Generative models for images lll: Variational
Auto-Encoders and Normalizing Flows

Bruno Galerne

bruno.galerne@Quniv-orleans. fr

Master MVA 2024-25
Tuesday January 28, 2025

Institut Denis Poisson
Université d’Orléans, Université de Tours, CNRS
Institut universitaire de France (IUF)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 1/50

Introduction on generative models

Generative models

1. Model and/or learn a distribution p(«) on the space of images.

OIS
K
ZN

(source: Charles Deledalle)
The images may represent:

- different instances of the same texture image,
« all images naturally described by a dataset of images,
* any image

2. Generate samples from this distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25

2/50

Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

* zis a generic source of randomness, often called the latent variable.
« If G(+; ©) is known, then p = G(; ©)xN (0, 1,) is the push-forward of the
latent distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 3/50

Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

* zis a generic source of randomness, often called the latent variable.
« If G(+; ©) is known, then p = G(; ©)xN (0, 1,) is the push-forward of the
latent distribution.

The generator G(+; ©) can be:

A deterministic function (e.g. convolution operator),

* A neural network with learned parameter,

+ An iterative optimization algorithm (gradient descent,...),

* A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,...).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 3/50

Variational autoencoders (VAE)

Variational autoencoders (VAE)

Main references:
1. Original paper: (Kingma and Welling, 2014): “Auto-Encoding Variational
Bayes”

2. Short book by the same authors: (Kingma and Welling, 2019): “An
Introduction to Variational Autoencoders”. Freely available on ArXiv.

3. Recent book: (Tomczak, 2022): “Deep Generative Modeling” with
practice sessions in the official GitHub repository.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 4/50

https://github.com/jmtomczak/intro_dgm

Autoencoders

But first what is an ? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

input x output x = g(f(x))
encoder f decoder g

\
.Q‘ :::’/ “’V' %“

»x““ ('//0"‘.
A "
N '0

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25

5/50

Autoencoders

But first what is an ? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

code h = f(x)

input x | encoder f decoder g | outputx = g(f(x))

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 5/50

Autoencoders

But first what is an autoencoder? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

code h = f(x)

input x | encoder f decoder g | outputx = g(f(x))

The network is trained by minizing a reconstruction error over the dataset
D={x" i=1,..., N} CR?

MSE = = > Jlg(7(x)) — =l

xeD

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 5/50

Autoencoders

code h = f(x)
input x el encoder f decoder g | outputx = g(f(x))

« Motivation: The encoder output & = f(x) € R* should produce an

adapted compact representation of the sample x within the dataset D.

If both f and g are linear, the best solution is the PCA projection using

the first k principal components.

» One hopes to learn the most salient features of the distribution.

« If f and g have a lot of capacity, then trivial code can be learnt by storing
the dataset D = {x, i=1,...,N}:

fac) =i and g(i) =x?

 Trade-off between the parameters of f and g, dimensions d > k etc.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 6/50

(7]
B
()

°
o
o
c
)
(<]

-
]

<

1000 images only):

(

» Encoders and decoders are MLP trained for 1000 epochs.

Numerical illustration with a subset of MNIST

(higher k values would

* The

give better results).

oM~ Agon NN
OhIrassreTTrMma >
MO C QO ~iIDm~
o DM Nty DN Lo
M:SE PO~ OI M
B e somoenemr
T O N s
MOV e~om G0
Wi b5 %N oM
N SammpPDom~inwed

MmN (ifhinpm~\ W
S HFITR-T e T

BN O AW~ OM~

mf55?91&023
OHEMODcroOomMT-Q
LW—XY QWL &
OV M~oomgFD
BNYeE—0PLHOT OO

Input test i

PO LNYONDRVWD

7150

MVA 2024-25

)
2
o
[
o
£
L
©
E
S
z
°
<
]
»
<
>

Bruno Galerne

Autoencoders

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.
» The code dimension is k = 2 for visualization (higher & values would
give better results).

2D latent code of 256 test images:

20 o
e O
‘ ‘.' o 1
o < (L] *o Soe ¢ o 2
o &R o ° e 3
A .. ° e 4
o . ° ® 5
—20 1 °
° ..'“.] . ';
°
[] @ [] (]
ﬁ- o © 8
_ 9
40 ® e 0%e o. °
o)
.. o ‘ o [
-60 ° .
°
o
—80 1+ : : : : : : : :
-40 20 0 20 40 60 80 100 120

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 7/50

Deep latent variable models

+ In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

 The difference lies in the modeling and training of the network: VAEs
learn (non linear)

What is a latent variable model? Back to probabilistic modeling...

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 8/50

Deep latent variable models

+ In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

 The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...
» We are given an input dataset
D={x" i=1,..., Nt CR’

» We assume that the dataset D consists of distinct, independent
measurements from the same unknown underlying process, whose true
(probability) distribution P* is unknown.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 8/50

Deep latent variable models

+ In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

 The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...

» We are given an input dataset

D={x" i=1,..., Nt CR’
» We assume that the dataset D consists of distinct, independent

measurements from the same unknown underlying process, whose true
(probability) distribution P* is unknown.

Remark: Identification of distribution and density

« p* : R? — R, will refer to the density with respect to (wrt) the Lebesgue
measure of the unknown distribution P*.

» Depending on context it can also be a discrete distribution (e.g.
binarized images in {0, 1}“)... Be careful!
+ That said P* will be identified with p* (x) from now on.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 8/50

Deep latent variable models

Framework:

« We are given an input dataset D = {x\?, i =1,...,N} c R with iid
samples from an unknown distribution p* (x).

Probabilistic modeling:

* Propose a parametric model pg(x) with parameters 6
 Learn good parameters 6 so that pe(x) is close to p*(x): This is
generally done by maximizing the dataset log-likelihood:
max logpe(D) where logpe(D) = \;ﬁ Z log pe(x).
xe€D
» Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on — log pe (D)) providing Vg log pe(x) is
tractable: For a random minibatch M C D having cardinal M = | M|,

% > Vologpe(x) is an unbiased estimator of Vo logpe(D).
xeM

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 9/50

Deep latent variable models

Framework:

« We are given an input dataset D = {x\?, i =1,...,N} c R with iid
samples from an unknown distribution p* (x).

Probabilistic modeling:

* Propose a parametric model pg(x) with parameters 6
 Learn good parameters 6 so that pe(x) is close to p*(x): This is
generally done by maximizing the dataset log-likelihood:

max logpe(D) where logpe(D) = \;ﬁ Z log pe(x).
xe€D
» Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on — log pe (D)) providing Vg log pe(x) is
tractable: For a random minibatch M C D having cardinal M = | M|,

% > Vologpe(x) is an unbiased estimator of Vo logpe(D).
xeM

* ~ means “is an unbiased estimator of”

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 9/50

Deep latent variable models

Framework:

« We are given an input dataset D = {x\?, i =1,...,N} c R with iid
samples from an unknown distribution p* (x).

Probabilistic modeling:

* Propose a parametric model pg(x) with parameters 6
 Learn good parameters 6 so that pe(x) is close to p*(x): This is
generally done by maximizing the dataset log-likelihood:

max logpe(D) where logpe(D) = \;ﬁ Z log pe(x).
xe€D
» Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on — log pe (D)) providing Vg log pe(x) is
tractable: For a random minibatch M C D having cardinal M = | M|,

1
™M Z Ve logpe(x)~Ve logpe(D).
xeM

* ~ means “is an unbiased estimator of”

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 9/50

Deep latent variable models

Latent variables:

« Latent variables are variables that are part of the model, but which we
don’t observe, and are therefore not part of the dataset. They are hidden
factors.

Examples for portraits: Age of the person, hair color,...

+ One generally has a factorized joint distribution pe (x,z) = pe(z)pe (x|z)

that corresponds to a natural hierarchical generative process:

1. Sample z ~ po(z) (generate latent variables = hidden factors)
2. Sample x ~ pg(x|z) (conditional generator given latent variables)

Vocabulary for latent variable models:

* pe(x,z): latent variable model

* po(z) = / pe(x,z)dx: prior distribution over z.
R4

s po(x) = / pe(x,z)dz: marginal distribution or model evidence
Rk

* pe(x|z): conditional distribution of x given z
* po(z|x): posterior distribution of z given x

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 10/50

Deep latent variable models

Latent variable models: Example of Gaussian mixture models

 z ~ pe(z) is some discrete variable with K values with distribution
= (m,...,Tk) e RX:

polz=j) =, J=1....K.

Foreachj € {1,...,K} the conditional distributions
pe(x|z = j) = N(x; ;, 3;) is Gaussian with mean w; and covariance
matrix X;.

The model parameters are 8 = {=, (i1, %1), ..., (px, Xk)}-
The marginal distribution is a Gaussian mixture model (GMM):

K

po(x) = > mN(x; 1,)

j=1

The parameters can be learned from data using an EM
(Expectation-Maximization) algorithm.

Interest of latent models: Rich and flexible marginal distribution with only
simple intermediate distributions.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 11/50

Deep latent variable models

Deep latent variable model: A latent variable model po (x,z) is called deep
when the parameters of the distribution are encoded with a (deep) neural
network.

+ Example: Given z ~ pg(z), some neural network f outputs
f(z) = (n(z), =(z)) and one sets pg(x|z) = N (x; u(z), X(z)). Given that z
has a density, this generalizes GMM with a mixture of an infinite number
of Gaussians, but also imposes regularity between the parameters since
the neural network f is continuous.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 12/50

Deep latent variable models

Deep latent variable model: A latent variable model po (x,z) is called deep
when the parameters of the distribution are encoded with a (deep) neural
network.

+ Example: Given z ~ pg(z), some neural network f outputs
f(z) = (p(z), 2(z)) and one sets pg(x|z) = N(x; pu(z), =(z)). Given that z
has a density, this generalizes GMM with a mixture of an infinite number
of Gaussians, but also imposes regularity between the parameters since
the neural network f is continuous.

Intractability of marginal distribution: In such a setting, computing the
marginal
po(x) = / po(x,z)dz = / pe(x|z)pe(z)dz
J Rk J Rk
is intractable and thus we cannot compute its value nor its gradient wrt 6 for

maximum log-likelihood estimation.

Intractability of inference: Inference refers to sampling/recovering the latent

variable z of a given sample x, that is sampling the posterior pg(z|x). This is

also generally intractable since po(z|x) = IM.
po(x)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 12/50

Variational autoencoders (VAE)

(Kingma and Welling, 2019): “The framework of variational autoencoders
(VAEs) provides a computationally efficient way for optimizing deep latent
variable models jointly with a corresponding inference model using SGD.”

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 13/50

Variational autoencoders (VAE)

From (Kingma and Welling, 2019, p .20):

Bruno Galerne

Prior distribution: pe(z)

A VAE learns stochastic mappings :
between an observed x-space, whose 4

empirical distribution is typically

complicated, and a latent z-space, z-space
whose distribution can be relatively i
simple. .
h |

The generative model learns a joint
distribution pe (x,z) factorized as
pe(x,2) = pe(z)pe(x|z), with a prior
distribution over latent space pg (z),
and a stochastic decoder pg (x|z).

Encoder: qq(z|x) Decoder: pe(x|z)
A

X-space
The stochastic encoder ¢, (z|x), also
called inference model, approximates
the true but intractable posterior
pe(z]x) of the generative model.

Dataset: D

VAEs and Normalizing Flows MVA 2024-25 14/50

Variational autoencoders (VAE)

Autoencoders:

input x

code h = f(x)

— encoder f decoder g

output x = g(f(x))

Variational autoencoders: NN outputs encode probability distributions

input x —

Bruno Galerne

encoder ¢,(z|")

latent
variable
Z ~ gplzlx)
prob.
dist.
qp(zlx) decoder py(x|-)

VAEs and Normalizing Flows

prob.
dist.

Pol(x[z)

| sample x ~ pg(x|z)

MVA 2024-25 15/50

Variational autoencoders (VAE)

latent
— variable —
| 2~ gp(alx) |
prob. prob.
1 dist. dist. [|
inputx | encoder g,(z|) gu(zlx) decoder py(x|-) = pel(x|z) f=—— sample x ~ py(x|z)

Stochastic encoder:

» The encoder ¢, (z|x) is understood as a parametric approximation of the
true posterior pe (z|x).

 To achieve that the parameters ¢ must be trained along with the
parameters 0 of the generative model.

+ Example of stochastic encoder: A neural network outputs two vectors
(p(x),log o(x)) = NNy (x) and one sets:

4o Zlx) = N'(z; p(x), diag(o?(x))).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 16 /50

Variational autoencoders (VAE)

input x

encoder ¢,(z|-)

latent
variable
z~ gplzlx)
prob.
dist.
9,(2lx)

Next challenge: Learning!

Bruno Galerne

log-likelihood

decoder py(x|-)

prob.
dist.

Po(x[z)

sample x ~ py(x|z)

» How can we learn the parameters 6 (and) that maximize the

1
logpe(D) = D] > logpe(x) where po(x) = /A po(x,z)dz
o

x€D

is the (untractable) marginal distribution (or model evidence)?

evidence lower bound (ELBO).

VAEs and Normalizing Flows

* In fact we will only maximize a lower bound of each log pe (x) called the

MVA 2024-25 16 /50

Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

Let g, (z|x) be any parametric family of distributions that are positive (i.e.
charge every non negligible sets like non degenerate Gaussian distributions).

For all x € R?,

log pe(x) = By) [log pe (x)]

[)G(X,Z)
= EZquo(le) log Peo (Z‘X)
[[pe(x,z) qp(zlx)] }
=FE, . o |1
oGl |58 | o) g (alx)
[[pe(x,2)]] 4 (2}%)
=E,. o |1 E, .) |1 -
e (e |08 |y || el {"g {pemx)
Dk (g4 (z]%) ||po (z]X)) >0
[[pe(x,z)]]
Z Ez~z1¢(z|x) log q<,,((z|x§ = £9,¢(x) (ELBO)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 17 /50

Kullback-Leibler divergence

General case: Given two distributions P and Q on some measurable space
X, one defines the Kullback—Leibler divergence of P wrt Q by, ,

Dx (P || Q) Jalog (g(iﬁ)) P(dx) if P is absolutely continuous wrt Q
KL =

e otherwise
where £ is the Radon-Nikodym derivative of P wrt Q.

Case with density wrt the Lebesgue measure: If ¥ = R? and P and Q
have densities p(x) and g(x) then

Duap(e) Il ate)) = [1og (25 paae = B 105 (2]

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 18/50

Kullback-Leibler divergence

General case: Given two distributions P and Q on some measurable space
X, one defines the Kullback—Leibler divergence of P wrt Q by, ,

log (5@y) P(dx) if Pis absolutely continuous wrt 0
DKL(P H Q) = ‘/X <Q([) .
+00 otherwise
where £ is the Radon-Nikodym derivative of P wrt Q.

Case with density wrt the Lebesgue measure: If ¥ = R? and P and Q
have densities p(x) and g(x) then

Duap(e) Il ate)) = [1og (25 paae = B 105 (2]

Main properties:

* D (P|| Q) >0and D (P || Q) =0« P=0Q

* Dxu(P || Q) # Dxu(Q || P)

+ Jim_Di (P, || @) = 0 implies convergence in distribution (and even in
total variation).

Dk (P || Q) is convex in (P, Q).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 18/50

Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

£0.0(0) = ot 108 | P25 | — ogpo(o)-Dre (0 k) [o(eke) < 08 po(s)

* The KL-divergence Dx1(q¢(z|x) || pe(z|x)) gives the tightness of the
lower bound: the better the approximation of the true posterior is the
tighter is the lower bound.

* Main contribution of VAE (Kingma and Welling, 2014):
Use the ELBO Lg ,(x) as a training loss for improving the
log-likelihood.

+ To use Lg,,(x) as a training loss using SGD we need to compute
unbiased estimators of both

Vg£9,¢(x) and Vgpﬁe’tp (x)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 19/50

Evidence lower bound (ELBO)

po(x,z
Lo,p(x) = Ezngy @) {bg{ . @k H

= Ezmtw, (z]x) [IOgPG (x, Z)]]EZNIhP (z|x) [IOg de (Z|x)]

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 20/50

Evidence lower bound (ELBO)

p x Z
Lo,p(x) = Ezngy @) {bg{ . @k H

= Eingp (o) [log Po (x,2)] — Ezng, ol [l08 g (2[x)]
Unbiased estimator for Vg Lo (x):

VLo X) = Ergy o) [Vo logpe(x,2)] ~ Velogpe(x,z") where z ~ g, (zl).

Recall that pe (x,z) = pe(z)pe(x|z) is @ known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt 6.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 20/50

Evidence lower bound (ELBO)

Lo,o(x) = Erg) {bg { | H
= Ezwqﬂo(z\x) [IOgPG (x Z)] zwq‘P(z\x) [log de (le)]
Unbiased estimator for Vg Lo (x):

VLo X) = Ergy o) [Vo logpe(x,2)] ~ Velogpe(x,z") where z ~ g, (zl).

Recall that pe (x,z) = pe(z)pe(x|z) is @ known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt 6.

Unbiased estimator for VL (x):

* Not as straightforward since the ELBO expectation is taken with respect
to g, (z|x) that depends on ¢!

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 20/50

Evidence lower bound (ELBO)

Reparameterization trick:

 Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=2g(e, p,x) ~qpzx).

» The function g decouples the randomness source and the parameters for
simulating the approximate posterior g, (z|x).

Example of Gaussian stochastic encoder:

* o (2lr) = Nz p(x), diag(o? (x))) with (ps(x), log o (x)) = NNy (x).
« With p(e) = N (g;0,1) the standard Gaussian distribution:

2= p(x) +o(x) O ~ Nz plx), diag(o”(x)).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 21/50

Evidence lower bound (ELBO)

Reparameterization trick:

* Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=g(e,p,x) ~ qu(zlx).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 22/50

Evidence lower bound (ELBO)

Reparameterization trick:

* Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=g(e,¢,x)~ qpzlx).
Change of variable in the ELBO:

‘69#’('”) = Ez'qu; (z|x) [10g[79(X,Z)] -]Ez~t]q;(z\x) [log de (Z|x)}
= Eerwp(s) [lngl? (x, g(e, ‘va))] - EENP(E) [log de (g(s, Qovx)‘x)]

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 22/50

Evidence lower bound (ELBO)

Reparameterization trick:

* Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=g(e,¢,x) ~qpzfx).
Change of variable in the ELBO:
Lo,o(X) = Erng, zlx) [l0g o (x,2)] — Erngy, o) [l0g 940 (2]x)]
= Ecpe) [logpo(x,8(e, 0, %))] — Ecrpie) [108 g4 (8(€, 0, x)|x)]
Unbiased estimator for VL, (x):
« Draw ¢!V ~ p(e) and (automatically) differentiate wrt the expression

M

log po (x,g(e""), ¢, x)) — log g, (g(e™", ¢, x)|x)

+ Same for differentiating wrt 6.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 22/50

VAE training

VAE Training algorithm:

Bruno Galerne

1.

Draw a minibatch M = {x), ... x(®)} of M samples from
D={x" i=1,...,N}
Draw M random €,, ~ p(e),m=1,..., M.

Compute z" = g(e™, ¢, x™) ~ g, (z]x"")) using the encoder network
parameters.
Apply the decoder network to each latent variable z" and return

M
A 1 i m im m Im im)
Lo,p(M) = MZ:logzm(Jc(”’),g(€<), ,x))—log gy (g™, g, x|))
m=1

Compute VgL, (M) and V., Le (M) by automatic differentiation and
update the parameters 6 and ¢ by an SGD step.

VAEs and Normalizing Flows MVA 2024-25 23/50

VAE training

VAE Training algorithm:

1.

Draw a minibatch M = {x), ... x(®)} of M samples from

D={x" i=1,...,N}

Draw M random €,, ~ p(e),m=1,..., M.

Compute z" = g(e™, ¢, x™) ~ g, (z]x"")) using the encoder network

parameters.
Apply the decoder network to each latent variable z" and return

Lo,o(Z log pe ('™, g(€™, ,x™)))—log g, (g(e™, @, 2l Jxlin))

Compute VgL, (M) and V., Le (M) by automatic differentiation and
update the parameters 6 and ¢ by an SGD step.

Remark: Lo (M) is an unbiased estimator of the training loss

N N

1 i 1 i i

N Z ‘Ce,tp(x()) = N Z <Ez~t1¢.(z|x(")) |:1ng9 (x(),Z):| - Equ‘p(zlx(")) |:10g qLP(z‘x<))]>
i=1

i=1

where we have double stochasticity from sampling the batch M and
approximating each expectation with a single realization.

Bruno Galerne

VAEs and Normalizing Flows MVA 2024-25 23/50

VAE: Gaussian encoder and decoder

latent

— variable —
| | 7~ qy(zlx) ||
prob. prob.
1 dist. dist. ||
inputx f— | encoder g, (z|") = gy(zlx) decoder pp(x|-) = po(x|z) = sample x ~ py(x|z)

Example of Gaussian stochastic encoder and decoder:

« Gaussian stochastic encoder: g, (z|x) = N (z; pu(x), diag(a*(x))) with
(1(x), log o (x)) = NNy (x).

+ Gaussian prior : po(z) = N(z;0,1) the prior is fixed without parameter
to learn.

- Gaussian stochastic decoder: pg(x|z) = N (x; ptaec(z), s°T) with
Laec(z) = NNg(z): Fixed isotropic Gaussian around a decoded mean
p(z). The noise level s > 0 should be fixed according to the dataset
range value.

 The architectures for NN, and NNy are generally chosen symmetric.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 24 /50

VAE: Gaussian encoder and decoder

Density of a Gaussian distribution: For x € R?,

N,) = exp (— 50— "S-)

1
v (2m)? |2
d 1 1 _
log N'(x; s,) = =5 log(2m) — 5 log(|=) — 5 (x —)= (x —)
Expression of the ELBO loss: Withz = g(e, p,x) = pu(x) + o(x) O €,

Lo,,(x) = log pe(x,z) — log g (z|x)
= log pe(z) + log pe(x[z) — log g, (z]x)

=~ log(2m) — 5 |If

2d

~ L1og(2m) — Llog s — 1 x — pase@)]
+ K 10g@m) + 1 S log o) + Lz = ey 0 %)
2 2 = 2
1 2 Lo o 1 S
= — 5l — eI — Sl + D log o3(x) + 5z —) @ 0*(x) +C

j=1

reconstruction error
latent code regularization

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 25/50

VAE: ELBO and Kullback-Leibler divergence

The “latent code regularization” is better seen by refactorizing the ELBO:

Zx

S |:10g [(z)i?;)(:;\z)”

= Eingy av) [log P (*[2)] + By, ol {log {qie(iz\i)”

= By ey [l0g po(x[2)] — Dii (g (z]%) || po(2))

reconstruction error latent code regularization

x 4
Lop(x) = Eznge @) {log [H

» The latent code regularization enforces all the approximate posterior to
be close to the prior.

 But to have a small reconstruction error, the support of the distributions
4, (z|x) have to be well-separated.

 This results in an encoder-decoder with well-spread latent code
distribution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25

26 /50

VAE: ELBO and Kullback-Leibler divergence

Refactorizing the ELBO:

Lo,p(x) = By, o) [log po(x]z)] — Dxi(q4 (z]x) || po(z))

reconstruction error latent code regularization
Example of Gaussian stochastic encoder

« Gaussian stochastic encoder: g, (z|x) = N (z; pu(x), diag(o*(x))) with
(1(x), log o (x)) = NNy (x).

« Gaussian prior : po(z) = N(z;0,1) the prior is fixed without parameter
to learn.

1. Closed form formula for the KL-divergence:

i () +oi(x)* —1 —logaf(x))

2. Use this expression to propose another unbiased estimator L ., (x) of
the ELBO without MC estimate for the KL term.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25

I\)M—‘

Dxi(qe(2]x) || pol(z

27/50

VAE: Other examples of stochastic decoders

latent

— variable —
| | 7~ qy(zlx) ||
prob. prob.
1 dist. dist. ||
inputx f— | encoder g, (z|") = gy(zlx) decoder pp(x|-) = po(x|z) = sample x ~ py(x|z)

« Stochastic decoder for binary data: With x € {0, 11¢, one sets
pe(x|z) = BernoulliVector(x; p(z)) where p(z) = NNg(z).

Then, the likelihood is the binary cross-entropy:
d

log pe(x sz logpe + (1 — x¢) log(1 — pe)
=1

+ Stochastic decoder for discrete data: Same approach with a NN that
outputs a softmax array with the number of classes and cross-entropy...

* Here pixels are supposed independent resulting in noisy samples from
pe(x|z)... But one often outputs the expectation for visualization!

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 28 /50

VAE: Results

From the original paper: (Kingma and Welling, 2014): “Auto

Bayes’ (AEVB) vy

=

ncoding Variational

2
&
L

-E
(o)
3]
5
5
3
3
3
3
3
3
8
8
6
6
6
3
!
\
\

|

NNNY2 AL DD 2000 PPPRPEE
NNNY2ARARAQRQ 22000 P PPPLE
NNNYYQQAQQULLL2DPNNLL e
SNNNNYYRYRROLAP PN O
e e e L L L L L RS ESESESE S o)
e L L L LRI I I IS IS ESE S Yo N o)
e EEOOOOOWWWNWNRROO0

o}
5]
S
5
3
3
3
3
3
3
8
8
5
13
§
§
\
\
\
|

————e et LW WWLWLOLOOOO
——e—e et NN OB WLUULLOOOOO
—_—_—e e N AN NN UL OGOOOO
e L L R L T S
e e L L N E R EE Y N SN\
SNNAAAAN NNy hnhadRD
NNNANN G 9Ny YLy GuWaRD
SNNNNNNYYYNNYYNNLOLLLY

AR RN RN EE G R G [. . . I T O o o]
NNYRRRL QDD DDDDP
NNYURRhRQQo o000 0DDPRE

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 29 /50

VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.
* The (higher k values would
give better results).

nput test images:

@)
) I
=,
©
c
S

NPOM~QUWan We s

SN N RN G (v
GO F+Q KA — -0 N
cEwe~NyUNusAUD B
2L HL QAN —WY
QO WoeN-oWwHX
WMUPMDQ%Q%
~WO ~0Q W] uni
LU oLy O &

s e

Gy o) & () W
~WUH~WQeJI O w

o
o
o
7
o
7
¢
3
g
A

SN UW ooy ey N RO

g
4
(-'
|
Py
' 4
O
7z
b

BNWHGG AN

8
0C
A
g
3
g
4
5
ol
9

g
/
3
¢
b

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 30/50

VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.
» The code dimension is k = 2 for visualization (higher & values would
give better results).

2D latent code of 256 test images:

® ..
[] ([
{]
? e o C':D*“. A I
..‘.a ..\‘S. U‘ .}: . -
0 o » L % o 00
P 28 ? "..- o o
® o Nl R ety
-2 Qe oo %gn° o 0 0° ° 4
e % ° . <
e o .. ® 7
—4 4 8
o o 9
4 2 0 2 4

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 30/50

N
=
3
n
[}
o
g
>

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.

higher k values would

(

* The

give better results).

AE VS VAE

VAE Output:

AE Output:

Input:

LN~ ttooinNw
NPT T oy
MO ~CLQM~Mm~
BIODE Tl R Y
CoMmLomMmBD~M O™
OSSN N2 Q
=3 ' Qo™ oy o
TOQUNT ~bm>rd
bbwr—pfhONNS
O oo ms 9

oM~ Pon Ny
S Hhysr-TTrMYT
MO Q@ ~inm~
0 Om N o DN
i PO~ OI M

M&GDoeRrIMNTQ
T UM s
MOQYVoeme~omHI

o —G %o MmN
S SemNDo~inwe Y

oM Nl (flalnm\N®
S rh-TrRp T
NOraWO~OM~
0o O lern b By Y 5
e LB ~aQAM
oMo romoe-Q
LW=XXY I rrVWHA &«
OV M~oomn gD
W T —HY 0+ 0o
UYL NYoNRV.S

30/50

MVA 2024-25

VAEs and Normalizing Flows

Bruno Galerne

VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.

» The code dimension is k = 2 for visualization (higher & values would

give better results).

AE codes VAE latent codes
B “' ° : 2 ‘ .‘o .
't. .oo ° : 2 °
0 -’1 o : . . "'u: LI
e 4 ° \ ‘
n ~.s" o T o .
4...""" S I N % 2 YOS
8 ° ..,' % o =8 e 2
o P ° :- e e Qe ‘ . ® ...' o':'.:o."... .
] t 3 ° ° o ° e 5
—60 ° ° o o o ° ° 3
° -4 8
[] [] ® 9
-80
—40 =20 0 20 40 60 120 -4 -2 0 2 4

The prior distribution enforces regularity/tightness of the VAE latent code

distribution.

Bruno Galerne

VAEs and Normalizing Flows

MVA 2024-25

Variational Autoencoders

VAE had a huge impact on the community (24 516 citations on Google
Scholar!).

Lot of things can be improved (Kingma and Welling, 2019; Tomczak, 2022):

+ Use more complex priors pe(z) and decoder models ¢, (z|x), eg using
normalizing flows (discussed later today).

» Use a hierarchy of latent variables z;, z», etc.
Issues regarding VAE (Kingma and Welling, 2019; Tomczak, 2022):

* Posterior collapse: All approximate posteriors g, (z|x) are stucked to the
prior to minimize the KL term of the ELBO.

 Hole problem: Some subset of the latent space is not populated by
encoded data.

* Blurriness of generative model: produced images tend to be blurry as for
standard autoencoders...

Pros of VAE:

 Very quick to sample once trained.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 31/50

VAE: SOTA resutls

(Vahdat and Kautz, 2020): “NVAE: A Deep Hierarchical Variational
Autoencoder”

» VAE can be made competitive using well-designed architectures.

Figure 1: 256x256-pixel samples generated by NVAE, trained on CelebA HQ [28].

See also Very Deep VAE (Child, 2021).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 32/50

NVAE: Architecture details

Lung (x) := By log p(x[z)] —Dxi (g1 %) || 1))=Y Bgeypr [P (g(ailx,z<1) || plailz<i))]

=2

where g(z<i|x) = [1/Z} ¢(zi|x,z<:) is the approx. posterior up to the (I — 1)" group.

« Hierarchical architecture with
shared encoder/decoder
(Kingma et al., 2016).

» Complex cells using residual

network (batch normalization,
swish activation, ...).

bottom-up model
[‘-)[)()HI H.\\()I)‘(I()l pi—).I'FH{S
[epowt umop-doy pareys

» Conditioning based on shift in
Gaussian distribution. r

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 33 /50

NVAE: Architecture details

« Hierarchical prior: p(z/|z</) = N (p(z<), diag 0% (z<1)) is @ normal
distribution for the i variable in z; in prior.
+ Residual distribution parameterization of ¢(z|x) relative to p(z):

q@lz<,x) =N (u(Z<1) + Ap(z<s,x), diag (o’z(Z<l) : Aa’z(Z<1,x))>

where Ayi(z<,x) and Ao?(z<;,x) are the relative location and scale of
the approximate posterior with respect to the prior.

« Ap(z<s,x) and Ac*(z<,x)
depends on features x; with the
same level

bottom-up model
[ppowt umop-do} pareys
[epow umop-doy poreys

» Favors natural level of details
hierarchy.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 34 /50

NVAE: Results of toy implementation

Samples of 64 x64 portraits

Sample all levels

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 35/50

NVAE: Results of toy implementation

@@@@@@M@

VAE in practice

Today’s practice session based on this hierarchical architecture.

Other ressources:

 Jakub Tomczak’s implementation:
https://github.com/jmtomczak/intro_dgm/blob/main/
vaes/vae_example.ipynb
... but it does not use the closed-form formula

Do (4 @) | po @) = 3 3 (i) + o3(x)? — 1~ logs(x)?)

j=1

» Simple MLP for MNIST (PyTorch examples):
https://github.com/pytorch/examples/tree/main/vae

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 36 /50

https://github.com/jmtomczak/intro_dgm/blob/main/vaes/vae_example.ipynb
https://github.com/jmtomczak/intro_dgm/blob/main/vaes/vae_example.ipynb
https://github.com/pytorch/examples/tree/main/vae

Normalizing flows

Normalizing flows

Learn an invertible mapping from the data space to the latent
space.

Data space X Latent space Z

Inference

x ~Px

z=f(x)

Generation

(source: From (Dinh et al., 2017))
« Latent space and data space have the same dimension.

 The latent distribution is generally assumed to be Gaussian.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 37 /50

Normalizing flows

Two main issues:

1. Parameterize a generic parametric invertible transform go.
2. Learn the parameters 6 to fit the dataset D = {x”, i=1,... ,N} c R".

Learning is performed by simple loglikelihood maximization:

1
max logpe(D) where logpe(D) =] Z log pe(x).

xeD

* Here Pe = (gg)#’fro with ™ = N(O,Id).
 Since gy is assumed to a diffeomorphism, the expression is given
thanks to the change of variable formula.

* In practice the dataset D is discrete and one adds noise to the data to
deal with quantization and have a density (Kingma and Dhariwal, 2018).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 38 /50

Invertible transformations

The density of pg = (ge) 40 is given by a change of variable.

» We assume that gy is a diffeomorphism
« Forany f € C.(R?,R)
By (f(X)) = i (x)pe (x)dx

Epy (f(X)) = Eny (f(80(2)))
flge(@)po()dz (z =g, (x))

where [J(g; ') (x)| =

det (89 m) i
Oy ()C) 1<m,n<d
Jacobian.

Expression of the density:

[po() = poles () ())I

Remark: Generalized using the co-area/area formula (Caterini et al., 2021)).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 39/50

Maximizing the log-likelihood

Expression of the density:

[po() = poles) (g5 W) |

* Hence, maximizing the log-likelihood is equivalent to maximizing

£(0) = ﬁ 3 log(po(gs " (x1))) + log(14 (g5 (x)])

x;€D

« Short notation: Jo (x) := J(g, ') (x).
Conditions on the transformations:

- go and g, ' are easy to compute and differentiate.
» The Jacobian Jy is easy to compute and differentiate.
+ But also gy should be as complex as required by the data...

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 40 /50

Compositions of transformations

Composition of transformation: To obtain a complex flow one decomposes
the flow as K “simple” diffeomorphisms:

0 1 K
86 =80°80° 08¢

Then
log(|/(g5 " (x) Zlog 7((g6) " ()

with x* the proper intermediate step in the sequence.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 41/50

Different types of flows

* In (Rezende and Mohamed, 2015) planar and radial flows are presented.
 Two other very efficient flows (Dinh et al., 2017, 2015):

- Affine coupling layer.
* Invertible 1x1 convolution.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 42 /50

Different types of flows

¢ In (Rezende and Mohamed, 2015) planar and radial flows are presented.
 Two other very efficient flows (Dinh et al., 2017, 2015):

- Affine coupling layer.

* Invertible 1x1 convolution.

+ How does the affine coupling layer work?
* Wesplitx e R inx = (xo0,x1) with x € R%, x; € R%.
+ Forward transform go(x) = (xo, exp[se(x0)] ® x1 + to(x0)) With s¢ and
tg being any network.
« Reverse transform g, ' (x) = (xo, (x1 — t (xo)) @ expl[so(x0)]).
« Log-Jacobian: log(|Js(x)|) = 3¢, s6(x0)

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 42 /50

Different types of flows

¢ In (Rezende and Mohamed, 2015) planar and radial flows are presented.
 Two other very efficient flows (Dinh et al., 2017, 2015):

- Affine coupling layer.

* Invertible 1x1 convolution.

+ How does the affine coupling layer work?
* Wesplitx e R inx = (xo0,x1) with x € R%, x; € R%.
+ Forward transform go(x) = (xo, exp[se(x0)] ® x1 + to(x0)) With s¢ and
tg being any network.
+ Reverse transform g, ' (x) = (xo, (x1 — to(x0)) @ exp[so (x0)])-
» Log-Jacobian: log(|Js(x)|) = 3%, 56 (x0):.

=

» How does the invertible 1x1 convolution work?
« Matrix Wy € RE*€ (number of channels), x € R7*Wx€,
» Forward transform go(x);; = Woxi;.
+ Reverse transform g, ' (x);; = W, 'xi,;.
+ Log-Jacobian log(|Js(x)|) = H x W x log(|Ws|).

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 42 /50

Different types of flows

» There is no spatial convolution in these operations.

» However there a way to generate the image in a multiscale way (Dinh
et al., 2017): Use a squeeze layer that change an image of size
H x W x Cinto an image of size H/2 x W /2 x 4C by stacking spatial
neighbors in the channel component.

» Then the next 1x1 convolution mixes the formerly spatial neighbors.

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern
mask. On the right, a channel-wise masking. The squeezing operation reduces the 4 X 4 x 1 tensor
(on the left) into a 2 x 2 x 4 tensor (on the right). Before the squeezing operation, a checkerboard
pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(source: From (Dinh et al., 2017))

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 43/50

Generative Flow (GLOW)

step of flow x K
affine coupling layer | squeeze
t
| invertible 1x1 conv | @
| act:orm | x K x (L—1)
5
(a) One step of our flow. (b) Multi-scale architecture (Dinh et al., 2016).

(source: From (Kingma and Dhariwal, 2018))
» Combining actnorm, invertible convolution and affine coupling layers
(multiple times).
» The “actnorm” layer is simply an affine layer.

VAEs and Normalizing Flows MVA 2024-25 44 /50

Bruno Galerne

Generative Flow (GLOW)

High quality results

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 45/50

Generative Flow (GLOW)

Linear interpolation in latent space between real images

+ This experiments uses both the inference and generation of the flow.
» Not so easy to do with a GAN: Why?

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 46 / 50

Generative Flow (GLOW)

Effect of change of temperature: Samples obtained at temperatures 0,
0.25,0.6,0.7, 0.8, 0.9, 1.0.

» The temperature to be decreased for high-quality image generation:
latent codes z are sampled from A/ (0, o1;) with o < 1.

» Temperature modulation also used for VAE.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 47 /50

References

References i

References

Caterini, A. L., Loaiza-Ganem, G., Pleiss, G., and Cunningham, J. P. (2021).
Rectangular flows for manifold learning. In ICML Workshop on Invertible
Neural Networks, Normalizing Flows, and Explicit Likelihood Models.

Child, R. (2021). Very deep {vae}s generalize autoregressive models and can
outperform them on images. In International Conference on Learning
Representations.

Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE: non-linear independent
components estimation. In Bengio, Y. and LeCun, Y., editors, 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using
real NVP. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 48 /50

References ii

Goodfellow, ., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible
1x1 convolutions. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.

Kingma, D. P, Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and
Welling, M. (2016). Improved variational inference with inverse
autoregressive flow. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In
Bengio, Y. and LeCun, Y., editors, 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 49 /50

http://www.deeplearningbook.org

References iii

Kingma, D. P. and Welling, M. (2019). An introduction to variational
autoencoders. Foundations and TrendsA® in Machine Learning,
12(4):307-392.

Rezende, D. J. and Mohamed, S. (2015). Variational inference with
normalizing flows. In Bach, F. R. and Blei, D. M., editors, Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference
Proceedings, pages 1530-1538. JMLR.org.

Tomczak, J. M. (2022). Deep Generative Modeling. Springer International
Publishing, Cham.

Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical variational
autoencoder. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H., editors, Advances in Neural Information Processing Systems,
volume 33, pages 19667-19679. Curran Associates, Inc.

Bruno Galerne VAEs and Normalizing Flows MVA 2024-25 50 /50

	Introduction on generative models
	Variational autoencoders (VAE)
	Normalizing flows
	References
	References

