
Generative models for images III: Variational
Auto-Encoders and Normalizing Flows

Bruno Galerne
bruno.galerne@univ-orleans.fr

Master MVA 2024-25
Tuesday January 28, 2025

Institut Denis Poisson
Université d’Orléans, Université de Tours, CNRS
Institut universitaire de France (IUF)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 1 / 50

Introduction on generative models

Generative models

1. Model and/or learn a distribution p(u) on the space of images.

(source: Charles Deledalle)
The images may represent:

• different instances of the same texture image,
• all images naturally described by a dataset of images,
• any image

2. Generate samples from this distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 2 / 50

Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

• z is a generic source of randomness, often called the latent variable.
• If G(·; Θ) is known, then p = G(·; Θ)#N (0, In) is the push-forward of the

latent distribution.

The generator G(·; Θ) can be:

• A deterministic function (e.g. convolution operator),
• A neural network with learned parameter,
• An iterative optimization algorithm (gradient descent,...),
• A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,. . .).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 3 / 50

Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

• z is a generic source of randomness, often called the latent variable.
• If G(·; Θ) is known, then p = G(·; Θ)#N (0, In) is the push-forward of the

latent distribution.

The generator G(·; Θ) can be:

• A deterministic function (e.g. convolution operator),
• A neural network with learned parameter,
• An iterative optimization algorithm (gradient descent,...),
• A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,. . .).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 3 / 50

Variational autoencoders (VAE)

Variational autoencoders (VAE)

Main references:

1. Original paper: (Kingma and Welling, 2014): “Auto-Encoding Variational
Bayes”

2. Short book by the same authors: (Kingma and Welling, 2019): “An
Introduction to Variational Autoencoders”. Freely available on ArXiv.

3. Recent book: (Tomczak, 2022): “Deep Generative Modeling” with
practice sessions in the official GitHub repository.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 4 / 50

https://github.com/jmtomczak/intro_dgm

Autoencoders

But first what is an autoencoder? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

encoder f decoder g
code h = f (x)

input x output x̂ = g(f (x))

The network is trained by minizing a reconstruction error over the dataset
D = {x(i), i = 1, . . . ,N} ⊂ Rd

MSE =
1
N

∑
x∈D

∥g(f (x))− x∥2.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 5 / 50

Autoencoders

But first what is an autoencoder? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

input x output x̂ = g(f (x))encoder f decoder g

code h = f (x)

The network is trained by minizing a reconstruction error over the dataset
D = {x(i), i = 1, . . . ,N} ⊂ Rd

MSE =
1
N

∑
x∈D

∥g(f (x))− x∥2.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 5 / 50

Autoencoders

But first what is an autoencoder? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

input x output x̂ = g(f (x))encoder f decoder g

code h = f (x)

The network is trained by minizing a reconstruction error over the dataset
D = {x(i), i = 1, . . . ,N} ⊂ Rd

MSE =
1
N

∑
x∈D

∥g(f (x))− x∥2.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 5 / 50

Autoencoders

input x output x̂ = g(f (x))encoder f decoder g

code h = f (x)

• Motivation: The encoder output h = f (x) ∈ Rk should produce an
adapted compact representation of the sample x within the dataset D.

• If both f and g are linear, the best solution is the PCA projection using
the first k principal components.

• One hopes to learn the most salient features of the distribution.
• If f and g have a lot of capacity, then trivial code can be learnt by storing

the dataset D = {x(i), i = 1, . . . ,N}:

f (x(i)) = i and g(i) = x(i)

• Trade-off between the parameters of f and g, dimensions d > k etc.
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 6 / 50

Autoencoders

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

Input test images: Output:

2D latent code of 256 test images:

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 7 / 50

Autoencoders

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

2D latent code of 256 test images:

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 7 / 50

Deep latent variable models

• In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

• The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...

• We are given an input dataset

D = {x(i), i = 1, . . . ,N} ⊂ Rd

• We assume that the dataset D consists of distinct, independent
measurements from the same unknown underlying process, whose true
(probability) distribution P∗ is unknown.

Remark: Identification of distribution and density

• p∗ : Rd → R+ will refer to the density with respect to (wrt) the Lebesgue
measure of the unknown distribution P∗.

• Depending on context it can also be a discrete distribution (e.g.
binarized images in {0, 1}d)... Be careful!

• That said P∗ will be identified with p∗(x) from now on.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 8 / 50

Deep latent variable models

• In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

• The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...

• We are given an input dataset

D = {x(i), i = 1, . . . ,N} ⊂ Rd

• We assume that the dataset D consists of distinct, independent
measurements from the same unknown underlying process, whose true
(probability) distribution P∗ is unknown.

Remark: Identification of distribution and density

• p∗ : Rd → R+ will refer to the density with respect to (wrt) the Lebesgue
measure of the unknown distribution P∗.

• Depending on context it can also be a discrete distribution (e.g.
binarized images in {0, 1}d)... Be careful!

• That said P∗ will be identified with p∗(x) from now on.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 8 / 50

Deep latent variable models

• In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

• The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...

• We are given an input dataset

D = {x(i), i = 1, . . . ,N} ⊂ Rd

• We assume that the dataset D consists of distinct, independent
measurements from the same unknown underlying process, whose true
(probability) distribution P∗ is unknown.

Remark: Identification of distribution and density

• p∗ : Rd → R+ will refer to the density with respect to (wrt) the Lebesgue
measure of the unknown distribution P∗.

• Depending on context it can also be a discrete distribution (e.g.
binarized images in {0, 1}d)... Be careful!

• That said P∗ will be identified with p∗(x) from now on.
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 8 / 50

Deep latent variable models

Framework:

• We are given an input dataset D = {x(i), i = 1, . . . ,N} ⊂ Rd with iid
samples from an unknown distribution p∗(x).

Probabilistic modeling:

• Propose a parametric model pθ(x) with parameters θ

• Learn good parameters θ so that pθ(x) is close to p∗(x): This is
generally done by maximizing the dataset log-likelihood:

max
θ

log pθ(D) where log pθ(D) =
1
|D|

∑
x∈D

log pθ(x).

• Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on − log pθ(D)) providing ∇θ log pθ(x) is
tractable: For a random minibatch M ⊂ D having cardinal M = |M|,

1
M

∑
x∈M

∇θ log pθ(x) is an unbiased estimator of ∇θ log pθ(D).

• ≃ means “is an unbiased estimator of”

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 9 / 50

Deep latent variable models

Framework:

• We are given an input dataset D = {x(i), i = 1, . . . ,N} ⊂ Rd with iid
samples from an unknown distribution p∗(x).

Probabilistic modeling:

• Propose a parametric model pθ(x) with parameters θ

• Learn good parameters θ so that pθ(x) is close to p∗(x): This is
generally done by maximizing the dataset log-likelihood:

max
θ

log pθ(D) where log pθ(D) =
1
|D|

∑
x∈D

log pθ(x).

• Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on − log pθ(D)) providing ∇θ log pθ(x) is
tractable: For a random minibatch M ⊂ D having cardinal M = |M|,

1
M

∑
x∈M

∇θ log pθ(x) is an unbiased estimator of ∇θ log pθ(D).

• ≃ means “is an unbiased estimator of”
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 9 / 50

Deep latent variable models

Framework:

• We are given an input dataset D = {x(i), i = 1, . . . ,N} ⊂ Rd with iid
samples from an unknown distribution p∗(x).

Probabilistic modeling:

• Propose a parametric model pθ(x) with parameters θ

• Learn good parameters θ so that pθ(x) is close to p∗(x): This is
generally done by maximizing the dataset log-likelihood:

max
θ

log pθ(D) where log pθ(D) =
1
|D|

∑
x∈D

log pθ(x).

• Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on − log pθ(D)) providing ∇θ log pθ(x) is
tractable: For a random minibatch M ⊂ D having cardinal M = |M|,

1
|M|

∑
x∈M

∇θ log pθ(x)≃∇θ log pθ(D).

• ≃ means “is an unbiased estimator of”
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 9 / 50

Deep latent variable models

Latent variables:

• Latent variables are variables that are part of the model, but which we
don’t observe, and are therefore not part of the dataset. They are hidden
factors.
Examples for portraits: Age of the person, hair color,...

• One generally has a factorized joint distribution pθ(x, z) = pθ(z)pθ(x|z)
that corresponds to a natural hierarchical generative process:

1. Sample z ∼ pθ(z) (generate latent variables = hidden factors)
2. Sample x ∼ pθ(x|z) (conditional generator given latent variables)

Vocabulary for latent variable models:

• pθ(x, z): latent variable model

• pθ(z) =
∫
Rd

pθ(x, z)dx: prior distribution over z.

• pθ(x) =
∫
Rk

pθ(x, z)dz: marginal distribution or model evidence

• pθ(x|z): conditional distribution of x given z
• pθ(z|x): posterior distribution of z given x

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 10 / 50

Deep latent variable models

Latent variable models: Example of Gaussian mixture models

• z ∼ pθ(z) is some discrete variable with K values with distribution
π = (π1, . . . , πK) ∈ RK :

pθ(z = j) = πj, j = 1, . . . ,K.

• For each j ∈ {1, . . . ,K} the conditional distributions
pθ(x|z = j) = N (x;µj,Σj) is Gaussian with mean µj and covariance
matrix Σj.

• The model parameters are θ = {π, (µ1,Σ1), . . . , (µK ,ΣK)}.

• The marginal distribution is a Gaussian mixture model (GMM):

pθ(x) =
K∑

j=1

πjN (x;µj,Σj)

• The parameters can be learned from data using an EM
(Expectation-Maximization) algorithm.

• Interest of latent models: Rich and flexible marginal distribution with only
simple intermediate distributions.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 11 / 50

Deep latent variable models

Deep latent variable model: A latent variable model pθ(x, z) is called deep
when the parameters of the distribution are encoded with a (deep) neural
network.

• Example: Given z ∼ pθ(z), some neural network f outputs
f (z) = (µ(z),Σ(z)) and one sets pθ(x|z) = N (x;µ(z),Σ(z)). Given that z
has a density, this generalizes GMM with a mixture of an infinite number
of Gaussians, but also imposes regularity between the parameters since
the neural network f is continuous.

Intractability of marginal distribution: In such a setting, computing the
marginal

pθ(x) =
∫
Rk

pθ(x, z)dz =
∫
Rk

pθ(x|z)pθ(z)dz

is intractable and thus we cannot compute its value nor its gradient wrt θ for
maximum log-likelihood estimation.

Intractability of inference: Inference refers to sampling/recovering the latent
variable z of a given sample x, that is sampling the posterior pθ(z|x). This is

also generally intractable since pθ(z|x) =
pθ(x, z)
pθ(x)

.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 12 / 50

Deep latent variable models

Deep latent variable model: A latent variable model pθ(x, z) is called deep
when the parameters of the distribution are encoded with a (deep) neural
network.

• Example: Given z ∼ pθ(z), some neural network f outputs
f (z) = (µ(z),Σ(z)) and one sets pθ(x|z) = N (x;µ(z),Σ(z)). Given that z
has a density, this generalizes GMM with a mixture of an infinite number
of Gaussians, but also imposes regularity between the parameters since
the neural network f is continuous.

Intractability of marginal distribution: In such a setting, computing the
marginal

pθ(x) =
∫
Rk

pθ(x, z)dz =
∫
Rk

pθ(x|z)pθ(z)dz

is intractable and thus we cannot compute its value nor its gradient wrt θ for
maximum log-likelihood estimation.

Intractability of inference: Inference refers to sampling/recovering the latent
variable z of a given sample x, that is sampling the posterior pθ(z|x). This is

also generally intractable since pθ(z|x) =
pθ(x, z)
pθ(x)

.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 12 / 50

Variational autoencoders (VAE)

(Kingma and Welling, 2019): “The framework of variational autoencoders
(VAEs) provides a computationally efficient way for optimizing deep latent
variable models jointly with a corresponding inference model using SGD.”

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 13 / 50

Variational autoencoders (VAE)

From (Kingma and Welling, 2019, p .20):

• A VAE learns stochastic mappings
between an observed x-space, whose
empirical distribution is typically
complicated, and a latent z-space,
whose distribution can be relatively
simple.

• The generative model learns a joint
distribution pθ(x, z) factorized as
pθ(x, z) = pθ(z)pθ(x|z), with a prior
distribution over latent space pθ(z),
and a stochastic decoder pθ(x|z).

• The stochastic encoder qφ(z|x), also
called inference model, approximates
the true but intractable posterior
pθ(z|x) of the generative model.

2.2. Evidence Lower Bound (ELBO) 17

x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

Figure 2.1: A VAE learns stochastic mappings between an observed x-space, whose
empirical distribution qD(x) is typically complicated, and a latent z-space, whose
distribution can be relatively simple (such as spherical, as in this figure). The
generative model learns a joint distribution pθ(x, z) that is often (but not always)
factorized as pθ(x, z) = pθ(z)pθ(x|z), with a prior distribution over latent space
pθ(z), and a stochastic decoder pθ(x|z). The stochastic encoder qφ(z|x), also called
inference model, approximates the true but intractable posterior pθ(z|x) of the
generative model.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 14 / 50

Variational autoencoders (VAE)

Autoencoders:

input x output x̂ = g(f (x))encoder f decoder g

code h = f (x)

Variational autoencoders: NN outputs encode probability distributions

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 15 / 50

Variational autoencoders (VAE)

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

Stochastic encoder:

• The encoder qφ(z|x) is understood as a parametric approximation of the
true posterior pθ(z|x).

• To achieve that the parameters φ must be trained along with the
parameters θ of the generative model.

• Example of stochastic encoder: A neural network outputs two vectors
(µ(x), logσ(x)) = NNφ(x) and one sets:

qφ(z|x) = N (z;µ(x), diag(σ2(x))).

Next challenge: Learning!

• How can we learn the parameters θ (and φ) that maximize the
log-likelihood

log pθ(D) =
1
|D|

∑
x∈D

log pθ(x) where pθ(x) =
∫
Rk

pθ(x, z)dz

is the (untractable) marginal distribution (or model evidence)?
• In fact we will only maximize a lower bound of each log pθ(x) called the

evidence lower bound (ELBO).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 16 / 50

Variational autoencoders (VAE)

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

Next challenge: Learning!

• How can we learn the parameters θ (and φ) that maximize the
log-likelihood

log pθ(D) =
1
|D|

∑
x∈D

log pθ(x) where pθ(x) =
∫
Rk

pθ(x, z)dz

is the (untractable) marginal distribution (or model evidence)?

• In fact we will only maximize a lower bound of each log pθ(x) called the
evidence lower bound (ELBO).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 16 / 50

Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

Let qφ(z|x) be any parametric family of distributions that are positive (i.e.
charge every non negligible sets like non degenerate Gaussian distributions).

For all x ∈ Rd,

log pθ(x) = Ez∼qφ(z|x) [log pθ(x)]

= Ez∼qφ(z|x)

[
log

[
pθ(x, z)
pθ(z|x)

]]
= Ez∼qφ(z|x)

[
log

[
pθ(x, z)
pθ(z|x)

qφ(z|x)
qφ(z|x)

]]
= Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
+ Ez∼qφ(z|x)

[
log

[
qφ(z|x)
pθ(z|x)

]]
︸ ︷︷ ︸

DKL(qφ(z|x)∥pθ(z|x))≥0

≥ Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
:= Lθ,φ(x) (ELBO)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 17 / 50

Kullback–Leibler divergence

General case: Given two distributions P and Q on some measurable space
X , one defines the Kullback–Leibler divergence of P wrt Q by, ,

DKL(P ∥ Q) =

∫
X log

(
P(dx)
Q(dx)

)
P(dx) if P is absolutely continuous wrt Q

+∞ otherwise

where P(dx)
Q(dx) is the Radon–Nikodym derivative of P wrt Q.

Case with density wrt the Lebesgue measure: If X = Rd and P and Q
have densities p(x) and q(x) then

DKL(p(x) ∥ q(x)) =
∫
Rd

log

(
p(x)
q(x)

)
p(x)dx = Ex∼p(x)

[
log

(
p(x)
q(x)

)]
.

Main properties:

• DKL(P ∥ Q) ≥ 0 and DKL(P ∥ Q) = 0 ⇐⇒ P = Q

• DKL(P ∥ Q) ̸= DKL(Q ∥ P)

• lim
n→+∞

DKL(Pn ∥ Q) = 0 implies convergence in distribution (and even in

total variation).
• DKL(P ∥ Q) is convex in (P,Q).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 18 / 50

Kullback–Leibler divergence

General case: Given two distributions P and Q on some measurable space
X , one defines the Kullback–Leibler divergence of P wrt Q by, ,

DKL(P ∥ Q) =

∫
X log

(
P(dx)
Q(dx)

)
P(dx) if P is absolutely continuous wrt Q

+∞ otherwise

where P(dx)
Q(dx) is the Radon–Nikodym derivative of P wrt Q.

Case with density wrt the Lebesgue measure: If X = Rd and P and Q
have densities p(x) and q(x) then

DKL(p(x) ∥ q(x)) =
∫
Rd

log

(
p(x)
q(x)

)
p(x)dx = Ex∼p(x)

[
log

(
p(x)
q(x)

)]
.

Main properties:

• DKL(P ∥ Q) ≥ 0 and DKL(P ∥ Q) = 0 ⇐⇒ P = Q

• DKL(P ∥ Q) ̸= DKL(Q ∥ P)

• lim
n→+∞

DKL(Pn ∥ Q) = 0 implies convergence in distribution (and even in

total variation).
• DKL(P ∥ Q) is convex in (P,Q).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 18 / 50

Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= log pθ(x)−DKL(qφ(z|x) ∥ pθ(z|x)) ≤ log pθ(x).

• The KL-divergence DKL(qφ(z|x) ∥ pθ(z|x)) gives the tightness of the
lower bound: the better the approximation of the true posterior is the
tighter is the lower bound.

• Main contribution of VAE (Kingma and Welling, 2014):
Use the ELBO Lθ,φ(x) as a training loss for improving the
log-likelihood.

• To use Lθ,φ(x) as a training loss using SGD we need to compute
unbiased estimators of both

∇θLθ,φ(x) and ∇φLθ,φ(x).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 19 / 50

Evidence lower bound (ELBO)

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]

Unbiased estimator for ∇θLθ,φ(x):

∇θLθ,φ(x) = Ez∼qφ(z|x) [∇θ log pθ(x, z)] ≃ ∇θ log pθ(x, z(1)) where z(1) ∼ qφ(z|x).

Recall that pθ(x, z) = pθ(z)pθ(x|z) is a known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt θ.

Unbiased estimator for ∇φLθ,φ(x):

• Not as straightforward since the ELBO expectation is taken with respect
to qφ(z|x) that depends on φ!

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 20 / 50

Evidence lower bound (ELBO)

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]

Unbiased estimator for ∇θLθ,φ(x):

∇θLθ,φ(x) = Ez∼qφ(z|x) [∇θ log pθ(x, z)] ≃ ∇θ log pθ(x, z(1)) where z(1) ∼ qφ(z|x).

Recall that pθ(x, z) = pθ(z)pθ(x|z) is a known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt θ.

Unbiased estimator for ∇φLθ,φ(x):

• Not as straightforward since the ELBO expectation is taken with respect
to qφ(z|x) that depends on φ!

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 20 / 50

Evidence lower bound (ELBO)

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]

Unbiased estimator for ∇θLθ,φ(x):

∇θLθ,φ(x) = Ez∼qφ(z|x) [∇θ log pθ(x, z)] ≃ ∇θ log pθ(x, z(1)) where z(1) ∼ qφ(z|x).

Recall that pθ(x, z) = pθ(z)pθ(x|z) is a known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt θ.

Unbiased estimator for ∇φLθ,φ(x):

• Not as straightforward since the ELBO expectation is taken with respect
to qφ(z|x) that depends on φ!

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 20 / 50

Evidence lower bound (ELBO)

Reparameterization trick:

• Hypothesis: There is a fixed distribution p(ε) and a deterministic function
g such that for any given x and φ

ε ∼ p(ε) =⇒ z = g(ε,φ, x) ∼ qφ(z|x).

• The function g decouples the randomness source and the parameters for
simulating the approximate posterior qφ(z|x).

Example of Gaussian stochastic encoder:

• qφ(z|x) = N (z;µ(x), diag(σ2(x))) with (µ(x), logσ(x)) = NNφ(x).

• With p(ε) = N (ε; 0, I) the standard Gaussian distribution:

z = µ(x) + σ(x)⊙ ε ∼ N (z;µ(x), diag(σ2(x))).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 21 / 50

Evidence lower bound (ELBO)

Reparameterization trick:

• Hypothesis: There is a fixed distribution p(ε) and a deterministic function
g such that for any given x and φ

ε ∼ p(ε) =⇒ z = g(ε,φ, x) ∼ qφ(z|x).

Change of variable in the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]

= Eε∼p(ε) [log pθ(x, g(ε,φ, x))]− Eε∼p(ε) [log qφ(g(ε,φ, x)|x)]

Unbiased estimator for ∇φLθ,φ(x):

• Draw ε(1) ∼ p(ε) and (automatically) differentiate wrt φ the expression

log pθ(x, g(ε(1),φ, x))− log qφ(g(ε(1),φ, x)|x)

• Same for differentiating wrt θ.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 22 / 50

Evidence lower bound (ELBO)

Reparameterization trick:

• Hypothesis: There is a fixed distribution p(ε) and a deterministic function
g such that for any given x and φ

ε ∼ p(ε) =⇒ z = g(ε,φ, x) ∼ qφ(z|x).

Change of variable in the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]

= Eε∼p(ε) [log pθ(x, g(ε,φ, x))]− Eε∼p(ε) [log qφ(g(ε,φ, x)|x)]

Unbiased estimator for ∇φLθ,φ(x):

• Draw ε(1) ∼ p(ε) and (automatically) differentiate wrt φ the expression

log pθ(x, g(ε(1),φ, x))− log qφ(g(ε(1),φ, x)|x)

• Same for differentiating wrt θ.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 22 / 50

Evidence lower bound (ELBO)

Reparameterization trick:

• Hypothesis: There is a fixed distribution p(ε) and a deterministic function
g such that for any given x and φ

ε ∼ p(ε) =⇒ z = g(ε,φ, x) ∼ qφ(z|x).

Change of variable in the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]

= Eε∼p(ε) [log pθ(x, g(ε,φ, x))]− Eε∼p(ε) [log qφ(g(ε,φ, x)|x)]

Unbiased estimator for ∇φLθ,φ(x):

• Draw ε(1) ∼ p(ε) and (automatically) differentiate wrt φ the expression

log pθ(x, g(ε(1),φ, x))− log qφ(g(ε(1),φ, x)|x)

• Same for differentiating wrt θ.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 22 / 50

VAE training

VAE Training algorithm:

1. Draw a minibatch M = {x(i1), . . . , x(iM)} of M samples from
D = {x(i), i = 1, . . . ,N}

2. Draw M random εm ∼ p(ε), m = 1, . . . ,M.
3. Compute zm = g(ε(m),φ, x(im)) ∼ qφ(z|x(im)) using the encoder network

parameters.
4. Apply the decoder network to each latent variable zm and return

L̃θ,φ(M) =
1
M

M∑
m=1

log pθ(x(im), g(ε(m),φ, x(im)))−log qφ(g(ε(m),φ, x(im))|x(im))

5. Compute ∇θL̃θ,φ(M) and ∇φL̃θ,φ(M) by automatic differentiation and
update the parameters θ and φ by an SGD step.

Remark: L̃θ,φ(M) is an unbiased estimator of the training loss

1
N

N∑
i=1

Lθ,φ(x(i)) =
1
N

N∑
i=1

(
Ez∼qφ(z|x(i))

[
log pθ(x(i), z)

]
− Ez∼qφ(z|x(i))

[
log qφ(z|x(i))

])
where we have double stochasticity from sampling the batch M and
approximating each expectation with a single realization.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 23 / 50

VAE training

VAE Training algorithm:

1. Draw a minibatch M = {x(i1), . . . , x(iM)} of M samples from
D = {x(i), i = 1, . . . ,N}

2. Draw M random εm ∼ p(ε), m = 1, . . . ,M.
3. Compute zm = g(ε(m),φ, x(im)) ∼ qφ(z|x(im)) using the encoder network

parameters.
4. Apply the decoder network to each latent variable zm and return

L̃θ,φ(M) =
1
M

M∑
m=1

log pθ(x(im), g(ε(m),φ, x(im)))−log qφ(g(ε(m),φ, x(im))|x(im))

5. Compute ∇θL̃θ,φ(M) and ∇φL̃θ,φ(M) by automatic differentiation and
update the parameters θ and φ by an SGD step.

Remark: L̃θ,φ(M) is an unbiased estimator of the training loss

1
N

N∑
i=1

Lθ,φ(x(i)) =
1
N

N∑
i=1

(
Ez∼qφ(z|x(i))

[
log pθ(x(i), z)

]
− Ez∼qφ(z|x(i))

[
log qφ(z|x(i))

])
where we have double stochasticity from sampling the batch M and
approximating each expectation with a single realization.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 23 / 50

VAE: Gaussian encoder and decoder

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

Example of Gaussian stochastic encoder and decoder:

• Gaussian stochastic encoder: qφ(z|x) = N (z;µ(x), diag(σ2(x))) with
(µ(x), logσ(x)) = NNφ(x).

• Gaussian prior : pθ(z) = N (z; 0, I) the prior is fixed without parameter
to learn.

• Gaussian stochastic decoder: pθ(x|z) = N (x;µdec(z), s2I) with
µdec(z) = NNθ(z): Fixed isotropic Gaussian around a decoded mean
µ(z). The noise level s > 0 should be fixed according to the dataset
range value.

• The architectures for NNφ and NNθ are generally chosen symmetric.
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 24 / 50

VAE: Gaussian encoder and decoder

Density of a Gaussian distribution: For x ∈ Rd,

N (x;µ,Σ) =
1√

(2π)d|Σ|
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
logN (x;µ,Σ) = −d

2
log(2π)− 1

2
log(|Σ|)− 1

2
(x − µ)TΣ−1(x − µ)

Expression of the ELBO loss: With z = g(ε,φ, x) = µ(x) + σ(x)⊙ ε,

L̃θ,φ(x) = log pθ(x, z)− log qφ(z|x)

= log pθ(z) + log pθ(x|z)− log qφ(z|x)

= − k
2
log(2π)− 1

2
∥z∥2

− d
2
log(2π)− 1

2
log s2d − 1

2s2 ∥x − µdec(z)∥2

+
k
2
log(2π) +

1
2

k∑
j=1

log σ2
j (x) +

1
2
(z − µ(x))2 ⊘ σ2(x)

= − 1
2s2 ∥x − µdec(z)∥2︸ ︷︷ ︸

reconstruction error

− 1
2
∥z∥2 +

k∑
j=1

log σj(x) +
1
2
(z − µ(x))2 ⊘ σ2(x)

︸ ︷︷ ︸
latent code regularization

+C

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 25 / 50

VAE: ELBO and Kullback–Leibler divergence

The “latent code regularization” is better seen by refactorizing the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= Ez∼qφ(z|x)

[
log

[
pθ(z)pθ(x|z)

qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x|z)] + Ez∼qφ(z|x)

[
log

[
pθ(z)

qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

reconstruction error

−DKL(qφ(z|x) ∥ pθ(z))︸ ︷︷ ︸
latent code regularization

• The latent code regularization enforces all the approximate posterior to
be close to the prior.

• But to have a small reconstruction error, the support of the distributions
qφ(z|x) have to be well-separated.

• This results in an encoder-decoder with well-spread latent code
distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 26 / 50

VAE: ELBO and Kullback–Leibler divergence

Refactorizing the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
reconstruction error

−DKL(qφ(z|x) ∥ pθ(z))︸ ︷︷ ︸
latent code regularization

Example of Gaussian stochastic encoder

• Gaussian stochastic encoder: qφ(z|x) = N (z;µ(x),diag(σ2(x))) with
(µ(x), logσ(x)) = NNφ(x).

• Gaussian prior : pθ(z) = N (z; 0, I) the prior is fixed without parameter
to learn.

1. Closed form formula for the KL-divergence:

DKL(qφ(z|x) ∥ pθ(z)) =
1
2

k∑
j=1

(
µj(x)2 + σj(x)2 − 1 − log σ2

j (x)
)

2. Use this expression to propose another unbiased estimator L̃θ,φ(x) of
the ELBO without MC estimate for the KL term.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 27 / 50

VAE: Other examples of stochastic decoders

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

• Stochastic decoder for binary data: With x ∈ {0, 1}d, one sets

pθ(x|z) = BernoulliVector(x; p(z)) where p(z) = NNθ(z).

Then, the likelihood is the binary cross-entropy:

log pθ(x|z) =
d∑

ℓ=1

xℓ log pℓ + (1 − xℓ) log(1 − pℓ)

• Stochastic decoder for discrete data: Same approach with a NN that
outputs a softmax array with the number of classes and cross-entropy...

• Here pixels are supposed independent resulting in noisy samples from
pθ(x|z)... But one often outputs the expectation for visualization!

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 28 / 50

VAE: Results

From the original paper: (Kingma and Welling, 2014): “Auto-Encoding Variational

Bayes” (AEVB)

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pθ(x|z) with the learned parameters θ.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of −DKL(qφ(z)||pθ(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior pθ(z) = N (0, I) and the
posterior approximation qφ(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and σ
denote the variational mean and s.d. evaluated at datapoint i, and let µj and σj simply denote the
j-th element of these vectors. Then:

∫
qθ(z) log p(z) dz =

∫
N (z;µ,σ2) logN (z;0, I) dz

= −J
2
log(2π)− 1

2

J∑

j=1

(µ2
j + σ2

j)

10

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 29 / 50

VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

Input test images: Output:

AE codes

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

VAE latent codes

4 2 0 2 4

4

2

0

2

0
1
2
3
4
5
6
7
8
9

The prior distribution enforces regularity/tightness of the VAE latent code
distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 30 / 50

VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

2D latent code of 256 test images:

4 2 0 2 4

4

2

0

2

0
1
2
3
4
5
6
7
8
9

AE codes

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

VAE latent codes

4 2 0 2 4

4

2

0

2

0
1
2
3
4
5
6
7
8
9

The prior distribution enforces regularity/tightness of the VAE latent code
distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 30 / 50

VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

AE VS VAE
Input: AE Output: VAE Output:

AE codes

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

VAE latent codes

4 2 0 2 4

4

2

0

2

0
1
2
3
4
5
6
7
8
9

The prior distribution enforces regularity/tightness of the VAE latent code
distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 30 / 50

VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.

• The code dimension is k = 2 for visualization (higher k values would
give better results).

AE codes

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

VAE latent codes

4 2 0 2 4

4

2

0

2

0
1
2
3
4
5
6
7
8
9

The prior distribution enforces regularity/tightness of the VAE latent code
distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 30 / 50

Variational Autoencoders

VAE had a huge impact on the community (24 516 citations on Google
Scholar!).

Lot of things can be improved (Kingma and Welling, 2019; Tomczak, 2022):

• Use more complex priors pθ(z) and decoder models qφ(z|x), eg using
normalizing flows (discussed later today).

• Use a hierarchy of latent variables z1, z2, etc.

Issues regarding VAE (Kingma and Welling, 2019; Tomczak, 2022):

• Posterior collapse: All approximate posteriors qφ(z|x) are stucked to the
prior to minimize the KL term of the ELBO.

• Hole problem: Some subset of the latent space is not populated by
encoded data.

• Blurriness of generative model: produced images tend to be blurry as for
standard autoencoders...

Pros of VAE:

• Very quick to sample once trained.
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 31 / 50

VAE: SOTA resutls

(Vahdat and Kautz, 2020): “NVAE: A Deep Hierarchical Variational
Autoencoder”

• VAE can be made competitive using well-designed architectures.

NVAE: A Deep Hierarchical Variational Autoencoder

Arash Vahdat, Jan Kautz
NVIDIA

{avahdat, jkautz}@nvidia.com

Abstract

Normalizing flows, autoregressive models, variational autoencoders (VAEs), and
deep energy-based models are among competing likelihood-based frameworks
for deep generative learning. Among them, VAEs have the advantage of fast and
tractable sampling and easy-to-access encoding networks. However, they are cur-
rently outperformed by other models such as normalizing flows and autoregressive
models. While the majority of the research in VAEs is focused on the statistical
challenges, we explore the orthogonal direction of carefully designing neural archi-
tectures for hierarchical VAEs. We propose Nouveau VAE (NVAE), a deep hierar-
chical VAE built for image generation using depth-wise separable convolutions and
batch normalization. NVAE is equipped with a residual parameterization of Normal
distributions and its training is stabilized by spectral regularization. We show that
NVAE achieves state-of-the-art results among non-autoregressive likelihood-based
models on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ datasets and it
provides a strong baseline on FFHQ. For example, on CIFAR-10, NVAE pushes the
state-of-the-art from 2.98 to 2.91 bits per dimension, and it produces high-quality
images on CelebA HQ as shown in Fig. 1. To the best of our knowledge, NVAE is
the first successful VAE applied to natural images as large as 256×256 pixels. The
source code is available at https://github.com/NVlabs/NVAE.

1 Introduction

The majority of the research efforts on improving VAEs [1, 2] is dedicated to the statistical challenges,
such as reducing the gap between approximate and true posterior distributions [3, 4, 5, 6, 7, 8, 9, 10],
formulating tighter bounds [11, 12, 13, 14], reducing the gradient noise [15, 16], extending VAEs to
discrete variables [17, 18, 19, 20, 21, 22, 23], or tackling posterior collapse [24, 25, 26, 27]. The role
of neural network architectures for VAEs is somewhat overlooked, as most previous work borrows
the architectures from classification tasks.

Figure 1: 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28].

However, VAEs can benefit from designing special network architectures as they have fundamentally
different requirements. First, VAEs maximize the mutual information between the input and latent
variables [29, 30], requiring the networks to retain the information content of the input data as much

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

See also Very Deep VAE (Child, 2021).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 32 / 50

NVAE: Architecture details

LVAE(x) := Eq(z|x) [log p(x|z)]−DKL(q(z1|x) ∥ p(z1))−
L∑

l=2

Eq(z<l|x) [DKL(q(zl|x, z<l) ∥ p(zl|z<l))]

where q(z<l|x) =
∏l−1

i=1 q(zi|x, z<i) is the approx. posterior up to the (l − 1)th group.

• Hierarchical architecture with
shared encoder/decoder
(Kingma et al., 2016).

• Complex cells using residual
network (batch normalization,
swish activation, ...).

• Conditioning based on shift in
Gaussian distribution.

+

+

+

sample

sample

sample

+

h

r

+

r

sample

sample

r

r

r
+

+

shared top-dow
n m

odel

bo
tt

om
-u

p
m

od
el

shared top-dow
n m

odel

h

r

r

r

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 33 / 50

NVAE: Architecture details

• Hierarchical prior: p(zl|z<l) = N
(
µ(z<l), diagσ

2(z<l)
)

is a normal
distribution for the ith variable in zl in prior.

• Residual distribution parameterization of q(z|x) relative to p(z):

q(zl|z<l, x) = N
(
µ(z<l) + ∆µ(z<l, x),diag

(
σ2(z<l) ·∆σ2(z<l, x)

))
where ∆µ(z<l, x) and ∆σ2(z<l, x) are the relative location and scale of
the approximate posterior with respect to the prior.

• ∆µ(z<l, x) and ∆σ2(z<l, x)
depends on features xl with the
same level

• Favors natural level of details
hierarchy.

+

+

+

sample

sample

sample

+

h

r

+

r

sample

sample

r

r

r
+

+

shared top-dow
n m

odel

bo
tt

om
-u

p
m

od
el

shared top-dow
n m

odel

h

r

r

r

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 34 / 50

NVAE: Results of toy implementation

Samples of 64×64 portraits

Sample all levels

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 35 / 50

NVAE: Results of toy implementation

Samples of 64×64 portraits

Fixed z1

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 35 / 50

NVAE: Results of toy implementation

Samples of 64×64 portraits

Fixed z1 and z2

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 35 / 50

VAE in practice

Today’s practice session based on this hierarchical architecture.

Other ressources:

• Jakub Tomczak’s implementation:
https://github.com/jmtomczak/intro_dgm/blob/main/

vaes/vae_example.ipynb

... but it does not use the closed-form formula

DKL(qφ(z|x) ∥ pθ(z)) =
1
2

k∑
j=1

(
µj(x)2 + σj(x)2 − 1 − log σj(x)2

)
.

• Simple MLP for MNIST (PyTorch examples):
https://github.com/pytorch/examples/tree/main/vae

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 36 / 50

https://github.com/jmtomczak/intro_dgm/blob/main/vaes/vae_example.ipynb
https://github.com/jmtomczak/intro_dgm/blob/main/vaes/vae_example.ipynb
https://github.com/pytorch/examples/tree/main/vae

Normalizing flows

Normalizing flows

Motivation: Learn an invertible mapping from the data space to the latent
space.

(source: From (Dinh et al., 2017))
• Latent space and data space have the same dimension.
• The latent distribution is generally assumed to be Gaussian.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 37 / 50

Normalizing flows

Two main issues:

1. Parameterize a generic parametric invertible transform gθ.

2. Learn the parameters θ to fit the dataset D = {x(i), i = 1, . . . ,N} ⊂ Rd.

Learning is performed by simple loglikelihood maximization:

max
θ

log pθ(D) where log pθ(D) =
1
|D|

∑
x∈D

log pθ(x).

• Here pθ = (gθ)#π0 with π0 = N (0, Id).

• Since gθ is assumed to a diffeomorphism, the expression is given
thanks to the change of variable formula.

• In practice the dataset D is discrete and one adds noise to the data to
deal with quantization and have a density (Kingma and Dhariwal, 2018).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 38 / 50

Invertible transformations

The density of pθ = (gθ)#π0 is given by a change of variable.

• We assume that gθ is a diffeomorphism
• For any f ∈ Cc(Rd,R)

Epθ (f (X)) =
∫
Rd

f (x)pθ(x)dx

Epθ (f (X)) = Eπ0(f (gθ(Z)))

=

∫
Rd

f (gθ(z))p0(z)dz (z = g−1
θ (x))

=

∫
Rd

f (x)p0(g−1
θ (x))|J(g−1

θ)(x)|dx.

where |J(g−1
θ)(x)| =

∣∣∣∣det(∂g−1
θ,m

∂xn
(x)

)
1≤m,n≤d

∣∣∣∣ is the determinant of the

Jacobian.

Expression of the density:

pθ(x) = p0(g−1
θ (x))|J(g−1

θ)(x)|

Remark: Generalized using the co-area/area formula (Caterini et al., 2021)).
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 39 / 50

Maximizing the log-likelihood

Expression of the density:

pθ(x) = p0(g−1
θ (x))|J(g−1

θ)(x)|

• Hence, maximizing the log-likelihood is equivalent to maximizing

L(θ) = 1
|D|

∑
xi∈D

log(p0(g−1
θ (xi))) + log(|J(g−1

θ (xi))|)

• Short notation: Jθ(x) := J(g−1
θ)(x).

Conditions on the transformations:

• gθ and g−1
θ are easy to compute and differentiate.

• The Jacobian Jθ is easy to compute and differentiate.

• But also gθ should be as complex as required by the data...

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 40 / 50

Compositions of transformations

Composition of transformation: To obtain a complex flow one decomposes
the flow as K “simple” diffeomorphisms:

gθ = g0
θ ◦ g1

θ ◦ · · · ◦ gK
θ

Then

log(|J(g−1
θ (x))|) =

K∑
k=1

log(|J((gk
θ)

−1(xk))|)

with xk the proper intermediate step in the sequence.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 41 / 50

Different types of flows

• In (Rezende and Mohamed, 2015) planar and radial flows are presented.
• Two other very efficient flows (Dinh et al., 2017, 2015):

• Affine coupling layer.
• Invertible 1x1 convolution.

• How does the affine coupling layer work?

• We split x ∈ Rd in x = (x0, x1) with x0 ∈ Rd0 , x1 ∈ Rd1 .
• Forward transform gθ(x) = (x0, exp[sθ(x0)]⊙ x1 + tθ(x0)) with sθ and

tθ being any network.
• Reverse transform g−1

θ (x) = (x0, (x1 − tθ(x0))⊘ exp[sθ(x0)]).
• Log-Jacobian: log(|Jθ(x)|) =

∑d1
i=1 sθ(x0)i.

• How does the invertible 1x1 convolution work?

• Matrix Wθ ∈ RC×C (number of channels), x ∈ RH×W×C.
• Forward transform gθ(x)i,j = Wθxi,j.
• Reverse transform g−1

θ (x)i,j = W−1
θ xi,j.

• Log-Jacobian log(|Jθ(x)|) = H × W × log(|Wθ|).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 42 / 50

Different types of flows

• In (Rezende and Mohamed, 2015) planar and radial flows are presented.
• Two other very efficient flows (Dinh et al., 2017, 2015):

• Affine coupling layer.
• Invertible 1x1 convolution.

• How does the affine coupling layer work?

• We split x ∈ Rd in x = (x0, x1) with x0 ∈ Rd0 , x1 ∈ Rd1 .
• Forward transform gθ(x) = (x0, exp[sθ(x0)]⊙ x1 + tθ(x0)) with sθ and

tθ being any network.
• Reverse transform g−1

θ (x) = (x0, (x1 − tθ(x0))⊘ exp[sθ(x0)]).
• Log-Jacobian: log(|Jθ(x)|) =

∑d1
i=1 sθ(x0)i.

• How does the invertible 1x1 convolution work?

• Matrix Wθ ∈ RC×C (number of channels), x ∈ RH×W×C.
• Forward transform gθ(x)i,j = Wθxi,j.
• Reverse transform g−1

θ (x)i,j = W−1
θ xi,j.

• Log-Jacobian log(|Jθ(x)|) = H × W × log(|Wθ|).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 42 / 50

Different types of flows

• In (Rezende and Mohamed, 2015) planar and radial flows are presented.
• Two other very efficient flows (Dinh et al., 2017, 2015):

• Affine coupling layer.
• Invertible 1x1 convolution.

• How does the affine coupling layer work?

• We split x ∈ Rd in x = (x0, x1) with x0 ∈ Rd0 , x1 ∈ Rd1 .
• Forward transform gθ(x) = (x0, exp[sθ(x0)]⊙ x1 + tθ(x0)) with sθ and

tθ being any network.
• Reverse transform g−1

θ (x) = (x0, (x1 − tθ(x0))⊘ exp[sθ(x0)]).
• Log-Jacobian: log(|Jθ(x)|) =

∑d1
i=1 sθ(x0)i.

• How does the invertible 1x1 convolution work?

• Matrix Wθ ∈ RC×C (number of channels), x ∈ RH×W×C.
• Forward transform gθ(x)i,j = Wθxi,j.
• Reverse transform g−1

θ (x)i,j = W−1
θ xi,j.

• Log-Jacobian log(|Jθ(x)|) = H × W × log(|Wθ|).
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 42 / 50

Different types of flows

• There is no spatial convolution in these operations.

• However there a way to generate the image in a multiscale way (Dinh
et al., 2017): Use a squeeze layer that change an image of size
H × W × C into an image of size H/2 × W/2 × 4C by stacking spatial
neighbors in the channel component.

• Then the next 1x1 convolution mixes the formerly spatial neighbors.

(source: From (Dinh et al., 2017))
Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 43 / 50

Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

(source: From (Kingma and Dhariwal, 2018))
• Combining actnorm, invertible convolution and affine coupling layers

(multiple times).
• The “actnorm” layer is simply an affine layer.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 44 / 50

Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

High quality results

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 45 / 50

Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

Linear interpolation in latent space between real images

• This experiments uses both the inference and generation of the flow.

• Not so easy to do with a GAN: Why?

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 46 / 50

Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

Effect of change of temperature: Samples obtained at temperatures 0,
0.25, 0.6, 0.7, 0.8, 0.9, 1.0.

• The temperature to be decreased for high-quality image generation:
latent codes z are sampled from N (0, σId) with σ < 1.

• Temperature modulation also used for VAE.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 47 / 50

References

References i

References

Caterini, A. L., Loaiza-Ganem, G., Pleiss, G., and Cunningham, J. P. (2021).
Rectangular flows for manifold learning. In ICML Workshop on Invertible
Neural Networks, Normalizing Flows, and Explicit Likelihood Models.

Child, R. (2021). Very deep {vae}s generalize autoregressive models and can
outperform them on images. In International Conference on Learning
Representations.

Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE: non-linear independent
components estimation. In Bengio, Y. and LeCun, Y., editors, 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using
real NVP. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 48 / 50

References ii

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible
1x1 convolutions. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and
Welling, M. (2016). Improved variational inference with inverse
autoregressive flow. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In
Bengio, Y. and LeCun, Y., editors, 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 49 / 50

http://www.deeplearningbook.org

References iii

Kingma, D. P. and Welling, M. (2019). An introduction to variational
autoencoders. Foundations and TrendsÂ® in Machine Learning,
12(4):307–392.

Rezende, D. J. and Mohamed, S. (2015). Variational inference with
normalizing flows. In Bach, F. R. and Blei, D. M., editors, Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference
Proceedings, pages 1530–1538. JMLR.org.

Tomczak, J. M. (2022). Deep Generative Modeling. Springer International
Publishing, Cham.

Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical variational
autoencoder. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H., editors, Advances in Neural Information Processing Systems,
volume 33, pages 19667–19679. Curran Associates, Inc.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 50 / 50

	Introduction on generative models
	Variational autoencoders (VAE)
	Normalizing flows
	References
	References

