STABLE MINIMAL HYPERSURFACES IN R
LAURENT MAZET

ABSTRACT. We prove that, in R®, a complete, two-sided, stable minimal hypersurfaces is
flat. The proof follows the strategy developed by Chodosh, Li, Minter and Stryker, and use
the spectral volume estimate of Antonelli and Xu.

1. INTRODUCTION

A minimal hypersurface M™ of R"*! is a critical point of the n-volume functional. It is
characterized by its vanishing mean curvature. If a unit normal vectorfield v is defined along
M and ¢ is a function with compact support on M, one can consider a deformation of M
with initial speed pv. The computation of the second derivative of the n-volume along this
deformation at initial time gives

/ Vel? - Ay e
M

where A, is the second fundamental form of M. So asking that this quantity is non neg-
ative for any ¢ means that M is a minimum at order 2 of the n-volume. Such a minimal
hypersurface is called stable.

The stable Bernstein problem asks wether a complete stable minimal hypersurface is a flat
affine hyperplane. We give a positive answer in the case n = 5.

Theorem 1.1. Let M® 9= RS be an immersed, complete, connected, two-sided, stable mini-
mal hypersurface. Then M is a Euclidean hyperplane.

A particular class of stable minimal hypersurface is given by minimal graphs over R™.
In [4], Bernstein proved that a minimal graph over R? has to be a plane. In the sixties,
the same question for higher dimensions was studied in a series of paper by Fleming [17],
De Giorgi [14], Almgren [1] and Simons [26]. They proved that minimal graphs over R"
are planes if n < 7. For n > 8 Bombieri, De Giorgi and Giusti [5] were able to construct
counter-examples and gave also in R® an example of a stable minimal hypersurfaces that is
not a hyperplane.

Concerning the stable Bernstein problem, the question was solved positively in R3 by
Do Carmo and Peng [15], Fischer-Colbrie and Schoen [16] and Porogelov [22] in the early
eighties. In higher dimension, Schoen, Simon and Yau [23, 24] were able to settle the stable
Bernstein in R"™, n < 6, under a Euclidean volume growth assumption (see also the recent
work of Bellettini [3]).

Recently Chodosh and Li [9] were able to answer positively the stable Bernstein problem
in R*. Later two alternative proofs came out: one by Catino, Mastrolia and Roncoroni [8]
and one by Chodosh and Li [10]. Actually in [10], Chodosh and Li develop a second strategy
to prove the result. Then, in a joint work Minter and Stryker [12], they were able to apply
this strategy in the case of R’ to solve the stable Bernstein problem in this dimension as

well.
1
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As in [13, 12], it is well known that the solution to the stable Bernstein problem (The-
orem 1.1) implies corollaries like curvature estimates for stable minimal immersions in 6-
dimensional manifolds and characterization of finite Morse index minimal hypersurfaces in
RS. For example, we have

Corollary 1.1. Let (X° g) be a complete Riemannian manifold whose sectional curvature
satisfies |sec,| < K. Then any compact, two-sided, stable minimal immersion M° ¢ X
satisfies

| An|(q) min(1, dy(q,0M)) < C(K)
forq e M.

The proof of [13, Corollary 2.5] extends to dimension 6 to prove the above result.

The basic idea to prove Theorem 1.1 is to obtain a Euclidean growth estimate for the
volume of M and then apply the work of Schoen, Simon and Yau. The strategy of Chodosh
and Li is a way towards this estimate. We refer to [10, 12] for a good presentation of
their ideas. Let us give some elements. Let M be a stable minimal hypersurface in R"*!
with induced metric g. Inspired by the work of Gulliver and Lawson [18], they consider
the conformal metric § = r~2¢g where r is the Euclidean distance to 0 in R™"*. If M was
a hyperplane passing through the origin (M \ {0}, §) would be isometric to the Euclidean
product S" ! x R. In the general case, the idea of Chodosh and Li is that the stability
assumption implies that the geometry of (M \ {0}, ) should look like S"™! x R. In [12], the
authors consider the bi-Ricci curvature which is a certain combination of sectional curvatures.
The bi-Ricci curvature was introduced by Shen and Ye in [25], already to study minimal
surfaces (see precise definition in Section 2). Notice that on S"~! x R, the bi-Ricci curvature
is lower bounded by n — 2. In [12], the authors prove that the stability of M implies a
positive spectral lower bound for the bi-Ricci curvature of (M \ {0}, ). More precisely they

prove that, on (M \ {0}, §), the operator —A + (BRic_ — 1) is non-negative where BRic_ is
the punctual minimum of the bi-Ricci curvature of g. This should be understood as a weak
formulation of the inequality BRic > 1.

The second step of the strategy consists in the construction of a p-bubble in (M \ {0}, §)
with a spectral lower bound for its Ricci curvature. In some sense, they identify in any
sufficiently large part of (M \ {0},g) a hypersurface that play the role of S*™! x {t} in
St x R.

The last step is to obtain an upper-bound for the volume of the u-bubble. In [12], the
authors obtain a Bishop-Gromov volume estimate under the spectral lower bound on the
Ricci curvature. In their paper, the proof of this volume estimate was specific to dimension 3.
Recently, Antonelli and Xu [2] have proved such a Bishop-Gromov estimate in any dimension.

Theorem 1.2 (Antonelli and Xu [2]). Let (M*, g) be a compact Riemannian k-manifold with
k>3 andlet 0 <~y < % and A > 0. Assume that there is a positive function u € C*°(M)
such that, for any (p,v) € UM,
vAu(p) < (Ric(v,v) = (k= 1)A)u(p)
Then Vol(M) < A~F/2Vol(SF).
Once the g-volume of the p-bubble is controlled, this gives an estimate of its volume in the

original metric g and then control the growth of the volume of M tanks to an isoperimetric
inequality due to Michael and Simon [20] and Brendle [6].
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In the present paper, we also follow the above strategy of [12]. Let us first notice that
it is possible to obtain a spectral lower bound for the bi-Ricci curvature also when n = 5,
however this lower bound is far from being sufficient to perform the p-bubble construction.
In order to solve this difficulty, we consider a weighted bi-Ricci curvature BRic, where the
parameter a does not give the same weight to all sectional curvatures in the combination (a
similar idea appears in the recent article by Hong and Yan [19]). We prove a spectral lower

bound for the weighted bi-Ricci curvature: the operator —aA + (BRic,— — ¢) is non-negative
where a,d € R. At that step, a, @ are two parameters that should be chosen such that § > 0.

By imposing some new constraints on a and «, we are then able to construct the pu-
bubble with a spectral lower bound on the Ricci curvature. At the last step, we apply the
Bishop-Gromov estimate of Antonelli and Xu [2]. In order to do so, this imposes some new
constraints on the parameters a and «. Nevertheless, the choice a = % and a = fl—g meets all
the constraints. Let us notice that, for n = 6, no choice of a and « satisfies all the constraints.
Moreover, the computations have to be done the most precisely possible in order to allow

such a choice when n = 5. The end of the proof then follows the line of [12].

Organization. In Section 2, we fix some notations that we use all along the paper. Section 3

is devoted to the proof the spectral lower bound for gﬁi/ca for the Gulliver-Lawson metric
on a stable minimal hypersurface. In Section 4, we construct the u-bubble with a spectral
lower Ricci bound. We end the proof of Theorem 1.1 in Section 5. Along the paper, we
specify the value of n, a and a only when it is necessary, we hope this allows to understand
where the constraints come from.

Acknowledgments. The author was partially supported by the ANR-19-CE40-0014 grant.
Part of this work was carried out during a stay at the Instituto de Matematicas de la
Unversidad de Granada (IMAG), the author would to thank its members for their hospitality.

2. PRELIMINARIES

Let (M™, g) be a Riemannian manifold and (e;)1<;<, be an orthonormal basis of 7, M. For
a € R, we recall or define
e the Ricci curvature Ric(er,er) =Y, R(e1, €, €5, €1),
e the punctual minimum of the Ricci curvature A(p) = min,er,az,e|=1 Ric(e, e),
e the weighted bi-Ricci or a-bi-Ricci curvature

n n
BRic,(e1,€2) = Z R(ey,e4,€5,e1) + Z R(es, €4, €5, e)
i=2 =3
e the minimum of the a-bi-Ricci curvature A (p) = minge, ) orthonormal in 7,1 BRicq (e, f)

Notice that for a = 1, BRic; is the classical bi-Ricci curvature as defined in [25].
If ¥ 9 M is a hypersurface with unit normal v. We use the following conventions:

e the second fundamental form of ¥ is Ax(X,Y) = (Vx1,Y) = —(VxY,v) and
e the mean curvature of X is H = tr As..

If © is a subset of M, we denote by N,(€2) the p-tubular neighborhood of €: the set of
points at distance less than p from €.
We finish by a simple remark that we use in Section 3.
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Remark 1. Let A € M,(R) be a positive definite symmetric matrix and B € R". Then the
function f: X € R" — XTAX 4+ B"X € R is lower bounded and its minimum is given by
—1BTA-IB,

1

3. SPECTRAL LOWER BOUND FOR THE WEIGHTED BI-RICCI CURVATURE

Let F : M™ ¢ R""! be a complete two-sided minimal hypersurface and ¢ its induced
metric. We consider the Gulliver-Lawson conformal metric § = r~2g where r is the Euclidean
distance function to 0. Notice that if F/(p) = 0, g is not defined. So we consider N =
M\ F~1(0). As it was observed by Gulliver and Lawson [18], the metric (N, §) is complete.

The first step of the proof of Theorem 1.1 consists in proving that the stability assumption
can be translated in a spectral lower bound for the a-bi-Ricci curvature of the metric g.
Actually we have the following result.

Theorem 3.1. Let M™ 9 R be a two-sided stable minimal hypersurface. Suppose n =5,
then, for a = %, o= j—g and § = %, there is a smooth function V such that

V>5—A,

and

1
) [ 1ol = [ vy
N N @a
for any ¢ € CY(N).

3.1. Recalling some computations. We first recall some computations and results of [12].
We denote by v the unit normal to M and by |dr| the norm of the differential of r along
M with respect to the metric g.
Let (e;)1<i<n be an orthonormal basis for the metric g then, for the conformal metric g,
an orthonormal basis is given by €; = re;. The sectional curvatures of g and g are related by

(2) Rijji = r*Rijzi + 2 — |dr|* — dr(e;)* — dr(e;)® — (p,v)(Ay + Aj))

(see [12, Proposition 3.5]).
The second result that we want to recall is the writing of the stability inequality in the
conformal metric g. We have

-2 24
) [ 1otz [ (rap - 2022 )
N N

for any ¢ € C1(N) (see [12, Proposition 3.10]).

3.2. Estimating the curvature terms. In this subsection, we want to relate the curvature
term in the stability inequality (3) to the a-bi-Ricci curvature. We use the notations of the
preceding subsection.

Proposition 3.1.
BRica(é1,8) =r?BRica(e1, ) + 2(n — 1+ a(n —2)) — (n+ a(n — 1))|dr|?
—((n — 2 —a)dr(e1)* + a(n — 3)dr(ez)?)
= (P v)((n =2 —a)An + a(n — 3)As)
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Proof. Summing (2) and using tr A = 0, we have

BRlca (é1,€2) Z Rnu + Z R2JJ2

=r? BRicq(e1, 62) +2(n—1) — (n—1)|dr|* = (n — 1)dr(e;)?
— (|dr|* = dr(e1)*) — (p,v)((n — 1) Ay — A1) + 2a(n — 2)
—a(n —2)|dr|* — a(n — 2)dr(es)?* — af|dr|* — dr(e)? — dr(ez)?)
—a(p,v)((n—2)Ax — Ay — A)

=r?BRica(e1,€9) +2(n — 1+ a(n —2)) — (n+ a(n — 1))|dr|?
— ((n — 2 — a)dr(e1)? + a(n — 3)dr(ey)?)
—(p,v)((n—2—a)An + a(n — 3)A)

OJ
Proposition 3.2.
BRicy(eq, €2) Z A Z — aA A
Jj=2
Proof. Applying Gauss formula and tr A = 0, we have
BRica(e1,2) =» (Andi — A3) +a ) (Andj; — A3)
i=2 =3
Z—ZAM-FCY — Aoy (A1 + Agz) — ZA
=— Z A — o Z A3, — aAy Ay
i=1 j=2
OJ

Using the above computation, we obtain the following estimate of the curvature term.
This estimate introduces some constraints on « and a second parameter a.

Proposition 3.3. Let a,a > 0 such that a > %, 2a > « and

W=(a—=)(a—

5 (1—a)*>0

n—2 n—2
142 —
2n (1+ a)) n

Let us define

f:(n—Q)Q(( 1.n—2 N n—4

Then
ar®|A* + f(1 — |dr|?) > —r? BRics(e1, e2) + (p, v)((n — 2 — a) Ay + a(n — 3) Ag)
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Proof. By Proposition 3.2, the right-hand side of the expected inequality satisfies to
—r? BRicy(e1, €2)+(p, v)(n — 2 — @)A1y + a(n — 3)Agy)
:7"2 ( Z A%Z —|— (6% Z A%] —|— O[AHAQQ
i=1 j=2

(4) '+(£%7Vﬂ(n‘—2‘—cﬂfh14—a(n‘—3)A2ﬁ>

=2

—2 (A%1 +aAd, + adndn + Y AL +ad A
j=3

Py ((n—2—a)Au +a(n — 3),422))

+ (ﬁ,

The vector Ax = (Aq1, -+, Apn) belongs to the sub-space F,, = {X € R" | 1+ --+x, = 0}.
We write a decomposition in an orthonormal basis of F,, as

n—2 1
Ay n=3 [0 n—2 —1
—2 0

where (E;)1<i<n—3 is an orthonormal basis of F},_5. So we have
A2+ As, + aAy Ay + (%, V)((n — 2 — a)Ay; + a(n — 3)Ag)

vn—2 29

E)z + a(ﬁzl — E)z + Oé(

(5) e (n—2+a(n—4))z1+n—\;§2(1—a)z2)

n—2 1
mbﬁ—§£)

— -2 1
:n2n (14 20)2 + - (1 —a)z1z9 + 52*3
P n—2, |n—2 n—4
—l—(ﬁ,u) 7 ( - (1+an_2)21+(1—a)22)

For a > 0, we are interested in the minimum (if it exists) of

n—2 1

n—2
a(z} + zg)—w(l +20) 27 — - (1 —a)z129 — 523

(6)
P n—2, /n—2 n—4
_<T_27V) 7 (1/ - (1+an_2)zl+(1—a)z2)

The matrix of the quadratic part of the above expression is

a—"52(142a) —/%2(1—a)
%(l—a) a—%
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This matrix is positive definite if a > % and its determinant is positive:

W:(a—l)(a—

n—2 n—2
5 (1+2a)) —

1—a)®>>0
2n n( a)

If it’s the case, by Remark 1 with vector B = — (1, y)”—J;(./"T’Q(l +a”=7), (1 — ), the

quantity in (6) is lower bounded by

B (- D2l P2 sl
4+ (a— ”2—;2(1 +20))(1 - a)?)
B (- B2 b - - )
- (%7V)2f

Since (2,v)? = (1 — |dr|*), we have then proved that

n—2
a4 )+ L0~ JarP) 2721 2002 1"
—2 —2 —4
V% n n (1+an

+(ﬁ’y)\/§( n n—2

Combining this with (4) and (5), if 2a > «, we have

f f

2 2 2 2 2
alA[" + (1 = |dr[") za(|Aa]" + ;Azj) + 51— drf)
> A2 1 aAZ, + ady Ag + (%, V)((n— 2 — a)Ay + a(n — 3)Ag)
+ aZA?j
i#]
> A} +add, +adnAn + Y AL +a) A
i=2 j=3
+ (5. 7)((n =2 = a)Avi + a(n — 3) A)
> — BRi p.v) A A
> — BRica(e1,€2) + p (n=2—a)An +a(n —3)Ax)
This is the expected estimate. 0

3.3. Proof of Theorem 3.1. Let us assume that the basis is chosen such that Ka =

BRica(é1,8,). From (3), we are looking for a lower bound for 72| AJ? — @ + #\dr!?

Under the assumptions of Proposition 3.3, & <1 (such that n —2 —«a > a(n—3)) and using
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Proposition 3.1, we have

-2 24
a(r2|A|2 o TL(TL2 )+n I |d’l“|2>

> — 12 BRicy(e1,e2) + (0, v)(n — 2 — @) Ay + a(n — 3) Ay)

n(n2— 2) 4o 4—4‘(1!70’2

> — BRica(1,2) +2(n — 1+ a(n — 2)) = (n+a(n — 1)|drf?
— ((n—2—a)dr(e1)* + a(n — 3)dr(e)?)

— A =|drf’) —a

0 farf) a2 o
>C(|dr[?) — A,
where
C(t) 22(71—1+0z(n—2))—(2n—2+a(n_2))t_f(1_t)_an(n—Q) +an2_4t

2 4
C is an affine function and 0 < |dr|* < 1, so C(|dr|?) > min(C(0),C(1)). We have

n(n —2) n?—4

Cl)=2(n—14an—-2)—2n—-24+a(n—2))—a 5 ta—
:a(n—2)—a<n_2)2 :(n—2)(a—an_2)
and
n(n — 2)

C0)=2n—1+an—2)—f—a 5

: _1u _ 40 1 _ 26697
If we consider a = 15 and a = 33, we have a > 5, 2a > o, a < 1 and W = 35555 > 0. So

the above computations apply. We have
731975 543

c(0) = ~ 0.47 d C(1)=-—-~031
()= T550628 and L) = 1755
So for these values of a and «, and with § = % < min(C(0), C(1)), we have
-9 2_4 ~
V =a (7’2|A‘2 . n(n2 ) n y ‘d?”|2) > (S_Aa

By (3), the spectral estimate (1) is true. Theorem 3.1 is proved.

4. THE pu-BUBBLE CONSTRUCTION

In this section, we produce a warped p-bubble with a spectral Ricci curvature lower bound.
So we start with a connected complete non-compact Riemannian manifold (N™,g) with a
spectral lower bound on the a-bi-Ricci curvature: there is a smooth function V' on N such
that

and

. 1—
(7) Tol2dv, > / 1oy,
N a
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for any ¢ € C1(N)

Theorem 4.1. Assume (N, g) as above withn =5, a = %, o= i—g and § = %. Let Q) be a

domain in N (i.e. an open subset with compact smooth boundary) such that N\ N 190x () #
0. Then there is a domain ), with

[ ] Q+ C Q* C NlOOW(Q+) and
e there is a smooth function V on ¥ = 0€), such that

and
4 2 2
(8) 1 [ IVelidu = | Vigidu,
b ¥

for any ¢ € CY(X) where g is the induced metric on 3.

4.1. Construction of the u-bubble. Because of the spectral control (7) on N, we know
(see [16]) that there is a positive function w on N such that

(9) —alAw =Vw > (6 — Ay)w

Let us recall quickly the construction of the u-bubble. Let 2 be a domain in N such
that Q, CC Q. C Nygor(Qy). Let h: Q_\ Q; — R be a smooth function such that
lim,p0, h(p) = +o00 and lim,_,sq_ h(p) = —oo. Let © be a domain with Q2 CC Q2 CC Q_.

For any sets of finite perimeter €2 with Q, CC Q CC €)_, we consider the quantity

4@ = [ wt = [ (vo = x)hr

where 0*(Q2 is the reduced boundary of 2. By similar argument to the ones in [11, 28], there
there is a set of finite perimeter 2, (Q; CC Q, CC €2_) which minimize the functional A.
Moreover its reduced boundary 9*Q), = ¥ is non empty (N \ NMigox(€24) # ) and smooth
(see for example [21, 27]).

4.2. Spectral Ricci-curvature bound of the p-bubble. We denote by £ = n — 1 the
dimension of ¥ and by 7 the outgoing unit normal to X.

As in [12, Proposition 4.2], if ¢ is a function on ¥, writing the first variation of A for a
variation {€;} of ), generated by ¢n gives

d
0 - EA<Qt)|t:0 - /

(Hw® + aw® *dw(n) — hw®)p = /(H + aw tdw(n) — h)wp
2

b
Since this is true for any ¢,

(10) H =h—adlnw(n)
Computing the second derivative of A(€);), we obtain
d? a = _
0< A im0 = [ 0= ot~ (BF + Riclnn)e? — auw du(n)’s?
s

12 -1/~
+ aw 'V w(n,n)g* - aw” (Vw, Ve)p — dh(n)¢?)
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where B is the second fundamental form of X. So
0< [ —div(uoVie) + w (TeP = (1B + Fielnn)e? - aw du(n)’?
®

_1=2
+ aw ™'V w(n, n)e® — dh(n)sf)

Using vzw(n, n) = Aw — Aw — Hdw(n), we obtain
0< [ wt (196 ~(1BE + Ricln. )¢ - aw*du(n)’y?
>

+aw ™ (Aw — Aw — Hdw(n))p? — dh(n)w2)

(11)

For ¢ = w=%?, we have Vi = w™¥2Vi) — %w’“/Q*I@ZJVw. So we can write
2
/ w(|[Vo|? — aw™ Awp?) :/ IVY)? — aw™'p(Vw, Vip) + %wzw*Q\VwP — a*w ' Aw
2 )
:/ (V|? — adiv(P*w ' Vw) + aw™ ' (Vw, Vi)
)
a2
(- vtV

= (190 + ™ (T, 90) — (0= il
P

Using that w™'¢(Vw, Vi) < e|V|? + Lo?w?|Vw]? with e = 1=, we get

/ (VP — aw " Awg?) < —— / Vol
) 4—a )

From (11 ) and (9), we then obtain

/ IVap|? > / |B|2 + Ric(n, n) + aw ™ 2dw(n)? — aw™"Aw + aHdln(n))@b2

+ adh
) (n)0?
> / <|B]2 + Ric(n,m) + 0 — Ay + aw 2dw(n)® + a.hfdln(n))z/z2
b
+ adh(n)y?
Let (eq,...,er) be an orthonormal basis of ¥. Using Gauss equation, we have

k
« RIC (61, 61 = Z le]l = Z(}_%ljjl + BllBjj - B%])
j=2
k
—BRica (1, e1) — Ric(n,n) + @ > _(BuBj; — BY)

=2
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So assuming that e; is such that Ric™ (e, e;) = A¥, we have

k
Ric(n, n) — Ao > Ric(n, ) — BRica(1, €1) = —aX™ + O‘Z(BllBjj - B%j)

=2

So using the above inequality and tr B = H in (12), we then get the inequality
k
4
E /E ‘VQ/J|2 Z /E 'le <(5 - Oé)\z + |B‘2 + QZ(BllBjj - B%J) + a(dlnw(n))2
j=2
+aHdInw() + adh(n)>

k
> / ¢2<5 — o\ + |B* + aHBy; — aZij + a(dInw(n))?
2

Jj=1

+aHdInw(n) + adh(n)>

Using (10), we have

k
= |B|* + aHBy, — QZB% +a(dlnw(n))* + aHdInw(n) =

J=1

k
1
B + aHByy —a Y B} +~(H —h)* + H(h — H)
a
j=1
Let us denote by ® the traceless part of B and let ®5 denote the vector (P11, ..., Pr) € Fi.
Thus, for @ < 2, we have

1 1 1
K > -H+ |05 + %HQ +aH®y —a(;H +u)* + ~(H — h)> + H(h — H)

We can write a decomposition of ® in an orthonormal basis of Fj,
E—1

k—2
0 1 —1
Bn — | ]
. Zl (E> oD |
—1

where (E;)1<i<k—2 is an orthonormal basis of Fj_;. We then have

1 [k—1
K>kH2+z + — H2+ oH z—a —h)?*+ H(h— H)

1 a o 1 k—1 k—1 2 2
>S4 — — — 4 - — 24 (1— - = -
_(k+k SR DH*+ (1 -« p p — (1 k)Hz+(1 a)Hh

)2
The above expression is a quadratic form in (H, z, h) associated to the matrix
1

1 a « 1 « k—1 2 1 1
rtr—eta—l 9y FA-%) 2.
T svRa-h ooy

1_1 0

a

z5+ - h2+a

._\
= O

V)
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Notice that this matrix is positive definite if 1 — ak—;l > 0 and det(G) > 0. Actually for

k=4, a= o=% wehave 1 — k_1:§>0and

107 43> S
00 0
9599
— o 0 o ):
det <G 0 0 1 1730832 0
5

So K > %h? Finally, for our values of the parameters, we have
1
(13) /|w|2 /¢ aX”) +¢° ( Eh2+adh(n))
4.3. End of the proof. We need to choose the domain €2_ and the function h. Let ¥ :

N\Q; — R, be a smoothing of the distance function dg(-, 9. ) such that 1d;(-,00,) < ¥ <
2d;(+, 094 ) and [VV[; < 2. Let ¢ > 0 small be such that (1+¢)11m,/3 is a regular value of

U. Let us define Q- = Q U{® < (1+¢e)11my/B}. On Q_, dy(-,00,) < 2(1+¢e)1lmy /8 <
1007, so Q_ C Nigor(4).
On {0 < ¥ < (1+¢)llmy/2}, we consider the function h defined by h = k o £ where

1+
\/7 \/7 s
11 2

for t € (0,117, /82). We have lim,_,90, h(p) = +oo. Notice that k solves —k" = & + F2-k?
SO

)| _ 2a ,3 5 3 1 0
ah(n)] = alk (22| < T o) S ot sl =1
bl = al¥ (N < Tt e Syt =5 T

3

Hence, the above construction apphes and, for our choices of parameters, (13) becomes

s [Vl G -aw)

This ends the proof of Theorem 4.1.

Loy

5. STABLE BERNSTEIN PROBLEM

In this section we prove Theorem 1.1. This a consequence of the following volume growth
estimate.

Proposition 5.1. Let F : M® 9 RS be a complete, immersed, two-sided, simply-connected
stable minimal hypersurface. Let B, denote the geodesic ball of radius p > 0 centered at some
point po in M (for the induced metric g). Then

Vol(B,) < Vol(135)(%
Proof. First, up to a translation, we may assume that F(py) = 0. Let €, be a smooth
compact domain in M such that B, C Q4 C By, and such that 0 ¢ F(09€2,). We consider
the Gulliver-Lawson conformal metric g = r‘fg. By Theorem 3.1 and Theorem 4.1, there
is Q, a domain in M such that Q, C Q. C Nigor(24) and 05, satisfies the spectral Ricci
lower bound (8) for the metric induced by g.

)*/?(2 exp(1007)) ° 0P
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By [7, Theorem 1], M has one end. We consider ()., the connected component of €2, that
contains B,. We assume M is simply connected so the unbounded component of M \ Qe
has only boundary component Y. Let 2’ be the bounded component of M \ ¥y5. We have
Bp C ' and 09 C N1007r<82p).

On 0B,,, the Euclidean distance function 7 is bounded by 2p. So, by [10, Lemma 6.2], on

Nioor(Ba,), the Euclidean distance function r is bounded by 2p exp(1007).

Now, because of the spectral Ricci lower bound (8) and since m = 3—3 < % = %,

we can apply the volume estimate of Antonelli and Xu [2, Theorem 1] for the metric § and
obtain

S

0 800
1:(20) < (=) "?Vol(S*) = (—)2 VoI(S*
Voly (%) < ()2 Vol(S") = ()2 Vol(s?)
So scaling back to the Euclidean metric
Vol(S) < (%?)2\/01@4)(2 exp(1007)) "

Finally we can apply the isoperimetric inequality for minimal hypersurfaces in R"*! [6, 20]

to obtain

800

Vol,(B,) < Vol, (') < Vol(B®)( 3 )5/2(2 exp(lOOW))5p5

O

Proof of Theorem 1.1. Let M 9 RS be an immersed, connected,complete, two-sided, stable
minimal hypersurface. The stability assumption lifts to the universal cover, so we can assume
M to be simply connected. By Proposition 5.1, M has Fuclidean volume growth. So by [23]
(see also [3]), we obtain that M is a flat hyperplane. O
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