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Generative models

1. Model and/or learn a distribution p(u) on the space of images.

(source: Charles Deledalle)
The images may represent:

• different instances of the same texture image,
• all images naturally described by a dataset of images,
• any image

2. Generate samples from this distribution.
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Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

• z is a generic source of randomness, often called the latent variable.
• If G(·; Θ) is known, then p = G(·; Θ)#N (0, In) is the push-forward of the

latent distribution.

The generator G(·; Θ) can be:

• A deterministic function (e.g. convolution operator),
• A neural network with learned parameter,
• An iterative optimization algorithm (gradient descent,...),
• A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,. . . ).

Bruno Galerne Generative models for images II ETICS 2024 3 / 57



Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

• z is a generic source of randomness, often called the latent variable.
• If G(·; Θ) is known, then p = G(·; Θ)#N (0, In) is the push-forward of the

latent distribution.

The generator G(·; Θ) can be:

• A deterministic function (e.g. convolution operator),
• A neural network with learned parameter,
• An iterative optimization algorithm (gradient descent,...),
• A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,. . . ).

Bruno Galerne Generative models for images II ETICS 2024 3 / 57



Basics on diffusion models



Adding noise to images

• We are given an input dataset

D = {x(i), i = 1, . . . ,N} ⊂ Rd

• We assume that these images are independent samples of a common
distribution p0 over Rd.

• Consider the random process that consists of adding noise to images:

xt = x0 + wt, t ∈ [0, T]

where x0 ∼ p0 is a sample image and wt is a Brownian motion (also
called Wiener process).

(source: (Song et al., 2021b))
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Recap on Brownian motion

Real-valued: A standard (real-valued) Brownian motion (also called
Wiener process is a stochastic process (wt)t≥0 such that

• w0 = 0.

• With probability one, the function t 7→ wt is continuous.

• The process (wt)t≥0 has stationary independent increments.

• wt ∼ N (0, t).

Direct consequences:

• For s < t, ws and wt − ws are independent and wt−s ∼ N (0, t − s).

• Markovian random field.

Rd-valued: A standard Rd-valued Brownian motion (wt)t≥0 is made of d
independent real-valued Brownian motions

wt = (wt,1, . . . ,wt,d) ∈ Rd.

Bruno Galerne Generative models for images II ETICS 2024 5 / 57



Recap on Brownian motion

Ito integral on [0, T]:

Given a process (xt)t∈[0,T] adapted to the filtration Ft = σ(ws, s ≤ t), one
defines ∫ t

0
xsdws as the L2 limit of

k−1∑
j=0

xtj ⊙ (wtj+1 − wtj)

when the minimal step of the partition 0 ≤ t0 ≤ · · · ≤ tk ≤ T tends to 0.

• In particular, for a deterministic function s 7→ g(s),
∫ t

0
g(s)dws is a normal

variable with mean 0 and variance σ2 =

∫ t

0
g2(s)ds.
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Adding noise to images

• Adding noise to images: xt = x0 + wt, t ∈ [0, T].

• This corresponds to the stochastic differential equation (SDE):

dxt = dwt with initial condition x0 ∼ p0.

• We denote by pt the distribution of xt at time t ∈ [0, T]. What is pt?

pt = p0 ∗ N (0, tId)

• This corresponds to applying the heat equation starting from p0:

∂tpt(x) =
1
2
∆xpt(x) with pt=0 = p0.

This PDE is called the Fokker-Planck equation associated with the
SDE.

• This is an example of diffusion equation.
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Diffusion SDE and Fokker-Planck equation

• More generally we will consider diffusion SDE of the form (Song et al.,
2021b):

dxt = f(xt, t)dt + g(t)dwt

where
• f : Rd × [0, T] → Rd is called the drift: External deterministic force that

drives xt in the direction f(xt, t),
• g : [0, T] → [0,+∞) is the diffusion coefficient.

• The corresponding Fokker-Planck equation is

∂tpt(x) = − divx (f(x, t)pt(x)) +
1
2

g(t)2∆xpt(x)

that is,

∂tpt(x) = −
d∑

k=1

∂xk [fk(x, t)pt(x)] +
1
2

g(t)2
d∑

k=1

∂2
xk pt(x).
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Diffusion SDE: Two examples

dxt = f(xt, t)dt + g(t)dwt

Example 1: Variance exploding diffusion (VE-SDE)

SDE: dxt = dwt

Solution: xt = x0 + wt

Variance: Var(xt) = Var(x0) + t

Example 2: Variance preserving diffusion (VP-SDE)

SDE: dxt = −βtxtdt +
√

2βtdwt

Solution: xt = e−Bt x0 +
∫ t

0 eBs−Bt
√

2βsdws with Bt =
∫ t

0 βsds
Variance: Var(xt) = e−2Bt Var(x0) + 1 − e−2Bt = 1 if Var(x0) = 1.

Both variants have the form xt = atx0 + btZt: xt is a rescaled noisy version of
x0 and the noise is more and more predominant as time grows.
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Numerical scheme for diffusion SDE

dxt = f(xt, t)dt + g(t)dwt

In general we do not have a close form formula for xt.

Diffusion SDEs can be approximately simulated using numerical schemes
such as the Euler-Maruyama sheme:

• Using the time step h = T/N with N + 1 times tn = nh, n ∈ {0, . . .N},
define X0 = x0 and

Xn+1 = Xn + f(Xn, tn)h + g(tn)
(
wtn+1 − wtn

)
, n = 1, . . . ,N − 1.

• Remark that wtn+1 − wtn ∼ N (0, hId) and is independent of Xn:

Xn+1 = Xn+f(Xn, tn)h+g(tn)
√

hZn, with Zn ∼ N (0, Id), n = 1, . . . ,N−1.
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Reversed diffusion

• For diffusion SDEs, as t grows pt is closer and closer to a normal
distribution.

• We will consider that at the final time t = T large enough so that pT can
be considered to be a normal distribution.

• For generative modeling, we want to reverse the process:

• Start by generating xT ∼ pT ≈ N (0, σ2
T Id).

• Simulate (xT−t)t∈[0,T] such that xT−t ∼ pT−t.

(source: (Song and Ermon, 2020))
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Reversed diffusion

Reversed diffusion: What is the SDE satisfied by xT−t?

dxt = f(xt, t)dt + g(t)dwt

has the associated Fokker-Planck equation

∂tpt(x) = −divx (f(x, t)pt(x)) +
1
2

g(t)2∆xpt(x).

Let us derive the Fokker-Planck equation for qt = pT−t the distribution
function of yt = xT−t.

∂tqt(x) = −∂tpT−t(x)

= divx (f(x, T − t)pT−t(x))−
1
2

g(T − t)2∆xpT−t(x)

= divx (f(x, T − t)qt(x))−
1
2

g(T − t)2∆xqt(x)

= divx (f(x, T − t)qt(x)) +
(
−1 +

1
2

)
g(T − t)2∆xqt(x)
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Reversed diffusion

∂tqt(x)

= divx (f(x, T − t)qt(x)) +
(
−1 +

1
2

)
g(T − t)2∆xqt(x)

= divx

(
f(x, T − t)qt(x)− g(T − t)2∇xqt(x)

)
+

1
2

g(T − t)2∆xqt(x)

= divx

([
f(x, T − t)− g(T − t)2 ∇xqt(x)

qt(x)

]
qt(x)

)
+

1
2

g(T − t)2∆xqt(x)

= −divx

([
−f(x, T − t) + g(T − t)2∇x log qt(x)

]
qt(x)

)
+

1
2

g(T − t)2∆xqt(x)

This is the Fokker-Planck equation associated with the diffusion SDE:

dyt =
[
−f(yt, T − t) + g(T − t)2∇x log pT−t(yt)

]
dt + g(T − t)dwt.
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Reversed diffusion

Forward diffusion:
dxt = f(xt, t)dt + g(t)dwt

Backward diffusion: yt = xT−t

dyt =
[
−f(yt, T − t) + g(T − t)2∇x log pT−t(yt)

]
dt + g(T − t)dwt.

• Same diffusion coefficient.
• Opposite drift term with additional distribution correction:

g(T − t)2∇x log pT−t(yt)

drives the diffusion in regions with high pT−t probability.
• x 7→ ∇x log pt(x) is called the (Stein) score of the distribution.
• Rigorous results from SDE litterature ((Anderson, 1982) (Haussmann

and Pardoux, 1986)) (measurability issues, the filtration is also
reversed...).

• Can we simulate this backward diffusion using Euler-Maruyama ?

Xn+1 = Xn+ f(Xn, tn)h+g(t)
√

hZn, with Zn ∼ N (0, Id), n = 1, . . . ,N−1.
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Learning the score function: Denoising score matching

• Goal: Estimate the score x 7→ ∇x log pt(x) using only available samples
(x0, xt).

• For the models of interests, xt = atx0 + btZt is a rescaled noisy version of
x0 (both at and bt have known analytical expressions).

• Explicit conditional distribution: pt|0(xt|x0) = N (atx0, b2
t Id).

pt(xt) =

∫
Rd

p0,t(x0, xt)dx0 =

∫
Rd

pt|0(xt|x0)p0(x0)dx0

∇xt pt(xt) =

∫
Rd

∇xt pt|0(xt|x0)p0(x0)dx0

∇xt log pt(xt) =
∇xt pt(xt)

pt(xt)
=

∫
Rd

∇xt pt|0(xt|x0)
p0(x0)

pt(xt)
dx0

=

∫
Rd

[
∇xt log pt|0(xt|x0)

]
pt|0(xt|x0)

p0(x0)

pt(xt)
dx0

=

∫
Rd

[
∇xt log pt|0(xt|x0)

]
p0|t(x0|xt)dx0

Conclusion:

∇xt log pt(xt) = Ex0∼p0|t(x0|xt)

[
∇xt log pt|0(xt|x0)

]
= E

[
∇xt log pt|0(xt|x0)|xt

]
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Learning the score function: Denoising score matching

∇xt log pt(xt) = Ex0∼p0|t(x0|xt)

[
∇xt log pt|0(xt|x0)

]
= E

[
∇xt log pt|0(xt|x0)|xt

]

• ∇xt log pt|0(xt|x0) is explicit (forward transition): For xt|x0 ∼ N (αtx0, β
2
t Id),

∇xt log pt|0(xt|x0) = ∇xt

[
− 1

2β2
t
∥xt − αtx0∥2 + C

]
= − 1

β2
t
(xt − αtx0) = − 1

βt
Zt

• But the distribution p0|t(x0|xt) is not explicit (backward conditional)!

E
[
∇xt log pt|0(xt|x0)|xt

]
= − 1

β2
t
(xt − αtE[x0|xt])

• E[x0|xt] is the best estimate of the initial noise-free x0 given its noisy
version xt.
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Learning the score function: Denoising score matching

∇xt log pt(xt) = Ex0∼p0|t(x0|xt)

[
∇xt log pt|0(xt|x0)

]
= E

[
∇xt log pt|0(xt|x0)|xt

]
We use the following properties of the conditional expectation.

• Y = E[X|F ] if and only if Y = argmin{E∥X − Z∥2, Z ∈ L2(F)}.

• Y ∈ σ(X) iif there exists f : Rd → Rd (measurable) with Y = f (X).

• Y = E[X|U] if Y = f (U) with f = argmin{E∥X − f (U)∥2, f ∈ L2(U)}.

Hence the function xt 7→ ∇xt log pt(xt) is the solution

∇xt log pt = argmin{Ep0,t∥f (xt)−∇xt log pt|0(xt|x0)∥2, f ∈ L2(pt)}

• We obtain a loss function to learn the function f using Monte Carlo
approximation with samples (x0, xt) for the expectation.
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Learning the score function: Denoising score matching

∇xt log pt = argmin{Ep0,t∥f (xt)−∇xt log pt|0(xt|x0)∥2, f ∈ L2(pt)}

• f : Rd → Rd will be approximated with a neural network such as a
(complex) U-net (Ho et al., 2020).

• But we need to have an approximation of ∇xt log pt for all time t (at least
for the times tn in our Euler-Maruyama scheme).

• In practice we share the same network architecture for all time t: one
learns a network sθ(x, t) such that

sθ(x, t) ≈ ∇x log pt(x), x ∈ Rd, t ∈ [0, T].

Final loss for denoising score matching: (Song et al., 2021b)

θ∗ = argminEt

(
λtE(x0,xt)∥sθ(xt, t)−∇xt log pt|0(xt|x0)∥2

)
where t is chosen uniformly in [0, T] and t 7→ λt is a weighting term to balance
the importance of each t.
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Practical aspects of diffusion models:
Training and sampling



Score architecture

θ∗ = argminEt

(
λtE(x0,xt)∥sθ(xt, t)−∇xt log pt|0(xt|x0)∥2

)
• sθ : Rd × [0, T] → Rd is a (complex) U-net (Ronneberger et al., 2015), eg

in (Ho et al., 2020) “All models have two convolutional residual blocks
per resolution level and self-attention blocks at the 16×16 resolution
between the convolutional blocks”.

• Diffusion time t is specified by adding the Transformer sinusoidal position
embedding into each residual block (Vaswani et al., 2017).

(source: learnopencv.com)
Bruno Galerne Generative models for images II ETICS 2024 19 / 57

https://learnopencv.com/wp-content/uploads/2023/02/denoising-diffusion-probabilistic-models_UNet_model_architecture.png


Exponential Moving Average

• Several choices for t 7→ λt, linked to ELBO and data augmentation
(Kingma and Gao, 2023).

• Training using Adam algorithm (Kingma and Ba, 2015), but still unstable.

• To regularize: Exponential Moving Average (EMA) of weights.

θ̄n+1 = (1 − m)θ̄n + mθn.

• Typically m = 10−4 (more than 104 iterations are averaged).

• The final averaged parameters θ̄K are used at sampling.

Training instabilities (source: (Song and Ermon, 2020))
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Sampling strategy

• The score function of a distribution is generally used for Langevin
sampling (ULA or MALA):

Xn+1 = Xn + γ∇x log p(Xn) +
√

2γZn

• (Song et al., 2021b) propose to add one step of Langevin diffusion
(same t = tn) after each step Euler-Maruyama step (tn to tn+1).

• This means that we jump from one trajectory to the other, but we correct
some defaults from the Euler scheme.

• This is called a Predictor-Corrector sampler.

(source: (Song et al., 2021b))
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Results

• (Song et al., 2021b) achieved SOTA in terms of FID for CIFAR-10
unconditional sampling.

• Very good results for 1024×1024 portrait images.

• See also “Diffusion Models Beat GANs on Image Synthesis” (Dhariwal
and Nichol, 2021) (self-explanatory title).

(source: FFHQ 1024×1024 samples (Song et al., 2021b))
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Many approximations

Many approximations in the full generative pipelines:

• The final distribution pT is not exactly a normal distribution.

• The learnt Unet model sθ is far from being the exact score function:
Sample-based, limitations from the architecture...

• Discrete sampling scheme (Euler-Maruyama, Predictor-Corrector,...).

• Score function may behave badly near t = 0 (irregular density in case of
manifold hypothesis).

But we do have theoretical guarantees if all is well controled!

Theorem (Convergence guarantees (De Bortoli, 2022))
Let p0 be the data distribution having a compact manifold support and let qT

be the generator distribution from the reversed diffusion. Under suitable
hypotheses, the 1-Wasserstein distance W1(p0, qT) can be explicitly bounded
and tends to zero when all the parameters are refined (more Euler steps,
better score learning, etc.).
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The deterministic approach:
Probability flow ODE



Sampling via an ODE

We derived the Fokker-Planck equation for qt = pT−t of reversed diffusion
yt = xT−t.

∂tqt(x) = −∂tpT−t(x)

= divx (f(x, T − t)pT−t(x))−
1
2

g(T − t)2∆xpT−t(x)

= divx (f(x, T − t)pT−t(x)) +
(
−1 +

1
2

)
g(T − t)2∆xpT−t(x)

= −divx

([
−f(x, T − t) + g(T − t)2∇x log pT−t(x)

]
pT−t(x)

)
+

1
2

g(T − t)2∆xpT−t(x)

This is the Fokker-Planck equation associated with the diffusion SDE:

dyt =
[
−f(yt, T − t) + g(T − t)2∇x log pT−t(yt)

]
dt + g(T − t)dwt.

Bruno Galerne Generative models for images II ETICS 2024 24 / 57



Sampling via an ODE

We derived the Fokker-Planck equation for qt = pT−t of reversed diffusion
yt = xT−t.

∂tqt(x) = −∂tpT−t(x)

= divx (f(x, T − t)pT−t(x))−
1
2

g(T − t)2∆xpT−t(x)

= divx (f(x, T − t)pT−t(x)) +
(
−1 +

1
2

)
g(T − t)2∆xpT−t(x)

= −divx

([
−f(x, T − t) +

1
2

g(T − t)2∇x log pT−t(x)
]

pT−t(x)
)

This is the Fokker-Planck equation associated with the diffusion SDE:

dyt =

[
−f(yt, T − t) +

1
2

g(T − t)2∇x log pT−t(yt)

]
dt.

which is an Ordinary Differential Equation (ODE) (no stochastic term) !
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Reverse diffusion via an ODE

dyt =

[
−f(yt, T − t) +

1
2

g(T − t)2∇x log pT−t(yt)

]
dt.

This ODE is called a probability flow ODE.

(source: (Song and Ermon, 2020))

• Like with normalizing flows, we get a deterministic mapping between
initial noise and generated images.

• We do not simulate the (chaotic) path of the stochastic diffusion but we
still have the same marginal distribution pt.

• We can use any ODE solver, with higher order than Euler scheme.
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Reverse diffusion via an ODE

dyt =

[
−f(yt, T − t) +

1
2

g(T − t)2∇x log pT−t(yt)

]
dt.

This ODE is called a probability flow ODE.

(source: (Song and Ermon, 2020))

• From (Karras et al., 2022) “Through extensive tests, we have found
Heun’s 2nd order method (a.k.a. improved Euler, trapezoidal rule) [...] to
provide an excellent tradeoff between truncation error and NFE.”

• Requires much less NFE than stochastic samplers (eg around 50 steps
instead of 1000), see also Denoising Diffusion Implicit Models (DDIM)
(Song et al., 2021a) for a deterministic approach.

Bruno Galerne Generative models for images II ETICS 2024 26 / 57



The discrete approach for diffusion
models:
Denoising Diffusion Probabilistic
Models



Denoising Diffusion Probabilistic Models

(source: (Ho et al., 2020))
Denoising Diffusion Probabilistic Models (DDPM (Ho et al., 2020)) is a
discrete model with a fixed number of T = 103 steps that performs discrete
diffusion.

WARNING: Slight change of notation

Forward model: Discrete variance preserving diffusion

• Distribution of samples: q(x0).
• Conditional Gaussian noise: q(xt|xt−1) = N (

√
1 − βtxt−1, βtId)

xt =
√

1 − βtxt−1 +
√

βt zt

where the variance schedule (βt)1≤t≤T is fixed.
• One step noising q(xt|x0): With αt = 1 − βt and ᾱ = cumprod(α)

xt =
√
ᾱtx0 +

√
1 − ᾱtz where z is standard.
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Forward model: Discrete variance preserving diffusion

• Distribution of samples: q(x0).
• Conditional Gaussian noise: q(xt|xt−1) = N (

√
1 − βtxt−1, βtId)

xt =
√

1 − βtxt−1 +
√

βt zt

where the variance schedule (βt)1≤t≤T is fixed.
• One step noising q(xt|x0): With αt = 1 − βt and ᾱ = cumprod(α)

xt =
√
ᾱtx0 +

√
1 − ᾱtz where z is standard.

Bruno Galerne Generative models for images II ETICS 2024 27 / 57



Denoising Diffusion Probabilistic Models

• We consider the diffusion as a fixed stochastic encoder

• We want to learn a stochastic decoder pθ:

pθ(x0:T) = p(xT)︸ ︷︷ ︸
fixed latent prior

T∏
t=1

pθ(xt−1|xt)︸ ︷︷ ︸
learnable backward transitions

.

with pθ(xt−1|xt) = N (µθ(xt, t), βtId)

Compare with: q(xt|xt−1) = N (
√

1 − βtxt−1, βtId)

• Recall same diffusion coefficient, new backward drift to be learnt,...

• Oversimplified version compare to (Ho et al., 2020), there are ways to
also learn the variance for each pixel, see (Nichol and Dhariwal, 2021).

• Then we look for training the decoder by maximizing an ELBO.
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DDPM: Training loss

E(− log pθ(x0)) ≤ Eq

[
− log

[
pθ(x0:T)

q(x1:T |x0)

]]
:= L

We have

L = Eq

[
− log p(xT)−

T∑
t=1

log
pθ(xt−1|xt)

q(xt|xt−1)

]

= . . . (see (Ho et al., 2020) Appendix A)

= Eq

[
DKL(q(xT |x0)∥p(xT)) +

T∑
t=2

DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))− log pθ(x0|x1)

]
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DDPM: Training loss

E(− log pθ(x0)) ≤ Eq

[
− log

[
pθ(x0:T)
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DDPM: Training loss

E(− log pθ(x0)) ≤ Eq

[
− log

[
pθ(x0:T)

q(x1:T |x0)

]]
:= L

We have

L = Eq

[
− log p(xT)−

T∑
t=1

log
pθ(xt−1|xt)

q(xt|xt−1)

]

= . . . (see (Ho et al., 2020) Appendix A)

= Eq

[
DKL(q(xT |x0)∥p(xT)) +

T∑
t=2

DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))− log pθ(x0|x1)

]

Bruno Galerne Generative models for images II ETICS 2024 29 / 57



DDPM: Training loss

Computation of DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))

By Bayes rule,

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)

q(xt|x0)
= q(xt|xt−1)

q(xt−1|x0)

q(xt|x0)

Computation shows that this is a normal distribution N (µ̃(xt, x0), β̃tId) with

µ̃(xt, x0) =

√
ᾱt−1βt

1 − ᾱt
x0 +

√
αt(1 − ᾱt−1)

1 − ᾱt
xt and β̃t =

1 − ᾱt−1

1 − ᾱt
βt.

Using the expression of the KL-divergence between Gaussian distributions,

DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt)) =
1
βt
∥µθ(xt, t)− µ̃(xt, x0)∥2 + C

Lt = Eq [DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))] =
1
βt
Eq

[
∥µθ(xt, t)− µ̃(xt, x0)∥2

]
+ C
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DDPM: Noise reparameterization

Rewrite everything in function of the added standard noise ε:

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε

Then µθ(xt, t) must predict

µ̃(xt, x0) =
1√
αt

(
xt −

βt√
1 − ᾱt

ε

)
If we parameterize

µθ(xt, t) =
1√
αt

(
xt −

βt√
1 − ᾱt

εθ(xt, t)
)

Then the loss is simply

Lt =
βt

1 − ᾱt
Eq

[
∥εθ(xt, t)− ε∥2

]
+ C

=
βt

1 − ᾱt
Ex0,ε

[
∥εθ(

√
ᾱtx0 +

√
1 − ᾱtε, t)− ε∥2

]
+ C

That is we must predict the noise ε added to x0 (without knowing x0).
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DDPM: Training and sampling

L = Eq

[
DKL(q(xT |x0)∥p(xT)) +

T∑
t=2

DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))− log pθ(x0|x1)

]

=
T∑

t=2

Lt + L1 + C

• The L1 term is dealt differently (to account for discretization of x0).

• (Ho et al., 2020) proposes to simplify the loss (no constants):

Lsimple = Et,x0,ε

[
∥εθ(

√
ᾱtx0 +

√
1 − ᾱtε, t)− ε∥2

]

σt =
√
βt here. (source: (Ho et al., 2020))
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 11
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 100
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 200
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 400
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 500
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 600
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 700
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 800
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 900
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DDPM: Denoiser

The Unet εθ(xt, t) is a (residual) denoiser that gives an estimation of the
noise ε from

xt(x0, ε) =
√
ᾱtx0 +

√
1 − ᾱtε.

We get the associated estimation of x0:

x̂0 =
1√
ᾱt

xt −
√

1
ᾱt

− 1εθ(xt, t).

xt x̂0 x0

t = 1000

Bruno Galerne Generative models for images II ETICS 2024 33 / 57



DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 999
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 900
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 800
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 700
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 600
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 500
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 400
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 300
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 200
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 100
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DDPM: Sampling

σt =
√
βt here. (source: (Ho et al., 2020))

xt x̂0

t = 0
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Continuous and discrete diffusion
models



Recap on diffusion models

Diffusion model via SDE: (Song et al., 2021b)

Diffusion model via Denoising Diffusion Probabilistic Models (DDPM):
(Ho et al., 2020) Discrete model with a fixed number of T = 103.
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Continuous diffusion models

Forward diffusion:
dxt = f(xt, t)dt + g(t)dwt

Backward diffusion: yt = xT−t

dyt =
[
−f(yt, T − t) + g(T − t)2∇x log pT−t(yt)

]
dt + g(T − t)dwt.

• Learn score by denoising score matching:

θ⋆ = argminEt

(
λtE(x0,xt)∥sθ(xt, t)−∇xt log pt|0(xt|x0)∥2

)
with t ∼ Unif([0, T])

• Generate samples by SDE discrete scheme (e.g. Euler-Maruyama):

Yn−1 = Yn − hf (Yn, tn)+ hg(tn)
2sθ(Yn, tn)+ g(tn)

√
hZn with Zn ∼ N (0, Id)

• Associated deterministic probability flow:

dyt =

[
−f(yt, T − t) +

1
2

g(T − t)2∇x log pT−t(yt)

]
dt
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Denoising Diffusion Probabilistic Models (DDPM)

Forward diffusion:

q(x0:T) = q(x0)︸ ︷︷ ︸
data distribution

T∏
t=1

q(xt|xt−1)︸ ︷︷ ︸
fixed forward transitions

with q(xt|xt−1) = N (
√

1 − βtxt−1, βtId)

Backward diffusion: stochastic decoder pθ:

pθ(x0:T) = p(xT)︸ ︷︷ ︸
fixed latent prior

T∏
t=1

pθ(xt−1|xt)︸ ︷︷ ︸
learnt backward transitions

with pθ(xt−1|xt) = N (µθ(xt, t), βtId)︸ ︷︷ ︸
Gaussian approximation of q(xt−1|xt)

• Learn the score by minimizing the ELBO (like for VAE): This boils down
to denoising the diffusion iterations xt =

√
ᾱtx0 +

√
1 − ᾱtε:

θ⋆ = argmin
T∑

t=1

βt

1 − ᾱt
Eq

[
∥εθ(xt, t)− ε∥2

]
+ C

• Sampling through the stochastic decoder with

µθ(xt, t) =
1√
αt

(
xt −

βt√
1 − ᾱt

εθ(xt, t)
)
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DDPM training and score matching

Posterior mean training: Recall that µθ(xt, t) minimizes

Eq [DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))] =
1
βt
Eq

[
∥µθ(xt, t)− µ̃(xt, x0)∥2

]
+ C

where µ̃(xt, x0) is the mean of q(xt−1|xt, x0). Hence ideally,

µθ(xt, t) = E [µ̃(xt, x0)|xt] = E [E [xt−1|xt, x0]|xt] = E [xt−1|xt] .

Noise prediction training: εθ(xt, t) minimizes

Eq

[
∥εθ(xt, t)− ε∥2

]
where ε is a function of (xt, x0) (since xt =

√
ᾱtx0 +

√
1 − ᾱtε). Hence ideally,

εθ(xt, t) = E [ε|xt]

Score matching training: Ideally,

sθ(xt, t) = ∇xt log pt(xt) = E
[
∇xt log pt|0(xt|x0)|xt

]
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Tweedie formulas

We derived the formulas for DDPM training without considering the score
function... but denoising and score functions are linked by Tweedie
formulas:

Theorem (Tweedie formulas)
If Y = aX + σZ with Z ∼ N (0, Id) independent of X, a > 0, σ > 0, then

Tweedie denoiser: E[X|Y] = 1
a

(
Y + σ2∇y log pY(Y)

)
Tweedie noise predictor: E[Z|Y] = −σ∇y log pY(Y)
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DDPM and Tweedie

If Y = aX + σZ, Tweedie denoiser: E[X|Y] = 1
a

(
Y + σ2∇y log pY(Y)

)
Tweedie noise predictor: E[Z|Y] = −σ∇y log pY(Y)

Tweedie for noise prediction: Predict the noise ε from xt:

xt =
√
ᾱtx0 +

√
1 − ᾱtε ⇒ E [ε|xt] = −

√
1 − ᾱt∇xt log pt(xt)

Tweedie for one-step denoising: Predict xt−1 from xt:

xt =
√
αt xt−1 +

√
βt zt ⇒ E[xt−1|xt] =

1√
αt

(xt + βt∇xt log pt(xt))

E[xt−1|xt] =
1√
αt

(
xt −

βt√
1 − ᾱt

E [ε|xt]

)

µθ(xt, t) =
1√
αt

(
xt −

βt√
1 − ᾱt

εθ(xt, t)
)

Remarks: We recover the expression of µθ(xt, t) without using the one of

µ̃(xt, x0) =
1√
αt

(
xt −

βt√
1 − ᾱt

ε

)
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DDPM and Tweedie

If Y = aX + σZ, Tweedie denoiser: E[X|Y] = 1
a

(
Y + σ2∇y log pY(Y)

)
Tweedie noise predictor: E[Z|Y] = −σ∇y log pY(Y)

Tweedie for noise prediction: Predict the noise ε from xt:

xt =
√
ᾱtx0 +

√
1 − ᾱtε ⇒ E [ε|xt] = −
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1 − ᾱt∇xt log pt(xt)
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√
βt zt ⇒ E[xt−1|xt] =

1√
αt

(xt + βt∇xt log pt(xt))
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1√
αt
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βt√
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)

µθ(xt, t) =
1√
αt

(
xt −
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1 − ᾱt

εθ(xt, t)
)

Remarks: We recover the expression of µθ(xt, t) without using the one of

µ̃(xt, x0) =
1√
αt

(
xt −

βt√
1 − ᾱt

ε

)
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DDPM and score matching

To sum up:

• The three trainings strategies are the same (up to weighting constants).

• The only difference between the continuous SDE model and the discrete
DDPM model are the time values: t ∈ [0, T] VS. t = 1, . . . , T = 103.

• Good news: We can train a DDPM and use it for a deterministic
probability flow ODE (this is what is done by the DDIM model (Song
et al., 2021a)).

(source: (Song and Ermon, 2020))
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Diffusion models for imaging inverse
problems



Diffusion posterior sampling

We present Diffusion Posterior Sampling (DPS) for general noisy inverse
problems (Chung et al., 2023)

Figure 1: Solving noisy linear, and nonlinear inverse problems with diffusion models. Our recon-
struction results (right) from the measurements (left) are shown.

In this work, we devise a method to circumvent the intractability of posterior sampling by diffusion
models via a novel approximation, which can be generally applied to noisy inverse problems.
Specifically, we show that our method can efficiently handle both the Gaussian and the Poisson
measurement noise. Also, our framework easily extends to any nonlinear inverse problems, when
the gradients can be obtained through automatic differentiation. We further reveal that a recently
proposed method of manifold constrained gradients (MCG) (Chung et al., 2022a) is a special case
of the proposed method when the measurement is noiseless. With a geometric interpretation, we
further show that the proposed method is more likely to yield desirable sample paths in noisy setting
than the previous approach (Chung et al., 2022a). In addition, the proposed method fully runs on
the image domain rather than the spectral domain, thereby avoiding the computation of SVD for
efficient implementation. With extensive experiments including various inverse problems—inpainting,
super-resolution, (Gaussian/motion/non-uniform) deblurring, Fourier phase retrieval—we show that
our method serves as a general framework for solving general noisy inverse problems with superior
quality (Representative results shown in Fig. 1).

2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

Diffusion models define the generative process as the reverse of the noising process. Specifically,
Song et al. (2021b) defines the Itô stochastic differential equation (SDE) for the data noising process
(i.e. forward SDE) x(t), t ∈ [0, T ], x(t) ∈ Rd ∀t in the following form1

dx = −β(t)
2

xdt+
√
β(t)dw, (1)

where β(t) : R → R > 0 is the noise schedule of the process, typically taken to be monotonically
increasing linear function of t (Ho et al., 2020), and w is the standard d−dimensional Wiener process.
The data distribution is defined when t = 0, i.e. x(0) ∼ pdata, and a simple, tractable distribution (e.g.
isotropic Gaussian) is achieved when t = T , i.e. x(T ) ∼ N (0, I).

Our aim is to recover the data generating distribution starting from the tractable distribution, which
can be achieved by writing down the corresponding reverse SDE of (1) (Anderson, 1982):

dx =

[
−β(t)

2
x− β(t)∇xt

log pt(xt)

]
dt+

√
β(t)dw̄, (2)

1In this work, we consider the variance preserving (VP) form of the SDE (Song et al., 2021b) which is
equivalent to Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020).

2

(source: (Chung et al., 2023))

See also (Song et al., 2023), (Kawar et al., 2022) for alternative methods.
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Conditional sampling

Let A be a linear operator from an inverse problem (masking operator for
inpainting, blur operator for deblurring, subsampling for SR, . . . ).

Given some observation
y = Axunknown + n

where n is some additive white Gaussian noise with variance σ2, we would
like to sample

p0(x0|Ax0 + n = y) = p0(x0|y)

to estimate xunknown in accordance with the prior of the generative model.
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Conditional sampling

From (Song et al., 2021b), we can consider the SDE for the conditional
distribution p0(x0|y):

Backward diffusion for VP-SDE: yt = xT−t

dyt = [βT−tyt + βT−t∇x=yt log pT−t(yt)] dt + βT−tdwt.

Conditional backward diffusion for VP-SDE: yt = xT−t

dyt = [βT−tyt + βT−t∇x=yt log pT−t(yt|y)] dt + βT−tdwt.

By Bayes rule:

log pT−t(yt|y) = log pT−t(y|yt) + log(pT−t(yt))− log(pT−t(y))

Thus,

∇x=yt log pT−t(yt|y) = ∇x=yt log pT−t(y|yt)︸ ︷︷ ︸
intractable

+∇x=yt log(pT−t(yt))︸ ︷︷ ︸
usual score function

For clarity, let us write the new term with forward notation:

∇x=yt log pT−t(y|yt) = ∇x=xt log pt(y|xt)
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Conditional sampling

(Chung et al., 2023) propose the following approximation:

log pt(y|xt) ≈ log pt(y|x0 = x̂0(xt, t))

with x̂0(xt, t) the estimate of the original image from the network.

Since

p(y|x0) =
1

(2πσ2)
n
2
exp

(
−∥y − Ax0∥2

2σ2

)
we finally approximate

∇x=xt log pt(y|xt) = − 1
2σ2 ∇xt∥y − Ax̂0(xt, t)∥2

• Computing ∇xt∥y − Ax̂0(xt, t)x0∥2 involves a backpropagation through the
Unet.

• One can expect this approximate conditional sampling to be twice as
long as the sampling procedure.
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Diffusion posterior sampling

(source: (Chung et al.,
2023))

• Usual DDPM sampling (notation with x̂0(xt, t) instead of εθ(xt, t).

µθ(xt, t) =
1√
αt

(
xt −

βt√
1 − ᾱt

εθ(xt, t)
)

=

√
αt(1 − ᾱt−1)

1 − ᾱt
xt+

√
ᾱt−1βt

1 − ᾱt
x̂0(xt, t)

• Add a correction term to drive Ax̂0(xt, t) close to y.

• In practice ζi = ζt ∝ ∥y − Ax̂0(xt, t)∥−1.
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 999
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 900
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 800
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 700
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 600
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 500
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 400
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 300
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 200
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 100
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Diffusion posterior sampling: Results

• Very good results in terms of perceptual metric (LPIPS).

Inpainting:

xunknown y x̂0 xt

t = 0
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Diffusion posterior sampling: Inpainting results

• Very good results in terms of perceptual metric (LPIPS).

• Lack of symmetry.

• It can sometimes be really bad though!

original xunknown input y output x0
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Diffusion posterior sampling: Inpainting results

• For inpainting it can help to go back and forth in the diffusion process
(Lugmayr et al., 2022).

(source: (Lugmayr et al., 2022))
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Diffusion posterior sampling: Super-resolution results

• Super-resolution with a factor ×4.

• Very good results in terms of perceptual metric (LPIPS).

• Loss of details (skin defaults, etc.).

original xunknown input y output x0
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Conditional DDPM for super-resolution

• Super-resolution is often used to improve the quality of generated
images.

• One can train a specific DDPM for this task by conditioning the Unet with
the low resolution image εθ(xt, yLR, t).

From (Saharia et al., 2023):
“To condition the model on the
input yLR, we upsample the
low-resolution image to the tar-
get resolution using bicubic in-
terpolation. The result is con-
catenated with xt along the
channel dimension.”
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Conditional DDPM for super-resolution

Imagen pipeline:
Text conditioning
&
Conditional
super-resolution
via DDPM

(source: (Saharia et al., 2022))
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