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Abstract. We prove that, in R6, a complete, two-sided, stable minimal hypersurfaces is
flat. The proof follows the strategy developed by Chodosh, Li, Minter and Stryker, and use
the spectral volume estimate of Antonelli and Xu.

1. introduction

A minimal hypersurface Mn of Rn+1 is a critical point of the n-volume functional. It is
characterized by its vanishing mean curvature. If a unit normal vectorfield ν is defined along
M and ϕ is a function with compact support on M , one can consider a deformation of M
with initial speed ϕν. The computation of the second derivative of the n-volume along this
deformation at initial time gives ∫

M

|∇ϕ|2 − |AM |2ϕ2

where AM is the second fundamental form of M . So asking that this quantity is non neg-
ative for any ϕ means that M is a minimum at order 2 of the n-volume. Such a minimal
hypersurface is called stable.

The stable Bernstein problem asks wether a complete stable minimal hypersurface is a flat
affine hyperplane. We give a positive answer in the case n = 5.

Theorem 1.1. Let M5 # R6 be an immersed, complete, connected, two-sided, stable mini-
mal hypersurface. Then M is a Euclidean hyperplane.

A particular class of stable minimal hypersurface is given by minimal graphs over Rn.
In [4], Bernstein proved that a minimal graph over R2 has to be a plane. In the sixties,
the same question for higher dimensions was studied in a series of paper by Fleming [17],
De Giorgi [14], Almgren [1] and Simons [26]. They proved that minimal graphs over Rn

are planes if n ≤ 7. For n ≥ 8, Bombieri, De Giorgi and Giusti [5] were able to construct
counter-examples and gave also in R8 an example of a stable minimal hypersurfaces that is
not a hyperplane.

Concerning the stable Bernstein problem, the question was solved positively in R3 by
Do Carmo and Peng [15], Fischer-Colbrie and Schoen [16] and Porogelov [22] in the early
eighties. In higher dimension, Schoen, Simon and Yau [23, 24] were able to settle the stable
Bernstein in Rn+1, n ≤ 6, under a Euclidean volume growth assumption (see also the recent
work of Bellettini [3]).

Recently Chodosh and Li [9] were able to answer positively the stable Bernstein problem
in R4. Later two alternative proofs came out: one by Catino, Mastrolia and Roncoroni [8]
and one by Chodosh and Li [10]. Actually in [10], Chodosh and Li develop a second strategy
to prove the result. Then, in a joint work Minter and Stryker [12], they were able to apply
this strategy in the case of R5 to solve the stable Bernstein problem in this dimension as
well.
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As in [13, 12], it is well known that the solution to the stable Bernstein problem (The-
orem 1.1) implies corollaries like curvature estimates for stable minimal immersions in 6-
dimensional manifolds and characterization of finite Morse index minimal hypersurfaces in
R6. For example, we have

Corollary 1.1. Let (X6, g) be a complete Riemannian manifold whose sectional curvature
satisfies |secg| ≤ K. Then any compact, two-sided, stable minimal immersion M5 # X
satisfies

|AM |(q) min(1, dM(q, ∂M)) ≤ C(K)

for q ∈M .

The proof of [13, Corollary 2.5] extends to dimension 6 to prove the above result.
The basic idea to prove Theorem 1.1 is to obtain a Euclidean growth estimate for the

volume of M and then apply the work of Schoen, Simon and Yau. The strategy of Chodosh
and Li is a way towards this estimate. We refer to [10, 12] for a good presentation of
their ideas. Let us give some elements. Let M be a stable minimal hypersurface in Rn+1

with induced metric g. Inspired by the work of Gulliver and Lawson [18], they consider
the conformal metric g̃ = r−2g where r is the Euclidean distance to 0 in Rn+1. If M was
a hyperplane passing through the origin (M \ {0}, g̃) would be isometric to the Euclidean
product Sn−1 × R. In the general case, the idea of Chodosh and Li is that the stability
assumption implies that the geometry of (M \ {0}, g̃) should look like Sn−1×R. In [12], the
authors consider the bi-Ricci curvature which is a certain combination of sectional curvatures.
The bi-Ricci curvature was introduced by Shen and Ye in [25], already to study minimal
surfaces (see precise definition in Section 2). Notice that on Sn−1×R, the bi-Ricci curvature
is lower bounded by n − 2. In [12], the authors prove that the stability of M implies a
positive spectral lower bound for the bi-Ricci curvature of (M \ {0}, g̃). More precisely they

prove that, on (M \ {0}, g̃), the operator −∆̃ + (B̃Ric− − 1) is non-negative where B̃Ric− is
the punctual minimum of the bi-Ricci curvature of g̃. This should be understood as a weak

formulation of the inequality B̃Ric ≥ 1.
The second step of the strategy consists in the construction of a µ-bubble in (M \ {0}, g̃)

with a spectral lower bound for its Ricci curvature. In some sense, they identify in any
sufficiently large part of (M \ {0}, g̃) a hypersurface that play the role of Sn−1 × {t} in
Sn−1 × R.

The last step is to obtain an upper-bound for the volume of the µ-bubble. In [12], the
authors obtain a Bishop-Gromov volume estimate under the spectral lower bound on the
Ricci curvature. In their paper, the proof of this volume estimate was specific to dimension 3.
Recently, Antonelli and Xu [2] have proved such a Bishop-Gromov estimate in any dimension.

Theorem 1.2 (Antonelli and Xu [2]). Let (Mk, g) be a compact Riemannian k-manifold with
k ≥ 3 and let 0 ≤ γ ≤ k−1

k−2
and λ > 0. Assume that there is a positive function u ∈ C∞(M)

such that, for any (p, v) ∈ UM ,

γ∆u(p) ≤ (Ric(v, v)− (k − 1)λ)u(p)

Then Vol(M) ≤ λ−k/2 Vol(Sk).

Once the g̃-volume of the µ-bubble is controlled, this gives an estimate of its volume in the
original metric g and then control the growth of the volume of M tanks to an isoperimetric
inequality due to Michael and Simon [20] and Brendle [6].



STABLE MINIMAL HYPERSURFACES IN R6 3

In the present paper, we also follow the above strategy of [12]. Let us first notice that
it is possible to obtain a spectral lower bound for the bi-Ricci curvature also when n = 5,
however this lower bound is far from being sufficient to perform the µ-bubble construction.
In order to solve this difficulty, we consider a weighted bi-Ricci curvature BRicα where the
parameter α does not give the same weight to all sectional curvatures in the combination (a
similar idea appears in the recent article by Hong and Yan [19]). We prove a spectral lower

bound for the weighted bi-Ricci curvature: the operator −a∆̃+(B̃Ricα−−δ) is non-negative
where a, δ ∈ R. At that step, a, α are two parameters that should be chosen such that δ > 0.

By imposing some new constraints on a and α, we are then able to construct the µ-
bubble with a spectral lower bound on the Ricci curvature. At the last step, we apply the
Bishop-Gromov estimate of Antonelli and Xu [2]. In order to do so, this imposes some new
constraints on the parameters a and α. Nevertheless, the choice a = 11

10
and α = 40

43
meets all

the constraints. Let us notice that, for n = 6, no choice of a and α satisfies all the constraints.
Moreover, the computations have to be done the most precisely possible in order to allow
such a choice when n = 5. The end of the proof then follows the line of [12].

Organization. In Section 2, we fix some notations that we use all along the paper. Section 3

is devoted to the proof the spectral lower bound for B̃Ricα for the Gulliver-Lawson metric
on a stable minimal hypersurface. In Section 4, we construct the µ-bubble with a spectral
lower Ricci bound. We end the proof of Theorem 1.1 in Section 5. Along the paper, we
specify the value of n, a and α only when it is necessary, we hope this allows to understand
where the constraints come from.

Acknowledgments. The author was partially supported by the ANR-19-CE40-0014 grant.
Part of this work was carried out during a stay at the Instituto de Matemáticas de la
Unversidad de Granada (IMAG), the author would to thank its members for their hospitality.

2. Preliminaries

Let (Mn, g) be a Riemannian manifold and (ei)1≤i≤n be an orthonormal basis of TpM . For
α ∈ R, we recall or define

• the Ricci curvature Ric(e1, e1) =
∑n

i=2R(e1, ei, ei, e1),
• the punctual minimum of the Ricci curvature λ(p) = minv∈TpM,|e|=1 Ric(e, e),
• the weighted bi-Ricci or α-bi-Ricci curvature

BRicα(e1, e2) =
n∑
i=2

R(e1, ei, ei, e1) + α

n∑
j=3

R(e2, ej, ej, e2)

• the minimum of the α-bi-Ricci curvature Λα(p) = min(e,f) orthonormal in TpM BRicα(e, f)

Notice that for α = 1, BRic1 is the classical bi-Ricci curvature as defined in [25].
If Σ#M is a hypersurface with unit normal ν. We use the following conventions:

• the second fundamental form of Σ is AΣ(X, Y ) = (∇Xν, Y ) = −(∇XY, ν) and
• the mean curvature of Σ is H = trAΣ.

If Ω is a subset of M , we denote by Nρ(Ω) the ρ-tubular neighborhood of Ω: the set of
points at distance less than ρ from Ω.

We finish by a simple remark that we use in Section 3.
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Remark 1. Let A ∈ Mn(R) be a positive definite symmetric matrix and B ∈ Rn. Then the
function f : X ∈ Rn 7→ X>AX + B>X ∈ R is lower bounded and its minimum is given by
−1

4
B>A−1B.

3. Spectral lower bound for the weighted bi-Ricci curvature

Let F : Mn # Rn+1 be a complete two-sided minimal hypersurface and g its induced
metric. We consider the Gulliver-Lawson conformal metric g̃ = r−2g where r is the Euclidean
distance function to 0. Notice that if F (p) = 0, g̃ is not defined. So we consider N =
M \ F−1(0). As it was observed by Gulliver and Lawson [18], the metric (N, g̃) is complete.

The first step of the proof of Theorem 1.1 consists in proving that the stability assumption
can be translated in a spectral lower bound for the α-bi-Ricci curvature of the metric g̃.
Actually we have the following result.

Theorem 3.1. Let Mn # Rn+1 be a two-sided stable minimal hypersurface. Suppose n = 5,
then, for a = 11

10
, α = 40

43
and δ = 3

10
, there is a smooth function V such that

V ≥ δ − Λ̃α

and

(1)

∫
N

|∇ϕ|2g̃dvg̃ ≥
∫
N

1

a
V ϕ2dvg̃

for any ϕ ∈ C1
c (N).

3.1. Recalling some computations. We first recall some computations and results of [12].
We denote by ν the unit normal to M and by |dr| the norm of the differential of r along

M with respect to the metric g.
Let (ei)1≤i≤n be an orthonormal basis for the metric g then, for the conformal metric g̃,

an orthonormal basis is given by ẽi = rei. The sectional curvatures of g and g̃ are related by

(2) R̃ijji = r2Rijji + 2− |dr|2 − dr(ei)2 − dr(ej)2 − (p, ν)(Aii + Ajj)

(see [12, Proposition 3.5]).
The second result that we want to recall is the writing of the stability inequality in the

conformal metric g̃. We have

(3)

∫
N

|∇ϕ|2dvg̃ ≥
∫
N

(
r2|A|2 − n(n− 2)

2
+
n2 − 4

4
|dr|2

)
ϕ2dvg̃

for any ϕ ∈ C1
c (N) (see [12, Proposition 3.10]).

3.2. Estimating the curvature terms. In this subsection, we want to relate the curvature
term in the stability inequality (3) to the α-bi-Ricci curvature. We use the notations of the
preceding subsection.

Proposition 3.1.

B̃Ricα(ẽ1, ẽ2) =r2 BRicα(e1, e2) + 2(n− 1 + α(n− 2))− (n+ α(n− 1))|dr|2

− ((n− 2− α)dr(e1)2 + α(n− 3)dr(e2)2)

− (p, ν)((n− 2− α)A11 + α(n− 3)A22)
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Proof. Summing (2) and using trA = 0, we have

B̃Ricα(ẽ1, ẽ2) =
n∑
i=2

R̃1ii1 + α
n∑
j=3

R̃2jj2

=r2 BRicα(e1, e2) + 2(n− 1)− (n− 1)|dr|2 − (n− 1)dr(e1)2

− (|dr|2 − dr(e1)2)− (p, ν)((n− 1)A11 − A11) + 2α(n− 2)

− α(n− 2)|dr|2 − α(n− 2)dr(e2)2 − α(|dr|2 − dr(e1)2 − dr(e2)2)

− α(p, ν)((n− 2)A22 − A11 − A22)

=r2 BRicα(e1, e2) + 2(n− 1 + α(n− 2))− (n+ α(n− 1))|dr|2

− ((n− 2− α)dr(e1)2 + α(n− 3)dr(e2)2)

− (p, ν)((n− 2− α)A11 + α(n− 3)A22)

�

Proposition 3.2.

BRicα(e1, e2) = −
n∑
i=1

A2
1i − α

n∑
j=2

A2
2j − αA11A22

Proof. Applying Gauss formula and trA = 0, we have

BRicα(e1, e2) =
n∑
i=2

(A11Aii − A2
1i) + α

n∑
j=3

(A22Ajj − A2
2j)

=−
n∑
i=1

A2
1i + α(−A22(A11 + A22)−

n∑
j=3

A2
2j)

=−
n∑
i=1

A2
1i − α

n∑
j=2

A2
2j − αA11A22

�

Using the above computation, we obtain the following estimate of the curvature term.
This estimate introduces some constraints on α and a second parameter a.

Proposition 3.3. Let a, α > 0 such that a > 1
2
, 2a ≥ α and

W = (a− 1

2
)
(
a− n− 2

2n
(1 + 2α)

)
− n− 2

4n
(1− α)2 > 0

Let us define

f =
(n− 2)2

8W

(
(a− 1

2
)
n− 2

n
(1 + α

n− 4

n− 2
)2 + (1− α)2(a+

n− 2

2n
− 2

n
α)
)

Then

ar2|A|2 + f(1− |dr|2) ≥ −r2 BRicα(e1, e2) + (p, ν)((n− 2− α)A11 + α(n− 3)A22)
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Proof. By Proposition 3.2, the right-hand side of the expected inequality satisfies to

−r2 BRicα(e1, e2)+(p, ν)((n− 2− α)A11 + α(n− 3)A22)

=r2
( n∑
i=1

A2
1i + α

n∑
j=2

A2
2j + αA11A22

+ (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

)
=r2

(
A2

11 + αA2
22 + αA11A22 +

n∑
i=2

A2
1i + α

n∑
j=3

A2
2j

+ (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

)
(4)

The vector A∆ = (A11, · · · , Ann) belongs to the sub-space Fn = {X ∈ Rn | x1 +· · ·+xn = 0}.
We write a decomposition in an orthonormal basis of Fn as

A11
...

Ann

 =
n−3∑
i=1

 0
0
Ei

xi +
1√

2n(n− 2)


n− 2
n− 2
−2
...
−2

 z1 +
1√
2


1
−1
0
...
0

 z2

where (Ei)1≤i≤n−3 is an orthonormal basis of Fn−2. So we have

A2
11+αA2

22 + αA11A22 + (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

=(

√
n− 2√

2n
z1 +

z2√
2

)2 + α(

√
n− 2√

2n
z1 −

z2√
2

)2 + α(
n− 2

2n
z2

1 −
1

2
z2

2)

+ (
p

r2
, ν)
(√n− 2√

2n
(n− 2 + α(n− 4))z1 +

n− 2√
2

(1− α)z2

)
=
n− 2

2n
(1 + 2α)z2

1 +

√
n− 2

n
(1− α)z1z2 +

1

2
z2

2

+ (
p

r2
, ν)

n− 2√
2

(√n− 2

n
(1 + α

n− 4

n− 2
)z1 + (1− α)z2

)
(5)

For a > 0, we are interested in the minimum (if it exists) of

a(z2
1 + z2

2)−n− 2

2n
(1 + 2α)z2

1 −
√
n− 2

n
(1− α)z1z2 −

1

2
z2

2

− (
p

r2
, ν)

n− 2√
2

(

√
n− 2

n
(1 + α

n− 4

n− 2
)z1 + (1− α)z2)

(6)

The matrix of the quadratic part of the above expression isa− n−2
2n

(1 + 2α) −
√

n−2
4n

(1− α)

−
√

n−2
4n

(1− α) a− 1
2
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This matrix is positive definite if a > 1
2

and its determinant is positive:

W = (a− 1

2
)
(
a− n− 2

2n
(1 + 2α)

)
− n− 2

4n
(1− α)2 > 0

If it’s the case, by Remark 1 with vector B = −( p
r2
, ν)n−2√

2

(√
n−2
n

(1 + αn−4
n−2

), (1 − α)
)
, the

quantity in (6) is lower bounded by

− (
p

r2
, ν)2 (n− 2)2

8W

(
(a− 1

2
)
n− 2

n
(1 + α

n− 4

n− 2
)2 +

n− 2

n
(1− α)2(1 + α

n− 4

n− 2
)

+ (a− n− 2

2n
(1 + 2α))(1− α)2

)
=− (

p

r2
, ν)2 (n− 2)2

8W

(
(a− 1

2
)
n− 2

n
(1 + α

n− 4

n− 2
)2 + (1− α)2(a+

n− 2

2n
− 2

n
α)
)

=− (
p

r2
, ν)2f

Since (p
r
, ν)2 = (1− |dr|2), we have then proved that

a(z2
1 + z2

2) +
f

r2
(1− |dr|2) ≥n− 2

2n
(1 + 2α)z2

1 +

√
n− 2

n
(1− α)z1z2 +

1

2
z2

2

+ (
p

r2
, ν)

n− 2√
2

(

√
n− 2

n
(1 + α

n− 4

n− 2
)z1 + (1− α)z2)

Combining this with (4) and (5), if 2a ≥ α, we have

a|A|2 +
f

r2
(1− |dr|2) ≥a(|A∆|2 +

∑
i 6=j

A2
ij) +

f

r2
(1− |dr|2)

≥A2
11 + αA2

22 + αA11A22 + (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

+ a
∑
i 6=j

A2
ij

≥A2
11 + αA2

22 + αA11A22 +
n∑
i=2

A2
1i + α

n∑
j=3

A2
2j

+ (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

≥− BRicα(e1, e2) +
(p, ν)

r2
((n− 2− α)A11 + α(n− 3)A22)

This is the expected estimate. �

3.3. Proof of Theorem 3.1. Let us assume that the basis is chosen such that Λ̃α =

B̃Ricα(ẽ1, ẽ2). From (3), we are looking for a lower bound for r2|A|2 − n(n−2)
2

+ n2−4
4
|dr|2.

Under the assumptions of Proposition 3.3, α ≤ 1 (such that n− 2−α ≥ α(n− 3)) and using
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Proposition 3.1, we have

a
(
r2|A|2 − n(n− 2)

2
+
n2 − 4

4
|dr|2

)
≥− r2 BRicα(e1, e2) + (p, ν)((n− 2− α)A11 + α(n− 3)A22)

− f(1− |dr|2)− an(n− 2)

2
+ a

n2 − 4

4
|dr|2

≥− B̃Ricα(ẽ1, ẽ2) + 2(n− 1 + α(n− 2))− (n+ α(n− 1))|dr|2

−
(
(n− 2− α)dr(e1)2 + α(n− 3)dr(e2)2

)
− f(1− |dr|2)− an(n− 2)

2
+ a

n2 − 4

4
|dr|2

≥C(|dr|2)− Λ̃α

where

C(t) = 2(n− 1 + α(n− 2))− (2n− 2 + α(n− 2))t− f(1− t)− an(n− 2)

2
+ a

n2 − 4

4
t

C is an affine function and 0 ≤ |dr|2 ≤ 1, so C(|dr|2) ≥ min(C(0), C(1)). We have

C(1) =2(n− 1 + α(n− 2))− (2n− 2 + α(n− 2))− an(n− 2)

2
+ a

n2 − 4

4

= α(n− 2)− a(n− 2)2

4
= (n− 2)(α− an− 2

4
)

and

C(0) = 2(n− 1 + α(n− 2))− f − an(n− 2)

2

If we consider a = 11
10

and α = 40
43

, we have a > 1
2
, 2a ≥ α, α ≤ 1 and W = 26697

184900
> 0. So

the above computations apply. We have

C(0) =
731975

1530628
' 0.47 and C(1) =

543

1720
' 0.31

So for these values of a and α, and with δ = 3
10
≤ min(C(0), C(1)), we have

V = a

(
r2|A|2 − n(n− 2)

2
+
n2 − 4

4
|dr|2

)
≥ δ − Λ̃α

By (3), the spectral estimate (1) is true. Theorem 3.1 is proved.

4. The µ-bubble construction

In this section, we produce a warped µ-bubble with a spectral Ricci curvature lower bound.
So we start with a connected complete non-compact Riemannian manifold (Nn, ḡ) with a
spectral lower bound on the α-bi-Ricci curvature: there is a smooth function V on N such
that

V ≥ δ − Λα

and

(7)

∫
N

|∇ϕ|2ḡdvḡ ≥
∫
N

1

a
V ϕ2dvḡ
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for any ϕ ∈ C1
c (N)

Theorem 4.1. Assume (N, ḡ) as above with n = 5, a = 11
10

, α = 40
43

and δ = 3
10

. Let Ω+ be a

domain in N (i.e. an open subset with compact smooth boundary) such that N \N 100π(Ω+) 6=
∅. Then there is a domain Ω∗ with

• Ω+ ⊂ Ω∗ ⊂ N 100π(Ω+) and
• there is a smooth function V on Σ = ∂Ω∗ such that

V ≥ δ

2
− αλΣ

and

(8)
4

4− a

∫
Σ

|∇ϕ|2dvg ≥
∫

Σ

V ϕ2dvg

for any ϕ ∈ C1(Σ) where g is the induced metric on Σ.

4.1. Construction of the µ-bubble. Because of the spectral control (7) on N , we know
(see [16]) that there is a positive function w on N such that

(9) −a∆w = V w ≥ (δ − Λα)w

Let us recall quickly the construction of the µ-bubble. Let Ω− be a domain in N such
that Ω+ ⊂⊂ Ω− ⊂ N 100π(Ω+). Let h : Ω− \ Ω+ → R be a smooth function such that
limp→∂Ω+ h(p) = +∞ and limp→∂Ω− h(p) = −∞. Let Ω be a domain with Ω+ ⊂⊂ Ω ⊂⊂ Ω−.

For any sets of finite perimeter Ω with Ω+ ⊂⊂ Ω ⊂⊂ Ω−, we consider the quantity

A(Ω) =

∫
∂∗Ω

wa −
∫
U

(χΩ − χΩ)hwa

where ∂∗Ω is the reduced boundary of Ω. By similar argument to the ones in [11, 28], there
there is a set of finite perimeter Ω∗ (Ω+ ⊂⊂ Ω∗ ⊂⊂ Ω−) which minimize the functional A.
Moreover its reduced boundary ∂∗Ω∗ = Σ is non empty (N \ N 100π(Ω+) 6= ∅) and smooth
(see for example [21, 27]).

4.2. Spectral Ricci-curvature bound of the µ-bubble. We denote by k = n − 1 the
dimension of Σ and by η the outgoing unit normal to Σ.

As in [12, Proposition 4.2], if ϕ is a function on Σ, writing the first variation of A for a
variation {Ωt} of Ω∗ generated by ϕη gives

0 =
d

dt
A(Ωt)|t=0 =

∫
Σ

(Hwa + awa−1dw(η)− hwa)ϕ =

∫
Σ

(H + aw−1dw(η)− h)waϕ

Since this is true for any ϕ,

(10) H = h− ad lnw(η)

Computing the second derivative of A(Ωt), we obtain

0 ≤ d2

dt2
A(Ωt)|t=0 =

∫
Σ

wa
(
− ϕ∆ϕ− (|B|2 + Ric(η, η))ϕ2 − aw−2dw(η)2ϕ2

+ aw−1∇2
w(η, η)ϕ2 − aw−1(∇w,∇ϕ)ϕ− dh(η)ϕ2

)
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where B is the second fundamental form of Σ. So

0 ≤
∫

Σ

− div(waϕ∇ϕ) + wa
(
|∇ϕ|2−(|B|2 + Ric(η, η))ϕ2 − aw−2dw(η)2ϕ2

+ aw−1∇2
w(η, η)ϕ2 − dh(η)ϕ2

)

Using ∇2
w(η, η) = ∆w −∆w −Hdw(η), we obtain

0 ≤
∫

Σ

wa
(
|∇ϕ|2−(|B|2 + Ric(η, η))ϕ2 − aw−2dw(η)2ϕ2

+ aw−1(∆w −∆w −Hdw(η))ϕ2 − dh(η)ϕ2
)(11)

For ϕ = w−a/2ψ, we have ∇ϕ = w−a/2∇ψ − a
2
w−a/2−1ψ∇w. So we can write∫

Σ

wa(|∇ϕ|2 − aw−1∆wϕ2) =

∫
Σ

|∇ψ|2 − aw−1ψ(∇w,∇ψ) +
a2

4
ψ2w−2|∇w|2 − aψ2w−1∆w

=

∫
Σ

|∇ψ|2 − a div(ψ2w−1∇w) + aw−1ψ(∇w,∇ψ)

− (a− a2

4
)ψ2w−2|∇w|2

=

∫
Σ

|∇ψ|2 + aw−1ψ(∇w,∇ψ)− (a− a2

4
)ψ2w−2|∇w|2

Using that w−1ψ(∇w,∇ψ) ≤ ε|∇ψ|2 + 1
4ε
ψ2w−2|∇w|2 with ε = 1

4−a , we get∫
Σ

wa(|∇ϕ|2 − aw−1∆wϕ2) ≤ 4

4− a

∫
Σ

|∇ψ|2

From (11) and (9), we then obtain

4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

(
|B|2 + Ric(η, η) + aw−2dw(η)2 − aw−1∆w + aHd ln(η)

)
ψ2

+ adh(η)ψ2

≥
∫

Σ

(
|B|2 + Ric(η, η) + δ − Λα + aw−2dw(η)2 + aHd ln(η)

)
ψ2

+ adh(η)ψ2

(12)

Let (e1, . . . , ek) be an orthonormal basis of Σ. Using Gauss equation, we have

αRicΣ(e1, e1) = α
k∑
j=2

RΣ
1jj1 =α

k∑
j=2

(R1jj1 +B11Bjj −B2
1j)

=BRicα(η, e1)− Ric(η, η) + α
k∑
j=2

(B11Bjj −B2
1j)
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So assuming that e1 is such that RicΣ(e1, e1) = λΣ, we have

Ric(η, η)− Λα ≥ Ric(η, η)− BRicα(η, e1) = −αλΣ + α
k∑
j=2

(B11Bjj −B2
1j)

So using the above inequality and trB = H in (12), we then get the inequality

4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

ψ2
(
δ − αλΣ + |B|2 + α

k∑
j=2

(B11Bjj −B2
1j) + a(d lnw(η))2

+ aHd lnw(η) + adh(η)
)

≥
∫

Σ

ψ2
(
δ − αλΣ + |B|2 + αHB11 − α

k∑
j=1

B2
1j + a(d lnw(η))2

+ aHd lnw(η) + adh(η)
)

Using (10), we have

K := |B|2 + αHB11 − α
k∑
j=1

B2
1j + a(d lnw(η))2 + aHd lnw(η) =

|B|2 + αHB11 − α
k∑
j=1

B2
1j +

1

a
(H − h)2 +H(h−H)

Let us denote by Φ the traceless part of B and let Φ∆ denote the vector (Φ11, . . . ,Φkk) ∈ Fk.
Thus, for α ≤ 2, we have

K ≥ 1

k
H2 + |Φ∆|2 +

α

k
H2 + αHΦ11 − α(

1

k
H + Φ11)2 +

1

a
(H − h)2 +H(h−H)

We can write a decomposition of Φ∆ in an orthonormal basis of Fk

Φ∆ =
k−2∑
i=1

(
0
Ei

)
xi +

1√
k(k − 1)


k − 1
−1
...
−1

 z

where (Ei)1≤i≤k−2 is an orthonormal basis of Fk−1. We then have

K ≥1

k
H2 + z2 +

α

k
H2 + αH

√
k − 1

k
z − α(

1

k
H +

√
k − 1

k
z)2 +

1

a
(H − h)2 +H(h−H)

≥(
1

k
+
α

k
− α

k2
+

1

a
− 1)H2 + (1− αk − 1

k
)z2 +

1

a
h2 + α

√
k − 1

k
(1− 2

k
)Hz + (1− 2

a
)Hh

The above expression is a quadratic form in (H, z, h) associated to the matrix

G =


1
k

+ α
k
− α

k2
+ 1

a
− 1 α

2

√
k−1
k

(1− 2
k
) 1

2
− 1

a

α
2

√
k−1
k

(1− 2
k
) 1− αk−1

k
0

1
2
− 1

a
0 1

a
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Notice that this matrix is positive definite if 1 − αk−1
k

> 0 and det(G) > 0. Actually for

k = 4, a = 11
10

, α = 40
43

, we have 1− αk−1
k

= 13
43
> 0 and

det
(
G−

0 0 0
0 0 0
0 0 1

22

) =
2599

1789832
> 0

So K ≥ 1
22
h2. Finally, for our values of the parameters, we have

(13)
4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

ψ2
(δ

2
− αλΣ

)
+ ψ2

(δ
2

+
1

22
h2 + adh(η)

)
4.3. End of the proof. We need to choose the domain Ω− and the function h. Let Ψ :
N\Ω+ → R+ be a smoothing of the distance function dḡ(·, ∂Ω+) such that 1

2
dḡ(·, ∂Ω+) ≤ Ψ ≤

2dḡ(·, ∂Ω+) and |∇Ψ|ḡ ≤ 2. Let ε > 0 small be such that (1 + ε)11π
√

88
15

is a regular value of

Ψ. Let us define Ω− = Ω+ ∪ {Φ ≤ (1 + ε)11π
√

88
15
}. On Ω−, dḡ(·, ∂Ω+) ≤ 2(1 + ε)11π

√
88
15
≤

100π, so Ω− ⊂ N 100π(Ω+).

On {0 < Ψ < (1 + ε)11π
√

88
15
}, we consider the function h defined by h = k ◦ Ψ

1+ε
where

k(t) = −
√

33

10
tan(

1

11

√
15

88
t− π

2
)

for t ∈ (0, 11π
√

88
15

). We have limp→∂Ω± h(p) = ±∞. Notice that k solves −k′ = 3
44

+ 5
242
k2

so

|adh(η)| = a|k′( Ψ(p)

1 + ε
)| |Ψ

′(p)|
1 + ε

≤ 2a

1 + ε
(

3

44
+

5

242
h2) ≤ 3

20
+

1

22
h2 =

δ

2
+

1

22
h2

Hence, the above construction applies and, for our choices of parameters, (13) becomes

4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

ψ2
(δ

2
− αλΣ

)
This ends the proof of Theorem 4.1.

5. Stable Bernstein problem

In this section we prove Theorem 1.1. This a consequence of the following volume growth
estimate.

Proposition 5.1. Let F : M5 # R6 be a complete, immersed, two-sided, simply-connected
stable minimal hypersurface. Let Bρ denote the geodesic ball of radius ρ > 0 centered at some
point p0 in M (for the induced metric g). Then

Vol(Bρ) ≤ Vol(B5)(
800

43
)5/2
(
2 exp(100π)

)5
ρ5

Proof. First, up to a translation, we may assume that F (p0) = 0. Let Ω+ be a smooth
compact domain in M such that Bρ ⊂ Ω+ ⊂ B2ρ and such that 0 /∈ F (∂Ω+). We consider
the Gulliver-Lawson conformal metric g̃ = r−2g. By Theorem 3.1 and Theorem 4.1, there

is Ω∗ a domain in M such that Ω+ ⊂ Ω∗ ⊂ Ñ100π(Ω+) and ∂Ω∗ satisfies the spectral Ricci
lower bound (8) for the metric induced by g̃.
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By [7, Theorem 1], M has one end. We consider Ω∗∗ the connected component of Ω∗ that
contains Bρ. We assume M is simply connected so the unbounded component of M \ Ω∗∗
has only boundary component Σ0. Let Ω′ be the bounded component of M \ Σ0. We have

Bρ ⊂ Ω′ and ∂Ω′ ⊂ Ñ100π(B2ρ).
On ∂B2ρ, the Euclidean distance function r is bounded by 2ρ. So, by [10, Lemma 6.2], on

Ñ100π(B2ρ), the Euclidean distance function r is bounded by 2ρ exp(100π).
Now, because of the spectral Ricci lower bound (8) and since 4

(4−a)α
= 43

29
< 3

2
= k−1

k−2
,

we can apply the volume estimate of Antonelli and Xu [2, Theorem 1] for the metric g̃ and
obtain

Volg̃(Σ0) ≤ (
δ

6α
)−2 Vol(S4) = (

800

43
)2 Vol(S4)

So scaling back to the Euclidean metric

Vol(Σ0) ≤ (
800

43
)2 Vol(S4)

(
2 exp(100π)

)4
ρ4

Finally we can apply the isoperimetric inequality for minimal hypersurfaces in Rn+1 [6, 20]
to obtain

Volg(Bρ) ≤ Volg(Ω
′) ≤ Vol(B5)(

800

43
)5/2
(
2 exp(100π)

)5
ρ5

�

Proof of Theorem 1.1. Let M # R6 be an immersed, connected,complete, two-sided, stable
minimal hypersurface. The stability assumption lifts to the universal cover, so we can assume
M to be simply connected. By Proposition 5.1, M has Euclidean volume growth. So by [23]
(see also [3]), we obtain that M is a flat hyperplane. �
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