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What is a texture?

A minimal definition of a texture image is an “image containing repeated
patterns” [Wei et al., ’09].
The family of patterns reflects a certain amount of randomness, depending
on the nature of the texture.
Two main subclasses:

The micro-textures.

The macro-textures, constitued of small but discernible objects.
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Textures and scale of observation

Depending on the viewing distance, the same objects can be perceived
either as

a micro-texture,

a macro-texture,

a collection of individual objects.

Micro-texture Macro-texture Some pebbles
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Texture synthesis

Texture synthesis: Given an input texture image, produce an output texture
image being both visually similar to and pixel-wise different from the input
texture.

The output image should ideally be perceived as another part of the same
large piece of homogeneous material the input texture is taken from.



Recap on textures Gaussian texture synthesis for digital images Microtexture inpainting References

Texture synthesis algorithms

Two main kinds of algorithm:

1 Texture synthesis using statistical constraints:
Algorithm:

1 Extract some meaningful “statistics” from the input image (e.g. distribution of
colors, of Fourier coefficients, of wavelet coefficients,. . . ).

2 Compute a “random” output image having the same statistics: start from a
white noise and alternatively impose the “statistics” of the input.

Properties:
+ Perceptually stable
- Generally not good enough for macro-textures

2 Neighborhood-based synthesis algorithms (or “copy-paste” algorithms):
Algorithm:

Compute sequentially an output texture such that each patch of the output
corresponds to a patch of the input texture.

Many variations have been proposed: scanning orders, grow pixel by pixel or
patch by patch, multiscale synthesis, optimization procedure,. . .

Properties:
+ Synthesize well macro-textures
- Can have some speed and stability issue, hard to set parameter...

See next course (March, 17) for more details.
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Circular discrete spot noise [van Wijk, ’91]

Let h ∈ RM×N be a discrete image called spot and indexed on the set
Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}.
Let (Xk ) be a sequence of i.i.d. r.v. uniformly distributed over Ω.

The circular discrete spot noise (CDSN) of order n associated with
h is the random image

fn(x) =
n∑

k=1

h(x − Xk ),

where the translations h(x − Xk ) are defined periodically.

Spot h n = 10 n = 102 n = 103 n = 104 n = 105
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Circular asymptotic discrete spot noise (CADSN)

For texture synthesis we are particularly interested in the limit of the DSN:
the circular asymptotic discrete spot noise (CADSN).
The CDSN of order n is the sum of the n i.i.d. random images h(. − Xk )
=⇒ central limit theorem.

Definition of CADSN: the CADSN Y associated with h is the limit Gaus-

sian distribution of the normalized discrete spot noise sequence
(

fn − E(fn)√
n

)
n
.

Y is stationary

The expectation of Y is the mean of h: E(Y ) = mean(h) = m

The covariance of Y is the autocorrelation of h:

Cov(Y (x),Y (y)) =
1

MN

∑
t∈Ω

(h(x + t)−m)(h(y + t)−m) = Ch(x − y)
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Simulation of the CADSN

Simulation of the CADSN: [Galerne, Gousseau and Morel, ’11]

Let h ∈ RM×N be a an image and X be a Gaussian white noise image.

The random image Y =
1√
MN

(h −mean(h)) ∗ X is the CADSN associ-

ated with h.

Spot h DSN, n = 105 ADSN

Extension to color images:
CADSN extends to RGB color images by convolving each color channel
by the same Gaussian white noise X .
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CADSN for Texture Synthesis by Example

CADSN enables Gaussian texture synthesis by example (once the
image is replaced by its periodic component [Moisan, ’11]).

Gaussian input Non Gaussian input
Image h CADSN Image h CADSN
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Interests and limitations

Interests:

The CADSN reproduces well stationary Gaussian textures, and thus most
natural micro-textures.

CADSN is a fast and reliable algorithm.
Well-defined mathematical model that as seen several developments:

Definition of the canonical texton [Desolneux et al., ’12]
Gaussian texture mixing using optimal transport barycenter [Xia et al, 2011]
Microtexture inpainting through Gaussian conditional
simulation [Galerne, Leclaire and Moisan, ’16]
[Galerne, Leclaire, ’17a][Galerne, Leclaire, ’17b]

Limitations of Gaussian model:

Gaussian textures are limited: no geometric contours!

The model is not robust to non stationarities, perspective effects, ...

Limitations due to FFT simulation:

The method is global: The whole texture image has to be computed.

It produces periodic images with a fixed size which cannot be extended
a posteriori.
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Microtexture inpainting

Inpainting consists in filling missing regions of an image.

In the case of random texture models, inpainting can be formulated as
conditional simulation
Notation:

Ω ⊂ Z2: image domain
M ⊂ Ω: mask
u: input texture known only on Ω \M
C a set of conditioning points

Inpainting of a Gaussian texture:

1 Estimation of an ADSN model U from the masked input u.

U = moy(u) + hu ∗ X where hu =
1√
|Ω \M|

(u −moy(u))

2 Conditional simulation of U knowing that U|C = u|C (using kriging...)
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Gaussian conditional sampling using kriging estimation

Let (F (x))x∈Ω be a Gaussian vector with mean zero and covariance

Γ(x , y) = Cov(F (x),F (y)) = E(F (x)F (y)), x , y ∈ Ω.

The (simple) kriging estimation is defined by

F∗(x) = E( F (x) | F (c), c ∈ C).

There exists (λc(x))c∈C such that F∗(x) =
∑
c∈C

λc(x)F (c).

Theorem: F∗ and F − F∗ are independent. (see e.g. [Lantuéjoul, ’02])

Consequence: A conditional sample of F given F|C = ϕ can be obtained as

F | F|C = ϕ ∼ ϕ∗︸︷︷︸
Kriging component

+ F − F∗︸ ︷︷ ︸
Innovation component

.

The kriging coefficients Λ = (λc(x))x∈Ω
c∈C

satisfy Γ|Ω×C = ΛΓ|C×C .

We use the pseudo-inverse of Γ|C×C : Λ = Γ|Ω×CΓ†|C×C
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Inpainting of a Gaussian texture

1 Estimation of an ADSN model U from masked input u.
2 Conditional simulation of U knowing that U|C = u|C :

Compute v = mean(u) + (u −mean(u))?︸ ︷︷ ︸
Kriging component

+ U − U?︸ ︷︷ ︸
Innovation component

Original Masked input Conditioning points C

Kriging component Innovation component Inpainted texture
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Efficient algorithm

First version presented at ICASSP used explicit matrices to compute

ϕ∗ = Γ|Ω×CΓ†|C×Cϕ.

Suitable only for (very) small images !

Scalable Implementation:

The covariance Γ is the autocorrelation of hu = 1√
|Ω\M|

(u −moy(u)).

All matrix-vector multiplication with restrictions of Γ can be done using
FFT-based convolution.

Computing Γ†|C×Cϕ done using conjugate gradient descent (CGD).

Each CGD iteration has the cost of a couple of convolutions (and does
not depend on the number of points to fill !)

In practice, 1000 iterations gives a good approximate solution.

On-line demo with only 100 iterations [Galerne, Leclaire, ’17b].

It turns out that using a 3 pixel wide boundary for C is visually good
enough, and better for the conditioning of the linear system.

http://ipolcore.ipol.im/demo/clientAppOld/demo.html?id=198
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Results: Large problems

Masked texture Inpainted texture

Results are satisfying as soon as the Gaussian model is well estimated.
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Results: Failures

Input 100 CGD it. 1000 CGD it.
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Comparison with path-based methods
Unfair comparison: Other algorithms are not limited to textures !

Original Gaussian inpainting Kriging component

[Arias et al., ’11] [Daisy et al., ’15] [Newson et al., ’14]
Thanks to the covariance estimation, the Gaussian inpainting is
consistent regarding long range correlations.
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Comparison with path-based methods

Our algorithm often gives better results when inpainting a stationary
texture, even if the texture is not Gaussian.
Inpainting textures is not an easy task.

Masked image Gaussian inp. [Arias et al., ’11] [Daisy et al., ’15]
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