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Abstract

We consider the Fisher-KPP equation with a nonlocal saturation effect defined through an
interaction kernel φ(x) and investigate the possible differences with the standard Fisher-KPP
equation. Our first concern is the existence of steady states. We prove that if the Fourier
transform φ̂(ξ) is positive or if the length σ of the nonlocal interaction is short enough, then
the only steady states are u ≡ 0 and u ≡ 1. Our second concern is the study of traveling
waves. We prove that this equation admits traveling wave solutions that connect u = 0 to an
unknown positive steady state u∞(x), for all speeds c ≥ c∗. The traveling wave connects to the
standard state u∞(x) ≡ 1 under the aforementioned conditions: φ̂(ξ) > 0 or σ is sufficiently
small. However, the wave is not monotonic for σ large.

1 Introduction and main results

We investigate the non-local Fisher-KPP equation

ut −∆u = µu(1− φ ? u), x ∈ Rd, (1.1)

where φ is a given convolution kernel and

φ ? u(x) =
∫

Rd
u(x− y)φ(y)dy.

Our main interest is to understand when solutions of the non-local Fisher equation behave qualita-
tively differently from those of the classical Fisher equation

ut −∆u = µu(1− u), (1.2)

that corresponds to φ(x) = δ(x). Let us briefly recall that the only non-negative bounded steady
solutions of (1.2) are the constants u ≡ 0 and u ≡ 1, and that for any c ≥ c∗ = 2

√
µ the local

Fisher-KPP equation (1.2) admits traveling wave solutions of the form u(t, x) = U(x− ct) with the
boundary conditions U(−∞) = 1, U(+∞) = 0, and a monotonically decreasing in x profile U(x).
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The nonlocal Fisher equation arises in several areas. In ecology it takes into account a nonlocal
saturation, thanks to the term φ?u, or nonlocal competition effects as in [7, 15]. It was also proposed
as a simple model of adaptive dynamics in [8, 9] – there, x represents a phenotypical trait of the
population. A population of individuals with trait x faces competition from all its counterparts. If
this competition does not depend on the trait, then φ ≡ 1. But if the competition is higher for
populations with closer similarities, the kernel φ is localized. Other types of nonlocal terms may
arise, see [5, 16] for dispersal by jumps rather than Brownian motion, or because of time delay, for
instance, see [4, 6, 19, 11, 12, 17, 18].

Throughout the paper we assume that the convolution kernel satisfies the properties

φ ≥ 0, φ(0) > 0, ∇φ ∈ Cb(Rd)
∫

R
φ(x)dx = 1,

∫
R
x2φ(x)dx < +∞. (1.3)

These assumptions are not necessarily optimal, in particular, regularity of φ and positivity at x = 0
may be relaxed but they are sufficient for our purposes, biologically reasonable and simplify some
of the technicalities.

In order to quantify the range of the nonlocal interaction one may use the kernel of the form

φσ(x) =
1
σd
φ
(x
σ

)
. (1.4)

If σ → 0, then φσ ? u→ u and we are back to the classical Fisher-KPP equation. Up to a rescaling,
the equation associated with the kernel φσ and the growth rate µ is equivalent to the equation
associated with the kernel φ, σ = 1, and the growth rate µσ2. In other words, small interaction
length of the nonlocal effect is equivalent to a small growth rate for a fixed interaction length. We
will alternatively use parameters µ and σ, depending on which one is more convenient.

We are mainly interested in the steady states of this equation, positive solutions of

−∆u = µu(1− φ ? u), (1.5)

and in the traveling wave solutions in a direction e ∈ Sd−1, connecting the steady state u = 0 to a
uniformly positive state, possibly identically equal to 1 as in the classical Fisher case. More precisely,
we look for a pair (c, u) where c ∈ R is the traveling wave speed and the function u(x) satisfies

−cu′ − u′′ = µu(1− ψ ? u), lim inf
x→−∞

u(x) > 0, u(+∞) = 0, x ∈ R, (1.6)

where ψ =
∫
e⊥ φ. The boundary condition at x = −∞ appears because of the nonlocal effect: in

general, it is possible that (1.6) may admit strictly positive solutions:

−cv′ − v′′ = µv(1− ψ ? v), inf
x∈R

v(x) > 0, (1.7)

other than v ≡ 1 that may serve as limit states as x→ −∞. Moreover, as we recall below, v ≡ 1 is
an unstable solution of (1.7) for some kernels φ and µ > 0. Then one would not expect the traveling
wave solution to converge to v ≡ 1 as x→ −∞ but rather to a non-uniform stable solution of (1.7).
This is one major difference with the classical Fisher-KPP equation (1.2) which has no non-trivial
steady positive solutions other than v ≡ 1.

The non-local Fisher equation has been first introduced by Britton in [4]. He carried out a
bifurcation analysis and observed that the uniform steady state u ≡ 1 may bifurcate to periodic
steady states, standing waves or periodic traveling waves. A perturbative proof for the existence of
traveling waves was given by Gourley in [11], under the assumption that the nonlocal interaction
length σ in (1.4) is sufficiently small. This result was also established by Wang, Li and Ruan in [17]
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for Gaussian probability densities but still with σ small. These authors also proved in [18] that if
the reaction term in (1.1) is replaced by a bistable nonlinearity with nonlocal saturation, then this
modified equation admits a stable traveling wave, which is unique up to translation. Spatio-temporal
nonlocal terms were considered in [1] and [17], where it was shown that for small delays and short
interaction lengths solutions behave qualitatively as in the classical Fisher-KPP case.

This model was also investigated numerically in [1, 9, 11], and numerical simulations exhibit a
much richer behavior than the aforementioned rigorous perturbative results close to σ = 0 indicate.
In agreement with the theoretical predictions in [4, 11], it was shown that the steady state u ≡ 1
may be unstable for some particular values of the parameters. This may lead to non-monotonic
traveling waves and behavior qualitatively different from that of the classical Fisher-KPP equation.
More precisely, numerical studies show that for σ very small, traveling wave is still monotonic and
connects u ≡ 0 to u ≡ 1. As σ increases, the wave loses its monotonicity and for sufficiently
large σ it links u ≡ 0 to a periodic steady state instead of u ≡ 1. This kind of bifurcation was
related in [9] to the emergence of stable mutations in the population, which gives a nice way to
model adaptive evolution mathematically. In [8], the authors studied this equation for a very small
diffusion, equivalent to µ large here. They showed that several steady states may arise that usually
(but nor always) concentrate around Dirac masses when φ̂ changes sign, but the change of sign of
the Fourier transform is certainly not the only character of φ in this regime.

The aforementioned existence results for traveling waves [11, 17] rely on various perturbation
methods starting from the classical Fisher-KPP equation. This is why the existence of traveling
waves was proved only for small µ (or, equivalently, small σ). It is more natural to try to prove
existence of traveling waves that connect u ≡ 0 to u ≡ 1 as soon as u ≡ 1 is stable (which is always
true when µ is small enough). Here, we prove existence of traveling wave solutions of (1.1) that
connect u ≡ 0 to u ≡ 1 under a hypothesis that implies the stability of u ≡ 1: the Fourier transform
of φ is positive. This condition does not depend on µ (or σ). For example, our result establishes
existence of traveling waves for Gaussian kernels for all µ > 0 and not only for small µ as in [17].

In the general case when the state u ≡ 1 may be unstable, there might exist other steady states
that can be connected to u ≡ 0 through a traveling wave. In that situation we also establish existence
of a traveling wave that connects u ≡ 0 but to an a priori unknown uniformly positive state. We
also show that if µ is small or φ̂ is positive, then the positive steady state u ≡ 1 is the unique
possible positive end state. Finally, we show that waves connecting u ≡ 0 to u ≡ 1 (that we prove
to exist if φ̂ > 0), may not be monotonic for large values of µ – this should be contrasted with the
monotonicity of the classical Fisher-KPP traveling waves.

Steady state solutions

Obviously, there always exist two homogeneous steady states: u ≡ 0 and u ≡ 1. The state u ≡ 0 is
always unstable since µ > 0, but depending upon the kernel φ, the state u ≡ 1 may be linearly stable
or unstable. For instance, u ≡ 1 is stable for µ sufficiently small but may become unstable when
µ is large. In that case, numerical computations [11] have shown that there might exist non-trivial
periodic solutions of equation (1.5). We now present some conditions that ensure uniqueness of the
solutions u ≡ 1 and u ≡ 0 in the class of bounded positive solutions when u ≡ 1 is stable. We
first consider the case d = 1, with a small µ, which is a small perturbation of the local Fisher-KPP
equation.

Theorem 1.1 (d = 1) There exists µ0 > 0 such that for all µ ≤ µ0, equation (1.5) has no bounded
nonnegative solutions except u(x) ≡ 0 and u(x) ≡ 1.

The smallness assumption in Theorem 1.1 may be removed if the Fourier transform φ̂(ξ) is everywhere
positive, as in the case of a Gaussian kernel φ(x).
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Theorem 1.2 (d = 1) Assume that φ̂(ξ) > 0 for all ξ ∈ R. Then u ≡ 1 and u ≡ 0 are the only
bounded nonnegative solutions of (1.5) for all µ > 0.

The Fourier transform above is defined as

φ̂(ξ) =
∫

R
φ(x)e−iξxdx.

Given L = (L1, . . . , Ld) ∈ Rd, we say that a solution is L-periodic if it is Lj-periodic in every
coordinate xj . We also use the notation

k ∈ Zd/L ⇐⇒ kj = k̄j/Lj with k̄j ∈ Z.

Following [9], we define the linear stability condition for the state u ≡ 1 with respect to L-periodic
perturbations as

4π2k2 + µφ̂ (2πk) > 0 ∀k ∈ Zd/L. (1.8)

A similar but stronger condition is that u ≡ 1 is linearly stable for all periodic perturbations, that
is,

ξ2 + µφ̂ (ξ) > 0 ∀ξ ∈ Rd. (1.9)

Thus, we define the critical growth rate

µc =

 max
ξ>0

|ξ|2

max{0,−φ̂(ξ)}
if there exists ξ ∈ Rd such that φ̂(ξ) < 0,

+∞ if φ̂(ξ) ≥ 0 for all ξ ∈ Rd.

The state u ≡ 1 is linearly unstable under some periodic perturbations if and only if µ > µc.
Example 1. If the kernel is a Gaussian probability density

φ(x) =
1√

2πσ2
exp

(
−x2

2σ2

)
,

then φ̂(ξ) = exp (−ξ2σ2/2) and for all k ∈ Z, one has :∣∣∣∣2πkL
∣∣∣∣2 + µφ̂

(
2πk
L

)
> 0.

Thus, in this case, the equilibrium state u ≡ 1 is always linearly stable.
Example 2. Consider the kernel φ(x) = 1

2aI[−a,a](x). In this case, one easily computes φ̂(ξ) =
sin(ξa)/(ξa). Hence, µc < +∞, and for µ > µc the state u ≡ 1 is linearly unstable.

The following result holds in an arbitrary dimension d ≥ 1.

Theorem 1.3 Assume that φ̂(2πk) ≥ 0 for all k ∈ Zd/L, then u(x) ≡ 0 and u ≡ 1 are the only
nonnegative L-periodic bounded solutions of (1.5) for all µ > 0.

Traveling wave solutions

We now consider the traveling wave solutions defined by (1.6). In terms of existence, the situation
is close to that of the classical Fisher-KPP equation

Theorem 1.4 (Existence of traveling wave) There exists a traveling wave solution (c, u) to
(1.6) for all c ≥ c∗ = 2

√
µ and there exists no such traveling wave solution (c, u) with speed c < 2

√
µ.
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The minimal speed c = 2
√
µ is the same as for the classical local Fisher-KPP equation. This means

that the speed of propagation is determined only by the instability of the state 0, the nonlocal term
does not play any role here.

We can show that the left limit is u(−∞) = 1 in the following two cases.

Theorem 1.5 (Small µ) For any φ there exists µ0 > 0 so that traveling waves satisfy u(−∞) = 1
for all c ≥ c∗ = 2

√
µ and 0 < µ < µ0.

Theorem 1.6 (The case φ̂(ξ) > 0) When φ̂(ξ) > 0 for all ξ ∈ R the traveling waves satisfy
u(−∞) = 1 for all µ > 0 and all c ≥ c∗ = 2

√
µ.

The next theorem shows that even if a traveling wave approaches u ≡ 1 as x → −∞, it cannot
be monotonic in x when µ is sufficiently large.

Theorem 1.7 (Non-monotonicity) Assume that φ(x) is continuous, φ(0) > 0 and∫
R
φ(x)eλxdx < +∞ (1.10)

for all λ ∈ R. There exists µ0 > 0 and C0 > 0 so that for all µ ≥ µ0 and 2
√
µ := c∗ ≤ c ≤ C0µ, the

traveling wave (c, u) cannot satisfy u(−∞) = 1 and reach this state monotonically at −∞.

We do not know if the traveling waves constructed in Theorem 1.4 always connect u(+∞) = 0
to the state u(−∞) = 1. Numerical computations shown in Figure 1.1 and those in [9] suggest
that, if µ is large and φ(ξ0) < 0 for some ξ0, the traveling wave built in Theorem 1.4 may connect
u(+∞) = 0 to a periodic solution as x → −∞, but this remains an open problem. Some possible
numerical scenarios for the traveling wave are depicted below in Figure 1.1. Let us also mention
here that we construct traveling waves using the method introduced in [3], as a limit of solutions of
approximating problems on intervals (−an, an) with an → +∞. The nature of this procedure leads,
at least heuristically, to construction of stable waves. Therefore, we believe that traveling waves are
stable even if the left limit is a non-uniform periodic state, or if the left state u = 1 is approached
non-monotonically as in the context of Theorem 1.7.

Throughout this paper, we denote by C and K constants that only depend on µ and φ and that
are locally bounded with respect to µ ≥ 0.

The paper is organized as follows. In Section 2 we prove Theorems 1.1-1.3 on triviality of steady
states. Traveling waves are constructed in Section 3 where Theorem 1.4 is proved. The uniformity of
the limit on the left in Theorems 1.5 and 1.6 is established in Section 4. Finally, non-monotonicity
of traveling waves for large µ is established in Section 5.

Acknowledgment. L.R. was supported by NSF grant DMS-0604687. This work was done
during mutual visits of the authors to EHESS and ENS, and University of Chicago. We thank these
institutions for their hospitality.

2 Steady states

In this section we prove Theorems 1.1-1.3 on non-existence of non-trivial steady states. We begin
with some preliminary a priori estimates for the steady solutions that are used later on.
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Figure 1.1: Traveling waves solutions to (1.6) with increasing values of µ obtained by numerical sim-

ulations. In accordance with Theorem 1.7, one observes first a monotonic Fisher-KPP like regime,

then an overshoot appears and finally oscillatory waves, still linking the state 0 to 1. For µ large

enough, the wave seems to connect u = 0 to a periodic solution. These are obtained with the convo-

lution kernel φ equal to an indicator function of an interval.

2.1 A positive lower bound

First, we show that any steady solution of (1.5) in Rd is bounded away from zero from below.

Lemma 2.1 Any non-negative bounded solution u 6≡ 0 of (1.5) in Rd, d ≥ 1, is bounded away from
zero:

inf
x∈Rd

u(x) > 0. (2.1)

Proof. We assume that
inf
x∈Rd

u(x) = 0 (2.2)

and look for a contradiction. The maximum principle implies that u(x) can not attain its minimum
at a point where it is equal to zero. Hence, there exists a sequence xk, |xk| → +∞ such that
u(xk)→ 0 as k → +∞. We claim that in this case for any R > 0 we have

lim
k→+∞

sup
x∈B(xk;R)

u(x) = 0. (2.3)

Indeed, consider the function vk(x) = u(x+xk), then, after extracting a subsequence, vk(x) converges
locally uniformly to a limit v(x), due to the standard elliptic regularity estimates [10]. The function
v(x) satisfies (1.5) and attains its minimum v = 0 at x = 0. Therefore, the maximum principle
implies that v(x) ≡ 0 and thus (2.3) holds.
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Now, fix ε > 0 to be prescribed later, set M = ‖u‖L∞(R) and take R so large that∫
|y|≥R/2

φ(y)dy ≤ ε

2M
. (2.4)

Choose k so large that 0 < u(x) ≤ ε/2 in B(xk;R). Then we have, for x ∈ B(xk;R/2),

0 ≤ φ ? u(x) =
∫

|x−y|≤R/2

φ(x− y)u(y)dy +
∫

|x−y|≥R/2

φ(x− y)u(y)dy ≤ ε

2
+

ε

2M
M ≤ ε.

Hence, inside the ball B(xk;R/2) the function u(x) satisfies

−∆u ≥ µ(1− ε)u, u(x) ≥ 0. (2.5)

Now, chooseR so large that, in addition to (2.4), the principle eigenvalue λ1 of the Dirichlet Laplacian
on B(0;R/2) is smaller than µ(1− ε):

−∆ψ = λ1ψ, ψ = 0 on ∂B(0;R/2), ψ > 0 in B(0;R/2). (2.6)

Multiplying (2.5) by ψk = ψ(x− xk) and (2.6) by u and subtracting we obtain

(µ(1− ε)− λ1)
∫
B(xk;R/2)

uψk ≤ −
∫
B(xk;R/2)

ψk∆u+
∫
B(xk;R/2)

u∆ψk =
∫
∂B(xk;R/2)

u
∂ψk
∂n
≤ 0,

as ∂ψk/∂n < 0 on B(xk;R/2). This is a contradiction as by assumption λ1 < µ(1 − ε). Therefore,
(2.2) is impossible and hence infx u(x) > 0. �

2.2 Explicit upper and lower bounds for small growth rates

We now obtain explicit bounds on the solution when the parameter µ is small that show that non-zero
steady states are close to u ≡ 1.

Lemma 2.2 There exists µ0 > 0 and a constant K > 0, which depends only on the kernel φ but not
on µ ∈ (0, µ0), such that for all µ ∈ [0, µ0], any bounded positive solution u(x) of (1.5) in R satisfies
0 < 1− µK ≤ u(x) ≤ 1 + µK.

Proof. Let M = supx∈R u(x), if M ≤ 1 then u(x) satisfies

−u′′(x) = µu(1− φ ? u) ≥ 0,

and, as u(x) is bounded it has to be a constant, u(x) ≡ M . Then (1.5) implies that M = 1 since
u(x) > 0. Therefore, we may assume that M > 1. First, suppose that u(x) attains its maximum at
some point x0: u(x0) = M . Then (1.5) implies that

φ ? u(x0) ≤ 1. (2.7)

On the other hand, because u ≥ 0,

u′′ = −µu(1− φ ? u) ≥ −µu ≥ −µM.

Considering Taylor’s expansion around x0 we deduce the following lower bound for u(x):

u(x) = u(x0) + u′(x0)(x− x0) +
u′′(ξ)

2
(x− x0)2 ≥M − µM

2
(x− x0)2,

7



with some ξ between x and x0. It follows from (2.7) that

1 ≥M − Mµ

2

∫
φ(x0 − y)(y − x0)2dy = M − Mµ

2

∫
φ(y)y2dy,

and thus
M ≤ 1

1− µI2
, I2 =

1
2

∫
φ(y)y2dy. (2.8)

Then the conclusion for the supremum part of Lemma 2.2 follows in the case when u(x) attains its
maximum.

If u(x) does not attain its maximum, then, without loss of generality, we may assume that there
exists a sequence xn → +∞ such that u(xn) ≥ M − µ/n2, u′′(xn) ≤ 0 and u′(xn) ≥ 0. We set
y = xn + µ/(u′(xn)n). Then we have

M > u(y) = u(xn) + u′(xn)(y − xn) +
u′′(ξ)

2
(y − xn)2 ≥M − µ

n2
+
µ

n
− Mµ3

2n2(u′(xn))2
,

so, for n sufficiently large, we have
µ2M

2n2(u′(xn))2
≥ 1

2n
,

and thus 0 ≤ u′(xn) ≤
√
µ2M/n. Now, we proceed as before. We Taylor-expand around xn to get

u(x) = u(xn) + u′(xn)(x− xn) +
u′′(ξ)

2
(x− xn)2 ≥M − µ

√
M√
n
|x− xn| −

µM

2
(x− xn)2.

As u′′(xn) ≤ 0, we have φ ? u(xn) ≤ 1, and thus

1 ≥M − µ
√
M√
n

∫
φ(xn − y)|y − xn|dy −

µM

2

∫
φ(xn − y)(y − xn)2dy

= M − µM
(
I2 +

I1√
Mn

)
,

with
I1 =

∫
φ(y)|y|dy.

Passing to the limit n→ +∞ we recover the upper bound (2.8) for M .
Next, we set m = infx∈R u(y) – recall that, according to Lemma 2.1, we have m > 0. Again,

assume that u(x) attains its minimum at a point x1: u(x1) = m. Equation (1.5) implies an upper
bound

u′′ = −µu(1− φ ? u) ≤ µu(φ ? u) ≤ µM2,

and, in addition, that φ ? u(x1) ≥ 1. Using the Taylor expansion around x1 we see that

u(x) ≤ m+
µM2

2
(x− x1)2.

Therefore, we have

1 ≤ φ ? u(x1) ≤ m+
µM2

2

∫
φ(x− y)(x− y)2dy ≤ m+ σ2M2I2,

thus, using (2.8), we obtain

m ≥ 1− µI2
(1− µI2)2

≥ 1−Kµ.

The case when u(x) does not attain its minimum is treated similarly to that for the supremum. �
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2.3 An upper bound for all µ

As an aside we note that the proof of Lemma 2.2 can be improved to obtain a uniform upper bound
for steady states for arbitrary large µ.

Proposition 2.3 For any µ > 0 there exists a constant Mµ > 0 such that any bounded non-negative
solution u(x) of (1.5) in R satisfies 0 < u(x) ≤Mµ.

Proof. Let M = supx∈R u(x) then, as in the previous argument for any n > 0 we may choose a
point xn so that u(xn) ≥ M − 1/n2, u′′(xn) > −µM and |u′(xn)| ≤

√
µM/n. Using the Taylor

expansion near xn we observe that

u(x) ≥

(
M −

√
µM

n
|x− xn| −

µM

2
(x− xn)2

)
+

.

As u′′(xn) < 0 we should have φ ? u(xn) ≤ 1. The above bound implies that

1 ≥
∫
φ(y)

(
M −

√
µM

n
|y| − µM

2
y2

)
+

dy.

Passing to the limit as n→ +∞ we conclude that

M ≤
(∫

φ(y)
(

1− µ

2
y2
)

+
dy

)−1

,

and the conclusion of Proposition 2.3 follows. �

2.4 Proof of Theorem 1.1

Assume that v is a bounded nonnegative solution of

−v′′ = µv(1− φ ? v), x ∈ R.

We first choose µ0 as in Lemma 2.2 and set M = supx∈R v(x) ≤M ′ = 1 + µI2.
Here it is more convinient to use the range of the nonlocal kernel as parameter instead of the

growth rate µ. In other words, we set σ =
√
µ and we define u(x) = v(xσ ) and φσ(x) = 1

σφ(xσ ). The
function u satisfies

−u′′ = u(1− φσ ? u), x ∈ R. (2.9)

We need to show that u ≡ 0 or u ≡ 1 for σ small enough. Let R > 0, multiply (2.9) by (u− 1) and
integrate in x between (−R) and R. We obtain

R∫
−R

|ux|2dx− (u− 1)ux
∣∣∣R
−R

= −
R∫
−R

u(1− u)(1− φσ ? u)dx (2.10)

= −
R∫
−R

u(1− u)(1− u+ u− φσ ? u)dx = −
R∫
−R

u(1− u)2dx−
R∫
−R

u(1− u)(u− φσ ? u)dx.
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The standard elliptic regularity estimates imply that supx∈R |ux| ≤ C < +∞. As |u−1| ≤ Cµ = Cσ2

for σ sufficiently small, by Lemma 2.2, and M is uniformly bounded as well, it follows that∫ R

−R
|ux|2dx+

∫ R

−R
u(1− u)2dx ≤ Cσ2 −

∫ R

−R
u(1− u)(u− φσ ? u)dx (2.11)

≤ Cσ2 + C

(∫ R

−R
u(1− u)2dx

)1/2(∫ R

−R
|u− φσ ? u|2dx

)1/2

.

The next step is to prove, for σ ∈ (0, σ0), the estimate∫ R

−R
|u− φσ ? u|2dx ≤ Cσ2

∫ R

−R
|ux|2dx+ Cσ. (2.12)

To do so, we introduce a smooth cut-off function θR(x) = Θ(|x| − R)/δ) with Θ(x) = 1 for x < −2
and Θ(x) = 0 for x > −1 and a small parameter δ > 0 to be chosen. We decompose u as u = u1 +u2,
with u1 = θRu, u2 = (1− θR)u, to get∫ R

−R
|u− φσ ? u|2dx ≤ 2

∫ R

−R
|u1 − φσ ? u1|2dx+ 2

∫ R

−R
|u2 − φσ ? u2|2dx.

Note that∫ R

−R
|u1 − φσ ? u1|2dx ≤

∫
R
|u1 − φσ ? u1|2dx

∫
|1− φ̂(σξ)|2|û1(ξ)|2dξ ≤ Cσ2

∫
R
|u1,x|2dx

≤ Cσ2

∫ R

−R
|ux|2dx+

Cσ2

δ2
δ ≤ Cσ2

∫ R

−R
|ux|2dx+

Cσ2

δ
. (2.13)

The other term may be estimated as∫ R

−R
|u2 − φσ ? u2|2dx (2.14)

≤ 2
∫ R

−R
|u2|2dx+ 2

∫ R

−R
|φσ ? u2|2dx ≤ Cδ + C

∫ R

−R
|φσ ? χ|x|>R−2δ|2dx,

where χS is the characteristic function of a set S. However, for z < R − 2δ we have, using the
Chebyshev inequality

φσ ? χx>R−2δ(z) =
∫ ∞
R−2δ

φ

(
z − y
σ

)
dy

σ
=
∫ (z−R+2δ)/σ

−∞
φ(y)dy ≤ Cσ2

1 + (z −R+ 2δ)2
,

hence, ∫ R

−R
|φσ ? χx>R−2δ|2dx ≤ Cσ4

∫ R−2δ

−∞

dz

(1 + (z −R+ 2δ)2)2
+ Cδ = C(σ4 + δ).

The term involving χx<−R+2δ in (2.14) may be estimated similarly, thus∫ R

−R
|u2 − φσ ? u2|2dx ≤ C(σ4 + δ). (2.15)

Choosing δ = σ in (2.13) and (2.15) we arrive at the bound (2.12).
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The third step is to conclude that, still for σ small enough, there is a constant C such that∫ ∞
−∞
|ux|2dx+ µ

∫ ∞
−∞

u(1− u)2dx ≤ C
√
σ. (2.16)

To show it, we deduce from (2.11) and (2.12) that∫ R

−R
|ux|2dx+

∫ R

−R
u(1− u)2dx ≤ Cσ2 + Cσ1/2

(∫ R

−R
u(1− u)2dx

)1/2

+Cσ
(∫ R

−R
u(1− u)2dx

)1/2(∫ R

−R
|ux|2dx

)1/2

and thus ∫ R

−R
|ux|2dx+

∫ R

−R
u(1− u)2dx ≤ Cσ2 + Cσ

1− Cσ
. (2.17)

Thus the functions u(1 − u)2, |ux|2 and |u − φσ ? u|2 are integrable. We may now conclude the
proof. We return to (2.10) but now integrate from Ln to Rn with Ln → −∞ and Rn → +∞ chosen
so that ux(Ln), ux(Rn)→ 0 as n→ +∞ – this is possible since u(x) is a smooth bounded function.
Then we obtain∫ Rn

Ln

|ux|2dx− (u− 1)ux
∣∣∣Rn
Ln

= −
∫ Rn

Ln

u(1− u)2dx−
∫ Rn

Ln

u(1− u)(u− φσ ? u)dx.

Passing to the limit n→ +∞ we get

∫
R

|ux|2dx+
∫
R

u(1− u)2dx ≤
√
M

∫
R

u(1− u)2dx

1/2∫
R

|u− φσ ? u|2dx

1/2

. (2.18)

As u− φσ ? u and ux are L2(R) functions, the Fourier theory gives us the upper bound∫
R
|u− φσ ? u|2dx ≤ Cσ2

∫
R
|ux|2dx,

and we get ∫
R
|ux|2dx+

∫
R
u(1− u)2dx ≤ Cσ

(∫
R
u(1− u)2dx

)1/2(∫
R
|ux|2dx

)1/2

and we conclude that for σ > 0 sufficiently small we have∫
|ux|2dx =

∫
u(1− u)2dx = 0,

which means that u(x) ≡ 1. �

2.5 Proof of Theorem 1.3

Before proving Theorem 1.2 we consider the periodic case because it is much easier and explains the
main idea in the proof of Theorem 1.2.

Let u(x) 6= 0, x ∈ Rd be an L-periodic nonnegative bounded solution of

−∆u = µu(1− φ ? u) = −µu(φ ? v), (2.19)
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with v = u− 1.
We claim that there are three remarkable identities (the second is not used in this proof but we

record it here for completeness and future reference):∫
TL
u(1− φ ? u) = 0, (2.20)

1
µ

∫
TL
|∇u|2 +

∫
TL
v(φ ? v)dx = −

∫
TL
v2(φ ? v)dx, (2.21)

1
µ

∫
TL

|∇u|2

u2
dx+

∫
TL
v(φ ? v)dx = 0. (2.22)

First, we obtain (2.20) by integration over TL of equation (2.19). In order to get (2.21) we multiply
(2.19) by u− 1 and integrate over TL, using (2.19), as follows:

1
µ

∫
TL

|∇u|2dx = −
∫

TL

u(u− 1)(φ ? v)dx−
∫

TL

(1 + v)v(φ ? v)dx.

To obtain (2.22), we recall that by Lemma 2.1, u > 0. We divide equation (2.19) by u and integrate
over TL. Then, we add (2.20).

To conclude, decompose v and φ ? v into the Fourier series

v(x) =
∑

k∈Zd/L

vke
2πik·x, φ ? v(x) =

∑
ξ∈Zd/L

gke
2πik·x,

with

gk =
1
|TL|

∫
TL
φ ? v(x)e−2πik·xdx =

1
|TL|

∫
R

∫
TL
φ(x− y)vke2πik·ye−2πik·xdxdy = vkφ̂ (2πk) .

Therefore, we arrive at∫
TL
v(x)(φ ? v)(x)dx = |TL|

∑
k∈Zd/L

gkv−k|TL|
∑

k∈Zd/L

φ̂ (2πk) |vk|2.

Using this in (2.22) we obtain

1
µ

∫
TL

|∇u|2

u2
dx+ |TL|

∑
k∈Zd/L

φ̂ (2πk) |vk|2 = 0. (2.23)

Hence, if φ̂(2πk) ≥ 0 for all k ∈ Zd/L, then ∇u = 0 and thus u(x) ≡ 1 or u(x) ≡ 0. �

2.6 Proof of Theorem 1.2

Our goal is to establish an identity similar to (2.22) for a general bounded solution, without the
periodicity assumption. We set µ = 1 without loss of generality in this proof. Let u 6= 0, u ≥ 0, be
a solution to

−u′′ = u(1− φ ? u). (2.24)
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We set v = u − 1, multiply (2.24) by v/u and integrate between (−Ln) and Rn chosen so that
Ln, Rn → +∞ as n→ +∞, and |ux(−Ln)|+ |ux(Rn)| ≤ 1/n:

−
∫ Rn

−Ln

u2
xv

u2
dx+

∫ Rn

−Ln

uxvx
u

dx− uxv

u

∣∣∣Rn
−Ln

= −
∫ Rn

−Ln
v(φ ? v)dx

so that, as v = u− 1,

uxv

u

∣∣∣Rn
−Ln
−
∫ Rn

−Ln

u2
x

u
dx+

∫ Rn

−Ln

u2
x

u2
dx+

∫ Rn

−Ln

u2
x

u
dx+

∫ Rn

−Ln
v(φ ? v)dx =

∫ Rn

−Ln

u2
x

u2
dx+

∫ Rn

−Ln
v(φ ? v)dx.

Therefore, we have ∫ Rn

−Ln

u2
x

u2
dx+

∫ Rn

−Ln
v(φ ? v)dx ≤ C

n
, (2.25)

which is the analog of (2.22) in the non-periodic case. We claim that

lim inf
n→+∞

∫ Rn

−Ln
v(x)(φ ? v)(x)dx ≥ 0. (2.26)

Then, as a consequence of (2.25) we obtain

lim sup
n→+∞

∫ Rn

−Ln

|ux|2

u2
dx = 0,

and thus u is constant. As u > 0 we conclude that u ≡ 1. Therefore, it remains only to show that
(2.26) holds.

First, note that if v(x) ∈ L2(R) then we have∫ ∞
−∞

v(φ ? v)dx =
∫ ∞
−∞

φ̂(ξ)|v̂(ξ)|2dξ ≥ 0,

since φ̂(ξ) > 0, and thus (2.26) holds trivially. Therefore, we may assume that v(x) is in L∞(R),
but not in L2(R). In addition, the standard elliptic regularity results and Proposition 2.3 imply that
v(x) ∈ Cmb (R) for all m ≥ 0 – all derivatives of v(x) are uniformly bounded:

‖v‖Cmb ≤Mm. (2.27)

We will use these properties together with the equation for v(x) to show that not only (2.26) holds
but, actually,

lim inf
n→+∞

∫ Rn

−Ln
v(x)(φ ? v)(x)dx = +∞. (2.28)

In order to prove (2.28) we introduce a smooth cut-off function ψn(x) such that 0 ≤ ψn(x) ≤ 1,
and

ψn(x) =
{

1, −Ln ≤ x ≤ Rn,
0, x ≤ −Ln − 1, or x ≥ Rn + 1,

and set vn(x) = ψn(x)v(x). In particular, we have

lim
n→+∞

∫ ∞
−∞
|vn|2dx = +∞, (2.29)
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as ‖v‖L2(R) = +∞. Let us write

Rn∫
−Ln

(φ?v)vdx =

Rn∫
−Ln

(φ?v)vndx

∞∫
−∞

(φ?v)vn−
−Ln∫
−∞

(φ?v)vndx−
∞∫

Rn

(φ?v)vndx = I+II1 +II2. (2.30)

The last two terms on the right side of (2.30) are uniformly bounded in n. For instance, we have:∣∣∣∣∫ +∞

Rn

(φ ? v)vndx
∣∣∣∣ ≤ K ∫ Rn+1

Rn

|φ ? v|dx ≤ K ′. (2.31)

Here and below we denote by K, K ′, etc. various constants which depend on the constants Mm in
(2.27) and the function φ but are independent from n.

We rewrite the first term in (2.30) as

I =
∫ ∞
−∞

(φ ? v)vn
∫ ∞
−∞

(φ ? vn)vn +
∫ ∞
−∞

(φ ? (v − vn))vn = I1 + I2. (2.32)

Again, I2 is bounded uniformly in n:

|I2| ≤
∞∫
−∞

|φ ? (v − vn)||vn| ≤ 2M2
0

Rn+1∫
−Ln−1

[|φ ? χ[−Ln−1,−Ln]|+ |φ ? χ[Rn,Rn+1]|] ≤ K.

Hence, (2.28) holds if and only if

lim inf
n→+∞

∫ ∞
−∞

(φ ? vn)vndx = +∞, (2.33)

and this is what we will show now. Let us choose a function g ∈ S(R) such that its Fourier transform
satisfies 0 ≤ ĝ(ξ) ≤ 1, and

ĝ(ξ) =
{

1, |ξ| ≤ 1,
0, |ξ| ≥ 2.

Then we may split

∞∫
−∞

(φ ? vn)vndx

∞∫
−∞

φ̂(ξ)|v̂n(ξ)|2dξ (2.34)

=

∞∫
−∞

φ̂(ξ)ĝ
(
ξ

R

)
|v̂n(ξ)|2dξ +

∞∫
−∞

φ̂(ξ)
[
1− ĝ

(
ξ

R

)]
|v̂n(ξ)|2dξ ≥

∞∫
−∞

φ̂(ξ)ĝ
(
ξ

R

)
|v̂n(ξ)|2dξ.

To bound this from below, observe that, with gR(x) = Rg(Rx):

∞∫
−∞

[
1− ĝ

(
ξ

R

)]
|v̂n(ξ)|2dξ =

∫ ∞
−∞
|vn|2dx−

∫ ∞
−∞

vn(x)(gR ? vn)(x)dx

=
∫ ∞
−∞

vn(x)
[
vn(x)−

∫
gR(y)vn(x− y)dy

]
dx. (2.35)
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We now choose R sufficiently large so that for all n > n0 we have
∞∫
−∞

[
1− ĝ

(
ξ

R

)]
|v̂n(ξ)|2dξ ≤ 1

3

∫ ∞
−∞
|v̂n(ξ)|2dξ 1

3

∫ ∞
−∞
|vn(x)|2dx. (2.36)

This is done as follows. Note that, as∫
gR(x)dx =

∫
g(x)dx = 1,

equation (2.35) implies that
∞∫
−∞

[
1− ĝ

(
ξ

R

)]
|v̂n(ξ)|2dξ =

∫ ∞
−∞

∫ ∞
−∞

vn(x)gR(y) [vn(x)− vn(x− y)] dxdy

∫ ∞
−∞

∫ ∞
−∞

vn(x)g(y)
[
vn(x)− vn

(
x− y

R

)]
dxdy. (2.37)

Choose r0 so that ∫
|y|≥r0

|g(y)|dy ≤ 1
120

and split the y-integral in the right side of (2.37) as
∞∫
−∞

∞∫
−∞

vn(x)g(y)
[
vn(x)− vn

(
x− y

R

)]
dxdy

∫
|y|≤r0

∞∫
−∞

vn(x)g(y)
[
vn(x)− vn

(
x− y

R

)]
dxdy

+
∫

|y|≥r0

∞∫
−∞

vn(x)g(y)
[
vn(x)− vn

(
x− y

R

)]
dxdy = Pn +Qn.

The second term is estimated as

|Qn| ≤
∫

|y|≥r0

|g(y)|
∞∫
−∞

|vn(x)|
[
|vn(x)|+

∣∣∣vn (x− y

R

)∣∣∣] dxdy
≤

∫
|y|≥r0

|g(y)|
∞∫
−∞

[
|vn(x)|2 +

1
2
|vn(x)|2 +

1
2

∣∣∣vn (x− y

R

)∣∣∣2] dxdy
2
∫

|y|≥r0

|g(y)|dy

 ∞∫
−∞

|vn(x)|2dx

 ≤ 1
60

∞∫
−∞

|vn(x)|2dx.

The term Pn is bounded in the following way:

|Pn| ≤
∫

|y|≤r0

∞∫
−∞

|vn(x)g(y)|
∣∣∣vn(x)− vn

(
x− y

R

)∣∣∣ dxdy
≤

∫
|y|≤r0

|g(y)|
∞∫
−∞

|vn(x)|

(∫ x+r0/R

x−r0/R
|v′n(z)|dz

)
dxdy

≤ C
(r0
R

)1/2
∞∫
−∞

|vn(x)|

(∫ x+r0/R

x−r0/R
|v′n(z)|2dz

)1/2

dx.
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Using the Cauchy-Schwarz inequality and changing the order of integration this may be estimated
as

|Pn| ≤ C
(r0
R

)1/2

 ∞∫
−∞

|vn(x)|2dx

1/2
 ∞∫
−∞

x+r0/R∫
x−r0/R

|v′n(z)|2dzdx


1/2

C
(r0
R

) ∞∫
−∞

|vn(x)|2dx

1/2 ∞∫
−∞

|v′n(z)|2dz

1/2

. (2.38)

We now recall relation (2.25), which implies, as u(x) is bounded from above by u(x) ≤ M , as in
Proposition 2.3:∫ ∞

−∞
|v′n|2dx ≤ C +

∫ Rn

−Ln
|v′|2dx ≤ C +M2

∫ Rn

−Ln

|u′|2

u2
dxC − C

∫ Rn

−Ln
v(φ ? v)dx+

C

n

≤ C1 + C

∫ ∞
−∞
|vn(φ ? vn)|dx+

C

n
C1 + C

∫ ∞
−∞

φ̂|v̂n|2dξ +
C

n
≤ C + C

∫ ∞
−∞
|vn|2dx. (2.39)

Using this in (2.38) we get, for n > n0 sufficiently large,

|Pn| ≤ C
(r0
R

) ∞∫
−∞

|vn(x)|2dx

1/21 +

∞∫
−∞

|vn(z)|2dz

1/2

≤ C
(r0
R

) ∞∫
−∞

|vn(x)|2dx

 . (2.40)

We used (2.29) in the last step. Therefore, if we choose R so that Cr0/R < 1/60, (2.36) holds.
As a consequence of (2.36) we have

∞∫
−∞

ĝ

(
ξ

R

)
|v̂n(ξ)|2

∞∫
−∞

|v̂n(ξ)|2dξ −
∞∫
−∞

[
1− ĝ

(
ξ

R

)]
|v̂n(ξ)|2dξ ≥ 1

2

∫ ∞
−∞
|vn(x)|2dx, (2.41)

for R ≥ R0 sufficiently large. Inserting this in (2.34) leads to
∞∫
−∞

(φ ? vn)vndx ≥
∞∫
−∞

φ̂(ξ)ĝ
(
ξ

R0

)
|v̂n(ξ)|2dξ ≥ K(R0)

∞∫
−∞

ĝ

(
ξ

R0

)
|v̂n(ξ)|2dξ (2.42)

≥ K(R0)
2

∫ ∞
−∞
|vn(x)|2dx,

with
K(R0) = inf

|ξ|≤2R0

φ̂(ξ).

Now, it follows from (2.42) and (2.29) that (2.33) holds and thus so does (2.28). The proof of
Theorem 1.2 is now complete. �

3 Existence of traveling waves

Here we consider existence of traveling waves connecting the steady state u ≡ 0 to a uniformly
positive state. Recall that a traveling wave u(x) moving with the speed c ∈ R is a bounded solution
of the equation

−cux = uxx + µu(1− φ ? u), (3.1)
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with the boundary conditions
lim inf
x→−∞

u(x) > 0, u(+∞) = 0. (3.2)

We will now prove Theorem 1.4 which asserts existence of traveling wave solutions of (3.1)-(3.2)
for all c ≥ c∗ = 2

√
µ. The main steps of the proof are as follows. As usual, we first construct

the traveling wave that moves with the minimal speed c∗ = 2
√
µ. This is done by considering a

sequence of approximating problems on intervals (−a, a) (see (3.3) below), and then passing to the
limit a → +∞. In order to obtain a non-trivial limit one usually has to fix a normalization for
ua at x = 0. Here, this is done as follows: first, we show that any solution of (3.3) is uniformly
bounded from above by a constant K0 which is independent of c ∈ R, and that the speed c is also
uniformly bounded from above and below, uniformly in the normalization at x = 0. Next, we show
that strictly positive global solutions of (3.3) with a bounded speed c and an upper bound K0 for
u are uniformly bounded from below by a constant ε. We set u(0) = ε/2. The rest of the proof is
rather standard: we use the above a priori bounds and the Leray-Schauder degree theory to find
a solution of (3.3) on a finite interval and then use the same a priori bounds to pass to the limit
a → +∞. This concludes the proof for the speed c = c∗. Existence of traveling waves for speeds
c > c∗ comes from an argument using sub- and super-solutions, as well as additional a priori uniform
estimates that are required because the super-solution is exponentially growing as x → −∞. The
sub- and super-solution part of the argument is similar to what was done in [2, 13, 14].

3.1 A priori bounds for the finite domain problem

We will first study the approximating problem on a finite interval (−a, a) for an unknown function
ua(x) and an unknown speed ca:

−cauax = uaxx + µg(ua)(1− φ ? ūa), − a ≤ x ≤ a, (3.3)
ua(−a) = 1, ua(a) = 0,
ua(0) = ε/2,

with the number ε > 0 to be specified later, as explained above. Here ūa is an extension of ua to
the whole line:

ūa(x) =


ua, −a ≤ x ≤ a,
0, x > a,
1, x < −a,

(3.4)

which is needed to define the convolution, and

g(u) =
{

0 if u ≤ 0,
u if u ≥ 0.

(3.5)

Note that (3.3), without the normalization at x = 0 may have a solution for any ca ∈ R. The
additional condition ua(0) = ε/2 is needed to ensure compactness of the family (ca, ua) as a→ +∞,
which is the limit we will take to obtain solutions on the whole line.

An upper bound for the solution

We first prove existence of a uniform bound on the possible solutions of (3.3). We will drop the
superscript a below to simplify the notation whenever it causes no confusion.

Lemma 3.1 There exist a0 > 0 and K0 > 0 so that any solution to (3.3) satisfies

0 ≤ u(x) ≤ K0 (3.6)

for all x ∈ [−a, a] and all a > a0, where the constants K0 and a0 depend only on µ and φ.

17



Proof. First, if u is a solution of (3.3) that attains a negative minimum at some point xm, then xm
is an interior point of (−a, a) and

−u′′ + cu′ = 0

in a neighborhood of xm. This would imply that u ≡ u(xm) < 0 which is a contradiction. Thus,
u(x) ≥ 0 for all x ∈ (−a, a), and g(u) = u. In particular, any solution of (3.3) actually solves

−cauax = uaxx + µua(1− φ ? ūa), ua(x) > 0 − a ≤ x ≤ a, (3.7)
ua(−a) = 1, ua(a) = 0, ua(0) = ε/2.

We argue as in the proof of Lemma 2.2 to prove the uniform upper bound. Set

K0 = max
x∈(−a,a)

u(x) = u(xM ),

and assume K0 > 1 so that u(x) attains its maximum at an interior point xM ∈ (−a, a). We want
to prove that K0 is bounded by a constant that does not depend on a. Assume first that c < 0 (the
same argument works for c > 0 but considering x > xM below, and the case c = 0 was considered
in Lemma 2.2). On the one hand, the maximum principle implies that φ ? u(xM ) ≤ 1. On the other
hand, because u ≥ 0, we have

−cu′ − u′′ ≤ µu ≤ µK0,

so that, as c < 0: (
u′e−|c|x

)′
≥ −µK0e

−|c|x.

Integrating from x < xM to xM , we find, since u′(xM ) = 0:

u′(x) ≤ µK0
1− e|c|(x−xM )

|c|
.

Integrating again, we obtain for x ≤ xM ,

u(x) ≥ K0

[
1 + µ

x− xM
|c|

+ µ
1− e|c|(x−xM )

c2

]
= K0

[
1− µ(x− xM )2B(|c|(xM − x))

]
≥ K0

[
1− µ(x− xM )2

2

]
.

Here we have defined, for y ≥ 0:

0 ≤ B(y) :=
e−y + y − 1

y2
≤ 1

2
. (3.8)

Notice that, because u(−a) = 1, this implies that

1 ≥ K0

(
1− µ(xM + a)2

2

)
. (3.9)

Choose x0 <
√

2/µ so that ∫ x0

0
φ(y)

(
1− µy

2

2

)
+

dy > 0.

It follows from (3.9) that either we have K0 ≤ (1− µx2
0/2)−1 (and we are done), or xM > −a+ x0.

In the latter case, because u ≥ 0, we have

1 ≥ φ ? u(xM ) ≥
∫ x0

0
φ(y)u(xM − y)dy ≥ K0

∫ x0

0
φ(y)

(
1− µy

2

2

)
+

dy.

This shows that K0 is a priori smaller than a constant depending on φ and locally bounded with
respect to µ. This proves Lemma 3.1. �
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An upper bound for the speed

The next step is the following upper bound for the speed.

Lemma 3.2 For any normalization parameter ε > 0 in (3.7) there exists a0(ε) > 0 so that for all
a > a0(ε), any nonnegative solution of (3.7) satisfies an upper bound for the speed

c ≤ 2
√
µ. (3.10)

Proof. As u ≥ 0, the function u satisfies the inequality

−cux ≤ uxx + µu. (3.11)

Let us assume that c > 2
√
µ and define a family of functions ψA(x) = Ae−

√
µx: they satisfy

−cψ′A − ψ′′A > µψA. (3.12)

Note that, since u(x) ∈ L∞(−a, a), when A > 0 is sufficiently large (depending on the solution) we
have u(x) < ψA(x) while for A < 0 we have u(x) > ψA(x). Therefore, we can define

A0 = inf{A : ψA(x) > u(x) for all x ∈ [−a, a]}.

It follows that there exists x0 ∈ [−a, a] so that ψA0(x0) = u(x0) and A0 > 0. However, (3.11) and
(3.12) imply that x0 can not be an interior point of the interval (−a, a). As A0 > 0, it is impossible
that x0 = a, hence x0 = −a. As a consequence, ψA0(−a) = 1, thus A0 = e−a. However, then
u(0) ≤ ψA0(0) = e−a < ε/2 which is a contradiction to the normalization u(0) = ε/2 in (3.18) when
a > ln 2− ln ε. Hence, c > 2

√
µ is impossible for a sufficiently large. �

A lower bound for the speed

Now, we prove a lower bound for the speed c.

Lemma 3.3 There exist a0 > 0 and K > 0 independent of the normalization parameter ε ∈ (0, 1/4)
in (3.7) so that any solution to (3.7) satisfies c > −K for all a > a0.

Proof. Suppose that c < −1. We first prove that the derivative u′ is bounded by K/|c| on an
interval (−a, a−K0) with the constants K0 and K independent of a:

−K
|c|
≤ u′(x) ≤ K

|c|
(3.13)

for all x ∈ (−a, a −K0). Note that the function Q(x) = −µu(1 − φ ? u) is uniformly bounded by
Lemma 3.1. We write (

u′ecx
)′ = Q(x)ecx,

and thus for x > y,

u′(x)ecx = u′(y)ecy +
∫ x

y
Q(z)eczdz, (3.14)

so that

u′(x) ≥ u′(y)e|c|(x−y) − ‖Q‖∞
e|c|(x−y)

|c|
. (3.15)

Setting x = a in (3.15) we conclude that

u′(y) ≤ 2‖Q‖∞/|c| (3.16)

19



for all y ∈ (−a, a), as u′(a) ≤ 0.
The other inequality coming from (3.14), still for x > y, gives

u′(x) ≤ u′(y)e|c|(x−y) + ‖Q‖∞
e|c|(x−y)

|c|
.

This shows that for some constants K0 and K independent of a we have

u′(y) ≥ −2‖Q‖∞/|c|, (3.17)

for all y ≤ a − K0. Otherwise we would have u′(x) ≤ −‖Q‖∞ e|c|(x−y)

|c| for all x ∈ (y, a) and this
cannot hold for a bounded function 0 ≤ u(y) ≤ K and u(a) = 0 on a too long interval (y, a).

The bounds on u′ in (3.13) mean that for c very negative, u is locally close to a constant. Now,
we argue by contradiction and suppose that |c| > |c0|. Let x0 < 0 be the first point to the left
of x = 0 where u(x0) = 3/4. We claim that for |c| > |c0| sufficiently large the function u(x) is
monotonically decreasing on the interval [x0, a−K0]. Indeed, let y be a point where u(y) ≤ 3/4. If
u achieves a local minimum at y then, from (3.7) we see that φ ? u(y) ≥ 1. This contradicts the fact
that u(y) ≤ 3/4 since the bounds (3.13) imply that, if |c0| is sufficiently large, and φ ? u(y) ≥ 1 then

u(y) ≥ 1− K ′

|c|
,

with a constant K ′ which depends only on φ and µ. This is because there exists a finite distance
l which depends only on the function φ and the upper bound K for the function u such that
φ ? u(y) ≥ 1 implies that there exists a point y′ such that |y − y′| ≤ 1 and u(y′) ≥ 1. Hence,
no local minimum can be attained at a point y where u(y) ≤ 3/4 provided that c is sufficiently
negative. This means that u′(x) ≤ 0 at all points x where u(x) ≤ 3/4 (otherwise there would be
a first local minimum to the left of x, where u would be less than 3/4, a contradiction). In the
same way u cannot decrease on an interval (x0, x1), x1 > x0 and achieve a local minimum at x1.
Since x0 is not a local minimum, we find that the function u(x) is decreasing on the whole interval
(x0, a − K0). If c < 0 is very negative, using (3.13), we conclude that u(x) ≥ 1/4 on a very long
interval (x0, x0 +R) with R ≥ K|c|, and hence (3.7) implies that u(x) is uniformly strictly concave
on the interval (x0 + R/4, x0 + 3R/4) (recall, again, that we have assumed that c < 0). This is a
contradiction to the fact that 1/4 ≤ u(x) ≤ 3/4 on (x0, x0 +R), which proves Lemma 3.3. �

A uniform infimum lower bound on the steady states

Lemma 3.4 For all K > 0 and α < β, there exists ε = ε(K,α, β) > 0 such that if u is a solution
of (3.1) with c ∈ [α, β], 0 < u ≤ K and infx∈R u(x) > 0, then infx∈R u(x) > ε.

Proof. Assume that there exists a sequence un of solutions to (3.1) with c = cn such that βn :=
infR un > 0 for all n, with βn → 0 as n → +∞, and set vn = un/βn. As infR vn = 1 for all n, one
may assume that there exists xn ∈ R such that vn(xn) ≤ (1 + 1

n). Consider the shifted functions
wn(x) = vn(x+ xn) which satisfy

−w′′n − cnw′n = µwn(1− φ ? ũn),

where ũn = u(x + xn). As supx∈R un(x) ≤ K, the coefficients above are uniformly bounded with
respect to n, hence, the elliptic interior estimates [10] yield that one can extract some subsequence
which converges locally uniformly to a function w∞(x), and cn → c̄ ∈ [α, β] Moreover, as ũn(0) ≤
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βn(1 + 1/n), the Harnack inequality applied to ũn(x) implies that ũn(x)→ 0 locally uniformly in x.
Hence, the function w∞(x) satisfies

−w′′∞ − c̄w′∞ = µw∞.

Moreover, one has w∞(0) = 1 and w∞ ≥ 1. The strong maximum principle thus gives w∞ ≡ 1 which
is a contradiction since µ 6= 0. �

The normalized problem

We may now set the normalization at x = 0 for the approximating problem (3.7). Lemmas 3.2
and 3.3 imply that the speed c satisfies a priori bounds α < c < β when a is large with the constants
α and β = 2

√
µ which do not depend on the choice of ε > 0. Hence, we may set ε = ε(K0, α, β) as in

Lemma 3.4, where K0 has been defined in Lemma 3.1. Consider the normalized (at x = 0) problem

−cauax = uaxx + µua(1− φ ? ūa), ua(x) ≥ 0, − a ≤ x ≤ a,
ua(−a) = 1, ua(a) = 0, (3.18)
ua(0) = ε/2.

Proposition 3.5 For all ε > 0, there exist a0 > 0 and K > 0 so that (3.18) admits a solution for
every a > a0, which in addition satisfies the a priori bounds

|c|+ ‖u‖C2(−a,a) ≤ K,
c ≤ 2

√
µ,

(3.19)

for all a > a0.

Proof. With the a priori bounds in Lemmas 3.2-3.3 in hand, the proof of Proposition 3.5 is stan-
dard using the Leray-Schauder topological degree argument [3]. We provide the details for reader’s
convenience. Given a nonnegative function v(x) defined on (−a, a) with v(−a) = 1, v(a) = 0, we
consider a family of problems{

−cZτx = Zτxx + τg(v)µv(1− φ ? v̄), − a ≤ x ≤ a,
Zτ (−a) = 1, Zτ (a) = 0.

(3.20)

with the parameter τ ∈ [0, 1] and v̄ an extension of v to the whole line as in (3.4).
We introduce a map Kτ : (c, v) → (θτ , Zτ ) as the solution operator of the linear system (3.20).

The number θτ is defined by
θτ =

ε

2
− v(0) + c.

The operator Kτ is a mapping of the Banach space X = R × C1,α(−a, a), equipped with the norm
‖(c, v)‖X = max(|c|, ‖v‖C1,α(−a,a)), onto itself. A solution qτ = (c, u) of (3.18) is a fixed point of
Kτ with τ = 1 and satisfies K1q1 = q1, and vice versa: a fixed point of K1 provides a solution to
(3.18). Hence, in order to show that (3.18) has a traveling front solution it suffices to show that
the kernel of the operator F1 = Id − K1 is not trivial. The operator Kτ is compact and depends
continuously on the parameter τ ∈ [0, 1]. Thus the Leray-Schauder topological degree theory can be
applied. Let us introduce a ball BM = {‖(c, v)‖X ≤M}. Then Lemmas 3.2-3.3 (with µ replaced by
τµ) show that the operator Fτ does not vanish on the boundary ∂BK with K sufficiently large for
any τ ∈ [0, 1]. It remains only to show that the degree deg(F1, BK , 0) in B̄K is not zero. However,
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the homotopy invariance property of the degree implies that deg(Fτ , BK , 0) = deg(F0, BK , 0) for all
τ ∈ [0, 1]. Moreover, the degree at τ = 0 can be computed explicitly as the operator F0 is given by

F0(c, v) =
(
v(0)− ε

2
, v − vc0

)
.

Here the function vc0(x) solves

d2vc0
dx2

+ c
dvc0
dx

= 0, vc0(−a) = 1, vc0(a) = 0

and is given by

vc0(x) =
e−cx − e−ca

eca − e−ca
.

The mapping F0 is homotopic to

Φ(c, v) = (vc0(0)− ε

2
, v − vc0)

that in turn is homotopic to
Φ̃(c, v)

(
vc0(0)− ε

2
, v − vc

0
∗

0

)
,

where c0∗ is the unique number so that vc∗0 (0) = ε/2. The degree of the mapping Φ̃ is the product
of the degrees of each component. The last one has degree equal to one, and the first to (−1), as
the function vc0(0) is decreasing in c. Thus degF0 = −1 and hence degF1 = −1 so that the kernel of
Id−K1 is not empty. This finishes the proof of Proposition 3.5. �

3.2 Solution on the whole line

Having constructed a solution (ca, ua) of (3.18) which satisfies the a priori estimates (3.19), we now
pass to the limit an → +∞. The aforementioned bounds imply that passing to a subsequence
an → +∞ we obtain a speed c ∈ R, |c| ≤ K and a positive function u ∈ C2

b (R), 0 ≤ u ≤ K which
satisfy

−cux = uxx + µu(1− φ ? u), 0 ≤ u(x) ≤ K,
u(0) = ε/2. (3.21)

We now have to verify that u(x) satisfies the boundary conditions (3.2) at infinity and that c = 2
√
µ.

This will finish the proof of Theorem 1.4 for c = c∗ = 2
√
µ and is done in several steps.

Monotonicity on the right

We first show that u(x) is monotonically decreasing on the right. This will be the consequence of
the two following lemmas.

Lemma 3.6 Let u satisfy (3.21). Then there exists a sequence xn, so that |xn| → +∞ and u(xn)→
0 as n→ +∞.

Proof. If infR u > 0, then as u ≤ K, we know from Lemma 3.4 that infR u ≥ ε, which would
contradict the normalization u(0) = ε/2. �

We will assume without loss of generality that xn → +∞.
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Lemma 3.7 Assume that u satisfies (3.21), and that there exists a sequence xn → +∞, so that
u(xn) → 0 as n → +∞. Then there exists R0 so that u(x) is monotonically decreasing for x > R0

and limx→+∞ u(x) = 0.

Proof. Let us assume that the statement is false. As u(xn) → 0 as n → +∞ and u(x) is not
eventually monotonic, there exists another sequence zn → +∞ so that u(x) attains a local minimum
at zn and u(zn)→ 0. It follows from (3.21) that

φ ? u(zn) ≥ 1. (3.22)

On the other hand, as u(x) is bounded in C2(R), the Harnack inequality implies that for any R > 0
and any δ > 0 there exists N so that u(x) ≤ δ for all x ∈ (zn−R, zn+R). This, however, contradicts
(3.22) when R is sufficiently large and δ is sufficiently small. �

Characterization of the minimal speed

We now prove that c = 2
√
µ and that there exists no traveling wave solution of speed c < 2

√
µ. As

we already know that c ≤ 2
√
µ, this will be a direct consequence of the next lemma.

Lemma 3.8 Assume that u is a positive bounded solution of (3.21) such that lim infx→+∞ u(x) = 0,
then c ≥ 2

√
µ.

Proof. Take a sequence xn → +∞ such that u(xn)→ 0 and set vn(x) = u(x+ xn)/u(xn). As u is
bounded and satisfies (3.21), the Harnack inequality implies that the sequence vn is locally uniformly
bounded. This function satisfies:

−v′′n − cv′n = µvn(1− φ ? ũn) in R,

where ũn(x) = u(x+ xn). The Harnack inequality implies that the shifted functions ũ(xn) converge
to zero locally uniformly in x. Thus one may assume, up to extraction of a subsequence, that the
sequence vn converges to a function v that satisfies:

−v′′ − cv′ = µv in R. (3.23)

Moreover, v is positive since it is nonnegative and v(0) = 1. Equation (3.23) admits such a solution
if and only if c ≥ 2

√
µ, which ends the proof. �

The limit on the left

Lastly, we show that u(x) is strictly positive on the left. This will conclude the proof of Theorem 1.4
for c = c∗.

Lemma 3.9 Assume that u(x) satisfies (3.21) with c > 0. Then we have

lim inf
x→−∞

u(x) > 0. (3.24)

Proof. Let us assume that there exists a sequence yn → −∞ such that u(yn)→ 0. Then using the
arguments as in the proof of Lemmas 3.7 and 3.8 we would be able to show that c < 0 which is a
contradiction. �
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3.3 Traveling waves with speeds c > c∗

The last part in the proof of Theorem 1.4 is to take c > 2
√
µ and construct a traveling wave

moving with speed c. The proof also goes through an approximating problem on a finite interval
but solution for the latter problem is constructed with different boundary values and using sub- and
super-solutions rather than with the a priori bounds. The key point is that though the super-solution
is an unbounded exponential, the solution itself is bounded uniformly in the interval size 2a: see
Lemma 3.10.

Sub- and super-solutions

To begin we need a pair of sub- and super-solutions. As a super-solution we take the exponential

q̄c(x) = e−λcx,

with λc > 0 being the smallest root of

λ2
c − cλc + µ = 0.

The function q̄c satisfies
−cq̄′c = q̄′′c + µq̄c ≥ q̄′′c + µq̄c(1− φ ? q̄c).

Next, we look for a sub-solution rc which would satisfy

−cr′c ≤ r′′c + µrc − µq̄c(φ ? q̄c).

Note that
φ ? q̄c =

∫
φ(y)e−λc(x−y)dy = Zce

−λcx,

with
Zc =

∫
φ(y)eλcydy.

We take rc of the form

rc(x) =
1
A
e−λcx − e−(λc+ε)x,

with ε > 0 small chosen so that

γc = c(λc + ε)− (λc + ε)2 − µ > 0,

and A > 1 to be chosen below. Note that rc(x) > 0 only on the set {A < eεx}, that is, for
x > (lnA)/ε. Then we have

−cr′c − r′′c − µrc + µq̄c(φ ? q̄c) =
[
−c(λc + ε) + (λc + ε)2 + µ

]
e−(λc+ε)x + Zcµq̄ce

−λcx

= −γce−(λc+ε)x + Zcµe
−2λcx

= e−(λc+ε)x
[
−γc + Zcµe

−(λc−ε)x
]
< 0

for all

x >
1

λc − ε
ln
(
Zcµ

γc

)
,

which includes the set {rc(x) > 0}, provided that ε < λc and A is sufficiently large. We set

r̄c(x) = max(0, rc(x)).

This function still satisfies
−cr̄′c − r̄′′c ≤ µr̄c − µq̄cφ ? q̄c,

but in the sense of distributions.
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The finite domain problem

Given c > 2
√
µ consider an approximating problem on the interval (−a, a):

−cu′ = u′′ + µu(1− φ ? u), u(±a) = r̄c(±a). (3.25)

Define a convex set of functions Ra = {u ∈ C(−a, a) : r̄c(x) ≤ u(x) ≤ q̄c(x), and consider the
mapping Φa which maps a function u0 ∈ C(−a, a) to the solution of

−cu′ = u′′ + µu0(1− φ ? u0), u(±a) = r̄c(±a). (3.26)

The map Φa is compact. We claim that it leaves the set Ra invariant. Indeed, given u0 ∈ Ra, the
function q̄c satisfies the inequality

−cq̄′c − q̄′′c = µq̄c ≥ µu0 ≥ µu0(1− φ ? u0) = −cu′ − u′′,

and u(±a) = r̄c(±a) ≤ q̄c(±a). It follows from the maximum principle that u(x) ≤ q̄c(x) for all
x ∈ (−a, a). On the other hand, the function r̄c(x) satisfies

−cr̄′c − r̄′′c ≤ µr̄c − µq̄cφ ? q̄c ≤ µu0(1− φ ? u0) = −cu′ − u′′,

and u(±a) = r̄c(±a). It follows that u(x) ≥ r̄c(x) for all x ∈ (−a, a) and thus the set Ra is invariant.
The Schauder fixed point theorem now implies that the mapping Φa has a fixed point ua in Ra

which, in addition, satisfies r̄c(x) ≤ ua(x) ≤ q̄c(x). Now, we show that ua(x) is uniformly bounded.

Lemma 3.10 There exists a constant K0 which does not depend on c > c∗ = 2
√
µ so that any

solution of (3.25) satisfies 0 ≤ ua(x) ≤ K0 for all a > 1 and all x ∈ (−a, a).

Proof. The proof is exactly as that of Lemma 3.1: set

K0 = max
x∈(−a,a)

ua(x) = ua(xM ),

and assume K0 > 1. Then ua(x) attains its maximum at a point xM ∈ (−a, a), and the maximum
principle implies that φ ? ua(xM ) ≤ 1. Also, we have

−cu′a − u′′a ≤ µK0,

so that: (
u′ae

cx
)′ ≥ −µK0e

cx.

Integrating from xM to x > xM , we find, since u′(xM ) = 0:

u′a(x) ≥ −µK0

c

(
1− e−c(x−xM )

)
.

Hence, for x ≥ xM , we obtain

ua(x) ≥ K0

[
1− µx− xM

c
+ µ

1− e−c(x−xM )

c2

]
= K0

[
1− µ(x− xM )2B(c(x− xM ))

]
≥ K0

[
1− µ(x− xM )2

2

]
,

with B(y) as in (3.8). Since ua(a) ≤ e−λca, this implies that if K0 > 1 then xM < a − lµ, with lµ
which depends on µ. In the latter case, we have

1 ≥ φ ? u(xM ) ≥
∫ 0

−lµ
φ(y)u(xM − y)dy ≥ K0

∫ 0

−lµ
φ(y)

(
1− µy

2

2

)
+

dy.

This shows that K0 is bounded by a constant which depends neither on c nor on a. This proves
Lemma 3.10. �
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Passing to the limit an → +∞

As a consequence of Lemma 3.10 the family ua(x) is uniformly bounded in C2,α(R) and we may pass
to the limit a → +∞, possibly along a subsequence. In this limit, we have ua → u, and u(x) is a
solution of

−cu′ = u′′ + µu(1− φ ? u),

which satisfies r̄c(x) ≤ u(x) ≤ min(K0, q̄c(x)). In particular, we have limx→+∞ u(x) = 0. If we
had lim infx→−∞ u(x) = 0, then Lemma 3.8 applied to u(−x) would give c ≤ −2

√
µ, which is a

contradiction. Thus lim infx→−∞ u(x) > 0 and the proof of Theorem 1.4 is complete. �

4 Convergence on the left

In this section, we assume that φ̂(ξ) > 0 for all ξ ∈ R or that µ is small and we prove that any
traveling wave has the left limit u(−∞) = 1 under either of these conditions.

Triviality of uniformly positive ”traveling waves”

We first show that even with c 6= 0 the only uniformly positive bounded solution of

−cux = uxx + µu(1− φ ? u), 0 ≤ u(x) ≤ K,
u(0) = ε/2. (4.1)

is u ≡ 1 if φ̂(ξ) > 0 for all ξ ∈ R or if µ is small.

Lemma 4.1 (φ̂(ξ) > 0) Let u ∈ C2
b (R) satisfy (4.1). Assume that 0 ≤ u(x) ≤ K, infx∈R u(x) ≥

α > 0 and that φ̂(ξ) > 0 for all ξ ∈ R. Then u(x) = 1 for all x ∈ R.

Proof. The proof is very similar to that of Theorem 1.2. Let u(x) ≥ α > 0 be a solution to (3.21).
Set v = u − 1, multiply this equation by v/u and integrate between Ln and Rn chosen as before:
Ln → −∞, Rn → +∞ as n→ +∞, |ux(−Ln)|+ |ux(Rn)| ≤ 1/n:

−
∫ Rn

−Ln

u′2v

u2
dx+

∫ Rn

−Ln

u′v′

u
dx−

[
u′v

u
− cu+ c ln(u)

] ∣∣∣Rn
−Ln

= −
∫ Rn

−Ln
v(φ ? v)dx

so that ∫ Rn

−Ln

u′2

u2
dx+

∫ Rn

−Ln
v(φ ? v)dx

[
u′v

u
+ c ln(u)− cu

] ∣∣∣Rn
−Ln

Therefore, we have ∫ Rn

−Ln

u′2

u2
dx+

∫ Rn

−Ln
v(φ ? v)dx ≤ C

n
+ |c||Gn|, (4.2)

where Gn = [ln(u)− u]
∣∣∣Rn
−Ln

. As in the proof of Theorem 1.2 we claim that

lim inf
n→+∞

∫ Rn

−Ln
v(x)(φ ? v)(x)dx ≥ 0. (4.3)

This, together with (4.2) leads to

lim sup
n→+∞

∫ Rn

−Ln

|ux|2

u2
dx ≤ |c| lim sup

n→+∞
|Gn| := K.
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As a consequence of the boundedness of u, we have∫
R
|u′|2dx ≤ CK.

Elliptic regularity and the standard translation arguments imply that then u(x) tends to two con-
stants u+ and u− as x → ±∞. These constants have to be solutions of (3.21) and thus u± = 1,
since u(x) ≥ α > 0. This implies, in turn, that Gn → 0 as n→ +∞ and thus K = 0 and u(x) ≡ 1.

Therefore, it remains only to show that (4.3) holds in the case c 6= 0. However, it is straight-
forward to verify that the proof of (2.26) still applies. The only minor modification required is an
addtional term of the form CG̃n in (2.39) (this is the only place where the equation for v(x) is used
in the proof of (2.26)) in the expression for ∫ Rn

−Ln

u′2

u2
dx.

It is easy to check that this modification is harmless and (4.3) holds. This completes the proof of
Lemma 4.1. �

Lemma 4.2 (Small µ) There exists µ0 > 0 (that does not depend on the speed c ∈ R) such that
for all 0 < µ ≤ µ0, if u is a bounded solution of (3.21) such that infx∈R u(x) ≥ α > 0, then u(x) = 1
for all x ∈ R.

Proof. We use the same method as in the proof of Theorem 1.1. First of all, using the same
rescaling as in the proof of Theorem 1.1, we assume that µ = 1 and use as a new parameter the
range of the nonlocal kernel σ. The (rescaled) function u then satisfies

−u′′ − cu′ = u(1− φσ ? u) in R. (4.4)

We need to prove that u ≡ 1 for σ small enough. First, arguing as in the proof of Lemmas 3.1
and 3.10 we may show that there exists a constant K0 which does not depend on the speed c so
that if u(x) attains a local maximum at a point xM then u(xM ) ≤ K0. If M = supx∈R u(x) > K0

then u(x) approaches M monotonically either as x → −∞ or x → +∞. The standard translation
argument and elliptic regularity imply that then u ≡ M is a solution of (4.4), hence M ≡ 1. We
conclude that in any case 0 < α ≤ u(x) ≤ K0 for all x ∈ R, with K0 independent of c. We also have
a bound K1 := sup |ux| < +∞ from the standard elliptic regularity estimates, with the constant K1

that may depend on c.
Next, multiply (4.4) by (u− 1) and integrate in x between (−R) and R. We obtain

R∫
−R

|ux|2dx−(u−1)ux
∣∣∣R
−R
− c

2
((u−1)2(R)−(u−1)2(−R)) = −

R∫
−R

u(1−u)2dx−
R∫
−R

u(1−u)(u−φσ?u)dx.

(4.5)
It follows that ∫ R

−R
|ux|2dx+

∫ R

−R
u(1− u)2dx− c

2
((u− 1)2(R)− (u− 1)2(−R))

≤ 2K1(K0 − 1) +
√
K0

(∫ R

−R
u(1− u)2dx

)1/2(∫ R

−R
|u− φσ ? u|2dx

)1/2

.
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We know from the proof of Theorem 1.1 that, for σ ∈ (0, σ0), one has∫ R

−R
|u− φσ ? u|2dx ≤ Cσ2

∫ R

−R
|ux|2dx+ Cσ. (4.6)

Thus, using the same computations as in the proof of Theorem 1.1, one has, still for σ small enough:∫ R

−R
|ux|2dx+

∫ R

−R
u(1− u)2dx− c

2
((u− 1)2(R)− (u− 1)2(−R)) ≤ C(1 +K1). (4.7)

This implies that ∫ ∞
−∞
|ux|2dx < +∞

and thus elliptic regularity and the usual translation arguments imply that u(x) converges to two
constants u+ and u− as x → ±∞. As infR u > 0, these constants are positive. Moreover, these
constants have to satisfies equation (4.4). Thus

u(+∞) = u(−∞) = 1.

We can now conclude the proof. We return to (4.5) but now integrate from Ln to Rn with
Ln → −∞ and Rn → +∞ chosen so that ux(Ln), ux(Rn) → 0 as n → +∞ – this is possible since
u(x) is a smooth bounded function. Then we obtain∫ Rn

Ln

u2
xdx− (u− 1)ux

∣∣∣Rn
Ln
− c

2
((u− 1)2(Rn)− (u− 1)2(Ln)) (4.8)

= −
∫ Rn

Ln

u(1− u)2dx−
∫ Rn

Ln

u(1− u)(u− φσ ? u)dx.

Passing to the limit n→ +∞ we get

∫
R

u2
xdx+

∫
R

u(1− u)2dx ≤
√
K0

∫
R

u(1− u)2dx

1/2∫
R

|u− φσ ? u|2dx

1/2

. (4.9)

As (u− φσ ? u) and ux are L2(R) functions, the Fourier theory gives us the upper bound∫
R
|u− φσ ? u|2dx ≤ Cσ2

∫
R
|ux|2dx

we get ∫
R
|ux|2dx+

∫
R
u(1− u)2dx ≤ C

√
K0σ

(∫
R
u(1− u)2dx

)1/2(∫
R
|ux|2dx

)1/2

and thus we conclude that for σ > 0 sufficiently small we have∫
|ux|2dx =

∫
u(1− u)2dx = 0,

and thus u(x) ≡ 1. �

28



The left limit

Finally, we show that if either φ̂(ξ) > 0 for all ξ ∈ R or µ ∈ (0, µ0), the left limit is u(−∞) = 1.

Lemma 4.3 Assume that u is a bounded solution of (3.21) with lim infx→−∞ u(x) ≥ α > 0 and
assume that u ≡ 1 is the only bounded function with a positive infimum that satisfies equation
(3.21). Then limx→−∞ u(x) = 1.

Proof. Set α = lim infx→−∞ u(x), take a sequence rn → +∞, and consider the functions vn(x) =
u(x − rn). The uniform bounds on the function u(x) imply that we can extract a subsequence
nk → +∞ so that the sequence vnk(x) converges locally uniformly to a limit v̄(x), which satisfies

−cv̄′ = v̄′′ + v̄(1− φ ? v̄), inf
x
v̄ ≥ α > 0.

The uniqueness hypothesis implies that v̄(x) ≡ 1. It follows that the whole sequence vn(x) converges
locally uniformly to v̄(x) ≡ 1 as n→ +∞ and the conclusion of Lemma 4.3 follows. �

This completes the proof of Theorems 1.5 and 1.6.

5 Non-monotonic waves

We now show that there is a range of parameters where we both know that there exists a traveling
wave connecting the states u ≡ 0 and u ≡ 1, and that no monotonic traveling wave of this type
may exist. First, we need a couple of definitions. We assume in this section that φ(x) is continuous,
φ(0) > 0 and φ(x) decays sufficiently fast at infinity so that the Laplace transform of φ is defined
for all γ ∈ R,

Φ(γ) =
∫ ∞
−∞

φ(x)e−γxdx = lim
R→+∞

Φ(γ,R), (5.1)

where we have set
Φ(γ0, R) =

∫
y>−R

φ(y)e−γ0ydy.

Define the function
µ∗(c) = sup

s>0

s(c+ s)
Φ(s)

, (5.2)

then µ∗(c) is increasing in c for c > 0. Note that Φ(s) ≥ Ceα|s| for some α > 0, and thus

c

Φ(1)
≤ µ∗(c) ≤ sup

s>0

(
s2

Φ(s)

)
+ c

(
sup
s>0

s

Φ(s)

)
= M0 + cM1.

In particular, the inverse function c̄(µ) = µ−1
∗ (µ) satisfies c̄(µ) = O(µ) for large µ, and for µ large

enough 2
√
µ < c̄(µ). We have the following proposition, which precises Theorem 1.7.

Proposition 5.1 Assume that µ satisfies 2
√
µ := c∗(µ) < c̄(µ). Then for c∗(µ) ≤ c ≤ c̄(µ), the

problem
−cu′ = u′′ + µu(1− φ ? u), u(−∞) = 1, u(+∞) = 0, (5.3)

does not admit a traveling wave solution which is monotonic on any interval of the form (−∞, R0). In
particular, for φ̂(ξ) > 0 for all ξ ∈ R and µ large enough, traveling waves with speeds c ∈ [2

√
µ, c̄(µ))

exist and are not monotonic.
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Proof. Existence of a traveling wave with the speeds c ≥ c∗ = 2
√
µ follows from Theorem 1.4.

Hence, all we need to show is that when µ is sufficiently large this wave may not be monotonic.
The main idea of the proof is to translate far to the left, linearize around u = 1 and show that the
linearized equation admits no monotonic in x solution, a property which is elementary if we knew
that all solution are of the form ezx for some z ∈ C.

Let us assume for the sake of contradiction that (5.3) admits a monotonically, say decreasing,
solution u(x) and write u(x) = 1− v(x). The function v(x) is monotonically increasing and satisfies

v′′ + cv′ + µv(φ ? v) = µφ ? v, v(−∞) = 0, v(+∞) = 1. (5.4)

Consider the points xn → −∞ such that v(xn) = 1/n and set

wn(x) =
v(x+ xn)
v(xn)

.

The function wn(x) is increasing and satisfies

w′′n + cw′n + µgn(x)wn = µφ ? wn, wn(0) = 1, (5.5)

with 0 ≤ gn(x) := (φ ? v)(x+ xn) ≤ 1.
We now show that the sequence wn(x) converges to a limit w̄(x) as n → +∞. First, we prove

that the sequence wn(x) is bounded in C2,α
loc (R). Without loss of generality let us assume that

φ(x) > 0 on the interval (−2, 2). It suffices to show that wn(1) ≤M0 with some constant M0 which
is independent of n. To see that, multiply (5.5) by a non-negative test function ψ(x) ∈ C2

c (−1, 0),
such that ψ(x) > 0 for all x ∈ (−1, 0), then we get∫ 0

−1
[ψ′′wn − cψ′wn + µgnψwn]dx = µ

∫ 0

−1

(∫
R
φ(x− y)ψ(x)wn(y)dy

)
dx. (5.6)

As 0 ≤ wn(x) ≤ 1 for x ≤ 0, and 0 ≤ gn(x) ≤ 1, the left side of (5.6) can be bounded from above by∫ 0

−1
|ψ′′wn − cψ′wn + µgnψwn|dx ≤ Cψ,

with the constant Cψ which does not depend on n. On the other hand, the right side of (5.6) may
be bounded from below by

µ

∫ −1/4

−3/4

(∫
R
φ(x− y)ψ(x)wn(y)dy

)
dx ≥ Cψ

∫ −1/4

−3/4

(∫ +∞

1
φ(x− y)wn(y)dy

)
dx ≥ C ′ψwn(1).

As wn(x) ≤ wn(0) = 1, it follows that 0 ≤ wn(1) ≤ β0 with a constant β0(µ, c) independent of n.
The same argument leads to an estimate

wn(x+ 1) ≤ β0wn(x), for all x ∈ R. (5.7)

Therefore, the right side of (5.5) is locally uniformly bounded which gives C2
loc(R) bounds for wn.

Finally, differentiating (5.5) in x we get the local C2,α
loc (R) bounds.

We may now pass to the (strong) limit n→ +∞, for a subsequence if necessary, and, as gn(x)→ 0
locally uniformly from the previous step, conclude that wn(x) converges locally uniformly as n→ +∞
to a solution w̄(x) of the linearized problem{

w̄′′ + cw̄′ = µφ ? w̄, w̄(0) = 1,

w̄ ≥ 0, w̄′(x) ≥ 0, w̄(x)→ 0 as x→ −∞.
(5.8)
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It follows from differentiating (5.8) that z(x) = w̄′(x) satisfies

z′′ + cz′ ≥ 0,

and z(x)→ 0 as x→ −∞, at least along some subsequence. Thus, integrating between −∞ and x
we get z′(x) ≥ 0. Thus, the function w̄(x) is actually convex.

Moreover, the function w̄(x) satisfies the same estimate (5.7): w̄(x + 1) ≤ β0w̄(x) and, since it
is monotonically increasing, it follows that there are constants A > 0 and γ0 > 0 so that

w̄(x) ≥ Aeγ0x, for all x ≤ 0. (5.9)

Hence, we may define

γ̄ = inf{γ : there exists A > 0 so that w̄(x) ≥ Aeγx for all x ≤ 0.}

We will now show that no such solution may exist in the stated range of c and µ. As µ > µ∗(c),
we may find R so that

µ > µ∗(c,R) := sup
s>0

s(c+ s)
Φ(s,R)

.

Let δ0 =
1
R

ln(µ/µ∗(c,R)) > 0 and take γ0 ∈ (γ̄, γ̄ + δ0/2) so that

γ0 − δ0 < γ̄. (5.10)

Since γ0 > γ̄, (5.9) holds with some A > 0, thus the function w̄ satisfies

w̄′′ + cw̄′ ≥ Aµ
∫
y>−R

φ(y)eγ0(x−y)dyAµΦ(γ0, R)eγ0x, x ≤ −R.

Integrating on the interval (−∞, x), with x < −R gives

w̄′(x) + cw̄ ≥ AµΦ(γ0, R)
γ0

eγ0x, x < −R.

Integrating again leads to the inequality

w̄(x) ≥ AµΦ(γ0, R)
γ0(γ0 + c)

eγ0x ≥ Aµ

µ∗(c,R)
eγ0x = Aeδ0R+γ0x, ∀x ≤ −R. (5.11)

We may iterate the argument so that for all integers N ≥ 1 we have

w̄(−NR) > Ae−(γ0−δ0)NR.

Consider now any y ≤ 0 and the non-negative integer Ny such that

−(Ny + 1)R < y ≤ −NyR.

One has
w̄(y) ≥ w̄(−(Ny + 1)R) ≥ Ae−(γ0−δ0)(Ny+1)R ≥ A′e(γ0−δ0)y,

with A′ = Ae−(γ0−δ0)R. Therefore, γ0 − δ0 > γ̄ which contradicts (5.10). Hence, such a monotonic
solution w̄ may not exist. �
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