Bruno Galerne bruno.galerne@univ-orleans.fr

BIP Artificial Intelligence for Science

University of Caen Normandy, Wednesday August 28, 2024

Institut Denis Poisson Université d'Orléans, Université de Tours, CNRS Institut universitaire de France (IUF)

Material for the course is here: https://www.idpoisson.fr/galerne/caen2024/index.html 1. Model and/or learn a distribution p(u) on the space of images.

(source: Charles Deledalle)

The images may represent:

- · different instances of the same texture image,
- · all images naturally described by a dataset of images,
- any image
- 2. Generate samples from this distribution.

- 1. Model and/or learn a distribution p(u) on the space of images.
- 2. Generate samples from this distribution.

- *z* is a generic source of randomness, often called the latent variable.
- If G(·; Θ) is known, then p = G(·; Θ)_#N(0, I_n) is the push-forward of the latent distribution.

- 1. Model and/or learn a distribution p(u) on the space of images.
- 2. Generate samples from this distribution.

- *z* is a generic source of randomness, often called the latent variable.
- If $G(\cdot; \Theta)$ is known, then $p = G(\cdot; \Theta)_{\#} \mathcal{N}(0, I_n)$ is the push-forward of the latent distribution.

The generator $G(\cdot; \Theta)$ can be:

- A deterministic function (e.g. convolution operator),
- · A neural network with learned parameter,
- An iterative optimization algorithm (gradient descent,...),
- A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,...).

Basics on diffusion models

· We are given an input dataset

$$\mathcal{D} = \{ \boldsymbol{x}^{(i)}, i = 1, \dots, N \} \subset \mathbb{R}^d$$

- We assume that these images are independent samples of a common distribution p_0 over \mathbb{R}^d .
- Consider the random process that consists of adding noise to images:

$$\boldsymbol{x}_t = \boldsymbol{x}_0 + \boldsymbol{w}_t, \quad t \in [0, T]$$

where $x_0 \sim p_0$ is a sample image and w_t is a Brownian motion (also called Wiener process).

(source: (Song et al., 2021b))

Real-valued: A standard (real-valued) **Brownian motion** (also called **Wiener process** is a stochastic process $(w_t)_{t\geq 0}$ such that

- $w_0 = 0$.
- With probability one, the function $t \mapsto w_t$ is continuous.
- The process $(w_t)_{t\geq 0}$ has stationary independent increments.
- $w_t \sim \mathcal{N}(0, t)$.

Direct consequences:

- For s < t, w_s and $w_t w_s$ are independent and $w_{t-s} \sim \mathcal{N}(0, t-s)$.
- · Markovian random field.

 \mathbb{R}^d -valued: A standard \mathbb{R}^d -valued Brownian motion $(w_t)_{t\geq 0}$ is made of d independent real-valued Brownian motions

$$\boldsymbol{w}_t = (w_{t,1}, \ldots, w_{t,d}) \in \mathbb{R}^d.$$

Ito integral on [0, T]:

Given a process $(\mathbf{x}_t)_{t \in [0,T]}$ adapted to the filtration $\mathcal{F}_t = \sigma(\mathbf{w}_s, s \leq t)$, one defines

$$\int_0^t \mathbf{x}_s d\mathbf{w}_s \quad \text{as the } L^2 \text{ limit of } \quad \sum_{j=0}^{k-1} \mathbf{x}_{t_j} \odot (\mathbf{w}_{t_{j+1}} - \mathbf{w}_{t_j})$$

when the minimal step of the partition $0 \le t_0 \le \cdots \le t_k \le T$ tends to 0.

• In particular, for a deterministic function $s \mapsto g(s)$, $\int_0^t g(s) dw_s$ is a normal variable with mean 0 and variance $\sigma^2 = \int_0^t g^2(s) ds$.

- Adding noise to images: $x_t = x_0 + w_t$, $t \in [0, T]$.
- This corresponds to the stochastic differential equation (SDE):

 $d\mathbf{x}_t = d\mathbf{w}_t$ with initial condition $\mathbf{x}_0 \sim p_0$.

• We denote by p_t the distribution of x_t at time $t \in [0, T]$. What is p_t ?

$$p_t = p_0 * \mathcal{N}(\mathbf{0}, tI_d)$$

• This corresponds to applying the heat equation starting from *p*₀:

$$\partial_t p_t(\mathbf{x}) = \frac{1}{2} \Delta_{\mathbf{x}} p_t(\mathbf{x}) \quad \text{with } p_{t=0} = p_0.$$

This PDE is called the **Fokker-Planck equation** associated with the SDE.

• This is an example of diffusion equation.

• More generally we will consider diffusion SDE of the form (Song et al., 2021b):

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$$

where

- $f : \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is called the **drift**: External deterministic force that drives x_t in the direction $f(x_t, t)$,
- $g: [0,T] \rightarrow [0,+\infty)$ is the diffusion coefficient.
- · The corresponding Fokker-Planck equation is

$$\partial_t p_t(\mathbf{x}) = -\operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, t) p_t(\mathbf{x}) \right) + \frac{1}{2} g(t)^2 \Delta_{\mathbf{x}} p_t(\mathbf{x})$$

that is,

$$\partial_t p_t(\mathbf{x}) = -\sum_{k=1}^d \partial_{\mathbf{x}_k} \left[f_k(\mathbf{x}, t) p_t(\mathbf{x}) \right] + \frac{1}{2} g(t)^2 \sum_{k=1}^d \partial_{\mathbf{x}_k}^2 p_t(\mathbf{x}).$$

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$$

Example 1: Variance exploding diffusion (VE-SDE)

SDE: $d\mathbf{x}_t = d\mathbf{w}_t$ Solution: $\mathbf{x}_t = \mathbf{x}_0 + \mathbf{w}_t$ Variance: $\operatorname{Var}(\mathbf{x}_t) = \operatorname{Var}(\mathbf{x}_0) + t$

Example 2: Variance preserving diffusion (VP-SDE)

SDE: $d\mathbf{x}_t = -\beta_t \mathbf{x}_t dt + \sqrt{2\beta_t} d\mathbf{w}_t$ Solution: $\mathbf{x}_t = e^{-B_t} \mathbf{x}_0 + \int_0^t e^{B_s - B_t} \sqrt{2\beta_s} d\mathbf{w}_s$ with $B_t = \int_0^t \beta_s ds$ Variance: $\operatorname{Var}(\mathbf{x}_t) = e^{-2B_t} \operatorname{Var}(\mathbf{x}_0) + 1 - e^{-2B_t} = 1$ if $\operatorname{Var}(\mathbf{x}_0) = 1$.

Both variants have the form $x_t = a_t x_0 + b_t Z_t$: x_t is a rescaled noisy version of x_0 and the noise is more and more predominant as time grows.

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$$

In general we do not have a close form formula for x_t .

Diffusion SDEs can be approximately simulated using numerical schemes such as the **Euler-Maruyama sheme**:

• Using the time step h = T/N with N + 1 times $t_n = nh$, $n \in \{0, ..., N\}$, define $X_0 = x_0$ and

$$X_{n+1} = X_n + f(X_n, t_n)h + g(t_n) \left(w_{t_{n+1}} - w_{t_n} \right), \quad n = 1, \dots, N-1.$$

• Remark that $w_{t_{n+1}} - w_{t_n} \sim \mathcal{N}(\mathbf{0}, hI_d)$ and is independent of X_n :

 $X_{n+1} = X_n + f(X_n, t_n)h + g(t_n)\sqrt{h}Z_n$, with $Z_n \sim \mathcal{N}(\mathbf{0}, I_d)$, $n = 1, \ldots, N-1$.

- For diffusion SDEs, as *t* grows *p*_{*t*} is closer and closer to a normal distribution.
- We will consider that at the final time t = T large enough so that p_T can be considered to be a normal distribution.
- · For generative modeling, we want to reverse the process:
 - Start by generating $\mathbf{x}_T \sim p_T \approx \mathcal{N}(\mathbf{0}, \sigma_T^2 I_d)$.
 - Simulate $(\mathbf{x}_{T-t})_{t \in [0,T]}$ such that $\mathbf{x}_{T-t} \sim p_{T-t}$.

(source: (Song and Ermon, 2020))

Reversed diffusion: What is the SDE satisfied by x_{T-t} ?

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$$

has the associated Fokker-Planck equation

$$\partial_t p_t(\mathbf{x}) = -\operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, t) p_t(\mathbf{x}) \right) + \frac{1}{2} g(t)^2 \Delta_{\mathbf{x}} p_t(\mathbf{x}).$$

Let us derive the Fokker-Planck equation for $q_t = p_{T-t}$ the distribution function of $y_t = x_{T-t}$.

$$\begin{aligned} \partial_t q_t(\mathbf{x}) &= -\partial_t p_{T-t}(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) p_{T-t}(\mathbf{x}) \right) - \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} p_{T-t}(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) q_t(\mathbf{x}) \right) - \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} q_t(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) q_t(\mathbf{x}) \right) + \left(-1 + \frac{1}{2} \right) g(T-t)^2 \Delta_{\mathbf{x}} q_t(\mathbf{x}) \end{aligned}$$

$$\begin{aligned} \partial_t q_t(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) q_t(\mathbf{x}) \right) + \left(-1 + \frac{1}{2} \right) g(T-t)^2 \Delta_{\mathbf{x}} q_t(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) q_t(\mathbf{x}) - g(T-t)^2 \nabla_{\mathbf{x}} q_t(\mathbf{x}) \right) + \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} q_t(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(\left[f(\mathbf{x}, T-t) - g(T-t)^2 \frac{\nabla_{\mathbf{x}} q_t(\mathbf{x})}{q_t(\mathbf{x})} \right] q_t(\mathbf{x}) \right) + \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} q_t(\mathbf{x}) \\ &= -\operatorname{div}_{\mathbf{x}} \left(\left[-f(\mathbf{x}, T-t) + g(T-t)^2 \nabla_{\mathbf{x}} \log q_t(\mathbf{x}) \right] q_t(\mathbf{x}) \right) + \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} q_t(\mathbf{x}) \end{aligned}$$

This is the Fokker-Planck equation associated with the diffusion SDE:

$$d\mathbf{y}_t = \left[-\mathbf{f}(\mathbf{y}_t, T-t) + g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt + g(T-t) d\mathbf{w}_t.$$

Forward diffusion:

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$$

Backward diffusion: $y_t = x_{T-t}$

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt + g(T-t) d\mathbf{w}_t.$$

- Same diffusion coefficient.
- Opposite drift term with additional distribution correction:

$$g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)$$

drives the diffusion in regions with high p_{T-t} probability.

- $x \mapsto \nabla_x \log p_t(x)$ is called the (Stein) **score** of the distribution.
- Rigorous results from SDE litterature ((Anderson, 1982) (Haussmann and Pardoux, 1986)) (measurability issues, the filtration is also reversed...).

Forward diffusion:

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$$

Backward diffusion: $y_t = x_{T-t}$

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt + g(T-t) d\mathbf{w}_t.$$

- Same diffusion coefficient.
- Opposite drift term with additional distribution correction:

$$g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)$$

drives the diffusion in regions with high p_{T-t} probability.

- $x \mapsto \nabla_x \log p_t(x)$ is called the (Stein) **score** of the distribution.
- Rigorous results from SDE litterature ((Anderson, 1982) (Haussmann and Pardoux, 1986)) (measurability issues, the filtration is also reversed...).
- · Can we simulate this backward diffusion using Euler-Maruyama ?

 $X_{n+1} = X_n + f(X_n, t_n)h + g(t)\sqrt{h}Z_n, \quad \text{with } Z_n \sim \mathcal{N}(\mathbf{0}, I_d), \quad n = 1, \dots, N-1.$

Learning the score function: Denoising score matching

- **Goal:** Estimate the score $x \mapsto \nabla_x \log p_t(x)$ using only available samples (x_0, x_t) .
- For the models of interests, x_t = a_tx₀ + b_tZ_t is a rescaled noisy version of x₀ (both a_t and b_t have known analytical expressions).
- Explicit conditional distribution: $p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(a_t\mathbf{x}_0, b_t^2I_d)$.

$$p_t(\mathbf{x}_t) = \int_{\mathbb{R}^d} p_{0,t}(\mathbf{x}_0, \mathbf{x}_t) d\mathbf{x}_0 = \int_{\mathbb{R}^d} p_{t|0}(\mathbf{x}_t | \mathbf{x}_0) p_0(\mathbf{x}_0) d\mathbf{x}_0$$

$$\nabla_{\mathbf{x}_t} p_t(\mathbf{x}_t) = \int_{\mathbb{R}^d} \nabla_{\mathbf{x}_t} p_{t|0}(\mathbf{x}_t | \mathbf{x}_0) p_0(\mathbf{x}_0) d\mathbf{x}_0$$

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = \frac{\nabla_{\mathbf{x}_t} p_t(\mathbf{x}_t)}{p_t(\mathbf{x}_t)} = \int_{\mathbb{R}^d} \nabla_{\mathbf{x}_t} p_{t|0}(\mathbf{x}_t | \mathbf{x}_0) \frac{p_0(\mathbf{x}_0)}{p_t(\mathbf{x}_t)} d\mathbf{x}_0$$

$$= \int_{\mathbb{R}^d} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t | \mathbf{x}_0) \right] p_{t|0}(\mathbf{x}_t | \mathbf{x}_0) \frac{p_0(\mathbf{x}_0)}{p_t(\mathbf{x}_t)} d\mathbf{x}_0$$

$$= \int_{\mathbb{R}^d} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t | \mathbf{x}_0) \right] p_{0|t}(\mathbf{x}_0 | \mathbf{x}_t) d\mathbf{x}_0$$

Conclusion:

 $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = \mathbb{E}_{\mathbf{x}_0 \sim p_{0|t}(\mathbf{x}_0|\mathbf{x}_t)} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) \right] = \mathbb{E} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) | \mathbf{x}_t \right]$

 $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = \mathbb{E}_{\mathbf{x}_0 \sim p_{0|t}(\mathbf{x}_0|\mathbf{x}_t)} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) \right] = \mathbb{E} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) |\mathbf{x}_t \right]$

• $\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0)$ is explicit (forward transition): For $\mathbf{x}_t|\mathbf{x}_0 \sim \mathcal{N}(\alpha_t \mathbf{x}_0, \beta_t^2 I_d)$,

$$\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) = \nabla_{\mathbf{x}_t} \left[-\frac{1}{2\beta_t^2} \left\| \mathbf{x}_t - \alpha_t \mathbf{x}_0 \right\|^2 + C \right] = -\frac{1}{\beta_t^2} \left(\mathbf{x}_t - \alpha_t \mathbf{x}_0 \right) = -\frac{1}{\beta_t} \mathbf{Z}_t$$

• But the distribution $p_{0|t}(\mathbf{x}_0|\mathbf{x}_t)$ is not explicit (backward conditional)!

$$\mathbb{E}\left[\nabla_{\mathbf{x}_{t}}\log p_{t|0}(\mathbf{x}_{t}|\mathbf{x}_{0})|\mathbf{x}_{t}\right] = -\frac{1}{\beta_{t}^{2}}\left(\mathbf{x}_{t} - \alpha_{t}\mathbb{E}[\mathbf{x}_{0}|\mathbf{x}_{t}]\right)$$

• $\mathbb{E}[x_0|x_t]$ is the best estimate of the initial noise-free x_0 given its noisy version x_t .

 $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = \mathbb{E}_{\mathbf{x}_0 \sim p_{0|t}(\mathbf{x}_0|\mathbf{x}_t)} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) \right] = \mathbb{E} \left[\nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) |\mathbf{x}_t \right]$

We use the following properties of the **conditional expectation**.

- $Y = \mathbb{E}[X|\mathcal{F}]$ if and only if $Y = \operatorname{argmin}\{\mathbb{E}||X Z||^2, Z \in L^2(\mathcal{F})\}.$
- $Y \in \sigma(X)$ iif there exists $f : \mathbb{R}^d \to \mathbb{R}^d$ (measurable) with Y = f(X).
- $Y = \mathbb{E}[X|U]$ if Y = f(U) with $f = \operatorname{argmin}\{\mathbb{E}||X f(U)||^2, f \in L^2(U)\}.$

Hence the function $x_t \mapsto \nabla_{x_t} \log p_t(x_t)$ is the solution

 $\nabla_{\mathbf{x}_{t}} \log p_{t} = \operatorname{argmin}\{\mathbb{E}_{p_{0,t}} \| f(\mathbf{x}_{t}) - \nabla_{\mathbf{x}_{t}} \log p_{t|0}(\mathbf{x}_{t}|\mathbf{x}_{0}) \|^{2}, f \in L^{2}(p_{t})\}$

• We obtain a **loss function** to learn the function *f* using Monte Carlo approximation with samples (*x*₀, *x*_t) for the expectation.

 $\nabla_{\mathbf{x}_t} \log p_t = \operatorname{argmin}\{\mathbb{E}_{p_{0,t}} \| f(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) \|^2, f \in L^2(p_t)\}$

- *f* : ℝ^d → ℝ^d will be approximated with a neural network such as a (complex) U-net (Ho et al., 2020).
- But we need to have an approximation of $\nabla_{x_t} \log p_t$ for all time *t* (at least for the times t_n in our Euler-Maruyama scheme).
- In practice we share the same network architecture for all time *t*: one learns a network s_θ(x, t) such that

 $s_{\theta}(\boldsymbol{x},t) \approx \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^d, \ t \in [0,T].$

Final loss for denoising score matching: (Song et al., 2021b)

$$\theta^* = \operatorname{argmin} \mathbb{E}_t \left(\lambda_t \mathbb{E}_{(\boldsymbol{x}_0, \boldsymbol{x}_t)} \| s_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p_{t|0}(\boldsymbol{x}_t | \boldsymbol{x}_0) \|^2 \right)$$

where *t* is chosen uniformly in [0, T] and $t \mapsto \lambda_t$ is a weighting term to balance the importance of each *t*.

Practical aspects of diffusion models: Training and sampling

$$\theta^* = \operatorname{argmin} \mathbb{E}_t \left(\lambda_t \mathbb{E}_{(\boldsymbol{x}_0, \boldsymbol{x}_t)} \| s_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p_{t|0}(\boldsymbol{x}_t | \boldsymbol{x}_0) \|^2 \right)$$

- $s_{\theta} : \mathbb{R}^d \times [0, T] \to \mathbb{R}^d$ is a (complex) U-net (Ronneberger et al., 2015), eg in (Ho et al., 2020) "All models have two convolutional residual blocks per resolution level and self-attention blocks at the 16×16 resolution between the convolutional blocks".
- Diffusion time *t* is specified by adding the Transformer sinusoidal position embedding into each residual block (Vaswani et al., 2017).

Exponential Moving Average

- Several choices for $t \mapsto \lambda_t$, linked to ELBO and data augmentation (Kingma and Gao, 2023).
- Training using Adam algorithm (Kingma and Ba, 2015), but still unstable.
- To regularize: Exponential Moving Average (EMA) of weights.

$$\bar{\theta}_{n+1} = (1-m)\bar{\theta}_n + m\theta_n.$$

- Typically $m = 10^{-4}$ (more than 10^4 iterations are averaged).
- The final averaged parameters $\bar{\theta}_K$ are used at **sampling**.

Training instabilities

(source: (Song and Ermon, 2020))

Bruno Galerne

• The score function of a distribution is generally used for Langevin sampling (ULA or MALA):

$$X_{n+1} = X_n + \gamma \nabla_{\mathbf{x}} \log p(X_n) + \sqrt{2\gamma} Z_n$$

- (Song et al., 2021b) propose to add one step of Langevin diffusion (same t = t_n) after each step Euler-Maruyama step (t_n to t_{n+1}).
- This means that we jump from one trajectory to the other, but we correct some defaults from the Euler scheme.
- This is called a Predictor-Corrector sampler.

Algorithm 2 PC sampling (VE SDE)	Algorithm 3 PC sampling (VP SDE)
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\max}^2 \mathbf{I})$	1: $\mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})$
2: for $i = N - 1$ to 0 do	2: for $i = N - 1$ to 0 do
3: $\mathbf{x}'_i \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^2 - \sigma_i^2) \mathbf{s}_{\boldsymbol{\theta}^*}(\mathbf{x}_{i+1}, \sigma_{i+1})$	3: $\mathbf{x}'_i \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta^*}(\mathbf{x}_{i+1}, i+1)$
4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$	4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$
5: $\mathbf{x}_i \leftarrow \mathbf{x}'_i + \sqrt{\sigma_{i+1}^2 - \sigma_i^2} \mathbf{z}$	5: $\mathbf{x}_i \leftarrow \mathbf{x}'_i + \sqrt{\beta_{i+1}}\mathbf{z}$ Predictor
6: for $j = 1$ to M do	6: for $j = 1$ to M do Corrector
7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$	7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$
8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$	8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta^*}(\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$
9: return \mathbf{x}_0	9: return \mathbf{x}_0

(source: (Song et al., 2021b))

Results

- (Song et al., 2021b) achieved SOTA in terms of FID for CIFAR-10 unconditional sampling.
- Very good results for 1024×1024 portrait images.
- See also "Diffusion Models Beat GANs on Image Synthesis" (Dhariwal and Nichol, 2021) (self-explanatory title).

(source: FFHQ 1024×1024 samples (Song et al., 2021b))

Many approximations in the full generative pipelines:

- The final distribution p_T is not exactly a normal distribution.
- The learnt Unet model s_{θ} is far from being the exact score function: Sample-based, limitations from the architecture...
- Discrete sampling scheme (Euler-Maruyama, Predictor-Corrector,...).
- Score function may behave badly near t = 0 (irregular density in case of manifold hypothesis).

But we do have theoretical guarantees if all is well controled!

Theorem (Convergence guarantees (De Bortoli, 2022)) Let p_0 be the data distribution having a compact manifold support and let q_T be the generator distribution from the reversed diffusion. Under suitable hypotheses, the 1-Wasserstein distance $W_1(p_0, q_T)$ can be explicitly bounded and tends to zero when all the parameters are refined (more Euler steps, better score learning, etc.).

The deterministic approach: Probability flow ODE

$$\begin{aligned} \partial_t q_t(\mathbf{x}) &= -\partial_t p_{T-t}(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) p_{T-t}(\mathbf{x}) \right) - \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} p_{T-t}(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) p_{T-t}(\mathbf{x}) \right) + \left(-1 + \frac{1}{2} \right) g(T-t)^2 \Delta_{\mathbf{x}} p_{T-t}(\mathbf{x}) \\ &= -\operatorname{div}_{\mathbf{x}} \left(\left[-f(\mathbf{x}, T-t) + g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{x}) \right] p_{T-t}(\mathbf{x}) \right) + \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} p_{T-t}(\mathbf{x}) \end{aligned}$$

This is the Fokker-Planck equation associated with the diffusion SDE:

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt + g(T-t) d\mathbf{w}_t.$$

$$\partial_t q_t(\mathbf{x}) = -\partial_t p_{T-t}(\mathbf{x})$$

= div_x ($\mathbf{f}(\mathbf{x}, T-t) p_{T-t}(\mathbf{x})$) - $\frac{1}{2}g(T-t)^2 \Delta_x p_{T-t}(\mathbf{x})$
= div_x ($\mathbf{f}(\mathbf{x}, T-t) p_{T-t}(\mathbf{x})$) + $\left(-1 + \frac{1}{2}\right)g(T-t)^2 \Delta_x p_{T-t}(\mathbf{x})$

$$\begin{aligned} \partial_t q_t(\mathbf{x}) &= -\partial_t p_{T-t}(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) p_{T-t}(\mathbf{x}) \right) - \frac{1}{2} g(T-t)^2 \Delta_{\mathbf{x}} p_{T-t}(\mathbf{x}) \\ &= \operatorname{div}_{\mathbf{x}} \left(f(\mathbf{x}, T-t) p_{T-t}(\mathbf{x}) \right) + \left(-\frac{1}{2} + 0 \right) g(T-t)^2 \Delta_{\mathbf{x}} p_{T-t}(\mathbf{x}) \end{aligned}$$

$$\partial_t q_t(\mathbf{x}) = -\partial_t p_{T-t}(\mathbf{x})$$

= div_x (f(x, T - t)p_{T-t}(\mathbf{x})) - $\frac{1}{2}g(T - t)^2 \Delta_x p_{T-t}(\mathbf{x})$
= div_x (f(x, T - t)p_{T-t}(\mathbf{x})) + $\left(-\frac{1}{2} + 0\right)g(T - t)^2 \Delta_x p_{T-t}(\mathbf{x})$
= - div_x $\left(\left[-f(\mathbf{x}, T - t) + \frac{1}{2}g(T - t)^2 \nabla_x \log p_{T-t}(\mathbf{x})\right] p_{T-t}(\mathbf{x})\right)$

This is the Fokker-Planck equation associated with the diffusion SDE:

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + \frac{1}{2}g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt.$$

which is an Ordinary Differential Equation (ODE) (no stochastic term) !

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + \frac{1}{2}g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt.$$

This ODE is called a probability flow ODE.

(source: (Song and Ermon, 2020))

- Like with normalizing flows, we get a deterministic mapping between initial noise and generated images.
- We do not simulate the (chaotic) path of the stochastic diffusion **but we** still have the same marginal distribution *p*_t.
- We can use **any ODE solver**, with higher order than Euler scheme.

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + \frac{1}{2}g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt.$$

This ODE is called a probability flow ODE.

(source: (Song and Ermon, 2020))

- From (Karras et al., 2022) "Through extensive tests, we have found Heun's 2nd order method (a.k.a. improved Euler, trapezoidal rule) [...] to provide an excellent tradeoff between truncation error and NFE."
- Requires much less NFE than stochastic samplers (eg around 50 steps instead of 1000), see also Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021a) for a deterministic approach.

The discrete approach for diffusion models: Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models

(source: (Ho et al., 2020))

Denoising Diffusion Probabilistic Models (**DDPM** (Ho et al., 2020)) is a discrete model with a fixed number of $T = 10^3$ steps that performs discrete diffusion.
Denoising Diffusion Probabilistic Models

(source: (Ho et al., 2020))

Denoising Diffusion Probabilistic Models (**DDPM** (Ho et al., 2020)) is a discrete model with a fixed number of $T = 10^3$ steps that performs discrete diffusion.

WARNING: Slight change of notation

Forward model: Discrete variance preserving diffusion

- Distribution of samples: $q(\mathbf{x}_0)$.
- Conditional Gaussian noise: $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 \beta_t} \mathbf{x}_{t-1}, \beta_t I_d)$

$$\mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \sqrt{\beta_t} \mathbf{z}_t$$

where the variance schedule $(\beta_t)_{1 \le t \le T}$ is fixed.

• One step noising $q(\mathbf{x}_t | \mathbf{x}_0)$: With $\alpha_t = 1 - \beta_t$ and $\bar{\alpha} = \text{cumprod}(\alpha)$

 $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \mathbf{z}$ where \mathbf{z} is standard.

- · We consider the diffusion as a fixed stochastic encoder
- We want to learn a stochastic decoder p_θ:

$$p_{\theta}(\mathbf{x}_{0:T}) = \underbrace{p(\mathbf{x}_{T})}_{\text{fixed latent prior}} \prod_{t=1}^{T} \underbrace{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}_{\text{learnable backward transitions}} .$$
with $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) = \mathcal{N}(\mu_{\theta}(\mathbf{x}_{t}, t), \beta_{t}I_{d})$
Compare with: $q(\mathbf{x}_{t}|\mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta_{t}}\mathbf{x}_{t-1}, \beta_{t}I_{d})$

- · Recall same diffusion coefficient, new backward drift to be learnt,...
- Oversimplified version compare to (Ho et al., 2020), there are ways to also learn the variance for each pixel, see (Nichol and Dhariwal, 2021).
- Then we look for training the decoder by maximizing an **ELBO**.

$$\mathbb{E}(-\log p_{\theta}(\mathbf{x}_{0})) \leq \mathbb{E}_{q}\left[-\log\left[\frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right]\right] := L$$

We have

$$L = \mathbb{E}_q \left[-\log p(\mathbf{x}_T) - \sum_{t=1}^T \log \frac{p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q(\mathbf{x}_t|\mathbf{x}_{t-1})} \right]$$

$$\mathbb{E}(-\log p_{\theta}(\mathbf{x}_{0})) \leq \mathbb{E}_{q}\left[-\log\left[\frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right]\right] := L$$

We have

$$L = \mathbb{E}_q \left[-\log p(\mathbf{x}_T) - \sum_{t=1}^T \log \frac{p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q(\mathbf{x}_t|\mathbf{x}_{t-1})} \right]$$

= ... (see (Ho et al., 2020) Appendix A)

$$\mathbb{E}(-\log p_{\theta}(\mathbf{x}_{0})) \leq \mathbb{E}_{q}\left[-\log\left[\frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right]\right] := L$$

We have

$$L = \mathbb{E}_q \left[-\log p(\mathbf{x}_T) - \sum_{t=1}^T \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q(\mathbf{x}_t|\mathbf{x}_{t-1})} \right]$$

= ... (see (Ho et al., 2020) Appendix A)
=
$$\mathbb{E}_{q} \left[D_{\text{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \| p(\mathbf{x}_{T})) + \sum_{t=2}^{T} D_{\text{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \| p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})) - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \right]$$

Computation of $D_{\text{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) || p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))$

By Bayes rule,

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})\frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})} = q(\mathbf{x}_{t}|\mathbf{x}_{t-1})\frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})}$$

Computation shows that this is a normal distribution $\mathcal{N}(\tilde{\mu}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t I_d)$ with

$$\tilde{\mu}(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t \quad \text{and} \quad \tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t.$$

Using the expression of the KL-divergence between Gaussian distributions,

$$D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\|p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})) = \frac{1}{\beta_{t}}\|\mu_{\theta}(\mathbf{x}_{t},t) - \tilde{\mu}(\mathbf{x}_{t},\mathbf{x}_{0})\|^{2} + C$$

$$L_t = \mathbb{E}_q \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t, \boldsymbol{x}_0) \| p_{\theta}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t)) \right] = \frac{1}{\beta_t} \mathbb{E}_q \left[\left\| \mu_{\theta}(\boldsymbol{x}_t, t) - \tilde{\mu}(\boldsymbol{x}_t, \boldsymbol{x}_0) \right\|^2 \right] + C$$

Rewrite everything in function of the added standard noise ε :

$$\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\varepsilon}) = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\varepsilon}$$

Then $\mu_{\theta}(\mathbf{x}_t, t)$ must predict

$$ilde{\mu}(\boldsymbol{x}_t, \boldsymbol{x}_0) = rac{1}{\sqrt{lpha_t}} \left(\boldsymbol{x}_t - rac{eta_t}{\sqrt{1-ar{lpha}_t}} oldsymbol{arepsilon}
ight)$$

If we parameterize

$$\mu_{\theta}(\mathbf{x}_{t},t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\varepsilon}_{\theta}(\mathbf{x}_{t},t) \right)$$

Then the loss is simply

$$\begin{split} L_t &= \frac{\beta_t}{1 - \bar{\alpha}_t} \mathbb{E}_q \left[\left\| \boldsymbol{\varepsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) - \boldsymbol{\varepsilon} \right\|^2 \right] + C \\ &= \frac{\beta_t}{1 - \bar{\alpha}_t} \mathbb{E}_{\boldsymbol{x}_0, \boldsymbol{\varepsilon}} \left[\left\| \boldsymbol{\varepsilon}_{\boldsymbol{\theta}}(\sqrt{\bar{\alpha}_t} \boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\varepsilon}, t) - \boldsymbol{\varepsilon} \right\|^2 \right] + C \end{split}$$

That is we must predict the noise ε added to x_0 (without knowing x_0).

$$\begin{split} L &= \mathbb{E}_{q} \bigg[D_{\text{KL}}(q(\pmb{x}_{T} | \pmb{x}_{0}) \| p(\pmb{x}_{T})) + \sum_{t=2}^{T} D_{\text{KL}}(q(\pmb{x}_{t-1} | \pmb{x}_{t}, \pmb{x}_{0}) \| p_{\theta}(\pmb{x}_{t-1} | \pmb{x}_{t})) - \log p_{\theta}(\pmb{x}_{0} | \pmb{x}_{1}) \bigg] \\ &= \sum_{t=2}^{T} L_{t} + L_{1} + C \end{split}$$

- The *L*₁ term is dealt differently (to account for discretization of *x*₀).
- (Ho et al., 2020) proposes to simplify the loss (no constants):

$$L_{\mathsf{simple}} = \mathbb{E}_{t, \mathbf{x}_{0}, \boldsymbol{\varepsilon}} \left[\left\| \boldsymbol{\varepsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\varepsilon}, t) - \boldsymbol{\varepsilon} \right\|^{2} \right]$$

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}\{1, \dots, T\}$) 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\tilde{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

$$\sigma_t = \sqrt{eta_t}$$
 here.
Bruno Galerne

The Unet $\varepsilon_{\theta}(\mathbf{x}_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

t = 11

 \boldsymbol{x}_0

The Unet $\varepsilon_{\theta}(\mathbf{x}_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

The Unet $\varepsilon_{\theta}(\mathbf{x}_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

The Unet $\varepsilon_{\theta}(\mathbf{x}_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

 \boldsymbol{x}_0

The Unet $\varepsilon_{\theta}(x_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

 \boldsymbol{x}_t

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

The Unet $\varepsilon_{\theta}(x_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$\mathbf{x}_t(\mathbf{x}_0, \mathbf{\varepsilon}) = \sqrt{\overline{lpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{lpha}_t}\mathbf{\varepsilon}.$$

We get the associated estimation of x_0 :

 \boldsymbol{x}_t

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

 \boldsymbol{x}_0

The Unet $\varepsilon_{\theta}(x_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

 \boldsymbol{x}_t

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

The Unet $\varepsilon_{\theta}(x_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

 \boldsymbol{x}_t

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

The Unet $\varepsilon_{\theta}(x_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

 \boldsymbol{x}_t

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

The Unet $\varepsilon_{\theta}(x_t, t)$ is a (residual) denoiser that gives an estimation of the noise ε from

$$oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{arepsilon}) = \sqrt{ar{lpha}_t}oldsymbol{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{arepsilon}.$$

We get the associated estimation of x_0 :

 \boldsymbol{x}_t

$$\hat{\boldsymbol{x}}_0 = \frac{1}{\sqrt{\bar{lpha}_t}} \boldsymbol{x}_t - \sqrt{\frac{1}{\bar{lpha}_t} - 1} \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t).$$

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

(source: (Ho et al., 2020))

t = 999

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla \phi \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla \phi \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla \phi \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla \phi \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla \phi \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla \phi \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

 $\sigma_t = \sqrt{\beta_t}$ here.

(source: (Ho et al., 2020))

 \boldsymbol{x}_t

Continuous and discrete diffusion models

Recap on diffusion models

Diffusion model via SDE: (Song et al., 2021b)

Diffusion model via Denoising Diffusion Probabilistic Models (DDPM): (Ho et al., 2020) Discrete model with a fixed number of $T = 10^3$.

Forward diffusion:

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$$

Backward diffusion: $y_t = x_{T-t}$

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt + g(T-t) d\mathbf{w}_t.$$

· Learn score by denoising score matching:

$$\theta^{\star} = \operatorname{argmin} \mathbb{E}_{t} \left(\lambda_{t} \mathbb{E}_{(\boldsymbol{x}_{0}, \boldsymbol{x}_{t})} \| s_{\theta}(\boldsymbol{x}_{t}, t) - \nabla_{\boldsymbol{x}_{t}} \log p_{t|0}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0}) \|^{2} \right) \quad \text{with } t \sim \operatorname{Unif}([0, T])$$

· Generate samples by SDE discrete scheme (e.g. Euler-Maruyama):

$$\mathbf{Y}_{n-1} = \mathbf{Y}_n - hf(\mathbf{Y}_n, t_n) + hg(t_n)^2 \mathbf{s}_{\theta}(\mathbf{Y}_n, t_n) + g(t_n)\sqrt{h}\mathbf{Z}_n \quad \text{with} \quad \mathbf{Z}_n \sim \mathcal{N}(\mathbf{0}, I_d)$$

· Associated deterministic probability flow:

$$d\mathbf{y}_t = \left[-f(\mathbf{y}_t, T-t) + \frac{1}{2}g(T-t)^2 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t)\right] dt$$

Forward diffusion:

$$q(\mathbf{x}_{0:T}) = \underbrace{q(\mathbf{x}_{0})}_{\text{data distribution}} \prod_{t=1}^{T} \underbrace{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})}_{\text{fixed forward transitions}} \text{ with } q(\mathbf{x}_{t} | \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} I_{d})$$
Backward diffusion: **stochastic decoder** p_{θ} :
$$p_{\theta}(\mathbf{x}_{0:T}) = \underbrace{p(\mathbf{x}_{T})}_{\text{fixed latent prior}} \prod_{t=1}^{T} \underbrace{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}_{\text{learnt backward transitions}} \text{ with } \underbrace{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}) = \mathcal{N}(\mu_{\theta}(\mathbf{x}_{t}, t), \beta_{t} I_{d})}_{\text{Gaussian approximation of } q(\mathbf{x}_{t-1} | \mathbf{x}_{t})}$$

 Learn the score by minimizing the ELBO (like for VAE): This boils down to denoising the diffusion iterations x_t = √α
_tx₀ + √1 - α
_tε:

$$\theta^{\star} = \operatorname{argmin} \sum_{t=1}^{T} \frac{\beta_{t}}{1 - \bar{\alpha}_{t}} \mathbb{E}_{q} \left[\left\| \boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_{t}, t) - \boldsymbol{\varepsilon} \right\|^{2} \right] + C$$

· Sampling through the stochastic decoder with

$$\mu_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\varepsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$$

Posterior mean training: Recall that $\mu_{\theta}(\mathbf{x}_t, t)$ minimizes

$$\mathbb{E}_{q}\left[D_{\mathrm{KL}}\left(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})\|p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t})\right)\right] = \frac{1}{\beta_{t}}\mathbb{E}_{q}\left[\left\|\mu_{\theta}(\boldsymbol{x}_{t},t) - \tilde{\mu}(\boldsymbol{x}_{t},\boldsymbol{x}_{0})\right\|^{2}\right] + C$$

where $\tilde{\mu}(\mathbf{x}_t, \mathbf{x}_0)$ is the mean of $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$. Hence ideally,

$$\mu_{\theta}(\boldsymbol{x}_{t},t) = \mathbb{E}\left[\tilde{\mu}(\boldsymbol{x}_{t},\boldsymbol{x}_{0})|\boldsymbol{x}_{t}\right] = \mathbb{E}\left[\mathbb{E}\left[\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}\right]|\boldsymbol{x}_{t}\right] = \mathbb{E}\left[\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}\right].$$

Noise prediction training: $\varepsilon_{\theta}(\mathbf{x}_t, t)$ minimizes

$$\mathbb{E}_{q}\left[\|oldsymbol{\varepsilon}_{ heta}(oldsymbol{x}_{t},t)-oldsymbol{\varepsilon}\|^{2}
ight]$$

where ε is a function of (x_t, x_0) (since $x_t = \sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \varepsilon$). Hence ideally,

$$\boldsymbol{\varepsilon}_{\theta}(\boldsymbol{x}_t, t) = \mathbb{E}\left[\boldsymbol{\varepsilon} | \boldsymbol{x}_t\right]$$

Score matching training: Ideally,

$$s_{\theta}(\mathbf{x}_{t}, t) = \nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t}) = \mathbb{E} \left[\nabla_{\mathbf{x}_{t}} \log p_{t|0}(\mathbf{x}_{t}|\mathbf{x}_{0})|\mathbf{x}_{t} \right]$$

We derived the formulas for DDPM training without considering the score function... but denoising and score functions are linked by **Tweedie formulas**:

Theorem (Tweedie formulas) If $Y = aX + \sigma Z$ with $Z \sim \mathcal{N}(\mathbf{0}, I_d)$ independent of $X, a > 0, \sigma > 0$, then

Tweedie denoiser: $\mathbb{E}[X|Y] = \frac{1}{a} \left(Y + \sigma^2 \nabla_y \log p_Y(Y)\right)$ Tweedie noise predictor: $\mathbb{E}[Z|Y] = -\sigma \nabla_y \log p_Y(Y)$

DDPM and Tweedie

If
$$Y = aX + \sigma Z$$
, Tweedie denoiser:

$$\mathbb{E}[\boldsymbol{X}|\boldsymbol{Y}] = \frac{1}{a} \left(\boldsymbol{Y} + \sigma^2 \nabla_{\boldsymbol{y}} \log p_{\boldsymbol{Y}}(\boldsymbol{Y}) \right)$$

Tweedie noise predictor:

$$\mathbb{E}[\mathbf{Z}|\mathbf{Y}] = -\sigma \nabla_{\mathbf{y}} \log p_{\mathbf{Y}}(\mathbf{Y})$$

Tweedie for noise prediction: Predict the noise ε from x_t :

$$\boldsymbol{x}_t = \sqrt{\bar{\alpha}_t} \boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\varepsilon} \quad \Rightarrow \quad \left| \mathbb{E} \left[\boldsymbol{\varepsilon} | \boldsymbol{x}_t \right] = -\sqrt{1 - \bar{\alpha}_t} \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) \right|$$

Tweedie for one-step denoising: Predict x_{t-1} from x_t :

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{\beta_{t}} \mathbf{z}_{t} \quad \Rightarrow \quad \mathbb{E}[\mathbf{x}_{t-1} | \mathbf{x}_{t}] = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} + \beta_{t} \nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t})\right)$$
$$\mathbb{E}[\mathbf{x}_{t-1} | \mathbf{x}_{t}] = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \overline{\alpha_{t}}}} \mathbb{E}\left[\boldsymbol{\varepsilon} | \mathbf{x}_{t}\right]\right)$$
DDPM and Tweedie

If
$$Y = aX + \sigma Z$$
, Tweedie denoiser:

$$\mathbb{E}[\boldsymbol{X}|\boldsymbol{Y}] = \frac{1}{a} \left(\boldsymbol{Y} + \sigma^2 \nabla_{\boldsymbol{y}} \log p_{\boldsymbol{Y}}(\boldsymbol{Y}) \right)$$

Tweedie noise predictor:

$$\mathbb{E}[\mathbf{Z}|\mathbf{Y}] = -\sigma \nabla_{\mathbf{y}} \log p_{\mathbf{Y}}(\mathbf{Y})$$

Tweedie for noise prediction: Predict the noise ε from x_t :

$$\boldsymbol{x}_t = \sqrt{\bar{\alpha}_t} \boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\varepsilon} \quad \Rightarrow \quad \mathbb{E}\left[\boldsymbol{\varepsilon} | \boldsymbol{x}_t\right] = -\sqrt{1 - \bar{\alpha}_t} \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t)$$

Tweedie for one-step denoising: Predict x_{t-1} from x_t :

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{\beta_{t}} \mathbf{z}_{t} \quad \Rightarrow \quad \mathbb{E}[\mathbf{x}_{t-1} | \mathbf{x}_{t}] = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} + \beta_{t} \nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t}) \right)$$
$$\mathbb{E}[\mathbf{x}_{t-1} | \mathbf{x}_{t}] = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \mathbb{E}\left[\boldsymbol{\varepsilon} | \mathbf{x}_{t}\right] \right)$$
$$\mu_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\varepsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$$

Remarks: We recover the expression of $\mu_{\theta}(\mathbf{x}_t, t)$ without using the one of

$$ilde{\mu}(\mathbf{x}_t, \mathbf{x}_0) = rac{1}{\sqrt{lpha_t}} \left(\mathbf{x}_t - rac{eta_t}{\sqrt{1 - ar{lpha}_t}} oldsymbol{arepsilon}
ight)$$

To sum up:

- The three trainings strategies are the same (up to weighting constants).
- The only difference between the continuous SDE model and the discrete DDPM model are the time values: $t \in [0, T]$ VS. $t = 1, ..., T = 10^3$.
- **Good news:** We can train a DDPM and use it for a deterministic probability flow ODE (this is what is done by the DDIM model (Song et al., 2021a)).

(source: (Song and Ermon, 2020))

Diffusion models for imaging inverse problems

We present **Diffusion Posterior Sampling (DPS)** for general noisy inverse problems (Chung et al., 2023)

(source: (Chung et al., 2023))

See also (Song et al., 2023), (Kawar et al., 2022) for alternative methods.

Let *A* be a linear operator from an inverse problem (masking operator for inpainting, blur operator for deblurring, subsampling for SR, \dots).

Given some observation

 $y = Ax_{\text{unknown}} + n$

where *n* is some additive white Gaussian noise with variance σ^2 , we would like to sample

$$p_0(\mathbf{x}_0|A\mathbf{x}_0 + \mathbf{n} = \mathbf{y}) = p_0(\mathbf{x}_0|\mathbf{y})$$

to estimate $x_{unknown}$ in accordance with the prior of the generative model.

Conditional sampling

From (Song et al., 2021b), we can consider the SDE for the conditional distribution $p_0(\mathbf{x}_0|\mathbf{y})$:

Backward diffusion for VP-SDE: $y_t = x_{T-t}$

$$d\mathbf{y}_t = \left[\beta_{T-t}\mathbf{y}_t + \beta_{T-t}\nabla_{\mathbf{x}=\mathbf{y}_t}\log p_{T-t}(\mathbf{y}_t)\right]dt + \beta_{T-t}d\mathbf{w}_t.$$

Conditional backward diffusion for VP-SDE: $y_t = x_{T-t}$

$$d\mathbf{y}_t = \left[\beta_{T-t}\mathbf{y}_t + \beta_{T-t}\nabla_{\mathbf{x}=\mathbf{y}_t}\log p_{T-t}(\mathbf{y}_t|\mathbf{y})\right]dt + \beta_{T-t}d\mathbf{w}_t.$$

By Bayes rule:

$$\log p_{T-t}(\mathbf{y}_t|\mathbf{y}) = \log p_{T-t}(\mathbf{y}|\mathbf{y}_t) + \log(p_{T-t}(\mathbf{y}_t)) - \log(p_{T-t}(\mathbf{y}))$$

Thus,

$$\nabla_{\mathbf{x}=\mathbf{y}_{t}} \log p_{T-t}(\mathbf{y}_{t}|\mathbf{y}) = \underbrace{\nabla_{\mathbf{x}=\mathbf{y}_{t}} \log p_{T-t}(\mathbf{y}|\mathbf{y}_{t})}_{\text{intractable}} + \underbrace{\nabla_{\mathbf{x}=\mathbf{y}_{t}} \log(p_{T-t}(\mathbf{y}_{t}))}_{\text{usual score function}}$$

For clarity, let us write the new term with forward notation:

$$\nabla_{\boldsymbol{x}=\boldsymbol{y}_t} \log p_{T-t}(\boldsymbol{y}|\boldsymbol{y}_t) = \nabla_{\boldsymbol{x}=\boldsymbol{x}_t} \log p_t(\boldsymbol{y}|\boldsymbol{x}_t)$$

(Chung et al., 2023) propose the following approximation:

$$\log p_t(\mathbf{y}|\mathbf{x}_t) \approx \log p_t(\mathbf{y}|\mathbf{x}_0 = \hat{\mathbf{x}}_0(\mathbf{x}_t, t))$$

with $\hat{x}_0(x_t, t)$ the estimate of the original image from the network. Since

$$p(\mathbf{y}|\mathbf{x}_0) = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \exp\left(-\frac{\|\mathbf{y} - A\mathbf{x}_0\|^2}{2\sigma^2}\right)$$

we finally approximate

$$\nabla_{\boldsymbol{x}=\boldsymbol{x}_t} \log p_t(\boldsymbol{y}|\boldsymbol{x}_t) = -\frac{1}{2\sigma^2} \nabla_{\boldsymbol{x}_t} \|\boldsymbol{y} - A\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t, t)\|^2$$

- Computing $\nabla_{x_t} || \mathbf{y} A \hat{\mathbf{x}}_0(\mathbf{x}_t, t) \mathbf{x}_0 ||^2$ involves a backpropagation through the Unet.
- One can expect this approximate conditional sampling to be twice as long as the sampling procedure.

Diffusion posterior sampling

Algorithm 1 DPS - Gaussian

$$\begin{array}{l} \text{Require: } N, y, \{\zeta_i\}_{i=1}^{N}, \{\tilde{\sigma}_i\}_{i=1}^{N} \\ 1: \ \boldsymbol{x}_N \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}) \\ 2: \ \text{for } i = N - 1 \ \text{to } 0 \ \text{do} \\ 3: \quad \hat{\boldsymbol{s}} \leftarrow \boldsymbol{s}_{\theta}(\boldsymbol{x}_i, i) \\ 4: \quad \hat{\boldsymbol{x}}_0 \leftarrow \frac{1}{\sqrt{\alpha_i}}(\boldsymbol{x}_i + (1 - \bar{\alpha}_i)\hat{\boldsymbol{s}}) \\ 5: \quad \boldsymbol{z} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}) \\ 6: \quad \boldsymbol{x}'_{i-1} \leftarrow \frac{\sqrt{\alpha_i}(1 - \bar{\alpha}_{i-1})}{1 - \bar{\alpha}_i} \boldsymbol{x}_i + \frac{\sqrt{\bar{\alpha}_{i-1}}\beta_i}{1 - \bar{\alpha}_i} \hat{\boldsymbol{x}}_0 + \tilde{\sigma}_i \boldsymbol{z} \\ 7: \quad \boldsymbol{x}_{i-1} \leftarrow \boldsymbol{x}'_{i-1} - \zeta_i \nabla_{\boldsymbol{x}_i} \| \boldsymbol{y} - \mathcal{A}(\hat{\boldsymbol{x}}_0) \|_2^2 \\ 8: \ \text{end for} \\ 9: \ \text{return } \hat{\boldsymbol{x}}_0 \end{array} \right.$$
(source: (Chung et al., 2023))

• Usual DDPM sampling (notation with $\hat{x}_0(x_t, t)$ instead of $\varepsilon_{\theta}(x_t, t)$.

$$\mu_{\theta}(\mathbf{x}_{t},t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\varepsilon}_{\theta}(\mathbf{x}_{t},t) \right) = \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}} \hat{\mathbf{x}}_{0}(\mathbf{x}_{t},t)$$

- Add a correction term to drive $A\hat{x}_0(x_t, t)$ close to y.
- In practice $\zeta_i = \zeta_t \propto \|\mathbf{y} A\hat{\mathbf{x}}_0(\mathbf{x}_t, t)\|^{-1}$.

Inpainting:

t = 999

Inpainting:

t = 900

Inpainting:

t = 800

Inpainting:

 $x_{unknown}$

y t = 700

Inpainting:

 $x_{unknown}$

y t = 600

Inpainting:

 $x_{unknown}$

y t = 500

Inpainting:

 $x_{unknown}$

t = 400

Inpainting:

 $x_{unknown}$

t = 300

Inpainting:

 $x_{unknown}$

t = 200

Inpainting:

 $x_{unknown}$

t = 100

Inpainting:

t = 0

 $x_{unknown}$

y

- Very good results in terms of perceptual metric (LPIPS).
- · Lack of symmetry.
- · It can sometimes be really bad though!

original xunknown

input y

output x_0

- Very good results in terms of perceptual metric (LPIPS).
- · Lack of symmetry.
- · It can sometimes be really bad though!

original xunknown

input y

output x_0

- Very good results in terms of perceptual metric (LPIPS).
- · Lack of symmetry.
- · It can sometimes be really bad though!

original x_{unknown}

input y

output x_0

• For inpainting it can help to go back and forth in the diffusion process (Lugmayr et al., 2022).

(source: (Lugmayr et al., 2022))

- Super-resolution with a factor $\times 4$.
- · Very good results in terms of perceptual metric (LPIPS).
- · Loss of details (skin defaults, etc.).

original x_{unknown}

input y

output x_0

- Super-resolution with a factor $\times 4$.
- · Very good results in terms of perceptual metric (LPIPS).
- · Loss of details (skin defaults, etc.).

original x_{unknown}

input y

output x_0

- Super-resolution with a factor $\times 4$.
- · Very good results in terms of perceptual metric (LPIPS).
- · Loss of details (skin defaults, etc.).

original x_{unknown}

input y

output x_0

Conditional DDPM for super-resolution

- Super-resolution is often used to improve the quality of generated images.
- One can train a specific DDPM for this task by conditioning the Unet with the low resolution image $\varepsilon_{\theta}(x_t, y_{LR}, t)$.

From (Saharia et al., 2023): "To condition the model on the input y_{LR} , we upsample the low-resolution image to the target resolution using bicubic interpolation. The result is concatenated with x_t along the channel dimension."

Figure 1: Two representative SR3 outputs: (top) $8 \times$ face superresolution at $16 \times 16 \rightarrow 128 \times 128$ pixels (bottom) $4 \times$ natural image super-resolution at $64 \times 64 \rightarrow 256 \times 256$ pixels.

Bruno Galerne

Conditional DDPM for super-resolution

References

References

- Anderson, B. D. (1982). Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326.
- Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2023). Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International Conference on Learning Representations*.
- De Bortoli, V. (2022). Convergence of denoising diffusion models under the manifold hypothesis. *Transactions on Machine Learning Research*. Expert Certification.
- Dhariwal, P. and Nichol, A. Q. (2021). Diffusion models beat GANs on image synthesis. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, *Advances in Neural Information Processing Systems*.
- Haussmann, U. G. and Pardoux, E. (1986). Time reversal of diffusions. *The Annals of Probability*, 14(4):1188 1205.

References ii

- Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, *Advances in Neural Information Processing Systems*, volume 33, pages 6840–6851. Curran Associates, Inc.
- Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space of diffusion-based generative models. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, *Advances in Neural Information Processing Systems*.
- Kawar, B., Elad, M., Ermon, S., and Song, J. (2022). Denoising diffusion restoration models. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, *Advances in Neural Information Processing Systems*, volume 35, pages 23593–23606. Curran Associates, Inc.
- Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

- Kingma, D. P. and Gao, R. (2023). Understanding diffusion objectives as the ELBO with simple data augmentation. In *Thirty-seventh Conference on Neural Information Processing Systems*.
- Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., and Van Gool, L. (2022). Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 11461–11471.
- Nichol, A. Q. and Dhariwal, P. (2021). Improved denoising diffusion probabilistic models. In Meila, M. and Zhang, T., editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 8162–8171. PMLR.
- Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., editors, *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015*, pages 234–241, Cham. Springer International Publishing.

- Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J., and Norouzi, M. (2022). Photorealistic text-to-image diffusion models with deep language understanding.
- Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., and Norouzi, M. (2023). Image super-resolution via iterative refinement. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 45(4):4713–4726.
- Song, J., Meng, C., and Ermon, S. (2021a). Denoising diffusion implicit models. In *International Conference on Learning Representations*.
- Song, J., Vahdat, A., Mardani, M., and Kautz, J. (2023). Pseudoinverse-guided diffusion models for inverse problems. In International Conference on Learning Representations.
- Song, Y. and Ermon, S. (2020). Improved techniques for training score-based generative models. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, *Advances in Neural Information Processing Systems*, volume 33, pages 12438–12448. Curran Associates, Inc.

- Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole,
 B. (2021b). Score-based generative modeling through stochastic
 differential equations. In *9th International Conference on Learning Representations, ICLR 2021.* OpenReview.net.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.