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I. SETTING
Let G be a Locally Compact Abelian Group
(LCA group)
I' its dual group

(Fourier analysis tools available)

Let (ut)t>0 be a symmetric convolution
semigroup of measures on G

ot * fhs = Hitg; hm g = d0



1 o its Lévy exponent
(real continuous non-negative definite func-
tion) defined by

:at - e_twa
Y. I —R
0 — (0)

Tif(x) = urx f(x),r € G : one parameter
semi-group associated to (uq)

£¢ the infinitesimal generator associated
to the semi-group



i.e.

II. QUESTION

What kind of functional inequality is
satisfied by the quadratic form

(L yu,u) :/I_¢(9)|ﬁ(9)|2d9 777
(df: the Haar measure on IN)
EXAMPLE : G = R",
W(0) =102 (L = A Laplacian)

(u)¢>0 : Heat convolution semigroup.



III. MOTIVATION

Nash inequality on R? :

2+4/d
ellul 3T < (Au,w), [jully < 1
implies (" equivalent”)

Sobolev inequality :

[ul[%g < (Au,u)
d—2



It is also equivalent to the
for the heat kernel:

C
| T3||1 — 400 = Rt (0) < /2 t>0

(This holds true in a very abstract setting)



IV. What is a Nash-type inequality ?
(generalized Nash inequality)

For some non-decreasing function
A [0, 4o00) — [0, +00)
ANull5) < (Lyu,w), ullp <1

Example : Euclidean setting with the Lapla-
cian:

/\(x) — $1+2/d



V. Why are we so interested by Nash
T.I7?
Assume that

A(||ul|3) < (Lu,w), |Jullp <1

is equivalent to (for some function A and m)

1 Thulloo < m(t) [|ull, ¢>0.

sup hi(z,z) <m(t), t>O0.
T



1) From Nash T.I. we deduce heat kernel
bounds

2) If A is a generator (a simple one) and and
B is another operator (a complicated one)

S.t.
(Au,u) < (Bu,u)
If N.T.I holds for A then it holds also

iImmediately for B I

and for B satisfies the same
upper bound as the for A Il



VI. First result: Theorem 1 (Nash
approach)

e Assume that ¢ is real Lévy exponent
e \We set the "volume” function
V(t)=do{0 el :yv0) <t}, t>0
e \We denote by
A(s) = sup{st — tV(t)}
t>0

Then (Nash type-inequality) :

A(Jul3) < (Lyu,u),  w€D(Ly) ,|ully s( 1)
1



VII. Non-radial examples (product of
a-stable semigroups)

o Let G =RY,
d=d1+dy+ ...+ dg, (djz 1,7 =1...k).
o Let aq,...,ap, >0 and «; € (0, 1].

o P(x) = ay|r1 |2 4as|ro|?*2+ ...+ ay |z 2

= (21,...,x3) € R% and T € R%



Ly =a1A7 + a2 + .. 4 apALF,

d d
Let v = 2(04—11 + ...+ a—’;)
(this number may not be an integer!)

Then there exists a constant ¢ > 0, for all
f € D with ||u||1 < 1:

244
c1llul 3T < (Lyu,w)



Then the semigroup (7;) generated by v is
ultracontractive and satisfies:

| Tulloo < ct™*/?||ully, t> 0.

h(0) < ct™ V2, t>o0.

When v > 2,

this implies the

ull%, < (Lyuu)



VIII. Theorem on R¢ for radial symbol

o Let ¢ be radial real-valued Lévy exponent

B(10]) = ¥ (6)

o Assume r — ¢ (r) is non-decreasing
Then (Nash-type inequality)

2/d

cllll3 & (cllull3') < (Cyuw) ()

for all ||ul|1 < 1.



IX. Corollary: Sobolev-Orlicz-type
inequality

o Let ¢ be radial real-valued Lévy exponent
on G = R4
o Assume r — ¢ (r) is non-decreasing.

T hen

,2/d
) A< Gy ()
2

C/Rdfu?@; (c’



X. Examples on R¢

1. M-semigroup: £ =1og(1+ A)
g(xz) = log(1l 4+ =) (Bernstein function)

gop(r) = log(1 + r2) with ¢(r) = r?
Then (N.T.I)

¢||ul[3 1n (1 + cy|u|y‘2‘/d) < (In(1 4+ A, w)
(4)



Then Sobolev-Orlicz inequality !

c/ w? log (14 ¢ ut/d dm < (log(1 + A)u,u)
e llly) |
(5)

This implies Gross-type inequality !

2
U
¢’ /Rd u? log (c/ 2) dm < (log(1 + A)u,u)

||U||2
(6)




2. Poisson semigroup with jump A >0
g(z) = 1 — e’ (Bernstein function)

gop(r) =1 — e—>? with P(r) = r?

cllull3 (1 - e BT < (= Ty)uw) ()

L= (I—T)) is the (bounded) generator of
the Poisson semigroup given by P, = e (=T}



XI. PROBLEM:
G=R, Yg(0)=1—-cos(x.0), xR
Then Ve(t) = +oo (Vx € R) |

Importance of ;. Lévy-Khinchine repre-
sentation formula (symmetric case)

VO = fon o) ¥o(®) (@)

if G =79 then I = T¢ and the volume
V¢ is always finite for any !



Let ¢ (n) = |n|?® with a € (0,1] and n =
(n1,....,ng) € I =17% with |n| the euclidean
norm of n.

(Lyu,u) = 37 [n**a(n)|? = (A%, u)
neZ?

The Haar measure on Z% is the counting
measure



We denote by u = [ u(x) dr the mean value
of wu.

Theorem on T¢

T here exists a constant ¢ > 0 such that: For
all we D, with u = 0,

2+

4a
lull; @ < (Lyu,u),  ull1 <1

Or equivalently: for all uw € D, ||u —ul||; <1,

244
lu —aully © < (Lyu,u)



XIII. Examples on G = 74
Theorem on Z (d = 1)
o Assume u € LY (Z) with |ul|;1 < 1

e Then for all p € (0,1/2),

cpllull5 (1 = cos(pl|ul3)) < (Lyu, )
with ¢, = (1 — 2p)2.
Argument : ¢Y(0) = 1—-co0s0,0 € T = [—m, +7)

is radial and ¢ (r) = 1 — cosr is non decreas-
ing on [0, |



X1V. Partial result on R with
W(0) =1 — cos(bx)

T heorem on R

o Assume u € L1(R) satisfies the condition
for all x € R,

N la(z + 2nm)? < 1 (8)
nEZ

s Then for all p € (0,1/2) with ¢, = (1-2p)2,

cpllull3 (1 — cos(pl|ul|3)) < (Lyu, u)

work still in progress...



