates time-global wave-like solutions of heterogeneous reaction-
diffusion equations: ∂tu−a(x)∂xxu−b(x)∂xu = f(x, u) in R×R, where the coef-
ficients a, 1/a, b and f are only assumed to be measurable and bounded in x ∈ R and
the nonlinearity f is Lipschitz-continuous in u ∈ [0, 1], with f(x, 0) = f(x, 1) = 0
for all x ∈ R. In this general framework, the notion of spatial transition wave has
been introduced by Berestycki and Hamel [4]. Such waves always exist for one-
dimensional ignition-type equations [20, 25], but not for monostable ones [24]. We
introduce in the present paper a new notion of wave-like solutions, called critical
travelling waves since their definition relies on a geometrical comparison in the
class of time-global solutions trapped between 0 and 1. Critical travelling waves
always exist, whatever the nonlinearity of the equation is, are monotonic in time
and unique up to normalization. They are spatial transition waves if such waves
exist. Moreover, if the equation is of monostable type, for example if b ≡ 0 and
f(x, u) = c(x)u(1 − u), with infR c > 0, then critical travelling waves have min-
imum least mean speed. If the coefficients are homogeneous/periodic, then we re-
cover the classical notion of planar/pulsating travelling wave. If the heterogeneity
of the coefficients is compactly supported, then critical transition waves are either
a spatial transition wave with minimal global mean speed or bump-like solutions if
spatial transition do not exist. In the bistable framework, the nature of the critical
travelling waves depends on the existence of non-trivial steady states. Hence, the
notion of critical travelling wave provides a unifying framework to earlier scattered
existence results for wave-like solutions. We conclude by proving that in the monos-
table framework, critical travelling waves attract, in a sense and under additional
assumptions, the solution of the Cauchy problem associated with a Heaviside initial
datum.
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1 Previous notions of waves for reaction-diffusion equa-
tions

1.1 General framework

This paper investigates time-global wave-like solutions of general heterogeneous reaction-
diffusion equations

∂tu− a(x)∂xxu− b(x)∂xu = f(x, u) in R× R. (E)

We shall make the following assumptions on the coefficients throughout the paper:

a, ax, axx, 1/a, b, bx ∈ L∞(R), f ∈ L∞(R× [0, 1]),
∃C > 0 s.t. |f(x, u)− f(x, v)| ≤ C|u− v| a.e. (x, u, v) ∈ R× [0, 1]× [0, 1],

f(x, 0) = f(x, 1) = 0 a.e. x ∈ R.
(H)

This equation arises in many scientific fields such as genetics, population dynamics,
chemistry or combustion. The underlying models rely on a simple mecanism: u ∈ [0, 1]

is the proportion of a population or of a product, which diffuses and reacts in the en-
vironment. Hence, a(x) is sometimes called the diffusion coefficient, b(x) the advection
coefficient and f(x, u) the reaction term. The last hypothesis f(x, 0) = f(x, 1) = 0 means
that equation (E) admits two uniform steady states u = 0 and u = 1. The key question
in all these models is to understand how the steady state 1 invades the steady state 0. One
way to adress this question is to investigate the existence of wave-like solutions.

Note that one can consider the more general framework where the two steady states
u− = u−(x) and u+ = u+(x) depend on space, under the conditions that u± are mea-
surable, essentially bounded and u+ > u−, just by performing the change of variables
v(t, x) :=

(
u(t, x) − u−(x)

)
/
(
u+(x) − u−(x)

)
. Hence, there is no loss of generality in

assuming that u− ≡ 0 and u+ ≡ 1.
We underline that our results will be stated without making any other structural hy-

pothesis on the dependence in x of the coefficients, such as periodicity, almost periodicity
or ergodicity for examples. We do not even need the coefficients to be continuous in gen-
eral. Considering such a general heterogeneity is natural in many applications, for exam-
ple in population dynamics models. Before stating our results in this general framework,
we will first review earlier existence results for wave-like solutions in homogeneous and
periodic one-dimensional reaction-diffusion equations.
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1.2 Planar travelling waves for homogeneous equations

Equation (E) has first been investigated by Kolmogorov, Petrovski, Piskunov [15] and
Fisher [11] in the 30’s when a ≡ 1, b ≡ 0, and f does not depend on x:

∂tu− ∂xxu = f(u) in R× R. (1.1)

Kolmogorov, Petrovski and Piskunov proved that, if f is derivable, f(u) > 0 and f ′(u) ≤
f ′(0) for all u ∈ (0, 1), then (1.1) admits a planar travelling wave of speed c for all
c ≥ c∗ = 2

√
f ′(0). That is, for all c ≥ c∗, there exists a function u = u(t, x) which

satisfies (1.1) and which can be written

u(t, x) = U(x− ct), with U ∈ C2(R), 0 < U < 1, U(−∞) = 1, U(+∞) = 0.

(1.2)
The quantity c is called the speed of the planar travelling wave u and U is called its profile.
Moreover, if v is a solution of{

∂tv − ∂xxv = f(v) in (0,∞)× R,
v(0, x) = 1 if x ≤ 0, v(0, x) = 0 if x > 0,

(1.3)

then for all θ ∈ (0, 1), there exists a unique function X ∈ C0(R) such that v
(
t,X(t)

)
= θ

for all t > 0 and one has limt→+∞ v
(
t, x + X(t)

)
= u∗(0, x) uniformly in x ∈ R, where

u∗ is a planar travelling wave with speed c∗ = 2
√
f ′(0) such that u∗(0, 0) = θ [15].

Hence, the travelling wave with minimal speed c∗ is attractive in a sense.
More general types of nonlinearities, still independent of x, have been considered

by Aronson and Weinberger [2]. These authors distinguished three classes of equations.
When f(u) > 0 for all u ∈ (0, 1), then (1.1) is called a monostable equation because
the steady state 0 is unstable while 1 is globally attractive. In combustion models, it may
be relevant to assume that the reaction only starts when the temperature is large enough.
These models gave rise to ignition-type equations, for which there exists θ0 ∈ (0, 1) such
that f(u) = 0 for all u ∈ [0, θ0] and f(u) > 0 for all u ∈ (θ0, 1). The quantity θ0 can be
viewed as an ignition temperature. Lastly, if there exists θ0 ∈ (0, 1) such that f(u) < 0

for all u ∈ (0, θ0) and f(u) > 0 for all u ∈ (θ0, 1), then the equation is called bistable
since the two steady states 0 and 1 are both stable, while θ0 is an unstable steady state.

monostable nonlinearity ignition−type nonlinearity
nonlinearity

bistable

u
0 1

u
100 1

u
θ0 θ0

f(u) f(u) f(u)
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The classical result proved by Aronson and Weinberger [2] (see also [10, 31]) is the
following:

• if equation (1.1) is monostable, then there exists a speed c∗ > 0 such that (1.1)
admits a planar travelling wave with speed c if and only if c ≥ c∗,

• if equation (1.1) is bistable or of ignition-type, then there exists a speed c∗ such that
(1.1) admits a planar travelling wave with speed c if and only if c = c∗. Moreover,
c∗ has the same sign as

∫ 1

0
f(s)ds.

For bistable and ignition-type equations, planar travelling waves (of speed c∗) attract, in
a sense, the solutions of the Cauchy problem (1.3) [10]. For monostable equations, the
solutions of the Cauchy problem (1.3) are attracted, in the same meaning as in [15], by
a travelling wave with minimal speed c = c∗ [31]. Hence, the travelling wave with min-
imal speed is the most important one in order to understand the dynamics of the Cauchy
problem (1.3) in the monostable framework.

1.3 Pulsating travelling waves for periodic equations

A first heterogeneous generalization of the Fisher-KPP reaction-diffusion equation (1.1)
investigated in the last decades was the periodic reaction-diffusion equation. Assume that
the coefficients are L−periodic in x, with L > 0, that is,

a(x+L) = a(x), b(x+L) = b(x), f(x+L, u) = f(x, u) for all (x, u) ∈ R×[0, 1].

In this case the notion of pulsating travelling wave has been introduced in parallel ways
by Shigesada, Kawazaki and Teramoto [30] and Xin [32]. A solution u of equation (E) is
called a pulsating travelling wave with speed c > 0 if for all (t, x) ∈ R× R:

u(t+ L/c, x) = u(t, x− L), 0 < u < 1, lim
x→−∞

u(t, x) = 1, lim
x→+∞

u(t, x) = 0

(1.4)
where the limits hold locally in t ∈ R.

The existence of pulsating travelling waves has been proved by Xin [32] when only the
diffusion a is heterogeneous in the ignition-type framework, and by Berestycki and Hamel
[3] for general monostable and ignition-type equations. For periodic bistable equations,
the existence of pulsating travelling waves is due to Xin when the equation is a uniform
perturbation of a homogeneous equation [33] and to Heinze if the equation is close to
some homogenization limit [14]. It remains unknown for general periodic bistable equa-
tions.

The literature on the properties of these pulsating travelling waves is very dense and
we will not describe it here since this is not the main topic of the present paper. Let us just
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mention that the attractivity of pulsating travelling waves has been proved by Xin [33] in
the ignition-type framework but is still an open problem in the monostable one. However,
Ducrot, Giletti and Matano [9] have announced some results in this direction.

1.4 Spatial transition waves for general heterogeneous equations

Definition of the spatial transition waves

A generalization of the notions of planar and pulsating travelling waves to heterogeneous
equations like (E) has been given by Berestycki and Hamel in [4, 5].

Definition 1.1. [4, 5] A spatial transition wave (to the right) of equation (E) is a time-
global (weak) solution u ∈ C0(R× R), with 0 < u < 1, such that there exists a function
X : R→ R such that

lim
x→−∞

u
(
t, x+X(t)

)
= 1 and lim

x→+∞
u
(
t, x+X(t)

)
= 0 uniformly in t ∈ R. (1.5)

Heuristically, this definition means that the solution x 7→ u(t, x) connects 0 to 1 for
all t, and that the widths of the spatial interfaces Iε(t) = {x ∈ R, ε < u(t, x) < 1 − ε}
are bounded with respect to t ∈ R for all ε ∈ (0, 1/2).

x
Iε(t)

u(t, x)

ε

ε

1

0

Figure 1: The interface Iε(t) of the spatial transition wave u.

Such solutions were called generalized transition waves in [4, 5]. We add the term
“spatial” here because limx→−∞ u(t, x) = 1 and limx→+∞ u(t, x) = 0 for all t ∈ R.
This will be useful later in order to emphasize a difference with other notions of waves,
see Section 3.4 below. Note that Definition 1.1 holds in a general framework: one could
consider time-dependent coefficients and multidimensional equations. Several properties
of spatial transition waves have been proved in [4, 5]. Berestycki and Hamel showed in
particular that the notion of spatial transition waves includes all the previous notions of
fronts in homogeneous or periodic media, including non-trivial ones such as fronts with
a speed which changes with respect to time (which have been proved to exist in [13]).
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Thus Definition 1.1 could be a good generalization of the notion of waves to heteroge-
neous equations. But such a generalization is meaningful only if one could prove that such
spatial transition waves exist.

Existence results for spatial transition waves

The first existence result of spatial transition waves in a heterogeneous framework is due
to Shen, for bistable and time-dependent equations [28]. Next, spatial transition waves for
the space-heterogeneous equation (E) has been proved to exist for ignition-type equations
in parallel by Nolen and Ryzhik [25] and Mellet, Roquejoffre and Sire [20] (see Section
3.2 for the definition of such equations). Then, Mellet, Nolen, Roquejoffre and Ryzhik
[19] proved that these spatial transition waves are unique (up to translation in time) and
stable, still for ignition-type equations. These results have been extended by Zlatos [34]
to multidimensional ignition-type equations with periodic shear heterogeneities.

The existence of spatial transition waves for monostable time-dependent equations
have been proved when the coefficients are assumed to be uniquely ergodic by Shen [29]
and in the general framework by Rossi and the author [22]. In these two papers, the non-
linearity is assumed to be KPP, that is, it is C1 in u = 0 and f(t, u) ≤ f ′u(t, 0)u for
all (t, u) ∈ R × [0, 1]. Due to this property, one can construct X(t) in Definition 1.1
explicitely with respect to the coefficients and thus the spatial transition waves satisfy
the same types of properties as the coefficients. This existence result has been extended
to KPP equations with a time-heterogeneous reaction term and space-periodic diffusion
and advection terms by Rossi and Ryzhik [27], and to general space-periodic and time-
heterogeneous equations by Rossi and the author [23]. Note that in this last paper some
conditions ensuring the existence of spatial transition waves for space-time general het-
erogeneous Fisher-KPP equations were derived, involving a global Harnack-type property
for the solution of the linearized equation near the unstable equilibrium.

The existence of waves for the spatially heterogeneous equation (E) is still poorly un-
derstood when the nonlinearity is bistable, even in the periodic case. Spatial transition
waves solutions of the homogeneous multidimensional equation with a convex obstacle
have been constructed by Berestycki, Hamel and Matano [6]. However, in other frame-
works the bistability could produce new steady states which could block the propagation
between 0 and 1 [6, 8, 17, 26]. Such non-trivial steady states are spatial transition waves
with null speed, i.e. X ≡ 0.

Nonexistence results for spatial transition waves

A remaining gap was the existence of spatial transition waves for the spatially heteroge-
neous monostable equation (E). In this framework, a counter-example to the existence of
spatial transition waves has been constructed by Nolen, Roquejoffre, Ryzhik and Zlatos
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[24]. These authors proved that if a ≡ 1 and b ≡ 0, if there exists R > 0 such that
f(x, u) = fmin(u) for all |x| > R and u ∈ [0, 1], if f ′min(0) = 1, if f(x, s) ≤ f ′u(x, 0)u

for all (x, u) ∈ R × [0, 1] and if there exists a principal eigenvalue λ, defined by the
existence of a positive function ψ ∈ L2(R) such that ψ′′ + f ′u(x, 0)ψ = λψ, which sat-
isfies λ > 2, then for all time-global solution u of (E) such that 0 < u < 1, and for all
c < λ/

√
λ− 1, there exists Cc > 0 such that

u(t, x) ≤ Cce
−|x|+ct for all (t, x) ∈ R− × R. (1.6)

In particular, spatial transition waves do not exist in this framework, since any time-global
solution converges to 0 as |x| → +∞ locally in time.

On the other hand, if λ < 2, then spatial transition waves exist with various global
mean speeds [24]. This existence result has been extended by Zlatos [35] to equation (E),
still under a hypothesis which is the analogous of λ < 2. Namely, assume that a ≡ 1, b ≡
0 and f(x, u) = c(x)u(1 − u) in order to simplify the presentation. Let λ the supremum
of the spectrum of the operator d2

dx2
+c(x) and assume that λ < 2 infx∈R c(x). Then, for all

γ ∈ (λ, 2 infR c), there exists a unique solution ϕγ > 0 of equation ϕ′′γ + c(x)ϕγ = γϕγ

in R such that ϕγ(0) = 1 and limx→+∞ ϕγ(x) = 0, and there exists a spatial transition
wave uγ of equation (E) which is increasing in time and such that uγ(t, x) ∼ eγtϕγ(x)

when uγ(t, x)→ 0. Zlatos’ result [35] is indeed more general: it holds for heterogeneous
diffusion and advection terms a and b.

However, we repeat that spatial transition waves do not exist in general because of the
counter-example in [24] and that the identification of optimal conditions on the coeffi-
cients which ensure the existence of spatial transition waves is still an open problem.

In multi-dimensional media, spatial transition waves do not even exist in general when
the nonlinearity is of ignition-type: a counter-example have been constructed by Zlatos
recently [36].

Matano’s alternative definition

Let us mention to conclude another notion of wave introduced by Matano [18]. This defi-
nition relies on a different point of view involving a translation property of the wave with
respect to the environment (a, b, f). Namely, assume that the coefficients are uniformly
continuous with respect to x ∈ R and define the hullH of the coefficients by

H := cl{(πya, πyb, πyf), y ∈ R}
where πya(x) := a(x+ y), πyb(x) := b(x+ y) and πyf(x, u) := f(x+ y, u)

(1.7)

and the closure is associated with the topology of the local convergence. The uniform
continuity of the coefficients in x ensures that this set is relatively compact.

Definition 1.2. [18, 28] A generalized travelling wave (in the sense of Matano) is a con-
tinuous function u : R× R×H → [0, 1] such that
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• for all (ã, b̃, f̃) ∈ H, (t, x) 7→ u
(
t, x; (ã, b̃, f̃)

)
is a solution of equation (E) with

coefficients (ã, b̃, f̃),

• there exists a function X : R→ R such that limx→−∞ u
(
t, x+X(t); (a, b, f)

)
= 1

and limx→+∞ u
(
t, x+X(t); (a, b, f)

)
= 0 uniformly in t ∈ R,

• (translation property) u
(
t, x+X(t); (a, b, f)

)
= u

(
0, x; πX(t)(a, b, f)

)
for all (t, x) ∈

R× R.

This last property implies in particular that if the coefficients are homogeneous/periodic,
generalized travelling waves are necessarily planar/pulsating travelling waves.

The second property in Definition 1.2 means that (t, x) 7→ u
(
t, x; (a, b, f)

)
is a spatial

transition wave of equation (E). The reciprocal assertion is not true since, when the coef-
ficients do not depend on x, then Matano’s waves are necessarily planar travelling waves,
while Hamel and Nadirashvili [13] proved that there exist spatial transition waves which
are not planar.

The two additional properties required on u are the continuity with respect to the envi-
ronment (ã, b̃, f̃) ∈ H and the translation property. Shen proved in a general framework
that if there exists a family of spatial transition waves v

(
·, ·; (ã, b̃, f̃)

)
for all (ã, b̃, f̃) ∈ H

such that the convergences in Definition 1.1 are uniform with respect to (ã, b̃, f̃) ∈ H,
then there exists a function u : R × R × H → [0, 1] which satisfies all the above prop-
erties except the continuity with respect to (ã, b̃, f̃) ∈ H [28]. Shen noticed that u was
continuous on a residual subset ofH.

It is easily checked that the translation property in Definition 1.2 is immediatly satis-
fied if the spatial transition wave is unique (up to translation in time). Hence, in all the
cases where spatial transition waves are known to exist and to be unique [19, 22, 28],
these solutions are indeed generalized travelling waves in the sense of Matano.

As generalized travelling waves are necessarily spatial transition waves, such waves
do not exist for the monostable equations with compactly supported heterogeneities con-
sidered in [24]. Hence, this alternative notion does not help to fill the non-existence gap
exhibited in [24].

1.5 Scope of the paper

The aim of the present paper is to find a new generalization of the notion of wave for
equation (E). In order to find a meaningful generalization, we want to

• prove the existence of this new notion of wave in a general setting,

• recover the earlier notions of planar/pulsating waves with minimal speed when the
coefficients are homogeneous/periodic and of spatial transition waves for ignition-
type equations with general heterogeneities.
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Ideally, we would also like this new type of waves to give some information about the
large-time behaviour of the solution of the Cauchy problem associated with equation (E).
For example, we would like such waves to attract the solutions of the Cauchy problem
associated with Heaviside-type initial data, as in homogeneous media.

We introduce the notion of critical travelling waves and prove their existence for gen-
eral spatially-heterogeneous equations in Section 2. We then compare this notion and
the notion of spatial transition waves in Section 3. In Section 4, we prove a translation
property of critical travelling waves close to [18], from which we derive that this new
notion of wave fits with earlier notions in homogenous, periodic or compactly supported
heterogeneities. We also derive new results in the random stationary ergodic monostable
framework, for which no notion of wave-like solution was known to exist before. We
discuss the attractivity of these waves and state some open problems in this direction in
Section 5. A particular example of bistable equations admitting non-trivial steady states
is investigated in Section 6. Sections 7 to 11 are devoted to the proof of the results. Lastly,
we give a brief summary of the results in Section 12.

2 Statement of the main results

2.1 Definition of critical travelling waves

Our generalization of the notion of wave to general spatially heterogeneous reaction-
diffusion equations (E) is stated in the next Definition.

Definition 2.1. We say that a time-global (weak) solution u ∈ C0(R × R) of (E), with
0 < u < 1, is a critical travelling wave (to the right) if for all (t0, x0) ∈ R × R, if
v ∈ C0(R×R) is a time-global (weak) solution of (E) such that v(t0, x0) = u(t0, x0) and
0 < v < 1, then either u ≡ v or

u(t0, x) > v(t0, x) if x < x0 and u(t0, x) < v(t0, x) if x > x0. (2.1)

On Figure 2, the critical travelling wave u converges to 1 as x → −∞ and to 0 as
x → +∞. This is just one possible behaviour: it may happen that u converges to 0 as
|x| → +∞ for example, as in Section 4.4 below.

Critical travelling wave to the left could be defined similarly, only by reversing the
inequalities in (2.1). In the sequel, only critical travelling waves to the right will be con-
sidered.

The notion of criticality is not new. Shen introduced a similar notion in [28] but as a
property of travelling waves (in the sense of Matano). She proved the existence of such
waves under the assmuption that there exists a particular family of spatial transition waves
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xx0

1

0

v

u

Figure 2: The critical travelling wave u compared with a time-global solution v at t = t0.

(see the discussion after Theorem 3.1 below). The contribution of the present paper is to
use the criticality property as a definition for a new notion of wave. As we require a com-
parison in the class of time-global solutions instead of that of travelling waves like in
[28], our definition is meaningful whether travelling waves exist or not. Many properties,
in particular existence, will be derived from this simple definition. We will prove in Sec-
tion 4 that if the coefficients are homogeneous/periodic, then the critical travelling wave
is a planar/pulsating travelling wave with minimal speed. Hence, the notion of criticality
is, somehow, the generalization to heterogeneous equations (E) of the minimality of the
speed.

2.2 Existence, uniqueness and monotonicity of critical travelling waves
in a general setting

We are now in position to state our main result.

Theorem 2.2. Assume that (H) is satisfied.

1. (Existence and uniqueness) For all θ ∈ (0, 1) and x0 ∈ R, equation (E) admits a
unique critical transition wave u such that u(0, x0) = θ.

2. (Monotonicity in time) t 7→ u(t, x) is either decreasing for all x ∈ R, increasing
for all x ∈ R or constant for all x ∈ R.

3. (Monotonicity in space) If f does not depend on x, then x 7→ u(t, x) is nonincreas-
ing for all t ∈ R.

We underline that critical travelling waves exist for all reaction-diffusion equations,
even when spatial transition waves do not exist as in [24], whatever the stabilities of the
steady states 0 and 1 are and for general heterogeneous coefficients.

Definition 2.1 only fits to dimension 1. If one considers multidimensional versions
of equation (E), then it is not clear at all whether there exist good generalizations of
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Definition 2.1 and Theorem 2.2 or not. This might help to understand why most of the
known existence results of spatial transition waves hold in dimension 1.

One can check that Definition 2.1 and Theorem 2.2 still hold if one considers space-
time heterogeneous reaction-diffusion equations. However, as all the applications we pro-
vide in the present paper involve time-independent coefficients, we chose to present all
the results in the spatially heterogeneous framework.

The monotonicity in time of the critical travelling waves yields that the limits u±(x) :=

limt→±∞ u(t, x) always exist and are steady states of equation (E). Of course these limits
are not necessarily u ≡ 0 or u ≡ 1 and may depend on the normalization u(0, x0) = θ.
This may be the case in particular if non-trivial steady states exist as illustrated in Section
6 below. Hence, critical travelling waves can always be viewed as temporal heteroclinic
connections between steady states.

3 Comparison with spatial transition waves

3.1 Comparison in the general framework

Let now consider equations which admit a spatial transition wave and investigate the
properties of critical travelling waves in this framework.

Theorem 3.1. Assume that equation (E) admits a spatial transition wave v (in the sense
of Definition 1.1) such that limt→−∞ v(t, x) = 0 and limt→+∞ v(t, x) = 1 for all x ∈ R.
Then any critical transition wave u of equation (E) is a spatial transition wave and one
has limt→−∞ u(t, x) = 0 and limt→+∞ u(t, x) = 1 for all x ∈ R.

Hence, if there exists a spatial transition waves which connect 0 to 1 in time, then
critical travelling waves are spatial transition waves. However, the two notions are not
necessarily equivalent. First, critical travelling waves always exist, unlike spatial transi-
tion waves. Second, some spatial transition waves are not critical travelling waves (see
the discusion in Section 4.2 below).

This result is close to Theorem A in Shen’s paper [28]. She proved that if there ex-
ists a so called “wave-like solution” (in the sense of Definition 2.3 in [28]) then there
exists a travelling wave solution which is critical (in the sense of Definition 2.2 in [28]).
The notion of criticality we use here is very close from Shen’s one, except that in Shen’s
paper the criticality is only related to comparison with respect to other travelling waves,
unlike in the present paper where all the time-global solutions are involved. This enables
us to use the criticality notion as a definition of critical travelling waves, unlike Shen who
considered criticality as a property of particular spatial transition waves, which are thus
required to exist in [28]. The other difference with Shen’s result lies in her definition of
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“wave-like solutions”. Such solutions are spatial transition wave such that the conver-
gences in Definition 1.1 are uniform with respect to translations of the coefficients. We do
not require such a uniformity in Theorem 3.1: we consider the classical notion of spatial
transition wave (in the sense of Berestycki-Hamel).

Let now consider particular classes of nonlinearities for which further links between
the two notions can be proved.

3.2 The case of ignition-type equations: equivalence between the two
notions

Consider ignition-type equations in the sense of [19]:

a ≡ 1, b ≡ 0, f(x, u) = g(x)f0(u),
g is uniformly bounded and Lipschitz-continuous over R and infR g > 0,

f0 is Lipschitz-continuous and there exists θ0 ∈ (0, 1) such that
f0(s) = 0 for s ∈ [0, θ0], f0(1) = 0, f0(s) > 0 for s ∈ (θ0, 1), f ′0(1) < 0.

(3.1)

Under these assumptions, spatial transition waves are known to exist and to be unique
up to translation in time.

Theorem 3.2. [19, 20, 25] Assume that (3.1) is satisfied. Then (E) admits a spatial transi-
tion wave v. Moreover, v is increasing in time and if ṽ is another spatial transition wave,
then there exists τ > 0 such that v(t, x) = ṽ(t+ τ, x) for all (t, x) ∈ R× R.

We just mentioned here the main properties of these spatial transition waves and we
refer to [19, 20, 25] for further results.

In this framework, Theorems 3.1 and 3.2 yield that the notions of spatial transition
waves and critical travelling waves are equivalent.

Corollary 3.3. Assume that (3.1) is satisfied. Then a solution u of (E), with 0 < u < 1,
is a spatial transition wave if and only if it is a critical travelling wave. Consequently,
critical travelling waves are increasing with respect to t and if u and ũ are two critical
travelling waves of equation (E), then there exists τ ∈ R such that u(t, x) = ũ(t + τ, x)

for all (t, x) ∈ R× R.

We underline that this result does not trivially follow from the uniqueness of spatial
transition waves proved in [19] A new property of the spatial transition wave is proved:
it is critical. Hence, Corollary 3.3 provides a new characterization of spatial transition
waves in this framework.

Note that the difference between the uniqueness results of Theorem 2.2 and that of
Corollary 3.3 is that in the Corollary we do not assume that ũ(0, x0) = θ. This is why we
get a uniqueness result in Corollary 3.3 up to translation in time.
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3.3 The case of monostable equations: minimization of the least mean
speed

The notion of monostability we will use in this paper is the following.

Definition 3.4. We say that equation (E) is monostable if for all continuous function
u0 6≡ 0, with 0 ≤ u0 ≤ 1, if u ∈ C0([0,∞)× R) is the (weak) solution of{

∂tu− a(x)∂xxu− b(x)∂xu = f(x, u) in (0,∞)× R,
u(0, x) = u0(x) for all x ∈ R, (3.2)

then limt→+∞ u(t, x) = 1 locally uniformly in x ∈ R.

In other words, any perturbation of 0 converges to 1, meaning that 0 is unstable while
1 is globally attractive. This implies in particular that there exists no non-trivial steady
state between 0 and 1.

It immediatly follows from the parabolic maximum principle that equation (E) is
monostable in the case where a ≡ 1, b ≡ 0 and there exists a Lipschitz-continuous
function fmin : [0, 1]→ R such that

fmin(0) = fmin(1) = 0, fmin(s) > 0 for all s ∈ (0, 1), f ′min(0) > 0,
f(x, u) ≥ fmin(u) a.e. (x, u) ∈ R× [0, 1].

(3.3)

We refer to [7] for more general conditions on the coefficients guaranteeing the monos-
tability of the equation. In particular, the results of [7] yield that the equation associated
with b ≡ 0, f as in (3.3) and an arbitrary a

(
satisfying (H)

)
is monostable.

First, in this framework, critical travelling waves are time-increasing and unique up to
translation in time, as in the ignition-type setting.

Proposition 3.5. Assume that (H) is satisfied and that equation (E) is monostable in the
sense of Definition 3.4. Let θ ∈ (0, 1) and u a critical travelling wave of equation (E).
Then u is increasing in time and there exists a unique continuous function T : R → R
such that u

(
T (x), x

)
= θ for all x ∈ R. Moreover, if ũ is another critical travelling

waves of equation (E), then there exists τ ∈ R such that ũ(t, x) = u(t + τ, x) for all
(t, x) ∈ R× R.

Note that this result holds in the general monostable framework: it does not depend on
the existence of spatial transition waves.

Such a uniqueness up to translation does not hold in general. The shape of critical
travelling waves may depend on their normalizations (see Section 6 below).

Next, assume that equation (E) is monostable and admits a spatial transition wave
(which is not always true, see [24]). Together with their definition of spatial transition
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waves, Berestycki and Hamel [4, 5] gave a generalization of the notion of speed. If v
is a spatial transition wave of equation (E), let θ ∈ (0, 1) and define for all t ∈ R,
Y (t) := sup{x ∈ R, v(t, x) ≥ θ}. Then

if lim
t→+∞

Y (s+ t)− Y (s)

t
= c exists uniformly in s ∈ R,

we call c the global mean speed of the spatial transition wave v. It is easily checked that
this quantity does not depend on θ. Of course spatial transition waves do not always admit
global mean speeds. This is why we are led to introduce another quantity here. Namely,
with the same notations as above, let

c := lim inf
t→+∞

inf
s∈R

Y (s+ t)− Y (s)

t
.

We call c the least mean speed of the spatial transition wave v. This quantity is always
well-defined in [−∞,∞) and it follows from the definition of spatial transition waves that
it does not depend on θ. Of course if v admits a global mean speed c, then c is also the
least mean speed of v.

A similar quantity has been introduced by Rossi and the author in [22]. They proved
that, in the framework of time-dependent monostable equations, there exists an explicit
treshold c∗ such that spatial transition wave with least mean speed c exist for all c > c∗ and
do not exist if c < c∗. This result generalizes the classical existence results in monostable
homogeneous/periodic equations, where planar/pulsating travelling waves with speed c
exist if and only if c ≥ c∗. Hence, least mean speed seems to be an appropriate quantity
in order to compute existence treshold in monostable heterogeneous equations.

Let now turn back to the spatially heterogeneous equation (E).

Theorem 3.6. Assume that equation (E) is monostable in the sense of Definition 3.4 and
admits a spatial transition wave solution v. Assume in addition that s 7→ f(x, s)/s is
nonincreasing for all x ∈ R. Let θ ∈ (0, 1), u a critical travelling wave of equation (E)
and

X(t) := sup{x ∈ R, u(t, x) > θ} and Y (t) := sup{x ∈ R, v(t, x) > θ}.

Then there exists L > 0 such that:

∀t ∈ R, inf
s∈R

(
X(s+ t)−X(s)

)
≤ inf

s′∈R

(
Y (s′ + t)− Y (s′)

)
+ L.

Therefore, the least mean speed of the critical travelling wave u is smaller than the least
mean speed of any spatial transition wave v.

We remind to the reader that X(t) is well-defined since the critical travelling wave u
is a spatial transition wave by Theorem 3.1.



Critical travelling waves for reaction-diffusion equations 15

Theorem 3.6 means that, in the monostable framework, critical travelling waves gen-
eralize the notion of waves with minimal speed. The monotonicity hypothesis on s 7→
f(x, s)/s is indeed quite strong and we do not know if this result holds in a more gen-
eral setting. If we assume the coefficients to be homogeneous or periodic, then we will
check in Propositions 4.2 and 4.3 that this result still holds without any monotonicity hy-
pothesis on s 7→ f(x, s)/s, under the additional assumption that the principal eigenvalue
associated with the linearization near u = 1 is negative. This assumption is not milder or
stronger than the monotonicity hypothesis on s 7→ f(x, s)/s, it is just different.

3.4 Spatial/temporal connections between steady states

Let conclude this section with some comments on the definition of spatial transition waves
in the sense of Berestycki and Hamel [4, 5]. The convergences in Berestycki-Hamel’s
Definition 1.1 are convergences as x→ ±∞. Hence, spatial transition waves are connec-
tions in x between two steady states. Definition 1.1 does not involve any convergences as
t→ ±∞. This has very important consequences.

For example, assume that there exists a steady statew = w(x) of equation (E) such that
0 < w < 1, w(−∞) = 1 and w(+∞) = 0. Such a situation typically arises in bistable
equations, even simple ones, see [17, 26, 33] for example. Then w = w(x) is a spatial
transition wave with global mean speed 0 (with X ≡ 0), but it does not converge to 0 or 1

as t±∞ since it does not depend on time. Moreover, it could block the convergence to 1

as t→ +∞ of the solution of the Cauchy problem associated with front-like initial data.
This is why in the literature some authors [17, 33] consider that the existence of such non-
trivial steady states prove that travelling waves do not exist, although such steady states
are spatial transition waves using Berestycki-Hamel’s definition.

On the other hand, some monostable equations have been constructed by Nolen, Roque-
joffre, Ryzhik and Zlatos [24], for which any time-global solution u satisfies lim|x|→+∞ u(t, x) =

0 for all t ∈ R, limt→−∞ u(t, x) = 0 and limt→+∞ u(t, x) = 1 for all x ∈ R. Hence,
spatial transition waves do not exist, but any time-global solution, in particular critical
travelling waves, is a temporal connection between 0 and 1.

These two examples show that when one investigates the existence and properties of
wave-like solutions of (E), that is, heteroclinic connections between two steady states, one
could be led to different conclusions depending upon the nature of the connection: is this
a connection in space or in time? This is why we use the name “spatial transition wave”
in the present paper instead of “generalized transition waves” as in the original articles
[4, 5].

Note that our definition of critical travelling waves does not involve any convergence to
the steady states, which enables us to go beyond the difficulties described above. Indeed,
Definition 2.1 yields that if there exists a spatial connection between the steady states,
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then any critical travelling wave converges to these steady states as x → ±∞. On the
other hand, as critical travelling waves are monotonic in time, they are always temporal
connections between steady states (which may be constant in time).

4 Identification and properties of critical travelling waves
for particular classes of heterogeneities

The aim of this Section is to identify critical travelling waves when particular structural
dependences of the coefficients of equation (E) in x are prescribed. We will first prove
that if the coefficients are homogeneous/periodic, then the critical travelling waves are
planar/pulsating travelling waves (with minimal speed in the monostable framework).
If the heterogeneity is compactly supported and if the equation is monostable, then the
critical travelling wave is either a spatial transition wave with minimal speed, or a bump-
like solution in the sense of [19] if spatial transition waves do not exist. Lastly, if the
coefficients are random stationary ergodic variables and the equation is almost surely
monostable, then we prove that the critical travelling wave depends in a random stationary
ergodic way, in a sense, on the environment. Most of these results rely on a translation
property of critical travelling waves.

4.1 The translation property

We are interested here in proving some analogous of the translation property introduced
by Matano (see Definition 1.2).

Proposition 4.1. Assume that (H) is satisfied and let θ ∈ (0, 1). For all (ã, b̃, f̃) ∈ H,
let u(·, ·; (ã, b̃, f̃)) = u(t, x; (ã, b̃, f̃)) the solution of (E) associated with the coefficients
(ã, b̃, f̃) constructed in Theorem 2.2 and normalized by u(0, 0; (ã, b̃, f̃)) = θ. Assume that
limt→−∞ u

(
t, x; (a, b, f)

)
= 0 and limt→+∞ u

(
t, x; (a, b, f)

)
= 1 for all x ∈ R.

Then there exists a unique point T (y) ∈ R such that u
(
T (y), y; (a, b, f)

)
= θ for all

y ∈ R and one has for all (t, x, y) ∈ R× R× R:

u
(
t+ T (y), x+ y; (a, b, f)

)
= u

(
t, x; (πya, πyb, πyf)

)
. (4.1)

Note that the hypothesis limt→−∞ u
(
t, x; (a, b, f)

)
= 0 and limt→+∞ u

(
t, x; (a, b, f)

)
=

1 is at least checked for monostable and ignition-type equations and implies that u is
time-increasing. If the limits are reversed, that is, if limt→−∞ u

(
t, x; (a, b, f)

)
= 1 and

limt→+∞ u
(
t, x; (a, b, f)

)
= 0, then the results still holds (just let v := 1 − u). If the

critical travelling wave is time-independent or does not connect 0 to 1, then Proposition
4.1 does not hold anymore, as emphasized by the example investigated in Section 6.
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The difference with Matano’s translation property of Definition 1.2 is that here we
translate in time instead of space, which is natural since, as already underlined, critical
travelling waves are somehow temporal transitions.

4.2 Homogeneous equations

Let first consider coefficients which do not depend on x. Up to some well-chosen change
of variables, one can always assume that a ≡ 1 and b ≡ 0.

Proposition 4.2. Assume that a ≡ 1, b ≡ 0 and f = f(u) is a Lipschitz-continuous
function which does not depend on x such that f(0) = f(1) = 0. Then

• if there exists θ0 ∈ [0, 1) such that f(u) ≤ 0 when u ∈ [0, θ0], f(u) > 0 when
u ∈ (θ0, 1] and

∫ 1

0
f(u)du > 0, then the critical travelling waves are unique up to

translation in time and are planar travelling waves
(
in the sense of (1.2)

)
,

• moreover, if θ0 = 0, f ′(1) < 0 and if we write the critical travelling wave u(t, x) =

U(x− ct), then there exists no planar travelling wave with speed c′ < c.

Heuristically, this result means that if 0 is less stable than 1 (that is, when
∫ 1

0
f(u)du >

0), then we recover the classical notion of planar travelling waves. If this condition is not
met, for example if f(u) = u(1−u)(u−1/2), then such a result still holds except that one
would get a uniqueness up to translation in space instead of time in general. The second
part of the result means that, in the monostable framework (θ0 = 0), if f ′(1) < 0, critical
travelling waves are a planar travelling wave with minimal speed.

Note that in the monostable framework, there exists many other wave-like solutions:
planar travelling waves with speed c′ > c and even non-planar travelling waves with a
changing speed (see [13]). Such waves are spatial transition waves in the sense of Defi-
nition 1.1 but not critical travelling waves. Hence, the notion of critical travelling wave is
not more general than the notion of spatial transition wave. One can just claim that criti-
cal travelling waves always exist, while spatial transition waves do not for heterogeneous
equations (see [24]), but on the other hand some wave-like solutions are spatial transition
waves but not critical travelling waves. This is why critical travelling wave is only a good
generalization of the notion of waves with minimal speed in the monostable framework.

Lastly, Proposition 4.2 gives a new geometrical characterization of the waves with
minimal speed in the homogeneous framework: theses waves are necessarily critical trav-
elling waves in the sense of Definition 2.1, which is a new result of independent interest.

4.3 Periodic heterogeneity

Assume now that the coefficients are periodic. That is, there exists L > 0 such that

a(x+L) = a(x), b(x+L) = b(x) and f(x+L, u) = f(x, u) for all (x, u) ∈ R× [0, 1].
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Assume that f = f(x, u) is differentiable at u = 1. The statement of the results will
involve the elliptic operator L1 associated with the linearization near the stable steady
state u = 1, defined for all ϕ ∈ C2(R) by

L1ϕ = a(x)ϕ′′ + b(x)ϕ′ + f ′u(x, 1)ϕ.

As its coefficients are periodic and bounded, this operator admits a unique periodic princi-
pal eigenvalue, that is, a unique µ associated with a periodic function ϕ ∈ W 2,∞(R) > 0

such that L1ϕ = µϕ. Note that if f ′u(x, 1) does not depend on x, then µ is just the constant
function f ′(1).

Proposition 4.3. Assume that (H) is satisfied, that the coefficients are periodic and that f
is differentiable at u = 1.

• If equation (E) is monostable in the sense of Definition 3.4, then a critical travel-
ling wave of equation (E) is a pulsating travelling wave with speed c. Moreover, if
(x, u) 7→

(
a(x), b(x), f(x, u)

)
is of class C1,γ(R× [0, 1]) for some γ ∈ (0, 1) and if

µ < 0, then for all c′ < c, there exists no pulsating travelling wave with speed c′.

• If (x, u) 7→
(
a(x), b(x), f(x, u)

)
is of class C2,γ(R × [0, 1]) for some γ ∈ (0, 1),

b ≡ ∂xa, there exists β ∈ (0, 1) such that u ∈ (1−β, 1] 7→ f(x, u) is nonincreasing
for all x ∈ R and there exists θ0 ∈ (0, 1) such that

∀(x, u) ∈ R× [0, θ0], f(x, u) = 0 and ∀u ∈ (θ0, 1), min
x∈R

f(x, u) > 0,

then critical travelling waves are unique up to translation in time and are pulsating
travelling waves of speed c∗. Moreover, there exists no pulsating travelling wave of
speed c 6= c∗.

It is easy to check that the monostability hypothesis ensures that µ ≤ 0. Even if it is
not involved in the existence of pulsating travelling waves, hypothesis µ < 0 ensures the
uniqueness, monotonicity or exponential decay of these waves (see [3] for example). If
µ = 0, there are still many open questions stated in the literature. We do not know if the
critical travelling wave is the pulsating travelling wave with minimal speed if µ = 0.

We will prove in Section 5 below that, if the coefficients are periodic and if the equa-
tion is monostable, then the critical travelling wave attracts the solution of the Cauchy
problem associated with Heaviside-type initial data. This result does not involve any hy-
pothesis like µ < 0. In other words, in the case µ = 0, if the critical transition wave was
not the pulsating travelling wave with minimal speed, it would still be attractive. Hence,
from the point of view of attractivity, criticality is a more relevant notion than being of
minimal speed.
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The hypotheses of the second part of Proposition 4.3 means that equation (E) is of
ignition-type and in the divergence form. Under these hypotheses, the existence and
uniqueness of pulsating travelling waves has been proved in [3]. Our contribution is the
identification of critical travelling waves in this framework.

Lastly, bistable equations are not considered in Proposition 4.3. This is because in
this case the existence and the uniqueness of pulsating travelling waves are not clear in
general. Only partial results have been obtained [14, 32].

4.4 Compactly supported heterogeneity

We consider in this section the same type of equation as in [24]. In other words, we assume
that a ≡ 1, b ≡ 0, f is a uniformly Lipschitz-continuous function over R× [0, 1] such that
f(x, 0) = f(x, 1) = 0 for all x ∈ R and

f ′u(x, 0) exists and f(x, u) ≤ f ′u(x, 0)u for all (x, u) ∈ R× [0, 1],
∃C, δ > 0 such that f(x, u) ≥ f ′u(x, 0)u− Cu1+δ for all (x, u) ∈ R× [0, 1],

f ′u(·, 0) is continuous and infx∈R f
′
u(x, 0) > 0,

∃R > 0, ∀|x| > R, f ′u(x, 0) = 1.

(4.2)

We also assume that the supremum λ of the spectrum of the operator ∂xx + f ′u(x, 0) is
strictly larger than 1. Due to (4.2), it is equivalent to assume that

∃λ ∈ (1,∞), ∃ψ ∈ L2(R), ψ > 0 | ψ′′ + f ′u(x, 0)ψ = λψ in R. (4.3)

Under these hypotheses, Nolen, Roquejoffre, Ryzhik and Zlatos [24] proved that such
spatial transition waves exist for a given range of speeds if λ > 2 and do not exist if
λ < 2. Moreover, they proved that another class of time-global solutions, that they called
bump-like solutions, is always non-empty.

Theorem 4.4. [24] Assume that (4.2) and (4.3) hold.

1. If λ > 2, then any time-global solution v of (E) such that 0 < v < 1 satisfies (with
Cc > 0) v(t, x) ≤ Cce

−|x|+ct for any c < λ/
√
λ− 1 and (t, x) ∈ (−∞, 0) × R. In

particular, no spatial transition wave exists.

2. If λ ∈ (1, 2), then for all c ∈
(
2, λ/
√
λ− 1

)
, equation (E) admits a spatial transi-

tion wave with global mean speed c. If in addition x 7→ f ′u(x, 0) is even, then there
exists no spatial transition wave with global mean speed c > λ/

√
λ− 1.

3. For all λ > 1, if there exists θ0 ∈ (0, 1) such that f(x, u) = f ′u(x, 0)u for all
(x, u) ∈ R×[0, θ0], then there exists a solution v of equation (E) such that 0 < v < 1

and v(t, ·) ∈ L1(R) for all t ∈ R. If in addition λ > 2, then there exists a unique
(up to translation in time) time-global solution v such that 0 < v < 1.
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Let now identify the critical transition waves in this framework.

Proposition 4.5. Assume (4.2-4.3) and f ′u(x, 0) ≥ 1 for all x ∈ R. Let u a critical
travelling wave.

1. If λ > 2, then u(t, ·) ∈ L1(R) for all t ∈ R.

2. If λ ∈ (1, 2) and if s 7→ f(x, s)/s is nonincreasing for all x ∈ R, then u is a spatial
transition wave with global mean speed c = 2.

In other words, if λ > 2, then the critical travelling waves are bump-like solutions,
while if λ ∈ (1, 2), critical travelling waves are spatial transition waves with minimal
speed. We underline that the existence of spatial transition waves with global mean speed
c = 2 is a new result: only the existence of spatial transition waves with global mean
speed c > 2 was proved in [24].

4.5 Random stationary ergodic heterogeneities

We consider here reaction-diffusion equations with random coefficients

∂tu− a(x, ω)∂xxu− b(x, ω)∂xu = f(x, ω, u). (4.4)

The functions a : R × Ω → (0,∞), b : R × Ω → R and f : R × Ω × [0, 1] → R are
random variables defined on a probability space (Ω,P,F). We assume that the coefficients
are random stationary ergodic functions with respect to x. Namely, there exists a group
(πx)x∈R of measure-preserving transformations of Ω such that for all (x, y, ω, u) ∈ R ×
R× Ω× [0, 1]:

a(x+ y, ω) = a(x, πyω), b(x+ y, ω) = b(x, πyω), f(x+ y, ω, u) = f(x, πyω, u),

and for all A ∈ F , if πxA = A for all x ∈ R, then P(A) = 0 or 1.
The case of ignition-type equations with random stationary ergodic equations has been

addressed by Nolen and Ryzhik [25].

Theorem 4.6. Assume that a ≡ 1, b ≡ 0 and f(x, ω, u) = g(x, ω)f0(u), where f0 is of
igniton-type and x 7→ g(x, ω) is a uniformly Lipschitz-continuous and bounded function,
with infx∈R g(x, ω) > 0, for almost every ω ∈ Ω. Then there exists a measurable function
u : R× R× Ω→ [0, 1] such that

• for almost every ω ∈ Ω, (t, x) 7→ u(t, x, ω) is a spatial transition wave of equation
(4.4) which is increasing in t,
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• ifX(t, ω) is defined by u
(
t,X(t, ω), ω

)
= θ0, thenX is increasing in t, measurable

in ω and

the limit cθ0 = lim
t→+∞

X(t, ω)

t
exists almost surely and is deterministic,

• u(t, x, ω) = u
(
0, x−X(t, ω), πX(t,ω)ω

)
for almost every (t, x, ω) ∈ R× R× Ω.

Such a family of solutions is called a random travelling wave in [25, 28]. Moreover,
the speed cθ0 is the spreading speed associated with compactly supported initial data (see
[25]).

When the equation is monostable almost surely in ω ∈ Ω, the existence of random
travelling waves is still a fully open problem. Nevertheless, we know that for almost every
ω ∈ Ω, there exists a critical travelling wave (t, x) 7→ u(t, x, ω) and this solution satisfies
properties related to the stationary ergodicity of the equation, as stated in the next result.

Proposition 4.7. Assume that for almost every ω ∈ Ω, equation (4.4) (where ω is fixed)
is monostable in the sense of Definition 3.4 and satisfies (H). Take θ ∈ (0, 1). For almost
every ω ∈ Ω, let u : (t, x) 7→ u(t, x, ω) the critical travelling wave of equation (4.4)
normalized by u(0, 0, ω) = θ and define T : R× Ω → R such that u

(
T (x, ω), x, ω

)
= θ

for all (x, ω) ∈ R× Ω. Then

• ω 7→ u(t, x, ω) and ω 7→ T (x, ω) are measurable for all (t, x) ∈ R× R,

• u
(
t + T (y, ω), x + y, ω

)
= u(t, x, πyω) and T (x + y, ω) = T (y, ω) + T (x, πyω)

for all (t, x, y) ∈ R× R× R and almost every ω ∈ Ω,

• the limit

c∗ = lim
x→+∞

x

T (x, ω)
exists almost surely and is deterministic.

As T (x, ω) is the localization of the temporal interface of the wave u between 0 and
1, the quantity c∗ can be viewed as the propagation speed of u.

This result does not solve the problem of the existence of random travelling waves
in the monostable framework. However, it shows that there exists a family of wave-like
solutions satisfying some random stationarity property, which may be a random travelling
wave.

5 Attractivity of critical travelling waves along a subse-
quence for recurrent at infinity coefficients

This section investigates the attractivity of critical travelling waves. Recall that in homo-
geneous media, the solution of the Cauchy problem associated with a Heaviside initial
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datum is attracted, in a sense (see the Introduction), by the planar travelling wave with
minimal speed [15], which is indeed the critical travelling wave in this framework.

We were not able to fully extend this result to general heterogeneous framework. How-
ever, we proved that such an attractivity holds along a subsequence, if the coefficients are
recurrent at infinity.

Definition 5.1. We say that a uniformly continuous function g : R → R is recurrent at
infinity if for all sequence (xn) such that the limit h(x) = limn→+∞ g(x+xn) exists locally
uniformly with respect to x ∈ R, there exists a sequence (yn)n such that limn→+∞ yn =

+∞ and h(x) = limn→+∞ g(x+ yn) locally uniformly in x ∈ R.

Heuristically, this notion means that the structure of g is repeated along a sequence of
translations which diverge to +∞. It is easy to check that periodic and almost periodicity
functions are recurrent at infinty. Typical function that are not recurrent at infinity are
compactly supported ones: if g(x) = 0 when x is large enough and g 6≡ 0, then for all
sequence (yn)n such that limn→+∞ yn = +∞, one has limn→+∞ g(x+ xn) ≡ 0 locally in
x, which contradicts the recurrence at infinity by taking xn = 0 for all n.

Theorem 5.2. Assume that a, b and f(·, u) are uniformly continuous and recurrent at
infinity for all u ∈ [0, 1], that (H) is satisfied and that equation (E) is monostable. Let v
the solution of the Cauchy problem

∂tv − a(x)∂xxv − b(x)∂xv = f(x, v) in (0,∞)× R,

v(0, x) =

{
1 if x ≤ 0
0 if x > 0

for all x ∈ R. (5.1)

Let θ ∈ (0, 1) and

S(y) := sup{t > 0, v(t, y) ≤ θ} for all y > 0.

Then there exists a sequence (yn)n such that limn→+∞ yn = +∞ and

v
(
S(yn), x+ yn

)
− u
(
T (yn), x+ yn

)
→ 0 as n→ +∞ locally in x ∈ R, (5.2)

where u is the unique critical travelling wave normalized by u(0, 0) = θ and T is uniquely
defined by u

(
T (y), y

)
= θ for all y ∈ R.

We do not know if this attractivity hold along any sequence (yn)n converging to +∞
and if more general heterogeneities could be handled. Some partial results in this direction
are stated in Section 10. In particular, we prove that their is a strong link between the
attractivity and the continuity of critical travelling waves with respect to the coefficients.

If the nonlinearity is periodic, then we can improve this result and get the full con-
vergence instead of the convergence along a subsequence. The attractivity of pulsating
travelling waves was not known before, even if, as already mentioned, it has been an-
nounced by Ducrot, Giletti and Matano in a parallel work [9].
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Proposition 5.3. Assume that a, b and f are L−periodic in x, with L > 0, that (H) is
satisfied and that equation (E) is monostable in the sense of Definition 3.4. Then, with the
same notations as in Theorem 5.2, one has

lim
y→+∞

(
v
(
S(y), x+ y

)
− u
(
T (y), x+ y

))
= 0 locally in x ∈ R. (5.3)

Note that we do not need any hypothesis involving the linearization of equation (E)
near the steady state u = 1. Hence, Proposition 4.3 above yields that the critical travelling
wave is a pulsating travelling wave but we do not know if its speed is the minimal speed
of such waves. However, Theorem 5.3 ensures that the critical travelling wave is always
attractive.

6 Wave-blocking phenomena and critical travelling waves

Several papers [6, 8, 17, 26] observed in various framework that heterogeneous bistable
equations might admit non-trivial stationary solutions. In this case the monotonicity and
the convergences as t → ±∞ of the critical travelling waves will strongly depend on
the normalization of the wave. Typically, these non-trivial steady states could be critical
travelling waves (see Proposition 11.1 below for a result in this direction in a general
bistable framework).

We will now focus on an example investigated in [17] in order to illustrate this phe-
nomenon. Consider

∂tu− ∂xxu = f(x, u) =

{
f0(u) if x < 0 or x > L

0 if 0 ≤ x ≤ L
(6.1)

where L > 0 and f0 satisfies f0(0) = f0(θ0) = f0(1) = 0, f0 is convex and negative in
(0, θ0), f0 is concave and positive in (θ0, 1), f ′0(0) 6= 0 6= f ′0(1) and

∫ 1

0
f0(s)ds > 0. An

example of nonlinearity satisfying this set of hypotheses is f0(u) = u(1 − u)(u − θ0),
with θ0 ∈ (0, 1/2).

In this case the existence of stationary solutions has been investigated by Lewis and
Keener [17]. They proved that there exists L∗ > 0 such that for all L > L∗, there exist
two (and only two) C1(R) solutions w− < w+ of

−w′′ = f(x,w) in R, w(−∞) = 1, w(+∞) = 0, 0 < w < 1. (6.2)

Moreover, w± are decreasing, w−(0) < θ0 < w+(0), w− is stable and w+ is unstable (see
[17] for a precise statement on the stability).

Proposition 6.1. Consider L > L∗ and let x± the unique points such that w±(x±) = θ0.
Let u the critical travelling wave normalized by u(0, x0) = θ0,
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• if x0 < x−, then u is time-increasing, u(−∞, x) = 0 and u(+∞, x) = w−(x),

• if x0 = x−, then u does not depend on time and u ≡ w−,

• if x− < x0 < x+, then u is time-decreasing, u(−∞, x) = w+(x) and u(+∞, x) =

w−(x),

• if x0 = x+, then u does not depend on time and u ≡ w+,

• if x0 > x+, then u is time-increasing, u(−∞, x) = w+(x) and u(+∞, x) = 1,

where all these convergences are locally uniform in x ∈ R.

x+
x

x−

w−(x)

w+(x)

x0 0

θ0

1

Figure 3: A representation of Proposition 6.1. The arrows indicates the evolution with respect to time of
the critical travelling waves lying in the area.

This example shows that in the multistable setting, the shape of the critical travel-
ling wave is not unique up to translation in time unlike in monostable or ignition-type
framework. Indeed, different normalizations of the critical travelling wave could give very
different behaviours.

7 Construction and properties of critical travelling waves

7.1 Preliminaries: zero set of the solution of a parabolic equation

Our main tool in the sequel will be Proposition 7.1, which is an extension of Angenent’s
classical result [1]. It basically states that if the solution u of a linear parabolic equation
admits only one zero at t = 0, then u(t, ·) will admit at most one zero for all t > 0. An-
genent’s result [1] states that the number of zeros of u(t, ·) is nonincreasing with respect
to t > 0, but it does not include the time t = 0. Hence, we need to start the proof through
direct arguments, before being able to use Angenent’s result. Moreover, we will need in
the sequel a slightly more general assumption on the initial datum.
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Proposition 7.1. Assume that a, 1/a, at, ax, axx, b, bt, bx and c are measurable and
essentially bounded functions over (0,∞) × R. Consider a bounded weak solution u ∈
C0
(
(0,∞)× R)

)
∩ L∞

(
(0,∞)× R)

)
of{

∂tu = a(t, x)∂xxu+ b(t, x)∂xu+ c(t, x)u in (0,∞)× R,
u(0, x) = u0(x) in R, (7.1)

where u0 6≡ 0 is continuous by parts and bounded over R and there exists x0 ∈ R such
that

u0(x) ≥ 0 if x < x0, u0(x) ≤ 0 if x > x0.

Then, for all t > 0, there exists a unique ξ(t) ∈ [−∞,∞] such that

u(t, x) > 0 if x < ξ(t), u(t, x) < 0 if x > ξ(t).

Proof. 1. Take T > 0 and let Ω := {(t, x) ∈ (0, T ) × R, u(t, x) > 0}. Assume that Ω is
non-empty and write Ω = ∪i∈IΩi, where Ωi are disjoint non-empty connected open sets of
(0, T )×R for all i ∈ I . Assume that there exists i0 ∈ I such that {(0, x), x ∈ R}∩Ωi0 = ∅.
Define

V =
(
(0, T )× R

)
\ ∪i 6=i0 Ωi.

It is easy readily checked that

∂V\{(T, x), x ∈ R} ⊂ {u ≤ 0} since {(0, x), x ∈ R} ∩ Ωi0 = ∅.

The parabolic weak maximum principle yields that u ≤ 0 in V , which is a contradiction
since Ωi0 ⊂ V and u > 0 in Ωi0 . Hence, {(0, x), x ∈ R} ∩ Ωi0 6= ∅ for all i ∈ I .

2. Define Ω(t) := {x ∈ R, u(t, x) > 0} for all t > 0. Assume that y1 ∈ Ω(T ) and
y2 ∈ Ω(T ), with T > 0 and y1 < y2. We will prove that [y1, y2] ∈ Ω(T ). Define Ω

as in the first step. As Ω = ∪i∈IΩi, there exist i1, i2 ∈ I such that (T, y1) ∈ Ωi1 and
(T, y2) ∈ Ωi2 . For all i, as Ωi is connected, Ωi is connected and, as the first step yields that
{(0, x), x ∈ R} ∩ Ωi0 6= ∅ for i = 1, 2, there exist two continuous paths φ1 : [0, 1] → Ω1

and φ2 : [0, 1] → Ω2 such that φk(1) ∈ {(0, x), x ∈ R} for k = 1, 2, φ1(0) = (T, y1)

and φ2(0) = (T, y2). We can assume that these paths are non-self-intersecting and that
φk(s) /∈ {(T, x), x ∈ R} for k = 1, 2.

3. Consider first the case where there exist s1, s2 ∈ (0, 1) such that φ1(s1) = φ2(s2).
We can assume that s1 is the smallest s such that φ1(s) intersects the curve associated
with φ2. Define the path: for all s ∈

[
0, s1 + s2 + 1

]
,

ψ(s) :=


s
(
T, y1

)
+ (1− s)

(
T, y2

)
if s ∈ [0, 1],

φ1(s− 1) if s ∈ [1, 1 + s1],
φ2(s2 + s1 + 1− s) if s ∈

[
1 + s1, 1 + s1 + s2

]
.
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This path is a Jordan curve since it is continuous, non-self-intersecting and ψ(0) = ψ(s1+

s2 + 1) = (T, y2). Let K its (compact) interior region. Then

∂K\{(T, x), x ∈ R} ⊂ {φ1(s), s ∈ [0, s1]} ∪ {φ2(s), s ∈ [0, s2]} ⊂ {u ≥ 0},

and the weak parabolic maximum principle gives u ≥ 0 in K. If there exists x ∈ (y1, y2)

such that u(T, x) = 0, then for all δ > 0 such that [T − δ, T ] × [x − δ, x + δ] ⊂ K,
the Krylov-Safonov-Harnack inequality (see [16]) would give u(T, ·) ≡ 0 on [x− δ, x +

δ]. Iterating, one would eventually get by continuity u(T, y1) = 0, which would be a
contradiction. Hence, u(T, x) > 0 for all x ∈ [y1, y2].

If the paths φ1 and φ2 do not intersect, constructing a Jordan curve by connecting the
points where φ1 and φ2 touch {(0, x), x ∈ R} through a segment, one concludes similarly.

This proves that Ω(t) is connected for all t > 0. In other words, it is an interval.
Similarly, {x ∈ R, u(t, x) < 0} is an interval for all t > 0 if it is not empty. Hence, one
can define ξ−(t) := sup{x, u(t, x) > 0} and ξ+(t) := inf{x, u(t, x) < 0} for all t > 0. If
ξ−(t) < ξ+(t) for some t > 0, then u(t, x) = 0 for all ξ−(t) ≤ x ≤ ξ+(t) and Theorem
A in [1] would give u ≡ 0, which is a contradiction. Letting ξ(t) := ξ−(t) = ξ+(t)

concludes the proof.

7.2 Construction of the function u

The construction of the wave is similar to the construction of random travelling waves in
earlier works of Nolen and Ryzhik [25] and Shen [28]. However, we will diverge from
these two papers in the next subsections since the properties of the wave we seek to prove
are different.

Define for all s < 0, y ∈ R, the solution uys = uys(t, x) of equation (E) with initial
condition at t = s:

uys(s, x) =

{
1 if x ≤ y,
0 if x > y.

Take θ ∈ (0, 1) and x0 ∈ R as in the statement of Theorem 2.2.

Lemma 7.2. For all s < 0, there exists a unique xs ∈ R such that uxss (0, x0) = θ.

Proof. The parabolic maximum principle and the parabolic regularity estimates respec-
tively yield that y 7→ uys(0, x0) is increasing and continuous. Letm := limy→−∞ u

y
s(0, x0).

Take a sequence (yn)n such that limn→+∞ yn = −∞. The parabolic regularity estimates
yield that one can assume, up to extraction, that the sequence (uyns )n converges locally
uniformly to the solution v of (E) associated with the initial datum v(s, x) = 0 for all
x ∈ R. Hence v ≡ 0 and m = limn→+∞ u

yn
s (0, x0) = v(0, x0) = 0. Similarly, one can

prove that limy→+∞ u
y
s(0, x0) = 1. The existence and uniqueness of xs ∈ R follow from

the intermediate value theorem and the monotonicity of y 7→ uys(0, x0).
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In the sequel, we will denote us := uxss in order to enlight the notations.

Lemma 7.3. The limit
u(t, x) := lim

s→−∞
us(t, x) (7.2)

exists locally uniformly in (t, x) ∈ R× R and it is a solution of (E).

Proof. Take s1 < s2 and define w(t, x) := us2(t, x)− us1(t, x) for all t ≥ s2 and x ∈ R.
The function w satisfies the parabolic equation

∂tw − a(x)∂xxw − b(x)∂xw = c(t, x)w in (s,∞)× R

where

c(t, x) =


f
(
x, us2(t, x)

)
− f

(
x, us1(t, x)

)
us2(t, x)− us1(t, x)

if us2(t, x) 6= us1(t, x),

0 if us2(t, x) = us1(t, x).

As f is Lipschitz-continuous, the function c is bounded and measurable. On the other
hand, we know from the parabolic maximum principle that 0 < us1(t, x) < 1 for all
t > s1 and x ∈ R. Hence, w(s2, x) > 0 if x < xs2 and w(s2, x) < 0 if x > xs2 . It follows
from Proposition 7.1 that for all t > s2, {w(t, ·) > 0} and {w(t, ·) > 0} are intervals. But
we also know that w(0, x0) = θ − θ = 0. Hence, we eventually get

us2(0, x) ≥ us1(0, x) if x < x0 and us2(0, x) ≤ us1(0, x) if x > x0.

In other words, s 7→ us(0, x) is nondecreasing if x < x0 and nonincreasing if x > x0.
Thus, the limit u0(x) := lims→−∞ us(0, x) is well-defined for all x ∈ R and as the
solution u = u(t, x) of the Cauchy problem associated with equation (E) and the initial
datum u0 = u0(x) is unique, parabolic regularity estimates give the conclusion.

7.3 Criticality of the wave

Lemma 7.4. Assume that v ∈ C0(R × R) is a time-global solution of (E) such that
v(t0, x0) = u(t0, x0) for some (t0, x0) ∈ R× R and 0 < v < 1, then either u ≡ v or

u(t0, x) > v(t0, x) if x < x0 and u(t0, x) < v(t0, x) if x > x0,

where u is defined by (7.2).

Proof. Assume that u 6≡ v. Let w(t, x) := us(t, x)− v(t, x), where s < 0. The definition
of us yields that w(s, x) > 0 if x < xs and w(s, x) < 0 if x > xs. As in the proof of
Lemma 7.3, it follows from Proposition 7.1 that for all t > s, there exists ξs(t) ∈ R such
that us

(
t, ξs(t)

)
= v
(
t, ξs(t)

)
and

us(t, x) > v(t, x) if x < ξs(t) and us(t, x) < v(t, x) if x > ξs(t). (7.3)
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Assume that there exists a sequence (sn)n such that sn → −∞ and ξsn(t0 − 1) → +∞.
Then letting s = sn, t = t0−1 and n→ +∞ in (7.3) gives u(t0−1, x) ≥ v(t0−1, x) for
all x ∈ R. It follows from the parabolic strong maximum principle that u(t0, x) > v(t0, x)

for all x ∈ R since u 6≡ v, which is a contradiction at x = x0. Similarly, one can prove
that ξsn(t0 − 1)→ −∞ would lead to a contradiction. Hence, s 7→ ξs(t0 − 1) is bounded
and there exists a sequence (sn)n such that sn → −∞ and

(
ξsn(t0 − 1)

)
n

converges to a
limit ξ∞ ∈ R. One gets from (7.3)

u(t0 − 1, x) ≥ v(t0 − 1, x) if x ≤ ξ∞ and u(t0 − 1, x) ≤ v(t0 − 1, x) if x ≥ ξ∞. (7.4)

It follows from Proposition 7.1 that the function x 7→ u(t0, x)− v(t0, x) admits a unique
zero, which is necessarily x0, and that

u(t0, x) > v(t0, x) if x < x0 and u(t0, x) < v(t0, x) if x > x0.

7.4 Monotonicity of the wave in time

Lemma 7.5. Let τ > 0.

• If there exists a sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ ≤ xsn for
all n ∈ N, then t 7→ u(t, x) is nonincreasing for all x ∈ R.

• If there exists a sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ ≥ xsn for
all n ∈ N, then t 7→ u(t, x) is nondecreasing for all x ∈ R.

Hence, t 7→ u(t, x) is either nondecreasing for all x ∈ R or nonincreasing for all x ∈ R.

Proof. Assume first that there exists a sequence (sn)n such that limn→+∞ sn = −∞ and
xsn+τ ≤ xsn for all n ∈ N. Define for all n ∈ N, (t, x) ∈ (sn,∞)× R:

vn(t, x) := usn+τ (t+ τ, x).

This function satisfies (E) in (sn,∞)× R together with the initial condition

vn(sn, x) =

{
1 if x ≤ xsn+τ ,
0 if x > xsn+τ .

The function usn satisfies the same Cauchy problem but with xsn instead of xsn+τ in
the definition of the initial condition. Hence, as xsn+τ ≤ xsn , the parabolic maximum
principle gives

usn(t, x) ≥ vn(t, x) = usn+τ (t+ τ, x) for all (t, x) ∈ (sn,∞)× R.
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Letting n→ +∞ in this inequality, as u(t, x) = lims→+∞ us(t, x) for all (t, x) ∈ R× R,
one gets u(t, x) ≥ u(t+ τ, x) for all (t, x) ∈ R× R. This proves the first part of Lemma
7.5.

If there exists a sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ ≥ xsn for all
n ∈ N, then the monotonicity of t 7→ u(t, x) follows through similar arguments.

If there exists no sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ ≤ xsn for
all n ∈ N, then there exists S < 0 such that xs+τ > xs for all s < S and thus the second
part of the Lemma yields that t 7→ u(t, x) is nondecreasing for all x ∈ R. We conclude
that t 7→ u(t, x) is either nondecreasing for all x ∈ R or nonincreasing for all x ∈ R.

7.5 Monotonicity of the wave in space for homogeneous f

Lemma 7.6. Assume that f does not depend on x. Then x 7→ u(t, x) is nonincreasing for
all t ∈ R.

Proof. Define uys as above for all s < 0 and y ∈ R. It is clear from the previous proof
that we only need to prove that x 7→ uys(t, x) is nonincreasing for all t > s in order to
conclude.

Assume first that the coefficients a, b and f are C∞ functions and let v := ∂xu
y
s . This

function satisfies the smooth parabolic equation

∂tv − a(x)∂xxv −
(
a′(x) + b(x)

)
∂xv =

(
f ′
(
u(t, x)

)
+ b′(x)

)
v in (s,∞)× R.

Moreover, v(t, ·) ⇀ −δy as t → s+ in the sense of measures, where δy is the Dirac mea-
sure localized at y. Hence, the weak parabolic maximum principle yields that v(t, x) ≤ 0

for all (t, x) ∈ (s,∞)× R, meaning that x 7→ uys(t, x) is nonincreasing for all t > s.
If a = a(x), b = b(x) and f = f(u) satisfy (H), then the result follows from the

previous step by approximation.

7.6 End of the proof of Theorem 2.2.

Proof of Theorem 2.2. 1. The existence of the critical travelling wave immediatly follows
from Lemmas 7.3 and 7.4. Assume that ũ is a critical travelling wave of (E) such that
ũ(0, x0) = θ. As u is a critical travelling wave and ũ is a time-global solution, one has
u(0, x) ≥ ũ(0, x) if x < x0 and u(0, x) ≤ ũ(0, x) if x > x0. But as ũ is a critical travelling
wave, we also have u(0, x) ≤ ũ(0, x) if x < x0 and u(0, x) ≥ ũ(0, x) if x > x0. Hence
ũ(0, x) = u(0, x) for all x ∈ R. As u and ũ both satisfy the parabolic equation (E), the
uniqueness follows.

2. Next, we know from Lemmas 7.4 and 7.5 that u is either nonincreasing or nonde-
creasing in time. Let v := ∂tu. This function satisfies:

∂tv − a(x)∂xxv − b(x)∂xv = f ′u
(
x, u(t, x)

)
v in R× R.
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It follows from parabolic regularity estimates that ∂tv ∈ Lploc(R×R) and ∂xxv ∈ Lploc(R×
R) for all p ∈ (1,∞). In particular, v is a continuous function on R× R.

Assume that u is nonincreasing in t. Then v := ∂tu ≥ 0 on R × R. If there exists
(t0, x0) ∈ R×R such that v(t0, x0) = 0, then the Harnack-Krylov-Safonov inequality for
parabolic equations [16] implies that v(t, x) = 0 for all t < t0, x ∈ R and thus v ≡ 0.
Hence u would be constant with respect to time. If v is positive, this means that ∂tu > 0

and thus u is increasing in time. Similarly, if u is nonincreasing in time, then one can
prove that either u is either constant or decreasing in time.

3. Lastly, when f does not depend on x, the monotonicity in x immediatly follows
from Lemma 7.6.

8 Proof of the comparison results with spatial transition
waves

8.1 Proof of the results in the general framework

Proof of Theorem 3.1. Consider a critical transition wave u. As limt→−∞ v(t, 0) = 0 and
limt→+∞ v(t, 0) = 1, there exists τ ∈ R such that v(τ, 0) = u(0, 0). The criticality of u
yields

u(0, x) ≥ v(τ, x) if x ≤ 0 and u(0, x) ≤ v(τ, x) if x ≥ 0.

Hence, limx→−∞ u(0, x) = 1 and limx→+∞ u(0, x) = 0 and it easily follows from parabolic
regularity estimates and the parabolic strong maximum principle that

lim
x→−∞

u(t, x) = 1 and lim
x→+∞

u(t, x) = 0 for all t ∈ R.

Next, let ε ∈ (0, 1/2) and take (t0, x0) ∈ R × R such that ε < u(t0, x0) < 1 − ε.
There exists τ ′ ∈ R such that v(t0 + τ ′, x0) = u(t0, x0). Define for all t ∈ R, Iε(t) :=

{x ∈ R, ε < u(t, x) < 1 − ε} and Jε(t) := {x ∈ R, ε < v(t, x) < 1 − ε}. As v is a
spatial transition wave, we know that there exists L > 0 such that the diamJε(t) ≤ L for
all t ∈ R.

On the other hand, one has

u(t0, x) ≥ v(t0 + τ ′, x) if x ≤ x0 and u(t0, x) ≤ v(t0 + τ ′, x) if x ≥ x0.

Also, x0 ∈ Jε(t0+τ ′)∩Iε(t0). Take x < inf Jε(t0+τ ′). One has x < x0 and v(t0+τ ′, x) ≥
1 − ε, which gives u(t0, x) ≥ 1 − ε. Hence x < inf Iε(t0). Similarly, one can prove that
x > sup Jε(t0 + τ ′) implies x > sup Iε(t0). We conclude that diamIε(t0) ≤ diamJε(t0 +

τ ′) ≤ L. As L does not depend on t0, we conclude that u is a spatial transition wave.
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8.2 Proof of the results in the ignition-type framework

Proof of Corollary 3.3. Consider a critical travelling wave u. We know from [20, 25] that
there exists a spatial transition wave v such that limt→+∞ v(t, x) = 1 and limt→−∞ v(t, x) =

0 for all x ∈ R. Hence, Theorem 3.1 yields that u is a spatial transition wave.
On the other hand, if v is an arbitrary spatial transition wave, then as u is a spatial

transition wave, it follows from [19] that there exists τ ∈ R such that u(t, x) = v(t+τ, x)

for all (t, x) ∈ R× R. Thus, v is a critical travelling wave.
The monotonicity and the uniqueness immediatly follow from Theorem 3.2.

8.3 Proof of the results in the monostable framework

Proof of Proposition 3.5. We know from Theorem 2.2 that u is either increasing, decreas-
ing or constant in time from Theorem 2.2. Moreover, the monostability of equation (E)
ensures that limt→+∞ u(t, x) = 1 since u(0, ·) 6≡ 0. Hence, as 0 < u < 1, u is necessarily
increasing in time. Let u∞(x) = limt→−∞ u(t, x) for all x ∈ R. The parabolic regularity
estimates yield that u∞ ∈ W 2,p(R) for all p ∈ (1,∞) and that it is a weak solution of
a(x)u′′∞ + b(x)u′∞ + f(x, u∞) = 0 over R. Taking u∞ as an initial datum in the Cauchy
problem (3.2), we get from the monostability hypothesis that u∞ ≡ 1 if u∞ 6≡ 0. Hence,
as u∞(x) = limt→−∞ u(t, x) ≤ u(0, x) for all x ∈ R, one gets u∞ ≡ 0.

The existence and the uniqueness of T (x) follows from the monotonicity of u with
respect to t and the convergences as t → ±∞. The continuity of T in x immediatly
follows from the continuity of u and the uniqueness of T .

Assume that ũ is another critical travelling wave of (E). As limt→−∞ ũ(t, 0) = 0 and
limt→+∞ ũ(t, 0) = 1, there exists τ ∈ R such that u(τ, 0) = ũ(0, 0). Theorem 2.2 ensures
that ũ(τ, x) = u(0, x) for all x ∈ R. As u and ũ both satisfy the parabolic equation (E),
the conclusion follows.

Lemma 8.1. Assume that v is a spatial transition wave of equation (E). Let θ ∈ (0, 1)

and Y (t) := sup{x ∈ R, v(t, x) > θ}. Then, inft∈R infx≤Y (t) v(t, x) > 0.

Proof. Assume by contradiction that inft∈R infx≤Y (t) v(t, x) = 0. Consider a sequence
(tn, xn)n in R × R− such that xn ≤ 0 for all n and limn→+∞ v

(
tn, xn + Y (tn)

)
= 0.

The definition of spatial transition waves yields that, as v
(
tn, Y (tn)

)
= θ for all n, there

exists L > 0 such that v
(
tn, x+ Y (tn)

)
≥ θ for all x ≤ −L. Hence the sequence (xn)n is

bounded and one can assume that it converges to a limit x∞ ∈ [−L, 0].
Let cn(t, x) := f

(
x + Y (tn), v

(
t + tn, x + Y (tn)

))
/v
(
t + tn, x + Y (tn)

)
. We know

from (H) that this function is bounded over R × R. One can assume, up to extraction,
that the sequences

(
a(·+ Y (tn)

)
n
,
(
b(·+ Y (tn)

)
n

and (cn)n converge respectively in the
W 2,∞(R), W 1,∞(R) and L∞(R× R) weak-* topologies. Let a∞, b∞, c∞ their respective
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limits. The parabolic regularity estimates yield that the sequence
(
v(· + tn, · + Y (tn)

)
n

converges (up to extraction) locally uniformly to a function v∞ which is a weak solution
of

∂tv∞ − a∞(x)∂xxv∞ + b∞(x)∂xv∞ = c∞(t, x)v∞ over R× R.

Moreover, 0 ≤ v∞ ≤ 1 and v∞(0, x∞) = 0. The Krylov-Safonov-Harnack inequality
[16] thus gives v∞ ≡ 0, which is a contradiction since v∞(0, x) ≥ θ for all x ≤ −L.

Proof of Theorem 3.6. Consider a critical travelling wave u and a spatial transition wave
v as in the Statement of Theorem 3.6. One can define through Lemma 8.1 the quantity

κ := 1/ inf
s∈R,
x<Y (s)

v(s, x) > 1.

As u and v are both spatial transition waves, the width of their interfaces are bounded and
thus there is no loss of generality in assuming that κθ < 1/2.

Take s0 ∈ R. As equation (E) is monostable, one has limt→+∞ v(t, x) = 1 for all
x ∈ R. It can easily be proved that limt→−∞ v(t, x) = 0 for all x ∈ R since v is a time-
global solution. Hence, there exists s1 ∈ R such that v

(
s1, X(s0)

)
= u

(
s0, X(s0)

)
(=

θ). In particular, Y (s1) ≥ X(s0). Moreover, as u is a critical travelling wave, one has
u(s0, x) ≤ v(s1, x) if x ≥ X(s0). The definition of κ gives

u(s0, x) ≤ κv(s1, x) for all x ∈ R.

Next, as s 7→ f(x, s)/s is nonincreasing for all x ∈ R and κ > 1, one has

κ∂tv − κa(x)∂xxv − κb(x)∂xv = κf(x, v) ≥ f(x, κv) in R× R,

which means that κv is a supersolution of (E). It thus follows from the parabolic maximum
principle that

u(s0 + t, x) ≤ κv(s1 + t, x) for all (t, x) ∈ R+ × R.

Taking t > 0 and x = Y (s1 + t) in this inequality gives u
(
s0 + t, Y (s1 + t)

)
≤ κθ. Hence,

Y (s1 + t) ≥ ξ where ξ := inf{x ∈ R, u(s0 + t, x) ≤ κθ}.

Take ε < min{θ, 1 − θ} and define Iε(t) = {x ∈ R, ε < u(t, x) < 1 − ε}, Jε(t) =

{x ∈ R, ε < v(t, x) < 1− ε} and L such that diamIε(t) ≤ L and diamJε(t) ≤ L for all
t ∈ R. As u(s0 + t, ξ) = κθ ∈ (θ, 1/2), one has ξ ∈ Iε(s0 + t) and thus

|ξ −X(s0 + t)| ≤ L.
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Similarly, as v
(
s1, Y (s1)

)
= v

(
s1, X(s0)

)
= θ, one has |X(s0) − Y (s1)| ≤ L. We

eventually get

X(s0 + t)−X(s0) ≤ L+ ξ −X(s0)
≤ 2L+ ξ − Y (s1)
≤ Y (s1 + t)− Y (s1) + 2L,

which gives the conclusion since L does not depend on s0 and s1.

9 Proof of the results for particular classes of heterogeneities

9.1 The translation property

Proof of Proposition 4.1. As limt→−∞ u
(
t, x; (a, b, f)

)
= 0 and limt→+∞ u

(
t, x; (a, b, f)

)
=

1 for all x ∈ R, we know from Theorem 2.2 that u is increasing in time. Hence, T (y) is
uniquely defined for all y ∈ R.

Let y ∈ R and define

ũ(t, x) := u
(
t− T (y), x− y; (πya, πyb, πyf)

)
for all (t, x) ∈ R× R.

We need to prove that u ≡ ũ. We know that

ũ(T (y), y) = u
(
0, 0, (πya, πyb, πyf)

)
= θ = u

(
T (y), y; (a, b, f)

)
.

Moreover, ũ is a time-global solution of (E) and 0 < ũ < 1. Hence

u
(
T (y), y + x; (a, b, f)

)
≥ ũ

(
T (y), x+ y

)
= u

(
0, x; (πya, πyb, πyf)

)
if x < 0

and u
(
T (y), y + x; (a, b, f)

)
≤ ũ

(
T (y), x+ y

)
= u

(
0, x; (πya, πyb, πyf)

)
if x > 0.

On the other hand, (t, x) 7→ u
(
t, x+ y; (a, b, f)

)
is a time-global solution of equation

(E) with coefficients (πya, πyb, πyf) instead of (a, b, f). As u
(
T (y), y; (a, b, f)

)
= θ =

u
(
0, 0, πy(a, b, f)

)
, we know that

u
(
T (y), y + x; (a, b, f)

)
≤ u

(
0, x; (πya, πyb, πyf)

)
if x < 0

and u
(
T (y), y + x; (a, b, f)

)
≥ u

(
0, x; (πya, πyb, πyf)

)
if x > 0.

Hence, u
(
T (y), y+x; (a, b, f)

)
= u

(
0, x; (πya, πyb, πyf)

)
for all x ∈ R. As u

(
·+T (y), ·+

y; (a, b, f)
)

and u
(
·, ·; (πya, πyb, πyf)

)
both satisfy (E) with coefficients (πya, πyb, πyf)

instead if (a, b, f), it follows from the well-posedness of the Cauchy problem that

u
(
t+ T (y), y + x; (a, b, f)

)
= u

(
t, x; (πya, πyb, πyf)

)
for all (t, x) ∈ R× R.
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9.2 Comparison with planar and pulsating travelling waves

We first prove Proposition 4.3, from which we will derive partially Proposition 4.2. The
next Lemma, which proves that monostable equations (in the sense of Definition 3.4)
always admit pulsating travelling waves with positive speeds, is crucial since we will
need to compare critical travelling waves with these pulsating travelling waves in order
to obtain estimates on the speed of the critical travelling wave. Of course the existence
of pulsating travelling waves has already been studied in earlier papers, but always under
more restrictive notions of monostability. Hence, Lemma 9.1 cannot be trivially derived
from earlier results.

Lemma 9.1. Assume that equation (E) is monostable and let θ ∈ (0, 1) and x0 ∈ R. Then
there exists c > 0 such that for all c ≥ c, equation (E) admits a pulsating travelling wave
v of speed c such that v(0, x0) = θ0.

Note that we do not know if c is a minimal speed. In other words, we do not know
if there could exist some pulsating travelling waves with speed c < c under our mild
monostability hypothesis.

Proof of Lemma 9.1. Let λ the periodic principal eigenvalue associated with the linearized
operator near u = 0, defined for all ϕ ∈ C2(R) by

Mϕ = a(x)ϕ′′ + b(x)ϕ′ + f ′u(x, 0)ϕ.

Assume first that λ > 0. As equation (E) is monostable, we know that if v is a solution
of −a(x)v′′ − b(x)v′ = f(x, v) over R such that 0 ≤ v ≤ 1 and v is L−periodic,
then v ≡ 0 or v ≡ 1. Hence, all the hypotheses of Theorem 2.3 of [21] are satisfied
and the conclusion follows: there exists a speed c such that for all c ≥ c, equation (E)
admits a pulsating travelling wave v of speed c such that v(0, x0) = θ. Moreover, one can
take c = 2

√
‖a‖∞‖f‖Lip + ‖b‖∞

(
this immediatly follows from basic estimates on the

speed c∗e(A, q, f) using the same notations as in [21]
)

and the pulsating travelling wave
we obtain is increasing in time. Note that we refer to [21], which investigates space-time
periodic media, instead of classical papers such as [3, 32]. This is because this paper gives
the only proof of existence of pulsating travelling waves under the very mild hypothesis
λ > 0, as far as we know.

Next, assume that λ < 0, then let ϕ the periodic principal eigenfunction associated
with λ and normalized by ‖ϕ‖∞ = 1. That is, φ is a positive periodic solution of Mϕ =

λϕ. As λ < 0, it is easy to check that−κa(x)ϕ′′−κb(x)ϕ′ ≥ f(x, κϕ) over R if κ > 0 is
small enough. Hence, the solution v of ∂tv−a(x)∂xxv−b(x)∂xv = f(x, v) in (0,∞)×R
with initial condition v(0, x) = κϕ(x) for all x ∈ R is nonincreasing in time. Thus
it cannot converges to 1 as t → +∞, which contradicts the fact that equation (E) is
monostable. Hence the monostability implies λ ≥ 0.
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Lastly, assume that λ = 0. For all ε > 0 and (x, u) ∈ R × [0, 1], define fε(x, u) :=

f(x, u) + εu(1 − u). As fε ≥ f , it is easy to see that the equation (E) with nonlinear-
ity fε instead of f is still monostable. Moreover, if λε is the periodic principal eigen-
value associated with the linearization at 0, then one has λε = λ + ε = ε > 0 since
(fε)

′
u(x, 0) = f ′u(x, 0) + ε for all x ∈ R. Hence, it follows from our first case that for all

c ≥ 2
√
‖a‖∞(‖f‖Lip + ε) + ‖b‖∞, there exists a pulsating travelling wave with speed c

associated with the nonlinearity fε, which is increasing in time.
Define c = 2

√
‖a‖∞(‖f‖Lip + 1) + ‖b‖∞ and take c ≥ c. Consider for all ε ∈ (0, 1)

a pulsating travelling wave vε with speed c, normalized (up to translation in time) by
vε(0, x0) = θ, which is increasing in time. It follows from parabolic regularity estimates
that there exists a sequence (εn)n such that εn → 0 and (vεn)n converges locally uni-
formly. Let v0 its limit. Then v0 satisfies equation (E), v0(0, x0) = θ, v0 is nondecreasing
in time and one has v0(t + L/c, x + L) = v0(t, x) for all (t, x) ∈ R × R. Moreover, it
follows from the monostability of equation (E) that limt→+∞ v0(t, x) = 1 locally in x ∈ R
and one also gets limt→−∞ v0(t, x) = 0 since v0 is nondecreasing in time. Hence, v0 is a
pulsating travelling wave with speed c, which concludes the proof.

Proof of Proposition 4.3. Let u the critical travelling wave of equation (E) normalized by
u(0, x0) = θ and T (y) the unique solution of u

(
T (y), y

)
= θ for all y ∈ R. As a, b

and f are L−periodic, one has πLa = a, πLb = b and πLf . Proposition 4.1 implies that
u(t+ T (L), x+ L) = u(t, x), for all (t, x) ∈ R× R.

Next, we know from Lemma 9.1 that there exists a pulsating travelling wave v(t, x)

with speed c′ > 0 such that v(0, x0) = θ. The criticality of u gives u(0, x) ≤ v(0, x) for
all x > x0. Taking x = x0 +nL with n ∈ N, one gets u(−nT (L), x0) = u(0, x0 +nL) ≤
v(0, x0 + nL) = v∗(−nL/c′, x0) for all n ∈ N and the right hand-side converges to 0

as n → +∞ since c′ > 0. Hence, T (L) > 0 and one can define c := L/T (L). One has
u(t+ L/c, x+ L) = u(t, x) for all (t, x) and thus u is a pulsating travelling wave.

Assume that there exists a pulsating travelling wave solution v of equation (E) with
speed c′ < c. Define φ(z, x) := u

(
(z + x)/c, x

)
and ψ(z, x) := v

(
(z + x)/c′, x

)
for all

(z, x) ∈ R×R. It follows from the definition of pulsating travelling waves that φ and ψ are
L−periodic in x. Assume furthermore that the coefficients are of class C1,γ(R× [0, 1]) for
some γ ∈ (0, 1) and that the periodic principal eigenvalue associated with the linearization
of equation (E) near u = 1 is positive: µ > 0. For all α > 0, let Lα the elliptic operator
defined for all ϕ ∈ C2(R) by

Lαϕ = a(x)ϕ′′ +
(
b(x) + 2αa(x)

)
ϕ′ +

(
f ′u(x, 1) + αb(x) + α2a(x)

)
ϕ.

As the coefficients of this operator are L−periodic, it admits a periodic principal eigen-
value k(α). When α = 0, we recover the linearization of the equation near u = 1 and thus



36 Grégoire Nadin

k(0) = µ < 0. It has been proved by Hamel in [12] (see equation (1.29) in [12]) that

lim
z→+∞

1

z
ln
(
1−φ(z, x)

)
= −αc and lim

z→+∞

1

z
ln
(
1−ψ(z, x)

)
= −αc′ uniformly in x ∈ R,

(9.1)
where for all c̃ > 0 we define αc̃ the unique positive solution of equation k(α) = −αc̃. As
α 7→ k(α) is convex (see [12]), α > 0 and c′ < c, simple graphical considerations yield
that αc < αc′ .

On the other hand, we know from the criticality of the wave u that u(0, x) ≥ v(0, x)

for all x < x0, which reads

φ(−x, x) ≥ ψ(−x, x) for all x < x0.

It follows from (9.1) that −αc ≤ −αc′ , which is a contradiction.

Let now prove the second part of Proposition 4.3. It has been proved in [3] that un-
der the hypotheses of the second part of Proposition 4.3, there exists a pulsating travelling
wave v of equation (E) with speed c∗, which is increasing in time, such that limt→−∞ v(t, x) =

0, limt→+∞ v(t, x) = 1, and that this pulsating travelling wave is unique up to trans-
lation in time. Let θ ∈ (0, 1), x0 ∈ R and u the critical travelling wave normalized
by u(0, x0) = θ. We can assume that v(0, x0) = θ by translating in time and thus it
follows from the criticality of u that u(0, x) ≥ v(0, x) for all x < x0. In particular,
limx→−∞ u(0, x) = 1, which yields that u(t, x) → 1 as t → +∞ locally in x ∈ R.
Hence, Theorem 2.2 implies that u is increasing in time.

Next, as limt→−∞ u(t, x) ≤ u(0, x) ≤ v(0, x) for all x > x0 and as limx→+∞ v(0, x) =

0, one gets limt→−∞ u(t, x) = 0. It follows from Proposition 4.1 that u satisfies the trans-
lation property. Thus, the same arguments as above yield that u is a pulsating travelling
waves, meaning that u ≡ v by the uniqueness proved in [3]. The uniqueness up to trans-
lation in time follows from the same arguments as in the proof of Proposition 3.5 since u
is time-increasing and connect 0 to 1.

Proof of Proposition 4.2. If θ0 = 0, then equation (E) is monostable and we know from
Proposition 4.3 that a critical travelling wave is a pulsating travelling wave of period L for
all L > 0. This means that it is a planar travelling wave and the other results are proved
similarly.

If θ0 > 0, then Theorem 2.4 in [10] asserts that there exists a planar travelling wave
v with speed c > 0, which is unique up to translation and time-increasing, and that there
exists no planar travelling wave with speed c′ 6= c. The conclusion follows from the same
arguments as in the proof of Proposition 4.3.
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9.3 The case of compactly supported heterogeneities

Proof of Proposition 4.5. 1. Let c < λ/
√
λ− 1. For all t ∈ R, as u(· + t, ·) is a time-

global solution, it follows from Theorem 4.4.1 that there exists Cc = Cc(t) > 0 such
that u(t + s, x) ≤ Cce

−|x|+cs for all (s, x) ∈ (−∞, 0) × R. Letting s → 0+, this gives
u(t, x) ≤ Cce

−|x| for all x ∈ R. Thus u(t, ·) ∈ L1(R).

2. We know from the parabolic regularity estimates that ∂xu is bounded over R×R. Let
C > 0 such that |∂xu(t, x)| ≤ C for all (t, x) ∈ R×R. For all s ∈ R, as u

(
s,X(s)

)
= θ,

one has u
(
s, x+X(s)

)
≥
(
θ−C|x|

)
+

for all x ∈ R. Define u the solution of the Cauchy
problem {

∂tu− ∂xxu = u(1− Cuδ) in (0,∞)× R,
u(0, x) =

(
θ − C|x|

)
+

for all x ∈ R.

It follows from f ′u(x, 0) ≥ 1, (4.2) and the parabolic maximum principle that

u
(
t+ s, x+X(s)

)
≥ u(t, x) for all s ∈ R and (t, x) ∈ (0,∞)× R.

On the other hand, as x 7→ u(0, x) is compactly supported and u 7→ u−Cu1+δ is of KPP
type, it follows from [2] that limt→+∞ u(t, ct) = 1 for all c < 2. Hence, u

(
t + s, ct +

X(s)
)
→ 1 as t→ +∞ uniformly in s ∈ R, for all c < 2. Take c < 2 and let T > 0 such

that u
(
t+ s, ct+X(s)

)
> θ for all t ≥ T and s ∈ R.

As u is also a spatial transition wave, there exists L > 0 such that u
(
t, x+X(t)

)
< θ

for all x > L and for all t ∈ R. It follows that ct + X(s) ≤ X(t + s) + L for all t > T

and s ∈ R. We eventually get

lim inf
t→+∞

inf
s∈R

X(t+ s)−X(s)

t
≥ c for all c < 2.

On the other hand, as λ ∈ (1, 2), we know from Theorem 4.4 that there exists a spatial
transition wave v with global mean speed c for all c ∈ (2, λ/

√
λ− 1). Let Y (t) such that

v
(
t, Y (t)

)
= θ. It follows from Theorem 3.6 that

lim sup
t→+∞

sup
s∈R

1

t

(
X(s+ t)−X(s)

)
≤ lim

t→+∞
sup
s∈R

1

t

(
Y (s+ t)− Y (s)

)
= c.

We conclude by letting c→ 2 in the two inequalities.

9.4 The case of random stationary ergodic coefficients

Proof of Proposition 4.7. We first use the same types of arguments as in [25, 28] in order
to prove the measurability of u and T . For all s < 0, let uys = uys(t, x, ω) the unique
solution of{

∂tu
y
s − a(x, ω)∂xxu

y
s − b(x, ω)∂xu

y
s = f(x, ω, uys) in (s,∞)× R,

uys(s, x, ω) = 1 if x ≤ y and uys(s, x, ω) = 0 if x > y,
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and xs(ω) the unique real number such that uxs(ω)s (0, 0) = θ. It can be proved exactly
as in [25] that ω ∈ Ω 7→ xs(ω) and ω 7→ us(t, x, ω) are measurable functions for
all (t, x) ∈ R × R. As we know from the proof of Theorem 2.2 that u(t, x, ω) =

lims→+∞ u
xs(ω)
s (t, x, ω) for all (t, x, ω) ∈ R × R × Ω, the measurability of u in ω fol-

lows.
Let now prove the measurability of ω 7→ T (x, ω) for all x ∈ R. Take x ∈ R and define

for all j,m ∈ N:

Amj = {ω ∈ Ω, u(t, x, ω) ≥ θ for all t ≤ j2−m}.

The measurability of Amj follows from the measurability of u. Define the measurable
function:

τm(ω) := max
j∈N

2−mjχAm
j

(ω).

It is easy to check that for all ω ∈ Ω, τm(ω) = j2−m, where j is the unique integer such
that j2−m ≤ T (x, ω) < (j + 1)2−m. It follows that for all ω ∈ Ω,

τm(ω) ≤ T (x, ω) ≤ τm(ω) + 2−m.

Hence, limm→+∞ τ
m(ω) = T (x, ω) and thus ω ∈ Ω 7→ T (x, ω) is measurable.

Next, let ω ∈ Ω and y ∈ R. As, for all (x, y, u, ω) ∈ R× R× [0, 1]× Ω,

a(x+ y, ω) = a(x, πyω), b(x+ y, ω) = b(x, πyω) and f(x+ y, ω, u) = f(x, πyω, u),

the functions (t, x) 7→ u(t+ T (y, ω), x+ y, ω) and (t, x) 7→ u(t, x, πyω) are both critical
travelling waves of equation (4.4) with πyω instead of ω. As u

(
T (y, ω), y, ω

)
= θ by

definition of T (y, ω), u(0, 0, πyω) = θ by definition of u and the critical travelling wave
is unique up to normalization, we eventually get

u(t+ T (y, ω), x+ y, ω) = u(t, x, πyω) for all (t, x, y, ω) ∈ R× R× R× Ω. (9.2)

Considering this inequality at t = T (x, πyω), we obtain u
(
T (x, πyω) + T (y, ω), x +

y, ω
)

= θ and thus, as u is increasing in t, the definition of T implies that

T (x, πyω) + T (y, ω) = T (x+ y, ω) for all (x, y, ω) ∈ R× R× Ω. (9.3)

It follows from the Birkhoff ergodic theorem that the limit

1

c∗
:= lim

x→+∞

T (x, ω)

x
exists almost surely and do not depend on ω ∈ Ω.
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10 Proof of the results on attractivity and continuity

Theorem 5.2 will follow from several intermediate results, which are more general but
require hypotheses involving the continuity of critical travelling waves with respect to the
environment. It is not clear if such a continuity holds in general. Assume that a, b and f
are uniformly continuous in (x, u) ∈ R × [0, 1], uniformly with respect to u ∈ [0, 1]. As
in Section 4, take ∈ (0, 1) and let

H = cl{πyC = (πya, πyb, πyf), y ∈ R},

where the closure is associated with topology of the local convergence. This set is a com-
plete metric space. Let u(·, ·; C̃) the unique critical travelling wave associated with the
coefficients C̃ ∈ H and normalized by u(0, 0; C̃) = θ ∈ (0, 1) for all C̃ ∈ H.

We say that C̃ ∈ H 7→ u(0, ·; C̃) ∈ C0(R) is continuous at C∗ ∈ H, or that
the critical travelling wave is continuous at C∗ if there is no ambiguity, if for all se-
quence (Cn)n in H which converges locally uniformly in R × [0, 1] to C∗ ∈ H, one has
limn→+∞ u(0, x;Cn) = u(0, x;C∗) locally uniformly in x ∈ R. Then if the critical trav-
elling wave is continuous at C∗, it attracts the solutions of the Cauchy problem associated
with the Heaviside initial datum along a subsequence, as stated in the next Proposition.

Proposition 10.1. Assume that (H) is satisfied and that equation (E) is monostable. Let
θ ∈ (0, 1). Assume that C ∈ H 7→ u(·, ·;C) is continuous at C∗ = (a∗, b∗, f∗) ∈ H and
that there exists a sequence (yn)n such that limn→+∞ yn = +∞, limn→+∞ a(x + yn) =

a∗(x), limn→+∞ b(x + yn) = b∗(x) and limn→+∞ f(x + yn, u) = f∗(x, u) locally in
(x, u) ∈ R× [0, 1]. Let v the solution of (5.1). Then

v
(
S(yn), x+yn

)
−u
(
T (yn), x+yn; (a, b, f)

)
→ 0 as n→ +∞ locally uniformly in x ∈ R.

This result shows that the continuity of the wave with respect to the coefficients of
the equation is another relevant open question. As already mentioned in Definition 1.2,
Matano requires the continuity of the wave with respect to (ã, b̃, f̃) ∈ H. Shen [28] proved
the existence of such waves for general heterogeneous equations under the assumption
that there exist a spatial transition wave which converges uniformly with respect to the
translations of the coefficients, except that she did not prove the continuity of the wave
with respect to C̃ ∈ H. She only proved such a continuity when the nonlinearity is bistable
and depends on time. The full continuity remains an open problem.

However, Shen also proved in a general framework that the critical travelling wave is
always continuous at least on a residual subset of H. We recall that a residual subset is
the intersection of countably many open dense subsets and that asH is a complete metric
space, the Baire theorem yields that such a residual subset is dense in H. Hence, the
critical travelling waves are always continuous with respect to the environment at least
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at one point C∗ ∈ H. We will prove a similar property in Proposition 10.2 below, but
through direct arguments, which provide an alternative approach to the topological one of
[28].

Many other properties can be derived from continuity on the whole setH, as observed
in the framework of spatial transition waves by Shen [28]. Basically, the continuity of
the wave ensures that any property of the coefficients, such as almost periodicity, almost
automorphy or recurrence, is also satisfied, in a sense, by the wave. We will not go any
further on this topic since we do not know if the wave is continuous over the whole setH
or not.

Open problem: Is this true that the critical travelling wave u(·, ·; g) is continuous with
respect to g ∈ H?

Proof of Proposition 10.1. First, as limt→+∞ v(t, x) = 1 for all x ∈ R and v(0, x) = 0

for all x > 0, the quantity S(y) := sup{t > 0, v(t, x) ≤ θ} is well-defined for all y > 0.
Assume by contradiction that there exists a sequence (zn)n such that limn→+∞ zn =

+∞ and
(
S(zn)

)
n

is bounded. Then there exists M > 0 such that S(zn) ≤ M for all
n. In other words, one has v(M, zn) ≥ θ for all n. On the other hand, it easily follows
from the strong maximum principle and the fact that v(0, x) = 0 for all x > 0 that
limx→+∞ v(t, x) = 0 for all t > 0, which gives a contradiction. Hence

(
S(zn)

)
n

is un-
bounded and as this is true for all sequence (zn)n converging to +∞, we get

lim
y→+∞

S(y) = +∞.

Next, consider the critical travelling wave u = u
(
t, x;C

)
, where C = (a, b, f). For all

n ∈ N, as

v(0, x) = 1 > u
(
T (yn)− S(yn), x;C

)
if x < 0

and v(0, x) = 0 < u
(
T (yn)− S(yn), x;C

)
if x > 0,

we know from Proposition 7.1 that the sets
{
v(t, ·) > u

(
t + T (yn) − S(yn), ·;C

)}
and{

v(t, ·) < u
(
t + T (yn) − S(yn), ·;C

)}
are intervals for all t > 0. Taking t = S(yn), as

v
(
S(yn), yn

)
= θ = u

(
T (yn), yn;C

)
, one gets

v
(
S(yn), x+ yn

)
> u

(
T (yn), x+ yn;C

)
= u(0, x; πynC) if x < 0

and v
(
S(yn), x+ yn

)
< u

(
T (yn), x+ yn;C

)
= u(0, x; πynC) if x > 0,

(10.1)
where we have used the translation property (see Proposition 4.1).

On the other hand, we know that, as u is continuous at C∗ = (a∗, b∗, f∗) ∈ H by
assumption and as

πynC = (πyna, πynb, πynf)→ (a∗, b∗, f∗) = C∗ as n→ +∞,
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locally uniformly in (x, u) ∈ R× [0, 1], one has

lim
n→+∞

u(0, x; πynC) = u(0, x;C∗) locally in x ∈ R.

Let wn(t, x) := v
(
t+ S(yn), x+ yn

)
. This function satisfies

∂twn − a(x+ yn)∂xxwn − b(x+ yn)∂xwn = f(x+ yn, wn) in
(
− S(yn),∞

)
× R.

Hence, one can assume from parabolic regularity estimates that the sequence (wn)n con-
verges to a function w∞ locally uniformly in R × R. As limn→+∞ S(yn) = +∞, the
function w∞ is a time-global solution of

∂tw∞ − a∗(x)∂xxw∞ − b∗(x)∂xw∞ = f∗(x,w∞) in R× R. (10.2)

Moreover, letting n→ +∞ in (10.1), one gets:

w∞(0, x) ≥ u(0, x;C∗) if x < 0 and w∞(0, x) ≤ u(0, x;C∗) if x > 0.

But as u is a critical travelling wave andw∞ is a time-global solution of (10.2), the reverse
inequalities hold. Hence w∞(0, x) = u(0, x;C∗) for all x ∈ R. In other words, up to
extraction, one has for all x ∈ R:

limn→+∞

(
v
(
S(yn), x+ yn)− u

(
T (yn), x+ yn;C

))
= limn→+∞

(
wn(0, x)− u(0, x; πynC)

)
= w∞(0, x)− u(0, x;C∗) = 0.

As this convergence does not depend on the extraction, the convergence along the full
sequence (yn)n follows from standard arguments.

Proposition 10.2. Assume that (H) is satisfied and let θ ∈ (0, 1). Define:

F : H → C0(R)

C̃ 7→ u(0, ·; C̃)

where u is the unique critical travelling wave associated with the coefficients C̃ and nor-
malized by u(0, 0; C̃) = θ. Then there exists at least one set of coefficients C∗ ∈ H such
that F is continuous at C∗.

Proof. Take C̃ = (ã, b̃, f̃) ∈ H and (Cn)n a sequence of H such that Cn → C̃ as
n → +∞ in H. For all C̃ ∈ H, define us = us(t, x; C̃) as in the proof of Theorem 2.2,
with coefficients C̃ instead of (a, b, f), and xs(C̃) such that us(s, x; C̃) = 1 if x < xs(C̃),
us(s, x; C̃) = 0 if x > xs(C̃) and us(0, 0; C̃) = θ.



42 Grégoire Nadin

We know from the parabolic regularity estimates that one can assume, up to extraction,
that the sequence

(
us(·, ·;Cn)

)
n

converges to a function v locally uniformly in (s,∞)×R
as n→ +∞. This function satisfies

∂tv − ã(x)∂xxv − b̃(x)∂xv = f̃(x, v) in (s,∞)× R and v(0, 0) = θ.

If
(
xs(Cn)

)
n

converges to +∞, then us(s, x;Cn) → 1 as n → +∞ locally in x and
thus v ≡ 1, which is a contradiction since v(0, 0) = θ. One gets a similar contradic-
tion if

(
xs(Cn)

)
n

converges to −∞. As this is true along any subsequence, we conclude
that

(
xs(Cn)

)
n

is bounded. Extracting one more time, we can assume that this sequence
converges, let X := limn→+∞ xs(gn). Then v(s, x) = 1 if x < X , v(s, x) = 0 if
x > X . Hence, it follows from Lemma 7.2 that X = xs(C̃) since v(0, 0) = θ and thus
v(t, x) = us(t, x; C̃). As this eventual limit does not depend on the previous extractions,
we conclude that the full sequence

(
xs(Cn)

)
n

converges to
(
xs(C̃)

)
as n→ +∞. Hence,

the sequence
(
u(0, ·;Cn)

)
n

converges to us(0, ·; C̃) as n→ +∞, which means that

Fs : H → C0(R)

C̃ 7→ us(0, ·; C̃)
is continuous for all s < 0.

But we also know that u(0, ·; C̃) = lims→−∞ us(0, ·; C̃) for all C̃ ∈ H locally uni-
formly over R× R. In other words,

Fs(C̃)→ F (C̃) as s→ −∞ pointwise in C̃ ∈ H.

It is a classical application of Baire theorem that the set of continuity points of the
pointwise limit of continuous functions is a residual set. Hence, F is continuous on a
non-empty (residual) subset ofH.

Proof of Theorem 5.2. First, we know from Proposition 10.2 that there exists a set of
coefficients C∗ ∈ H such that the critical travelling wave is continuous at C∗. As the
coefficients are recurrent at infinity by hypothesis, there exists a sequence (yn)n such that
limn→+∞ yn = +∞ and πynC → C∗ as n → +∞ locally in (x, u) ∈ R × [0, 1]. Hence,
Proposition 10.1 applies and give the conclusion.

Proof of Corollary 5.3. We can assume that the period L is the minimal periodic of f .
That is: for all ` ∈ (0, L), there exists (x, u) ∈ R × [0, 1] such that a(x + `) 6= a(x),
b(x+ `) 6= b(x) or f(x+ `, u) 6= f(x, u). Next, as the coefficients a, b and f are periodic
in x, one has πLC = C and thus H = {πyC; y ∈ [0, L]}. Consider C̃ ∈ H and a
sequence (Cn)n in H such that Cn → C̃ locally uniformly. Then there exists (yn)n and
ỹ in [0, L) such that Cn = πynC for all n and C̃ = πỹC. Consider an extraction (yn′)n′

such that this sequence converges to a limit y∞ ∈ [0, L]. One has πy∞C = πỹC. As−L <
y∞ − y < L and as L is the minimal period of the coefficients, one gets y∞ = ỹ. Hence,
the full sequence (yn)n converges to ỹ. We conclude that C̃ ∈ H 7→ u(0, ·; C̃) ∈ C0(R) is
continuous. The conclusion follows from Proposition 10.1.
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11 Proof of the results in the bistable framework

We start with a general result in the bistable framework. We do not consider the particular
equation (6.1) yet.

Proposition 11.1. Assume that (H) is satisfied and that there exists θ0 ∈ (0, 1) such that
for all x ∈ R, f(x, θ0) = 0 and

u ∈ (0, θ0) 7→ f(x, u) is convex, u ∈ (θ0, 1) 7→ f(x, u) is concave. (11.1)

Let x0 ∈ R and assume that there exists a stationary solution w of equation (E) such that
w(x0) = θ0, w(x) > θ0 for all x < x0, w(x) < θ0 for all x > x0, lim infx→−∞w(x) > θ0

and lim supx→+∞w(x) < θ0. Let u the critical travelling wave normalized by u(0, x0) =

θ0. Then u is constant with respect to time and u ≡ w.

In other words, if there exists a non-trivial steady state w and if one considers a critical
travelling waves u which crosses w, then, under mild bistability hypotheses, u does not
depend on time and u ≡ w. Note f is not assumed to be positive (resp. negative) over
(θ0, 1) (resp. (0, θ0)).

This result will be derived from the following comparison result.

Lemma 11.2. Assume that (H) and (11.1) are satisfied. Consider two C1(R) weak solu-
tions w1 and w2 of

−a(x)w′′1 − b(x)w′1 ≥ f(x,w1) in R,
−a(x)w′′2 − b(x)w′2 ≤ f(x,w2) in R,
lim infx→−∞w1(x) > θ0,
w1(x) > θ0 for all x ≤ x1 and w1(x1) ≥ w2(x1),

for some x1 ∈ R. Then w1 ≥ w2 in (−∞, x1).

Proof of Proposition 11.1. Let

κ∗ = inf{κ > 0, (1 + κ)
(
w1(x)− θ0

)
≥ w2(x)− θ0 for all x ∈ (−∞, x1)}.

As w1(x) > θ0 for all x ≤ x1, lim infx→−∞w1(x) > θ0 and w2 is bounded, this quantity
is well-defined. If κ∗ = 0, then w1(x) ≥ w2(x) for all x ∈ (−∞, x1), which ends the
proof. Assume by contradiction that κ∗ > 0. Then (1 + κ∗)

(
w1(x) − θ0

)
≥ w2(x) − θ0

for all x ∈ (−∞, x1] and there exists x∗ ∈ (−∞, x1] such that (1 + κ∗)
(
w1(x∗)− θ0

)
=

w2(x∗)− θ0. As w1(x1) ≥ w2(x1) and κ∗ > 0, one gets x∗ 6= x1.
Define z(x) := (1 + κ∗)

(
w1(x) − θ0

)
− w2(x) + θ0 for all x ∈ R. This function

is nonnegative, vanishes at x = x∗ and it follows from the Lipschitz-continuity and the
concavity of f on [θ0, 1] that:

−a(x)z′′ − b(x)z′ = (1 + κ∗)f(x,w1 − θ0 + θ0)− f(x,w2)
≥ f

(
x, (1 + κ∗)(w1 − θ0) + θ0

)
− f(x,w2)

≥ −C|(1 + κ∗)(w1 − θ0) + θ0 − w2| = −Cz
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in (−∞, x1). As z reaches its minimum and vanishes at the interior point x∗, the strong
maximum principle yields that z ≡ 0, which is a contradiction since

z(x1) = (1 + κ∗)
(
w1(x1)− θ0

)
− w2(x1)− θ0 ≥ κ∗

(
w1(x1)− θ0

)
> 0.

Hence κ∗ = 0 and w1 ≥ w2 in (−∞, x1).

Proof. We know from Theorem 2.2 that u is either increasing, decreasing or constant
with respect to time. Assume first that u is time-increasing. We know from the proof of
Theorem 2.2 above that ∂tu > 0 in R × R. As u(0, x0) = w(x0) = θ0 and u(0, ·) 6≡ w

since u is increasing in time, the criticality of u yields u(0, x) > w(x) for all x < x0 and
u(0, x) < w(x) for all x > x0.

Next, we know from Lemma 5.4 in [1] that there exist τ > 0 and a continuous function
ξ : [−τ, 0] → R such that ξ(0) = x0 and u

(
t, ξ(t)

)
= w

(
ξ(t)

)
for all t ∈ [−τ, 0]. Take

t ∈ [−τ, 0) and let w2(x) := u(t, x) for all x ∈ R. As ∂tu > 0, w2 satisfies

−a(x)w′′2 − b(x)w′2 < f(x,w2) in R. (11.2)

As u is time-increasing and t ∈ [−τ, 0), one has u
(
t, ξ(t)

)
= w

(
ξ(t)

)
< u

(
0, ξ(t)

)
and

thus ξ(t) < x0 since u(0, x) ≤ w(x) for all x ≥ x0. Hence, w
(
ξ(t)

)
> θ0 by hypothesis.

Thus, Lemma 11.2 applies and gives w2(x) = u(t, x) ≤ w(x) = w1(x) for all x < ξ(t)

and t ∈ [−τ, 0). Letting t → 0−, as ξ is continuous, one gets u(0, x) ≤ w(x) for all
x < ξ(0) = x0, a contradiction.

A contradiction is reached similarly if u is time-decreasing, by applying the first step
to the auxiliary function v = 1 − u. Hence, u = u(x) does not depend on time and thus
u ≡ w.

Proof of Proposition 6.1. If x0 = x− or x0 = x+, then the conclusion immediatly follows
from Proposition 11.1.

Take now x0 ∈ R\{x+, x−} and u the critical travelling wave normalized by u(0, x0) =

θ0. First, assume by contradiction that u = u(x) is a stationary solution of equation (E).
We know that u 6≡ w+ and u 6≡ w− since w±(x0) 6= u(x0) = θ0. The criticality of
u ensures that u(x) > θ0 for all x < x0 and u(x) < θ0 for all x > x0. Otherwise,
one would have u ≡ θ0 and it would follow from Proposition 11.1 that u ≡ w+ since
θ0 = u(x+) = w+(x+), which is excluded. Together with the hypotheses on f , this
implies in particular that −u′′(x) = f

(
x, u(x)

)
≥ 0 (resp. ≤ 0) for all x ≤ x0 (resp.

x ≥ x0), from which it is easy to derive that u is nonincreasing in x and that u(−∞) = 1

and u(+∞) = 0. But then, the uniqueness of the solutions of (6.2), proved in [26], yields
that u ≡ w+ or w−, which gives the final contradiction.

Hence, u is not a stationary solution and Theorem 2.2 ensures that u is either increasing
or decreasing with respect to time. One has u(t, x−) 6= w−(x−) = θ0

(
resp. u(t, x+) 6=
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w+(x+)
)

for all t ∈ R, otherwise Proposition 11.1 would yield that u(t0, ·) ≡ w− (resp.
w+) for some t0 ∈ R and thus u would be constant in time.

Next, assume that x0 < x−. As u is a critical travelling wave and as u 6≡ θ0, we know
that

u(0, x) > θ0 if x < x0 and u(0, x) < θ0 if x > x0.

It follows that u(0, x−) < u(0, x0) = θ0 = w−(x−) and the previous remark yields that
u(t, x−) < w−(x−) for all t ∈ R. Take t ∈ R, if there exists xt ∈ R such that u(t, xt) =

w−(xt), then as u is critical, one has u(t, x) < w−(x) if x > xt and u(t, x) > w−(x) if
x < xt. Hence, x− > xt and one has

u(t, x) < w−(x) for all t ∈ R, x ≥ x−. (11.3)

Assume by contradiction that u is decreasing with respect to time. Let u∞(x) :=

limt→−∞ u(t, x). This function satisfies θ0 < u(0, x) < u∞(x) for all x ≤ x0 and−u′′∞ =

f(x, u∞) over R. It is easy to derive from this, together with the hypotheses on f , that
x ∈ (−∞, x0) 7→ u∞(x) is nonincreasing, from which we get limx→−∞ u∞(x) = 1.
Moreover, (11.3) implies u∞(x) ≤ w−(x) for all x ≥ x− and thus limx→+∞ u∞(x) = 0.
We conclude from the uniqueness result proved in [17] that u∞ ≡ w−.

Next, we know from [17] that there exist a subsolution 0 < w < w− of equation (6.2)
with w(−∞) = 1 and w(+∞) = 0. Consider X ∈ R such that max{w(X), u(0, X)} <
θ0 < w−(X). As limt→−∞ u(t,X) = w−(X), there exists T < 0 such that u(T,X) = θ0.
As u is decreasing with respect to time, one has−∂xxu(T, x) ≥ f

(
x, u(T, x)

)
over R. As

u is critical, u(T, x) > θ0 for all x < X and u(T, x) < θ0 for all x > X . Hence, Lemma
11.2 applies with w1 = u(T, ·), w2 = w and x1 < X small, leading to u(T, x) ≥ w(x)

for all x < X . Hence, u∞(x) := limt→+∞ u(t, x) is a steady state such that w ≤ u∞ in
(−∞, X) and u∞ < w−, which contradicts the uniqueness of w±.

We have thus proved that

u is increasing with respect to time.

Define u∞(x) = limt→+∞ u(t, x). This function is a steady state such that u∞(x) ≥
u(0, x) and u∞(x) ≤ w−(x) for all x ≥ x−. This gives limx→−∞ u

∞(x) = 1 and
limx→+∞ u

∞(x) = 0, and thus

lim
t→+∞

u(t, x) = u∞(x) = w−(x) for all x ∈ R.

Next, let u∞(x) = limt→−∞ u(t, x) ≤ u∞(x) = w−(x) for all x ∈ R. We know from
Lemma 5.5 in [1] that there exists a continuous function ξ : (−∞, 0] such that u

(
t, ξ(t)

)
=

θ0 for all t ≤ 0, with ξ(0) = x0. The criticality of u implies

u(t, x) > θ0 for all x < ξ(t) and u(t, x) < θ0 for all x > ξ(t).
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Clearly, ξ(t) ≤ x− for all t ≤ 0 since u(t, x) < w−(x) for all x ∈ R. Assume that there
exists a sequence (tn)n such that limn→+∞ tn = −∞ and the sequence

(
ξ(tn)

)
n

converges
to a limit ξ∞ ∈ R as n→ +∞. Then u∞(x) ≥ θ0 for all x < ξ∞ and u∞(x) ≤ θ0 for all
x > ξ∞. The hypotheses on f ensures that u′′∞(x) = −f

(
x, u∞(x)

)
≤ 0 for all x ≤ ξ∞.

As u′∞
(
ξ∞
)
≤ 0, it follows that x ∈ (−∞, ξ∞) 7→ u∞(x) is nonincreasing and thus

` := limx→−∞ u∞(x) is well-defined. This limit satisfies f0(`) = 0, implying that ` = θ0

or ` = 1. If ` = θ0, then u∞(x) = θ0 for all x < ξ∞ and thus u∞ ≡ θ0, which contradicts
u∞ < w−. Thus ` = 1, that is, limx→−∞ u∞(x) = 1. The uniqueness of w± would thus
give u∞ ≡ w−, a contradiction. Hence, limt→−∞ ξ(t) = −∞, which eventually gives
u∞ ≤ θ0 over R. Hence, u′′∞ = −f(x, u∞) ≥ 0, and as u∞ is bounded, it is constant. As
u∞ < w−, one has u∞ ≡ 0. In other words,

lim
t→−∞

u(t, x) = 0 for all x ∈ R.

The identification of u when x0 ∈ (x−, x+) or x > x+ is proved through similar
arguments.

12 Summary of the results

We have introduced a new notion of critical travelling waves for reaction-diffusion equa-
tions with arbitrary nonlinearity and general heterogeneous coefficients (Definition 2.1).
These waves always exist, are monotonic in time and unique up to normalization (Theo-
rem 2.2). If there exists a spatial transition wave, then critical travelling waves are neces-
sarily spatial transition waves (Theorem 3.1). Hence, for ignition-type equations, the two
notions are equivalent (Corollary 3.3). For monostable equations, critical travelling waves
always exist, unlike spatial transition waves, and if there exists a spatial transition wave,
then critical travelling waves have minimal least mean speed (Theorem 3.6).

In the cases where the critical travelling waves are unique up to translation in time,
such as ignition-type or monostable equations, these waves satisfy a property which is
close to the translation property introduced in [18] (Proposition 4.1). We derive from
this result that if the coefficients are homogeneous/periodic, then the critical transition
waves are planar/pulsating travelling waves in the ignition-type and monostable frame-
works (Propositions 4.2 and 4.3) as well as in the bistable setting for homogeneous co-
efficients. If the heterogeneity of the coefficients is compactly supported, as in [24], then
critical travelling waves are spatial transition waves with minimal speed if such waves
exist, and bump-like solutions otherwise (Proposition 4.5). If the equation is monostable
and the coefficients are random stationary ergodic in space, then the wave and its inter-
face also satisfy such a dependence in space and admit a propagation speed, in a sense
(Proposition 4.7). In the monostable setting, if the coefficients are “recurrent at infinty”,
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then critical travelling waves attract the solution of the Cauchy problem with a Heaviside
initial datum (Theorem 5.2) along a subsequence. Lastly, if the equation is bistable, then
there might exist non-trivial steady states which block the propagation and in this case
the identification of critical transition waves depends on the normalization of these waves
(Proposition 6.1).
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