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Introduction on generative models



Generative models

1. Model and/or learn a distribution p(«) on the space of images.

OIS
K
ZN

(source: Charles Deledalle)
The images may represent:

- different instances of the same texture image,
« all images naturally described by a dataset of images,
* any image

2. Generate samples from this distribution.
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Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

* zis a generic source of randomness, often called the latent variable.
« If G(+; ©) is known, then p = G(; ©)xN (0, 1,) is the push-forward of the
latent distribution.
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Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

* zis a generic source of randomness, often called the latent variable.
« If G(+; ©) is known, then p = G(; ©)xN (0, 1,) is the push-forward of the
latent distribution.

The generator G(+; ©) can be:

A deterministic function (e.g. convolution operator),

* A neural network with learned parameter,

+ An iterative optimization algorithm (gradient descent,...),

* A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,...).
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Image generation: Gaussian model

+ Consider a Gaussian model for the distribution of images x with d pixels:

X~ Nixp, B) = exp [—(x = )= (v - )]

1
ACZR

* @i mean image,
» 33: covariance matrix of images.

¢

Gaussian prior z ~ N(u, X)

(source: Charles Deledalle)
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Image generation: Gaussian model

 Take a training dataset D of images:

D={xi,...,xy}

EEE

eigenvectors of 32, i.e., main variation axis
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Image generation: Gaussian model

You now have learned a generative model:
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Image generation: Gaussian model

How to generate samples from A\ (i, 3)?

The model does not generate realistic faces.

» The Gaussian distribution assumption is too simplistic.

» Each generated image is just a linear random combination of the
eigenvectors (with independence !).

» The generator corresponds to a one layer liner neural network (without
non-linearities).
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Image generation: Gaussian model

Generative
Model

» Deep generative modeling consists in learning non-linear generative
models to reproduce complex data such as realistic images.

* It relies on deep neural networks and several solutions have been
proposed since the “Deep learning revolution” (2012).
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Generative models: Examples

Texture synthesis with a stationary Gaussian model: (Galerne et al.,

2011)

» Data: A single texture image k.

« Inferred distribution: p is the stationary Gaussian distribution with similar
mean and covariance statistics.

« z is a Gaussian white noise image (each pixel is iid with standard normal

distribution).

» G is a convolution operator with know parameters O.

Data

Spot k

Bruno Galerne

Generated images

G(z1;0) G(z2;9) G(z3;0)

Generative models for images | ETICS 2024 9/109



Generative models: Examples

Generative Adversarial Networks: (Goodfellow et al., 2014)

» Data: A database of images.

« Inferred distribution: Not explicit, push-forward measure given by
generator.

* zis a Gaussian array in a latent space.
G(+; ©) is a (convolutional) neural network with parameters © learned
using an adversarial discriminator network D(-; ©p).

Generated images
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Generative models: Examples

Generative Adversarial Networks: Style GAN (Karras et al., 2019)
v l. q 4 ~ ' § -

Image size:
1024 x 1024 px
(source: Karras et al.)
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Denoising diffusion probabilistic models

* Learn to revert a degradation process: Add more and more noise to an
image.
* First similar model (Sohl-Dickstein et al., 2015)

Forward SDE (data — noise)
‘— dx = f(x,t)dt + g(¢t)dw 4)@
I‘ }iiiil .g ‘”? 1‘ |
- scoré fncti
‘e i = [05,) (0 o)+ ot @

Reverse SDE (noise — data)

(source: Yang Song)

 Probably the most promising framework these days... but things change
very quickly in this field!
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Diffusion models

(Ho et al., 2020): Denoising Diffusion Probabilistic Models (DDPM): One of
the first paper producing images with reasonable resolution.

H%Il-ia
T 2 BN

= o i
Imlmuﬂﬁlwﬁ

Figure 1: Generated samples on CelebA-HQ 256 x 256 (left) and unconditional CIFAR10 (right)
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Generative models: Motivations

Why generative models are interesting ?

» Generating realistic images is important by itself for entertainment
industry (visual effects, video games, augmented reality...), design,
advertising industry,...

« Good image model leads to good image processing: Generative
models can be used as a parametric space for solving inverse problems.
Example: Inpainting of a portrait image.

+ Also generative models opens the way to non trivial image
manipulation using conditional generative models.
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Conditional generative models: Examples

Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets
(Isola et al., 2017)

Labels to Street Scene Labels to Facade BW to Color

utput utp!
Day to nght ~ Edges to F'hoio

_ A

output mput output mput output

* GAN conditioned on input image.

» Generator: U-net architecture

« Discriminator: Patch discriminator applied to each patch
» Opens the way for new creative tools

(source: Isola et al.)
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Conditional generative models: Examples

Latest trends using diffusion models: Text to image generation

» DALL-E 1 & 2: Creatinglmages from Text (Open Al, January 2021 and

April 2022)

» Imagen, Google research (May 2022)

DALL-E 2 (Open Al)
Input: An astronaut riding a
horse in a photorealistic style

Bruno Galerne
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Imagen (Google)
Input: A dog looking curiously in
the mirror, seeing a cat.
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Conditional generative models: Examples

Text “A Golden Retriever dog wearing a blue
¢ checkered beret and red dotted turtleneck.”

Frozen Text Encoder

Text Embedding

Text-to-Tmage
Diffusion Model

64 x 64 Image

Super-Resolution

Imagen pipeline: ™1 Diffusion Model

256 x 256 Image

Super-Resolution
Diffusion Model

1024 x 1024 Image

° o’
(source: (Saharia et al., 2022))
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Conditional generative models: Examples

In August 2022, StableDiffusion was released:

+ Based on the paper (Rombach et al., 2022)
» Open source!

futuristic tree house, hyper realistic,
epic composition, cinematic, landscape
vista photography by Carr Clifton &
Galen Rowell, Landscape veduta photo
by Dustin Lefevre & tdraw, detailed
landscape painting by Ivan Shishkin, :
rendered in Enscape, Miyazaki, Nausicaa
Ghibli, 4k detailed post processing,
unreal engine

Steps: 50, Sampler: PLMS, CFG scale:
9, Seed: 2937258437
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Diffusion models in 2023

Diffusion models are considered mature models and have been used in a
large variety of frameworks.

+ Diffusion models beyond image generation: Text to video, motion
generation, proteins, soft robots,...

» Control of (latent) diffusion models((Ruiz et al., 2023), (Zhang et al.,
2023),...)

- Diffusion models as priors for imaging inverse problems ((Chung
et al., 2023), (Song et al., 2023), lot of applications in medical imaging,
etc.)
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Diffusion models in 2023

DreamBooth: Fine Tuning Text-to-Image Diffusion Models

for Subject-Driven Generation
Nataniel Ruiz*!? Yuanzhen Li! Varun Jampani'
Yael Pritch! Michael Rubinstein® Kfir Aberman’

! Google Research 2 Boston University

Figure 1. With just a few images (typically 3-5) of a subject (left), DreamBooth—our Al-powered photo booth—can generate a myriad
of images of the subject in different contexts (right), using the guidance of a text prompt. The results exhibit natural interactions with the
environment, as well as novel articulations and variation in lighting conditions, all while maintaining high fidelity to the key visual features
of the subject.

(source: (Ruiz et al., 2023))
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Diffusion models in 2023

Adding Conditional Control to Text-to-Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala
Stanford University

{lvmin, anyirao, maneesh}@cs.stanford.edu

“masterpiece of fairy tale, giant deer, golden antlers”  “..., quaint city Galic™

"%tk
: ‘,

“chef in kitchen” “Lincoln statue”

Input Canny edge

Default
Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges
(top), human pose (bottom), efc., to control the image generation of large pretrained diffusion models. The default results use
the prompt “a high-quality, detailed, and professional image”. Users can optionally give prompts like the “chef in kitchen”.

(source: ControlNet (Zhang et al., 2023))
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Diffusion models in 2023

Diffusion posterior sampling for general noisy inverse problems (Chung et al.,
2023)

Linear

(a) Inpainting (c) Gaussian deblur

Figure 1: Solving noisy linear, and nonlinear inverse problems with diffusion models. Our recon-
struction results (right) from the measurements (left) are shown.

(source: (Chung et al., 2023))
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Generative models for images: Plan of the course

Introduction to generative models for images (done)
Variational AutoEncoders (VAES)

Generative Adversarial Networks (GANSs)

Diffusion models

o M D~

Application of generative models for imaging inverse problems
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Variational autoencoders (VAE)



Variational autoencoders (VAE)

Main references:
1. Original paper: (Kingma and Welling, 2014): “Auto-Encoding Variational
Bayes”

2. Short book by the same authors: (Kingma and Welling, 2019): “An
Introduction to Variational Autoencoders”. Freely available on ArXiv.

3. Recent book: (Tomczak, 2022): “Deep Generative Modeling” with
practice sessions in the official GitHub repository.
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https://github.com/jmtomczak/intro_dgm

Autoencoders

But first what is an ? “An autoencoder is a neural network that

is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

input x output x = g(f(x))
encoder f decoder g

\
.Q‘ :::’/ “’V' %“

»x““ ('//0"‘.
A ‘.l!:‘l..
N '0
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Autoencoders

But first what is an ? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

code h = f(x)

input x | encoder f decoder g | outputx = g(f(x))
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Autoencoders

But first what is an autoencoder? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

code h = f(x)

input x | encoder f decoder g | outputx = g(f(x))

The network is trained by minizing a reconstruction error over the dataset
D={x" i=1,..., N} CR?

MSE = = > Jlg(7(x)) — =l

xeD
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Autoencoders

code h = f(x)
input x el encoder f decoder g | outputx = g(f(x))

« Motivation: The encoder output & = f(x) € R* should produce an

adapted compact representation of the sample x within the dataset D.

If both f and g are linear, the best solution is the PCA projection using

the first k principal components.

» One hopes to learn the most salient features of the distribution.

« If f and g have a lot of capacity, then trivial code can be learnt by storing
the dataset D = {x, i=1,...,N}:

fac) =i and g(i) =x?

 Trade-off between the parameters of f and g, dimensions d > k etc.
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» Encoders and decoders are MLP trained for 1000 epochs.

Numerical illustration with a subset of MNIST

(higher k values would
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Autoencoders

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.
» The code dimension is k = 2 for visualization (higher & values would
give better results).

2D latent code of 256 test images:
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Deep latent variable models

+ In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

 The difference lies in the modeling and training of the network: VAEs
learn (non linear)

What is a latent variable model? Back to probabilistic modeling...
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Deep latent variable models

+ In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

 The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...
» We are given an input dataset
D={x" i=1,..., Nt CR’

» We assume that the dataset D consists of distinct, independent
measurements from the same unknown underlying process, whose true
(probability) distribution P* is unknown.
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Deep latent variable models

+ In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

 The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...

» We are given an input dataset

D={x" i=1,..., Nt CR’
» We assume that the dataset D consists of distinct, independent

measurements from the same unknown underlying process, whose true
(probability) distribution P* is unknown.

Remark: Identification of distribution and density

« p* : R? — R, will refer to the density with respect to (wrt) the Lebesgue
measure of the unknown distribution P*.

» Depending on context it can also be a discrete distribution (e.g.
binarized images in {0, 1}“)... Be careful!
+ That said P* will be identified with p* (x) from now on.
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Deep latent variable models

Framework:

« We are given an input dataset D = {x\?, i =1,...,N} c R with iid
samples from an unknown distribution p* (x).

Probabilistic modeling:

* Propose a parametric model pg(x) with parameters 6
 Learn good parameters 6 so that pe(x) is close to p*(x): This is
generally done by maximizing the dataset log-likelihood:
max logpe(D) where logpe(D) = \;ﬁ Z log pe(x).
xe€D
» Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on — log pe (D)) providing Vg log pe(x) is
tractable: For a random minibatch M C D having cardinal M = | M|,

% > Vologpe(x) is an unbiased estimator of Vo logpe(D).
xeM
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Deep latent variable models

Framework:

« We are given an input dataset D = {x\?, i =1,...,N} c R with iid
samples from an unknown distribution p* (x).

Probabilistic modeling:

* Propose a parametric model pg(x) with parameters 6
 Learn good parameters 6 so that pe(x) is close to p*(x): This is
generally done by maximizing the dataset log-likelihood:

max logpe(D) where logpe(D) = \;ﬁ Z log pe(x).
xe€D
» Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on — log pe (D)) providing Vg log pe(x) is
tractable: For a random minibatch M C D having cardinal M = | M|,

% > Vologpe(x) is an unbiased estimator of Vo logpe(D).
xeM

* ~ means “is an unbiased estimator of”
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Deep latent variable models

Framework:

« We are given an input dataset D = {x\?, i =1,...,N} c R with iid
samples from an unknown distribution p* (x).

Probabilistic modeling:

* Propose a parametric model pg(x) with parameters 6
 Learn good parameters 6 so that pe(x) is close to p*(x): This is
generally done by maximizing the dataset log-likelihood:

max logpe(D) where logpe(D) = \;ﬁ Z log pe(x).
xe€D
» Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on — log pe (D)) providing Vg log pe(x) is
tractable: For a random minibatch M C D having cardinal M = | M|,

1
™M Z Ve logpe(x)~Ve logpe(D).
xeM

* ~ means “is an unbiased estimator of”
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Deep latent variable models

Latent variables:

« Latent variables are variables that are part of the model, but which we
don’t observe, and are therefore not part of the dataset. They are hidden
factors.

Examples for portraits: Age of the person, hair color,...

+ One generally has a factorized joint distribution pe (x,z) = pe(z)pe (x|z)

that corresponds to a natural hierarchical generative process:

1. Sample z ~ po(z) (generate latent variables = hidden factors)
2. Sample x ~ pg(x|z) (conditional generator given latent variables)

Vocabulary for latent variable models:

* pe(x,z): latent variable model

* po(z) = / pe(x,z)dx: prior distribution over z.
R4

s po(x) = / pe(x,z)dz: marginal distribution or model evidence
Rk

* pe(x|z): conditional distribution of x given z
* po(z|x): posterior distribution of z given x
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Deep latent variable models

Latent variable models: Example of Gaussian mixture models

 z ~ pe(z) is some discrete variable with K values with distribution

= (m,...,Tk) e RX:
polz=j)=m, j=1,...,K

» Foreachj e {1,...,K} the conditional distributions
pe(x|z = j) = N(x; ;, 3;) is Gaussian with mean w; and covariance
matrix X;.

+ The model parameters are 8 = {=, (i1, %1), ..., (px, Xk)}-

» The marginal distribution is a Gaussian mixture model (GMM):

K

po(x) = > mN(x; 1, )

j=1
» The parameters can be learned from data using an EM
(Expectation-Maximization) algorithm.

* Interest of latent models: Rich and flexible marginal distribution with only
simple intermediate distributions.

Bruno Galerne Generative models for images | ETICS 2024 31/109



Deep latent variable models

Deep latent variable model: A latent variable model po (x,z) is called deep
when the parameters of the distribution are encoded with a (deep) neural
network.

+ Example: Given z ~ pg(z), some neural network f outputs
f(z) = (n(z), =(z)) and one sets pg(x|z) = N (x; u(z), X(z)). Given that z
has a density, this generalizes GMM with a mixture of an infinite number
of Gaussians, but also imposes regularity between the parameters since
the neural network f is continuous.
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Deep latent variable models

Deep latent variable model: A latent variable model po (x,z) is called deep
when the parameters of the distribution are encoded with a (deep) neural
network.

+ Example: Given z ~ pg(z), some neural network f outputs
f(z) = (p(z), 2(z)) and one sets pg(x|z) = N(x; pu(z), =(z)). Given that z
has a density, this generalizes GMM with a mixture of an infinite number
of Gaussians, but also imposes regularity between the parameters since
the neural network f is continuous.

Intractability of marginal distribution: In such a setting, computing the
marginal
po(x) = / po(x,z)dz = / pe(x|z)pe(z)dz
J Rk J Rk
is intractable and thus we cannot compute its value nor its gradient wrt 6 for

maximum log-likelihood estimation.

Intractability of inference: Inference refers to sampling/recovering the latent

variable z of a given sample x, that is sampling the posterior pg(z|x). This is

also generally intractable since po(z|x) = IM.
po(x)
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Variational autoencoders (VAE)

(Kingma and Welling, 2019): “The framework of variational autoencoders
(VAEs) provides a computationally efficient way for optimizing deep latent
variable models jointly with a corresponding inference model using SGD.”
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Variational autoencoders (VAE)

From (Kingma and Welling, 2019, p .20):

Bruno Galerne

Prior distribution: pe(z)

A VAE learns stochastic mappings :
between an observed x-space, whose 4

empirical distribution is typically

complicated, and a latent z-space, z-space
whose distribution can be relatively i
simple. .
h |

The generative model learns a joint
distribution pe (x,z) factorized as
pe(x,2) = pe(z)pe(x|z), with a prior
distribution over latent space pg (z),
and a stochastic decoder pg (x|z).

Encoder: qq(z|x) Decoder: pe(x|z)
A

X-space
The stochastic encoder ¢, (z|x), also
called inference model, approximates
the true but intractable posterior
pe(z]x) of the generative model.

Dataset: D
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Variational autoencoders (VAE)

Autoencoders:

input x

code h = f(x)

— encoder f decoder g

output x = g(f(x))

Variational autoencoders: NN outputs encode probability distributions

input x —

Bruno Galerne

encoder ¢,(z|")

latent
variable
Z ~ gplzlx)
prob.
dist.
qp(zlx) decoder py(x|-)

Generative models for images |

prob.
dist.

Pol(x[z)

| sample x ~ pg(x|z)
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Variational autoencoders (VAE)

latent
— variable —
| 2~ gp(alx) |
prob. prob.
1 dist. dist. [ |
inputx |  encoder g,(z|)  gu(zlx) decoder py(x|-) = pel(x|z) f=—— sample x ~ py(x|z)

Stochastic encoder:

» The encoder ¢, (z|x) is understood as a parametric approximation of the
true posterior pe (z|x).

 To achieve that the parameters ¢ must be trained along with the
parameters 0 of the generative model.

+ Example of stochastic encoder: A neural network outputs two vectors
(p(x),log o(x)) = NNy (x) and one sets:

4o Zlx) = N'(z; p(x), diag(o?(x))).
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Variational autoencoders (VAE)

input x

encoder ¢,(z|-)

latent
variable
z~ gplzlx)
prob.
dist.
9,(2lx)

Next challenge: Learning!

Bruno Galerne

log-likelihood

decoder py(x|-)

prob.
dist.

Po(x[z)

sample x ~ py(x|z)

» How can we learn the parameters 6 (and ) that maximize the

1
logpe(D) = D] > logpe(x) where po(x) = /A po(x,z)dz
o

x€D

is the (untractable) marginal distribution (or model evidence)?

evidence lower bound (ELBO).

Generative models for images |

* In fact we will only maximize a lower bound of each log pe (x) called the
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Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

Let g, (z|x) be any parametric family of distributions that are positive (i.e.
charge every non negligible sets like non degenerate Gaussian distributions).

For all x € R?,

log pe(x) = By ) [log pe (x)]

_[)G(X,Z)_
= EZquo(le) log Peo (Z‘X)
[ [pe(x,z) qp(zlx) ] }
=FE, . o |1
oGl |58 | o) g (alx)
[ [pe(x,2)]] 4 (2}%)
=E,. o |1 E, . ) |1 -
e (e |08 |y || el {"g {pemx)
Dk (g4 (z]%) ||po (z]X)) >0
[ [pe(x,z)]]
Z Ez~z1¢(z|x) log q<,,((z|x§ = £9,¢(x) (ELBO)
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Kullback-Leibler divergence

General case: Given two distributions P and Q on some measurable space
X, one defines the Kullback—Leibler divergence of P wrt Q by, ,

Dx (P || Q) Jalog (g(iﬁ)) P(dx) if P is absolutely continuous wrt Q
KL =

e otherwise
where £ is the Radon-Nikodym derivative of P wrt Q.

Case with density wrt the Lebesgue measure: If ¥ = R? and P and Q
have densities p(x) and g(x) then

Duap(e) Il ate)) = [ 1og (25 paae = B 105 (2]
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Kullback-Leibler divergence

General case: Given two distributions P and Q on some measurable space
X, one defines the Kullback—Leibler divergence of P wrt Q by, ,

log ( 5@y ) P(dx) if Pis absolutely continuous wrt 0
DKL(P H Q) = ‘/X <Q([ ) .
+00 otherwise
where £ is the Radon-Nikodym derivative of P wrt Q.

Case with density wrt the Lebesgue measure: If ¥ = R? and P and Q
have densities p(x) and g(x) then

Duap(e) Il ate)) = [ 1og (25 paae = B 105 (2]

Main properties:

* D (P|| Q) >0and D (P || Q) =0« P=0Q

* Dxu(P || Q) # Dxu(Q || P)

+ Jim_Di (P, || @) = 0 implies convergence in distribution (and even in
total variation).

Dk (P || Q) is convex in (P, Q).
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Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

£0.0(0) = ot 108 | P25 | — ogpo(o)-Dre (0 k) [ o(eke) < 08 po(s)

* The KL-divergence Dx1(q¢(z|x) || pe(z|x)) gives the tightness of the
lower bound: the better the approximation of the true posterior is the
tighter is the lower bound.

* Main contribution of VAE (Kingma and Welling, 2014):
Use the ELBO Lg ,(x) as a training loss for improving the
log-likelihood.

+ To use Lg,,(x) as a training loss using SGD we need to compute
unbiased estimators of both

Vg£9,¢(x) and Vgpﬁe’tp (x)
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Evidence lower bound (ELBO)

po(x,z
Lo,p(x) = Ezngy @) {bg{ . @k H

= Ezmtw, (z]x) [IOgPG (x, Z)] ]EZNIhP (z|x) [IOg de (Z|x)]
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Evidence lower bound (ELBO)

p x Z
Lo,p(x) = Ezngy @) {bg{ . @k H

= Eingp (o) [log Po (x,2)] — Ezng, ol [l08 g (2[x)]
Unbiased estimator for Vg Lo (x):

VLo X) = Ergy o) [Vo logpe(x,2)] ~ Velogpe(x,z") where z ~ g, (zl).

Recall that pe (x,z) = pe(z)pe(x|z) is @ known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt 6.
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Evidence lower bound (ELBO)

Lo,o(x) = Erg ) {bg { | H
= Ezwqﬂo(z\x) [IOgPG (x Z)] zwq‘P(z\x) [log de (le)]
Unbiased estimator for Vg Lo (x):

VLo X) = Ergy o) [Vo logpe(x,2)] ~ Velogpe(x,z") where z ~ g, (zl).

Recall that pe (x,z) = pe(z)pe(x|z) is @ known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt 6.

Unbiased estimator for VL (x):

* Not as straightforward since the ELBO expectation is taken with respect
to g, (z|x) that depends on ¢!
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Evidence lower bound (ELBO)

Reparameterization trick:

 Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=2g(e, p,x) ~qpzx).

» The function g decouples the randomness source and the parameters for
simulating the approximate posterior g, (z|x).

Example of Gaussian stochastic encoder:

* o (2lr) = Nz p(x), diag(o? (x))) with (ps(x), log o (x)) = NNy (x).
« With p(e) = N (g;0,1) the standard Gaussian distribution:

2= p(x) +o(x) O ~ Nz plx), diag(o”(x)).
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Evidence lower bound (ELBO)

Reparameterization trick:

* Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=g(e,p,x) ~ qu(zlx).
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Evidence lower bound (ELBO)

Reparameterization trick:

* Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=g(e,¢,x)~ qpzlx).
Change of variable in the ELBO:

‘69#’('”) = Ez'qu; (z|x) [10g[79(X,Z)] - ]Ez~t]q;(z\x) [log de (Z|x)}
= Eerwp(s) [lngl? (x, g(e, ‘va))] - EENP(E) [log de (g(s, Qovx)‘x)]
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Evidence lower bound (ELBO)

Reparameterization trick:

* Hypothesis: There is a fixed distribution p(e) and a deterministic function
g such that for any given x and ¢

e~ple) = z=g(e,¢,x) ~qpzfx).
Change of variable in the ELBO:
Lo,o(X) = Erng, zlx) [l0g o (x,2)] — Erngy, o) [l0g 940 (2]x)]
= Ecpe) [logpo(x,8(e, 0, %))] — Ecrpie) [108 g4 (8(€, 0, x)|x)]
Unbiased estimator for VL, (x):
« Draw ¢!V ~ p(e) and (automatically) differentiate wrt  the expression

M

log po (x,g(e""), ¢, x)) — log g, (g(e™", ¢, x)|x)

+ Same for differentiating wrt 6.
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VAE training

VAE Training algorithm:

Bruno Galerne

1.

Draw a minibatch M = {x), ... x(®)} of M samples from
D={x" i=1,...,N}
Draw M random €,, ~ p(e),m=1,..., M.

Compute z" = g(e™, ¢, x™) ~ g, (z]x"")) using the encoder network
parameters.
Apply the decoder network to each latent variable z" and return

M
A 1 i m im m Im im)
Lo,p(M) = MZ:logzm(Jc(”’),g(€< ), ,x))—log gy (g™, g, x| ))
m=1

Compute VgL, (M) and V., Le (M) by automatic differentiation and
update the parameters 6 and ¢ by an SGD step.
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VAE training

VAE Training algorithm:

1.

Draw a minibatch M = {x), ... x(®)} of M samples from

D={x" i=1,...,N}

Draw M random €,, ~ p(e),m=1,..., M.

Compute z" = g(e™, ¢, x™) ~ g, (z]x"")) using the encoder network

parameters.
Apply the decoder network to each latent variable z" and return

Lo,o( Z log pe ('™, g(€™, ,x™)))—log g, (g(e™, @, 2l Jxlin))

Compute VgL, (M) and V., Le (M) by automatic differentiation and
update the parameters 6 and ¢ by an SGD step.

Remark: Lo (M) is an unbiased estimator of the training loss

N N

1 i 1 i i

N Z ‘Ce,tp(x( )) = N Z <Ez~t1¢.(z|x(")) |:1ng9 (x( ),Z):| - Equ‘p(zlx(")) |:10g qLP(z‘x< ))]>
i=1

i=1

where we have double stochasticity from sampling the batch M and
approximating each expectation with a single realization.

Bruno Galerne
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VAE: Gaussian encoder and decoder

latent

— variable —
| | 7~ qy(zlx) ||
prob. prob.
1 dist. dist. ||
inputx f— | encoder g, (z|") = gy(zlx) decoder pp(x|-) = po(x|z) = sample x ~ py(x|z)

Example of Gaussian stochastic encoder and decoder:

« Gaussian stochastic encoder: g, (z|x) = N (z; pu(x), diag(a*(x))) with
(1(x), log o (x)) = NNy (x).

+ Gaussian prior : po(z) = N(z;0,1) the prior is fixed without parameter
to learn.

- Gaussian stochastic decoder: pg(x|z) = N (z; ptaec(z), s°I) with
paec(z) = NNg(z): Fixed isotropic Gaussian around a decoded mean
p(z). The noise level s > 0 should be fixed according to the dataset
range value.

+ The architectures for NN, and NNy are generally chosen symmetric.
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VAE: Gaussian encoder and decoder

Density of a Gaussian distribution: For x € R?,

N, ) = exp (— 50— "S- )

1
v (2m)? |2
d 1 1 _
log N'(x; s, ) = =5 log(2m) — 5 log(|=) — 5 (x — )= (x — )
Expression of the ELBO loss: Withz = g(e, p,x) = pu(x) + o(x) O €,

Lo,,(x) = log pe(x,z) — log g (z|x)
= log pe(z) + log pe(x[z) — log g, (z]x)

=~ log(2m) — 5 |If

2d

~ L1og(2m) — Llog s — 1 x — pase@)]
+ K 10g@m) + 1 S log o) + Lz = ey 0 %)
2 2 = 2
1 2 Lo o 1 S
= — 5l — eI — Sl + D log o3(x) + 5z — ) @ 0*(x) +C

j=1

reconstruction error
latent code regularization
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VAE: ELBO and Kullback-Leibler divergence

The “latent code regularization” is better seen by refactorizing the ELBO:

Zx

S |:10g [ (z)i?;)(:;\z)”

= Eingy av) [log P (*[2)] + By, ol {log {qie(iz\i)”

= By ey [l0g po(x[2)] — Dii (g (z]%) || po(2))

reconstruction error latent code regularization

x 4
Lop(x) = Eznge @) {log [ H

» The latent code regularization enforces all the approximate posterior to
be close to the prior.

 But to have a small reconstruction error, the support of the distributions
4, (z|x) have to be well-separated.

 This results in an encoder-decoder with well-spread latent code
distribution.
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VAE: ELBO and Kullback-Leibler divergence

Refactorizing the ELBO:

Lo,p(x) = By, @) [log pe(x[2)] — Dxr(q4 (z]%) || pe(z))

reconstruction error latent code regularization

Exercise: Example of Gaussian stochastic encoder

- Gaussian stochastic encoder: ¢, (z|x) = N (z; u(x), diag(o?(x))) with
(1(x),log o(x)) = NN (x).

+ Gaussian prior : po(z) = N(z;0,1) the prior is fixed without parameter
to learn.

1. Compute the closed form formula for the KL-divergence:

Dk1.(q4(z]%) || po(z))

2. Use this expression to propose another unbiased estimator Lo ., (x) of
the ELBO without MC estimate for the KL term.
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VAE: Other examples of stochastic decoders

latent

— variable —
| | 7~ qy(zlx) ||
prob. prob.
1 dist. dist. ||
inputx f— | encoder g, (z|") = gy(zlx) decoder pp(x|-) = po(x|z) = sample x ~ py(x|z)

« Stochastic decoder for binary data: With x € {0, 11¢, one sets
pe(x|z) = BernoulliVector(x; p(z)) where p(z) = NNg(z).

Then, the likelihood is the binary cross-entropy:
d

log pe(x sz logpe + (1 — x¢) log(1 — pe)
=1

+ Stochastic decoder for discrete data: Same approach with a NN that
outputs a softmax array with the number of classes and cross-entropy...

* Here pixels are supposed independent resulting in noisy samples from
pe(x|z)... But one often outputs the expectation for visualization!
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VAE: Results

From the original paper: (Kingma and Welling, 2014): “Auto

Bayes’ (AEVB) vy
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.
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VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.
* The (higher k values would
give better results).
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VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.
» The code dimension is k = 2 for visualization (higher & values would
give better results).

2D latent code of 256 test images:
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Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.

higher k values would
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VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

» Encoders and decoders are MLP trained for 1000 epochs.

» The code dimension is k = 2 for visualization (higher & values would

give better results).

AE codes VAE latent codes
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The prior distribution enforces regularity/tightness of the VAE latent code

distribution.
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Variational Autoencoders

VAE had a huge impact on the community (24 516 citations on Google
Scholar!).

Lot of things can be improved (Kingma and Welling, 2019; Tomczak, 2022):

+ Use more complex priors pe(z) and decoder models ¢, (z|x), eg using
normalizing flows (discussed later today).

» Use a hierarchy of latent variables z;, z», etc.
Issues regarding VAE (Kingma and Welling, 2019; Tomczak, 2022):

* Posterior collapse: All approximate posteriors g, (z|x) are stucked to the
prior to minimize the KL term of the ELBO.

 Hole problem: Some subset of the latent space is not populated by
encoded data.

* Blurriness of generative model: produced images tend to be blurry as for
standard autoencoders...

Pros of VAE:

 Very quick to sample once trained.
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VAE: SOTA resutls

(Vahdat and Kautz, 2020): “NVAE: A Deep Hierarchical Variational
Autoencoder”

» VAE can be made competitive using well-designed architectures.

Figure 1: 256x256-pixel samples generated by NVAE, trained on CelebA HQ [28].

See also Very Deep VAE (Child, 2021).
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NVAE: Architecture details

Luag (x) 1= By [log p(x[z)]—Dx(q(z110)[p(1) =Y | Eqgerypr) [P (@i, 2<1) P (zilz<1)

=2

where g(z</|x) = [T.Z| q(zilx,z<:) is the approximate posterior up to the
(I —1)™ group.

« Hierarchical architecture with
shared encoder/decoder
(Kingma et al., 2016).

« Complex cells using residual
network (batch normalization,
swish activation, ...).

bottom-up model
[epowt umop-doy pareys
[epour umop-doy poreys

+ Conditioning based on shift in
Gaussian distribution. r
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NVAE: Architecture details

« Hierarchical prior: p(ziz</) = N (p(z<), diag 0% (z</)) is @ normal
distribution for the i variable in z; in prior.

+ Residual distribution that parameterizes ¢(z|x) relative to p(z):
gtz x) = N (p(z<)) + Anlz<, %), diag (o (z<1) - Ao” 2<i,¥) ) )

where Ay(z<,x) and Ao?(z<;,x) are the relative location and scale of
the approximate posterior with respect to the prior.

« Ap(z<s,x) and Ac*(z<i,x)
depends on features x; with the
same level

bottom-up model
[epow umop-doy poreys

[epowr umop-doy pareys

» Favors natural level of details
hierarchy.
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NVAE: Results of toy implementation

Samples of 64 x64 portraits

Sample all levels
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NVAE: Results of toy implementation




VAE in practice

Practice session based on this hierarchical architecture (see my MVA
course).

Other ressources:

 Jakub Tomczak’s implementation:
https://github.com/jmtomczak/intro_dgm/blob/main/
vaes/vae_example.ipynb
... but it does not use the closed-form formula

k

Di (o @) || o) = 3 D (1) + o3 — 1~ log(x)?) .

j=1

» Simple MLP for MNIST (PyTorch examples):
https://github.com/pytorch/examples/tree/main/vae
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(GAN)




Generative Adversarial Networks (GAN)

Main references:

1. Original paper: (Goodfellow et al., 2014)
2. NIPS 2016 tutorial: (Goodfellow, 2017)

Bruno Galerne Generative models for images | ETICS 2024 57/109



Generative Adversarial Networks (GAN)

Image generation — Beyond Gaussian models

Noise ~ N(0,1)

4

Generative
Model
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Generative Adversarial Networks (GAN)

+ Goal: design a complex model with high capacity able to map latent
random noise vectors z € R* to a realistic image x € R*.

* Idea: Take a

Output: Sample from
training distribution

f

Generator
Network

f

Input: Random noise \ z \

» What about the loss? Measure if the generated image is

Bruno Galerne Generative models for images | ETICS 2024 59/109



Generative Adversarial Networks (GAN)

Define a loss measuring how much you can fool a classifier that has
learned to distinguish between real and fake images.

Real or Fake

‘ Discriminator Network ‘

Fake Images ~ Real Images
(from generator) | ‘ ~ - (from training set)
4

‘ Generator Network ‘
Random noise z

 Discriminator network: Try to distinguish between real and fake
images.

» Generator network: Fool the discriminator by generating realistic
images.
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+ Given a labeled dataset
D={x"y"), i=1,...,N} cR? x {0,1}
with binary labels y) € {0, 1} that corresponds to two classes C, and

Ci.
+ A parametric classifier f, : RY — [0, 1] outputs a probability such that

p=fox)=Px €Ci) and 1—-p=1—fo(x) =Pk € )

Estimated decision regions:
Ci1={x e R’ fo(x)>1}and
Co=R4\ C.

1 neuron 8)@—»

2+2+1 neurons %

10+10+1 neurons

Complexity/capacity of the
network

=

Trade-off between
generalization and overfitting.
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Bruno Galerne

Training: Logistic regression for binary classification: Maximum
likelihood of the dataset (opposite of binary crosss-entropy : BCELoss in
PyTorch):
)1 () 1— (i) 1 1— (i)
max Z ogfo(x™) + (1 —y?) log (1 — fo(x®)

For neural networks, the probability fs is obtained using the sigmoid

function o (1) = = 167, as the activation function of the last
layer.

Beware that y? = 0 or 1 so only one term is non-zero.

One could instead regroup the terms of the sum according to the label
values:

N N

max Z log fa(x\) + Z log (1 —fg(x(i))>

(x(f) 7).('))€D (x(i) 7),(,-))€,D
sty =1 sty =0
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Generative Adversarial Networks (GAN)

- Discriminator network: Consider two sets
* Drea: @ dataset of n real images (real = labeled with y(’> =1),
* Diake: a dataset of m fake images x = Gy, (z) (fake = labeled with
) —
y =0).

» Goal: Find the parameters 6, of a binary classification network
x — Dy, (x) meant to classify real and fake images.
Minimize the binary cross-entropy, or maximize its negation

max Z log Dy, (xreal) + Z log(1 — Do, (Xtake))

Xreal € Dreal Yfake € Dtake
force predicted labels to be 1 force predicted labels to be 0
for real images for fake images

* How: Use gradient ascent (Adam).
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Generative Adversarial Networks (GAN)

+ Generator network: Consider a given discriminative model x — Dy, (x)
and consider Drang a set of m random latent vectors.

+ Goal: Find the parameters 6, of a network z — Gy, (z) generating images
from random vectors z such that it fools the discriminator

néin Z log(1 — DGd(GGg () (1)

2E€Drand

force the discriminator to think that
our generated fake images are not fake (away from 0)

or alternatively (works better in practice)

max Z log Dy, (Go,(2))) (2)

9}»’
2€Drand

force the discriminator to think that
our generated fake images are real (close to 1)

» How: Gradient descent for (1) or gradient ascent for (2) (Adam)
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Generative Adversarial Networks (GAN)

+ Train both networks jointly.

* Minimax loss in a two player game (each player is a network):

I%in T Z log Dy, (x) + Z log(1 — Ds,(Goe,(2))

X¥E€Dreal 2€Drand e

 Training algorithm: Repeat until convergence
1. Fix 0,, update 0, with one step of gradient ascent,
2. Fix 64, update 0, with one step of gradient descent for (1),
(or one step of gradient ascent for (2).)
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Generative Adversarial Networks (GAN)

Real or Fake

‘ Dlscrlmlnator Network

Fake Images Real Images
(from generator) | (from training set)
3
‘ Generator Network ‘

After training, use generator network to
Random noise i} generate new images
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Generative Adversarial Networks (GAN)

Generated samples
R | LAt
ol e

oty vy vy
=l
—

Nearest neighbor from training set

Bruno Galerne Generative models for images | ETICS 2024 67/109



Generative Adversarial Networks (GAN)

Generated samples (CIFAR 10)

Nearest neighbor from training set
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Generative Adversarial Networks (GAN)

Convolutional GAN
(Radford et al., 2016)

» Generator: upsampling network with fractionally strided convolutions
(i.e. the transpose operator of convolution+subsampling , called
ConvTranspose2d in PyTorch),

+ Discriminator: convolutional network with strided convolutions.

Stride 2 16

CONV 2

Generator 6@
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Transposed convolution arithmetic

Fractionally strided convolutions:

+ This is the transpose operator of convolution+subsampling (convolution
with stride).
* Called ConvTranspose2d in PyTorch

The transpose of convolving a 3 x 3 kernel over a 5 x 5 input padded with a
1 x 1 border of zeros using 2 x 2 strides (i.e.,i=5,k=3,s=2andp=1). It
is equivalent to convolving a 3 x 3 kernel over a 3 x 3 input (with 1 zero
inserted between inputs) padded with a 1 x 1 border of zeros using unit
strides (i.e., i/ =3,7 =5,k =k, s =1andp’ =1).
(source: From (Dumoulin and Visin, 2016))
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Generative Adversarial Networks (GAN)

Convolutional GAN
(Radford et al., 2016)

WLE

Generations of realistic bedrooms pictures,
from randomly generated latent variables.
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Generative Adversarial Networks (GAN)

Convolutional GAN
(Radford et al., 2016)

Interpolation in between points in latent space.
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Generative Adversarial Networks (GAN)

Convolutional GAN — Arithmetic
(Radford et al., 2016)

Smiling woman Neutral woman Neutral man

Samples
from the
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Networks (GAN)

Convolutional GAN — Arithmetic
(Radford et al., 2016)

Glasses man No glasses man No glasses woman

Samples
from the
model

B -

Average Z

vectors, do . i = <8 =mm
arithmetic - [d + [j —
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Generative Adversarial Networks (GAN)

Generative Aversarial Networks: Style GAN (Karras et al., 2019)
y l. ) > [/ ¥ Y

Image size:
1024 x 1024 px
(source: Karras et al.)
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GAN Training

Training with MNIST (60 000 images)

» Adam optimizer
* Learning rate 0.0002 for both the discriminator and the generator

Real images:

_ Fake images, epoch 1:

\\«Q

2

%
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Ny [0 (00 Q|0 | & 00| 3| | ¢
0| Q[N ==
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Wi~ || L |00~ 9D
WMN (OO Mot | W [—
NS NP (L2 N0 o (R,
VW (R (Q|—| & & %&£
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W —[Q| v SO~ [pps
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GAN Training

Training with MNIST (60 000 images)

» Adam optimizer
* Learning rate 0.0002 for both the discriminator and the generator

Real images:
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GAN Training

Training with MNIST (60 000 images)

» Adam optimizer
* Learning rate 0.0002 for both the discriminator and the generator

Real images:

Fake images, epoch 3:
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GAN Training

Training with MNIST (60 000 images)

» Adam optimizer
* Learning rate 0.0002 for both the discriminator and the generator

Real images:

Fake images, epoch 10:
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Training with MNIST (60 000 images)

» Adam optimizer

* Learning rate 0.0002 for both the discriminator and the generator
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 1:
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 2:
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 3:
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GAN Training

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 10:
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GAN Training

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 100:
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GAN Training

Some heuristics inspired by optimal transport theory have been proposed
and called Wasserstein GAN (Arjovsky et al., 2017) (Gulrajani et al., 2017).
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Wasserstein GAN




Optimal transport

» The optimal transport theory provides mathematical tools to compare or
interpolate between probability distributions.

« Given two probability distributions s and s in P2(R?) (the set of
probability measures with finite second moments on R), and a positive
cost function ¢ : RY x R — R

MK (po, 1) == e /me c(yo, y1)dy(yo, 1),
where TI(u0, 111) is the set of probability distributions v on R x R? with
marginal distributions 1o and .

Proposition (Duality)

MK (po, p1) = sup /¢du0 iy /wdun

B €D (1o541)
where

D (po, i) = {9 € C(RY) s.t. Vx,y, ¢(x) + ¥(y) < e(x,)}.
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Optimal transport

Wasserstein distances: When using c(x,y) = ||x — y||” one defines
Wasserstein distances:

Definition
The p-Wasserstein distance W, between 1y and p, is defined as

WP (o, = inf E(||Yo — 1h|]P) = inf / —y1||Pd V1)
(Lo, fer) Yo~;}(f;lY1~m (1Yo ") wenlﬁ[,,u]) s [lyo—y11["d~(y0,¥1)
1-Wasserstein distance and duality: See eg (Santambrogio, 2015)

For p = 1, one has

Wi (o, 1) = sup / $djio — / by = S Eemp($(x)) — Eemp, (6(x))

¢ELip; ¢€ELip,

where
Lip, = {f: RY — R, s.t. Vx,y, [f(x) —fO)] < |lx —y||}-
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Optimal transport and GANs

Back to GANs:

+ The role of the discriminator D is to differentiate the distribution pyea (x) of
real images from the distribution p,..(x) of generated images.

+ Ideally, one would like to optimize the generator to minimize
Wl (Preal 5 pgen) .

» However it is not possible to compute this Wasserstein distance W,
because taking the sup over Lip, is not tractable.

* (Arjovsky et al., 2017) proposes to restrict Lip, to the set of Lip,
functions that are parameterized with some neural network:

Wi (Preat; Pgen) = SUP Bxnpy (9(x)) = Eanpn (9(x))

¢ELip,

> sup By (Doy (X)) = Exnpeen (Do, (%))

ng €Lip;
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Wassertsein GAN

GAN (Vanilla):

H%in max > logDy,(x) + > log(1 — Dy, (Go,(2))

XEDreql 2€Drand

Wassestein GAN:

min max Z Do, (x) — Z Do, (Go,(z))

0O 6, s.t.
Dg, €Lip; *E€Dreal 2E€Drand

» We just got rid of the log and Dy, (x) is not a probability... but we now
have a constrained optimization “Dg, € Lip,”.

» The original WGAN paper (Arjovsky et al., 2017) uses weight clipping to
restrict the Lipschitz constant (heuristic).
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Wassertsein GAN: Gradient Penalty

« Itis known that optimal potential ¢ satisfies ||V.¢(x)|| =1 a.e.
(Santambrogio, 2015).

* (Gulrajani et al., 2017) propose to use this property by minimizing:

I%ln max Z Do, (x Z Dy, (Go,(z)) + )\E || VxDg, (x,)|| — 1)

XEDreql 2€Drand &5
where each x; is a point from a segment joining a real and a fake image.
+ This training procedure is referred as WGAN-GP.

 Note that the gradient is with respect to the image variable x and not the
parameters 6,.
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Wassertsein GAN: Gradient Penalty

Gradient Penalty VS. weight clipping:

—_ - _—
% ——  Weight clipping (¢ = 0.001) /
2 107 — Weight clipping (¢ = 0.01)

%D —— Wheight clipping (¢ = 0.1)

= Y Gradient penalty

= —
i

Q

. 10

=

2

I

= —201

O

13 10 7 1 1
Discriminator layer

(source: From (Gulrajani et al., 2017))
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Wassertsein GAN

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)

e R D ™Side

G: No BN and a constant number of filters, D: DCGAN
" - —

No normahzatlon in either G or D

E”’ = H;ﬁ
(=] 3

Bruno Galerne
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Wassertsein GAN

Wassertsein GAN using the gradient penalty is a more stable way to train
deep convolutional generators/discriminators.
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Style GAN

+ Style GAN uses the loss of a WGAN-GP.
» Main innovation is the architecture of the generator.

» Open source.

Fully-connected

network f £

Latent z € Z Latent z € Z . Noise
Synthesis network g
Normalize Const 4x4x512
Mapping

- % G Q S (a) Traditional

ra

[ Convix3 ] FC
T

[PixelNorm | FC 4x4
4x4. FC

; FC Upsample |
Upsample FC
[ Conv3x3 FC
FC

(b) Style-based generator

Style GAN architecture and results from (Karras et al., 2019).

Bruno Galerne
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 Another state-of-the-art GAN: BigGAN (Brock et al., 2019).
« Trained with vanilla GAN
» Large models and large batch size improve the results.
» Truncation trick:
+ Train model with standard Gaussian in the latent space.
» Sample with truncated Gaussian.
» This improves the quality of results (but reduces the diversity).

 There are still problems with training instablities.
(source: (Brock et al., 2019))

Bruno Galerne Generative models for images | ETICS 2024 88/109



A cautionary tale

» Most of the recent improvements come from the architecture.

* It has been reported that Vanilla GAN performs as well as other GANs
upon fair comparison (Lucic et al., 2018).
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Summary of GANs

» Advantages:
* GANSs provide(d) state-of-the-art results
» They provide interesting latent representations.
» They allows flexible losses and formulations.
 They allow for
* Problems:
* GANSs are very hard to train (collapse during training).
« Diversity is a problem (mode collapse).
» Theoretical analysis is hard.
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Normalizing flows




Normalizing flows

Learn an invertible mapping from the data space to the latent
space.

Data space X Latent space Z

Inference

T ~Px

z=f(x)

Generation

(source: From (Dinh et al., 2017))

* Latent space and data space have the same dimension.

» The latent distribution is generally assumed to be Gaussian.
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Normalizing flows

Two main issues:

1. Parameterize a generic parametric invertible transform go.

2. Learn the parameters 6 to fit the dataset D = {x”, i=1,... ,N} c R".

Learning is performed by simple loglikelihood maximization:

1
max logpe(D) where logpe(D) = ] Z log pe(x).

xeD

* Here Pe = (gg)#’fro with ™ = N(O,Id).
 Since gy is assumed to a diffeomorphism, the expression is given
thanks to the change of variable formula.

* In practice the dataset D is discrete and one adds noise to the data to
deal with quantization and have a density (Kingma and Dhariwal, 2018).
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Invertible transformations

The density of pg = (ge) 40 is given by a change of variable.

» We assume that gy is a diffeomorphism
- Forany f € C.(R%,R)
En (X)) = | f(po(oyr
Epy (F(X)) = Exy (f(80(2)))
= | f(ge(@))po(z)dz (z=g;' (x))

R4

= /D;df(x)pU(ge_l(X))|J(g9_])(x)|dx.

det (@(X)) is the determinant of the
n 1<m,n<d

where [/(g; ") (¥)] =

Jacobian.

Expression of the density:

[po() = polgs () ()1

Remark: Generalized using the co-area/area formula (Caterini et al., 2021)).
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Maximizing the log-likelihood

Expression of the density:

[po() = poles ) (g5 W) |

* Hence, maximizing the log-likelihood is equivalent to maximizing

£(0) = ﬁ 3 log(po(gs " (x1))) + log(14 (g5 (x)])

x;€D

« Short notation: Jo (x) := J(g, ') (x).
Conditions on the transformations:

- go and g, ' are easy to compute and differentiate.
» The Jacobian Jy is easy to compute and differentiate.
+ But also gy should be as complex as required by the data...
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Compositions of transformations

Composition of transformation: To obtain a complex flow one decomposes
the flow as K “simple” diffeomorphisms:

0 1 K
86 =80°80° 08¢

Then
log(|/(g5 " (x) Zlog 7((g6) " ()

with x* the proper intermediate step in the sequence.
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Different types of flows

* In (Rezende and Mohamed, 2015) planar and radial flows are presented.
 Two other very efficient flows (Dinh et al., 2017, 2015):
- Affine coupling layer.
« Invertible 1x1 convolution.
» How does the affine coupling layer work?
* We split x € Réinx = (0, x1) with xo € R%, x; € RY.
» Forward transform gg(x) = (x0, exp[se(x0)] © x1 + to(x0)).
+ Reverse transform g, ' (x) = (xo, (x1 — to(x0)) @ expl[s (x0)])-
+ Log-Jacobian: log(|Js(x)|) = 3%, s6(x0):.
» How does the invertible 1x1 convolution work?
* Matrix Wy € R“*C (number of channels), x € R¥*"*¢,
» Forward transform go(x);; = Woxi,.
* Reverse transform g, ' (x);; = W, 'x;,;.
+ Log-Jacobian log(|Js(x)|) = H x W x log(|Ws|).
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Different types of flows

» There is no spatial convolution in these operations.

» However there a way to generate the image in a multiscale way (Dinh
et al., 2017): Use a squeeze layer that change an image of size
H x W x Cinto an image of size H/2 x W /2 x 4C by stacking spatial
neighbors in the channel component.

» Then the next 1x1 convolution mixes the formerly spatial neighbors.

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern
mask. On the right, a channel-wise masking. The squeezing operation reduces the 4 X 4 x 1 tensor
(on the left) into a 2 x 2 x 4 tensor (on the right). Before the squeezing operation, a checkerboard
pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(source: From (Dinh et al., 2017))
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Generative Flow (GLOW)

step of flow x K
affine coupling layer | squeeze
t
| invertible 1x1 conv | @
| actr;'orm | K | x@-1)
I
(a) One step of our flow. (b) Multi-scale architecture (Dinh et al., 2016).

(source: From (Kingma and Dhariwal, 2018))

« Combining actnorm, invertible convolution and affine coupling layers
(multiple times).
» The “actnorm” layer is simply an affine layer.
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Generative Flow (GLOW)

High quality results
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Generative Flow (GLOW)

Linear interpolation in latent space between real images

 This experiments uses both the inference and generation of the flow.

» Not so easy to do with a GAN (we’ll talk about inference for GANs next
week).
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Generative Flow (GLOW)

Effect of change of temperature: Samples obtained at temperatures 0,
0.25, 0.6, 0.7, 0.8, 0.9, 1.0.

» The temperature to be decreased for high-quality image generation:
latent codes z are sampled from A (0, o1;) with o < 1.
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