
Generative models for images I

Bruno Galerne
bruno.galerne@univ-orleans.fr

BIP Artificial Intelligence for Science
University of Caen Normandy, Wednesday August 28, 2024

Institut Denis Poisson
Université d’Orléans, Université de Tours, CNRS
Institut universitaire de France (IUF)

Material for the course is here:
https://www.idpoisson.fr/galerne/caen2024/index.html

Bruno Galerne Generative models for images I BIP AI for science 2024 1 / 109

https://www.idpoisson.fr/galerne/caen2024/index.html


Introduction on generative models



Generative models

1. Model and/or learn a distribution p(u) on the space of images.

(source: Charles Deledalle)
The images may represent:

• different instances of the same texture image,
• all images naturally described by a dataset of images,
• any image

2. Generate samples from this distribution.
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Generative models

1. Model and/or learn a distribution p(u) on the space of images.
2. Generate samples from this distribution.

• z is a generic source of randomness, often called the latent variable.
• If G(·; Θ) is known, then p = G(·; Θ)#N (0, In) is the push-forward of the

latent distribution.

The generator G(·; Θ) can be:

• A deterministic function (e.g. convolution operator),
• A neural network with learned parameter,
• An iterative optimization algorithm (gradient descent,...),
• A stochastic sampling algorithm (e.g. MCMC, Langevin diffusion,. . . ).
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Image generation: Gaussian model

• Consider a Gaussian model for the distribution of images x with d pixels:

x ∼ N (x;µ,Σ) =
1√

(2π)d|Σ|
exp

[
−(x− µ)TΣ−1(x− µ)

]

• µ: mean image,
• Σ: covariance matrix of images.

(source: Charles Deledalle)
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Image generation: Gaussian model

• Take a training dataset D of images:

D = {x1, . . . , xN}

=

 , , , , ,

×N

, . . .


• Estimate the mean

µ̂ =
1
N

∑
i

xi =

• Estimate the covariance matrix: Σ̂ = 1
N

∑
i(xi − µ̂)(xi − µ̂)T = ÊΛ̂ÊT

Ê =

 , , , , ,

×N

, . . .

︸ ︷︷ ︸
eigenvectors of Σ̂, i.e., main variation axis
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Image generation: Gaussian model

You now have learned a generative model:
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Image generation: Gaussian model

How to generate samples from N (µ̂, Σ̂)?{
z ∼ N (0, Id) ← Generate random latent variable
x = µ̂+ ÊΛ̂1/2z

The model does not generate realistic faces.

• The Gaussian distribution assumption is too simplistic.

• Each generated image is just a linear random combination of the
eigenvectors (with independence !).

• The generator corresponds to a one layer liner neural network (without
non-linearities).
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Image generation: Gaussian model

• Deep generative modeling consists in learning non-linear generative
models to reproduce complex data such as realistic images.

• It relies on deep neural networks and several solutions have been
proposed since the “Deep learning revolution” (2012).
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Generative models: Examples

Texture synthesis with a stationary Gaussian model: (Galerne et al.,
2011)

• Data: A single texture image h.

• Inferred distribution: p is the stationary Gaussian distribution with similar
mean and covariance statistics.

• z is a Gaussian white noise image (each pixel is iid with standard normal
distribution).

• G is a convolution operator with know parameters Θ.

Data Generated images

Spot h G(z1; Θ) G(z2; Θ) G(z3; Θ)
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Generative models: Examples

Generative Adversarial Networks: (Goodfellow et al., 2014)

• Data: A database of images.
• Inferred distribution: Not explicit, push-forward measure given by

generator.
• z is a Gaussian array in a latent space.
• G(·; Θ) is a (convolutional) neural network with parameters Θ learned

using an adversarial discriminator network D(·; ΘD).

Data Generated images

MNIST: handwritten digits Fake images (100 epochs)

Image size:
28×28 px
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Generative models: Examples

Generative Adversarial Networks: Style GAN (Karras et al., 2019)

Image size:
1024× 1024 px

(source: Karras et al.)
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Denoising diffusion probabilistic models

• Learn to revert a degradation process: Add more and more noise to an
image.

• First similar model (Sohl-Dickstein et al., 2015)

(source: Yang Song)

• Probably the most promising framework these days... but things change
very quickly in this field!
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Diffusion models

(Ho et al., 2020): Denoising Diffusion Probabilistic Models (DDPM): One of
the first paper producing images with reasonable resolution.

Denoising Diffusion Probabilistic Models

Jonathan Ho
UC Berkeley

jonathanho@berkeley.edu

Ajay Jain
UC Berkeley

ajayj@berkeley.edu

Pieter Abbeel
UC Berkeley

pabbeel@cs.berkeley.edu

Abstract

We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic
models and denoising score matching with Langevin dynamics, and our models nat-
urally admit a progressive lossy decompression scheme that can be interpreted as a
generalization of autoregressive decoding. On the unconditional CIFAR10 dataset,
we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
mentation is available at https://github.com/hojonathanho/diffusion.

1 Introduction

Deep generative models of all kinds have recently exhibited high quality samples in a wide variety
of data modalities. Generative adversarial networks (GANs), autoregressive models, flows, and
variational autoencoders (VAEs) have synthesized striking image and audio samples [14, 27, 3,
58, 38, 25, 10, 32, 44, 57, 26, 33, 45], and there have been remarkable advances in energy-based
modeling and score matching that have produced images comparable to those of GANs [11, 55].

Figure 1: Generated samples on CelebA-HQ 256× 256 (left) and unconditional CIFAR10 (right)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.Bruno Galerne Generative models for images I BIP AI for science 2024 13 / 109



Generative models: Motivations

Why generative models are interesting ?

• Generating realistic images is important by itself for entertainment
industry (visual effects, video games, augmented reality...), design,
advertising industry,...

• Good image model leads to good image processing: Generative
models can be used as a parametric space for solving inverse problems.
Example: Inpainting of a portrait image.

• Also generative models opens the way to non trivial image
manipulation using conditional generative models.
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Conditional generative models: Examples

Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets
(Isola et al., 2017)

• GAN conditioned on input image.
• Generator: U-net architecture
• Discriminator: Patch discriminator applied to each patch
• Opens the way for new creative tools

(source: Isola et al.)
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Conditional generative models: Examples

Latest trends using diffusion models: Text to image generation

• DALL·E 1 & 2: CreatingImages from Text (Open AI, January 2021 and
April 2022)

• Imagen, Google research (May 2022)

DALL·E 2 (Open AI) Imagen (Google)
Input: An astronaut riding a
horse in a photorealistic style

Input: A dog looking curiously in
the mirror, seeing a cat.
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Conditional generative models: Examples

Imagen pipeline:

(source: (Saharia et al., 2022))
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Conditional generative models: Examples

In August 2022, StableDiffusion was released:

• Based on the paper (Rombach et al., 2022)
• Open source!

(source: Stable diffusion)Bruno Galerne Generative models for images I BIP AI for science 2024 18 / 109



Diffusion models in 2023

Diffusion models are considered mature models and have been used in a
large variety of frameworks.

• Diffusion models beyond image generation: Text to video, motion
generation, proteins, soft robots,...

• Control of (latent) diffusion models((Ruiz et al., 2023), (Zhang et al.,
2023),...)

• Diffusion models as priors for imaging inverse problems ((Chung
et al., 2023), (Song et al., 2023), lot of applications in medical imaging,
etc.)
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Diffusion models in 2023

DreamBooth: Fine Tuning Text-to-Image Diffusion Models
for Subject-Driven Generation

Nataniel Ruiz∗,1,2 Yuanzhen Li1 Varun Jampani1

Yael Pritch1 Michael Rubinstein1 Kfir Aberman1

1 Google Research 2 Boston University

Figure 1. With just a few images (typically 3-5) of a subject (left), DreamBooth—our AI-powered photo booth—can generate a myriad
of images of the subject in different contexts (right), using the guidance of a text prompt. The results exhibit natural interactions with the
environment, as well as novel articulations and variation in lighting conditions, all while maintaining high fidelity to the key visual features
of the subject.

Abstract

Large text-to-image models achieved a remarkable leap
in the evolution of AI, enabling high-quality and diverse
synthesis of images from a given text prompt. However,
these models lack the ability to mimic the appearance of
subjects in a given reference set and synthesize novel rendi-
tions of them in different contexts. In this work, we present
a new approach for “personalization” of text-to-image dif-
fusion models. Given as input just a few images of a sub-
ject, we fine-tune a pretrained text-to-image model such that
it learns to bind a unique identifier with that specific sub-
ject. Once the subject is embedded in the output domain of
the model, the unique identifier can be used to synthesize
novel photorealistic images of the subject contextualized in
different scenes. By leveraging the semantic prior embed-
ded in the model with a new autogenous class-specific prior
preservation loss, our technique enables synthesizing the
subject in diverse scenes, poses, views and lighting condi-
tions that do not appear in the reference images. We ap-
ply our technique to several previously-unassailable tasks,
including subject recontextualization, text-guided view syn-
thesis, and artistic rendering, all while preserving the sub-
ject’s key features. We also provide a new dataset and eval-
uation protocol for this new task of subject-driven genera-
tion. Project page: https://dreambooth.github.io/

*This research was performed while Nataniel Ruiz was at Google.

1. Introduction
Can you imagine your own dog traveling around the

world, or your favorite bag displayed in the most exclusive
showroom in Paris? What about your parrot being the main
character of an illustrated storybook? Rendering such imag-
inary scenes is a challenging task that requires synthesizing
instances of specific subjects (e.g., objects, animals) in new
contexts such that they naturally and seamlessly blend into
the scene.

Recently developed large text-to-image models have
shown unprecedented capabilities, by enabling high-quality
and diverse synthesis of images based on a text prompt writ-
ten in natural language [51,58]. One of the main advantages
of such models is the strong semantic prior learned from a
large collection of image-caption pairs. Such a prior learns,
for instance, to bind the word “dog” with various instances
of dogs that can appear in different poses and contexts in
an image. While the synthesis capabilities of these models
are unprecedented, they lack the ability to mimic the ap-
pearance of subjects in a given reference set, and synthesize
novel renditions of the same subjects in different contexts.
The main reason is that the expressiveness of their output
domain is limited; even the most detailed textual description
of an object may yield instances with different appearances.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22500

(source: (Ruiz et al., 2023))
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Diffusion models in 2023

Adding Conditional Control to Text-to-Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala
Stanford University

{lvmin, anyirao, maneesh}@cs.stanford.edu

Input Canny edge Default “masterpiece of fairy tale, giant deer, golden antlers”

Input human pose Default “chef in kitchen”

“…, quaint city Galic”

“Lincoln statue”

Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges
(top), human pose (bottom), etc., to control the image generation of large pretrained diffusion models. The default results use
the prompt “a high-quality, detailed, and professional image”. Users can optionally give prompts like the “chef in kitchen”.

Abstract

We present ControlNet, a neural network architecture to
add spatial conditioning controls to large, pretrained text-
to-image diffusion models. ControlNet locks the production-
ready large diffusion models, and reuses their deep and ro-
bust encoding layers pretrained with billions of images as a
strong backbone to learn a diverse set of conditional controls.
The neural architecture is connected with “zero convolutions”
(zero-initialized convolution layers) that progressively grow
the parameters from zero and ensure that no harmful noise
could affect the finetuning. We test various conditioning con-
trols, e.g., edges, depth, segmentation, human pose, etc., with
Stable Diffusion, using single or multiple conditions, with
or without prompts. We show that the training of Control-
Nets is robust with small (<50k) and large (>1m) datasets.
Extensive results show that ControlNet may facilitate wider
applications to control image diffusion models.

1. Introduction
Many of us have experienced flashes of visual inspiration

that we wish to capture in a unique image. With the advent
of text-to-image diffusion models [54, 61, 71], we can now
create visually stunning images by typing in a text prompt.
Yet, text-to-image models are limited in the control they
provide over the spatial composition of the image; precisely
expressing complex layouts, poses, shapes and forms can be
difficult via text prompts alone. Generating an image that
accurately matches our mental imagery often requires nu-
merous trial-and-error cycles of editing a prompt, inspecting
the resulting images and then re-editing the prompt.

Can we enable finer grained spatial control by letting
users provide additional images that directly specify their
desired image composition? In computer vision and machine
learning, these additional images (e.g., edge maps, human
pose skeletons, segmentation maps, depth, normals, etc.)
are often treated as conditioning on the image generation
process. Image-to-image translation models [34, 97] learn

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3836

(source: ControlNet (Zhang et al., 2023))
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Diffusion models in 2023

Diffusion posterior sampling for general noisy inverse problems (Chung et al.,
2023)

Figure 1: Solving noisy linear, and nonlinear inverse problems with diffusion models. Our recon-
struction results (right) from the measurements (left) are shown.

In this work, we devise a method to circumvent the intractability of posterior sampling by diffusion
models via a novel approximation, which can be generally applied to noisy inverse problems.
Specifically, we show that our method can efficiently handle both the Gaussian and the Poisson
measurement noise. Also, our framework easily extends to any nonlinear inverse problems, when
the gradients can be obtained through automatic differentiation. We further reveal that a recently
proposed method of manifold constrained gradients (MCG) (Chung et al., 2022a) is a special case
of the proposed method when the measurement is noiseless. With a geometric interpretation, we
further show that the proposed method is more likely to yield desirable sample paths in noisy setting
than the previous approach (Chung et al., 2022a). In addition, the proposed method fully runs on
the image domain rather than the spectral domain, thereby avoiding the computation of SVD for
efficient implementation. With extensive experiments including various inverse problems—inpainting,
super-resolution, (Gaussian/motion/non-uniform) deblurring, Fourier phase retrieval—we show that
our method serves as a general framework for solving general noisy inverse problems with superior
quality (Representative results shown in Fig. 1).

2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

Diffusion models define the generative process as the reverse of the noising process. Specifically,
Song et al. (2021b) defines the Itô stochastic differential equation (SDE) for the data noising process
(i.e. forward SDE) x(t), t ∈ [0, T ], x(t) ∈ Rd ∀t in the following form1

dx = −β(t)
2

xdt+
√
β(t)dw, (1)

where β(t) : R→ R > 0 is the noise schedule of the process, typically taken to be monotonically
increasing linear function of t (Ho et al., 2020), and w is the standard d−dimensional Wiener process.
The data distribution is defined when t = 0, i.e. x(0) ∼ pdata, and a simple, tractable distribution (e.g.
isotropic Gaussian) is achieved when t = T , i.e. x(T ) ∼ N (0, I).

Our aim is to recover the data generating distribution starting from the tractable distribution, which
can be achieved by writing down the corresponding reverse SDE of (1) (Anderson, 1982):

dx =

[
−β(t)

2
x− β(t)∇xt

log pt(xt)

]
dt+

√
β(t)dw̄, (2)

1In this work, we consider the variance preserving (VP) form of the SDE (Song et al., 2021b) which is
equivalent to Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020).

2

(source: (Chung et al., 2023))
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Generative models for images: Plan of the course

1. Introduction to generative models for images (done)

2. Variational AutoEncoders (VAEs)

3. Generative Adversarial Networks (GANs)

4. Diffusion models

5. Application of generative models for imaging inverse problems
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Variational autoencoders (VAE)



Variational autoencoders (VAE)

Main references:

1. Original paper: (Kingma and Welling, 2014): “Auto-Encoding Variational
Bayes”

2. Short book by the same authors: (Kingma and Welling, 2019): “An
Introduction to Variational Autoencoders”. Freely available on ArXiv.

3. Recent book: (Tomczak, 2022): “Deep Generative Modeling” with
practice sessions in the official GitHub repository.
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Autoencoders

But first what is an autoencoder? “An autoencoder is a neural network that
is trained to attempt to copy its input to its output.” (Goodfellow et al., 2016)

The network has a bottleneck hidden layer of lower dimension than the data.

encoder f decoder g
code h = f (x)

input x output x̂ = g(f (x))

The network is trained by minizing a reconstruction error over the dataset
D = {x(i), i = 1, . . . ,N} ⊂ Rd

MSE =
1
N

∑
x∈D

∥g(f (x))− x∥2.
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Autoencoders

input x output x̂ = g(f (x))encoder f decoder g

code h = f (x)

• Motivation: The encoder output h = f (x) ∈ Rk should produce an
adapted compact representation of the sample x within the dataset D.

• If both f and g are linear, the best solution is the PCA projection using
the first k principal components.

• One hopes to learn the most salient features of the distribution.
• If f and g have a lot of capacity, then trivial code can be learnt by storing

the dataset D = {x(i), i = 1, . . . ,N}:

f (x(i)) = i and g(i) = x(i)

• Trade-off between the parameters of f and g, dimensions d > k etc.
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Autoencoders

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

Input test images: Output:

2D latent code of 256 test images:

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

Bruno Galerne Generative models for images I BIP AI for science 2024 27 / 109



Autoencoders

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

2D latent code of 256 test images:

40 20 0 20 40 60 80 100 120
80

60

40

20

0

20
0
1
2
3
4
5
6
7
8
9

Bruno Galerne Generative models for images I BIP AI for science 2024 27 / 109



Deep latent variable models

• In terms of architecture, variational autoencoders (VAE) are similar to
autoencoders.

• The difference lies in the modeling and training of the network: VAEs
learn (non linear) deep latent variable models.

What is a latent variable model? Back to probabilistic modeling...

• We are given an input dataset

D = {x(i), i = 1, . . . ,N} ⊂ Rd

• We assume that the dataset D consists of distinct, independent
measurements from the same unknown underlying process, whose true
(probability) distribution P∗ is unknown.

Remark: Identification of distribution and density

• p∗ : Rd → R+ will refer to the density with respect to (wrt) the Lebesgue
measure of the unknown distribution P∗.

• Depending on context it can also be a discrete distribution (e.g.
binarized images in {0, 1}d)... Be careful!

• That said P∗ will be identified with p∗(x) from now on.
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Deep latent variable models

Framework:

• We are given an input dataset D = {x(i), i = 1, . . . ,N} ⊂ Rd with iid
samples from an unknown distribution p∗(x).

Probabilistic modeling:

• Propose a parametric model pθ(x) with parameters θ

• Learn good parameters θ so that pθ(x) is close to p∗(x): This is
generally done by maximizing the dataset log-likelihood:

max
θ

log pθ(D) where log pθ(D) = 1
|D|

∑
x∈D

log pθ(x).

• Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on − log pθ(D)) providing ∇θ log pθ(x) is
tractable: For a random minibatchM⊂ D having cardinal M = |M|,

1
M

∑
x∈M

∇θ log pθ(x) is an unbiased estimator of ∇θ log pθ(D).

• ≃ means “is an unbiased estimator of”
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• Propose a parametric model pθ(x) with parameters θ

• Learn good parameters θ so that pθ(x) is close to p∗(x): This is
generally done by maximizing the dataset log-likelihood:

max
θ

log pθ(D) where log pθ(D) = 1
|D|

∑
x∈D

log pθ(x).

• Maximazing the likelihood can be achieved by minibatch stochastic
gradient descent (SGD) (on − log pθ(D)) providing ∇θ log pθ(x) is
tractable: For a random minibatchM⊂ D having cardinal M = |M|,

1
|M|

∑
x∈M

∇θ log pθ(x)≃∇θ log pθ(D).

• ≃ means “is an unbiased estimator of”
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Deep latent variable models

Latent variables:

• Latent variables are variables that are part of the model, but which we
don’t observe, and are therefore not part of the dataset. They are hidden
factors.
Examples for portraits: Age of the person, hair color,...

• One generally has a factorized joint distribution pθ(x, z) = pθ(z)pθ(x|z)
that corresponds to a natural hierarchical generative process:

1. Sample z ∼ pθ(z) (generate latent variables = hidden factors)
2. Sample x ∼ pθ(x|z) (conditional generator given latent variables)

Vocabulary for latent variable models:

• pθ(x, z): latent variable model

• pθ(z) =
∫
Rd

pθ(x, z)dx: prior distribution over z.

• pθ(x) =
∫
Rk

pθ(x, z)dz: marginal distribution or model evidence

• pθ(x|z): conditional distribution of x given z
• pθ(z|x): posterior distribution of z given x
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Deep latent variable models

Latent variable models: Example of Gaussian mixture models

• z ∼ pθ(z) is some discrete variable with K values with distribution
π = (π1, . . . , πK) ∈ RK :

pθ(z = j) = πj, j = 1, . . . ,K.

• For each j ∈ {1, . . . ,K} the conditional distributions
pθ(x|z = j) = N (x;µj,Σj) is Gaussian with mean µj and covariance
matrix Σj.

• The model parameters are θ = {π, (µ1,Σ1), . . . , (µK ,ΣK)}.
• The marginal distribution is a Gaussian mixture model (GMM):

pθ(x) =
K∑

j=1

πjN (x;µj,Σj)

• The parameters can be learned from data using an EM
(Expectation-Maximization) algorithm.

• Interest of latent models: Rich and flexible marginal distribution with only
simple intermediate distributions.
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Deep latent variable models

Deep latent variable model: A latent variable model pθ(x, z) is called deep
when the parameters of the distribution are encoded with a (deep) neural
network.

• Example: Given z ∼ pθ(z), some neural network f outputs
f (z) = (µ(z),Σ(z)) and one sets pθ(x|z) = N (x;µ(z),Σ(z)). Given that z
has a density, this generalizes GMM with a mixture of an infinite number
of Gaussians, but also imposes regularity between the parameters since
the neural network f is continuous.

Intractability of marginal distribution: In such a setting, computing the
marginal

pθ(x) =
∫
Rk

pθ(x, z)dz =
∫
Rk

pθ(x|z)pθ(z)dz

is intractable and thus we cannot compute its value nor its gradient wrt θ for
maximum log-likelihood estimation.

Intractability of inference: Inference refers to sampling/recovering the latent
variable z of a given sample x, that is sampling the posterior pθ(z|x). This is

also generally intractable since pθ(z|x) = pθ(x, z)
pθ(x)

.
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Variational autoencoders (VAE)

(Kingma and Welling, 2019): “The framework of variational autoencoders
(VAEs) provides a computationally efficient way for optimizing deep latent
variable models jointly with a corresponding inference model using SGD.”
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Variational autoencoders (VAE)

From (Kingma and Welling, 2019, p .20):

• A VAE learns stochastic mappings
between an observed x-space, whose
empirical distribution is typically
complicated, and a latent z-space,
whose distribution can be relatively
simple.

• The generative model learns a joint
distribution pθ(x, z) factorized as
pθ(x, z) = pθ(z)pθ(x|z), with a prior
distribution over latent space pθ(z),
and a stochastic decoder pθ(x|z).

• The stochastic encoder qφ(z|x), also
called inference model, approximates
the true but intractable posterior
pθ(z|x) of the generative model.

2.2. Evidence Lower Bound (ELBO) 17

x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

Figure 2.1: A VAE learns stochastic mappings between an observed x-space, whose
empirical distribution qD(x) is typically complicated, and a latent z-space, whose
distribution can be relatively simple (such as spherical, as in this figure). The
generative model learns a joint distribution pθ(x, z) that is often (but not always)
factorized as pθ(x, z) = pθ(z)pθ(x|z), with a prior distribution over latent space
pθ(z), and a stochastic decoder pθ(x|z). The stochastic encoder qφ(z|x), also called
inference model, approximates the true but intractable posterior pθ(z|x) of the
generative model.
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Variational autoencoders (VAE)

Autoencoders:

input x output x̂ = g(f (x))encoder f decoder g

code h = f (x)

Variational autoencoders: NN outputs encode probability distributions

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)
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Variational autoencoders (VAE)

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

Stochastic encoder:

• The encoder qφ(z|x) is understood as a parametric approximation of the
true posterior pθ(z|x).

• To achieve that the parameters φ must be trained along with the
parameters θ of the generative model.

• Example of stochastic encoder: A neural network outputs two vectors
(µ(x), logσ(x)) = NNφ(x) and one sets:

qφ(z|x) = N (z;µ(x), diag(σ2(x))).

Next challenge: Learning!

• How can we learn the parameters θ (and φ) that maximize the
log-likelihood

log pθ(D) = 1
|D|

∑
x∈D

log pθ(x) where pθ(x) =
∫
Rk

pθ(x, z)dz

is the (untractable) marginal distribution (or model evidence)?
• In fact we will only maximize a lower bound of each log pθ(x) called the

evidence lower bound (ELBO).
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Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

Let qφ(z|x) be any parametric family of distributions that are positive (i.e.
charge every non negligible sets like non degenerate Gaussian distributions).

For all x ∈ Rd,

log pθ(x) = Ez∼qφ(z|x) [log pθ(x)]

= Ez∼qφ(z|x)

[
log

[
pθ(x, z)
pθ(z|x)

]]
= Ez∼qφ(z|x)

[
log

[
pθ(x, z)
pθ(z|x)

qφ(z|x)
qφ(z|x)

]]
= Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
+ Ez∼qφ(z|x)

[
log

[
qφ(z|x)
pθ(z|x)

]]
︸ ︷︷ ︸

DKL(qφ(z|x)∥pθ(z|x))≥0

≥ Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
:= Lθ,φ(x) (ELBO)
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Kullback–Leibler divergence

General case: Given two distributions P and Q on some measurable space
X , one defines the Kullback–Leibler divergence of P wrt Q by, ,

DKL(P ∥ Q) =


∫
X log

(
P(dx)
Q(dx)

)
P(dx) if P is absolutely continuous wrt Q

+∞ otherwise

where P(dx)
Q(dx) is the Radon–Nikodym derivative of P wrt Q.

Case with density wrt the Lebesgue measure: If X = Rd and P and Q
have densities p(x) and q(x) then

DKL(p(x) ∥ q(x)) =
∫
Rd

log

(
p(x)
q(x)

)
p(x)dx = Ex∼p(x)

[
log

(
p(x)
q(x)

)]
.

Main properties:

• DKL(P ∥ Q) ≥ 0 and DKL(P ∥ Q) = 0⇐⇒ P = Q

• DKL(P ∥ Q) ̸= DKL(Q ∥ P)

• lim
n→+∞

DKL(Pn ∥ Q) = 0 implies convergence in distribution (and even in

total variation).
• DKL(P ∥ Q) is convex in (P,Q).
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Evidence lower bound (ELBO)

Evidence lower bound (ELBO):

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= log pθ(x)−DKL(qφ(z|x) ∥ pθ(z|x)) ≤ log pθ(x).

• The KL-divergence DKL(qφ(z|x) ∥ pθ(z|x)) gives the tightness of the
lower bound: the better the approximation of the true posterior is the
tighter is the lower bound.

• Main contribution of VAE (Kingma and Welling, 2014):
Use the ELBO Lθ,φ(x) as a training loss for improving the
log-likelihood.

• To use Lθ,φ(x) as a training loss using SGD we need to compute
unbiased estimators of both

∇θLθ,φ(x) and ∇φLθ,φ(x).
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Evidence lower bound (ELBO)

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]

Unbiased estimator for ∇θLθ,φ(x):

∇θLθ,φ(x) = Ez∼qφ(z|x) [∇θ log pθ(x, z)] ≃ ∇θ log pθ(x, z(1)) where z(1) ∼ qφ(z|x).

Recall that pθ(x, z) = pθ(z)pθ(x|z) is a known parametric function (involving
the stochastic decoder) that can be (automatically) differentiated wrt θ.

Unbiased estimator for ∇φLθ,φ(x):

• Not as straightforward since the ELBO expectation is taken with respect
to qφ(z|x) that depends on φ!
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Evidence lower bound (ELBO)

Reparameterization trick:

• Hypothesis: There is a fixed distribution p(ε) and a deterministic function
g such that for any given x and φ

ε ∼ p(ε) =⇒ z = g(ε,φ, x) ∼ qφ(z|x).

• The function g decouples the randomness source and the parameters for
simulating the approximate posterior qφ(z|x).

Example of Gaussian stochastic encoder:

• qφ(z|x) = N (z;µ(x), diag(σ2(x))) with (µ(x), logσ(x)) = NNφ(x).

• With p(ε) = N (ε; 0, I) the standard Gaussian distribution:

z = µ(x) + σ(x)⊙ ε ∼ N (z;µ(x), diag(σ2(x))).
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Evidence lower bound (ELBO)

Reparameterization trick:

• Hypothesis: There is a fixed distribution p(ε) and a deterministic function
g such that for any given x and φ

ε ∼ p(ε) =⇒ z = g(ε,φ, x) ∼ qφ(z|x).

Change of variable in the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x) [log pθ(x, z)]− Ez∼qφ(z|x) [log qφ(z|x)]
= Eε∼p(ε) [log pθ(x, g(ε,φ, x))]− Eε∼p(ε) [log qφ(g(ε,φ, x)|x)]

Unbiased estimator for ∇φLθ,φ(x):

• Draw ε(1) ∼ p(ε) and (automatically) differentiate wrt φ the expression

log pθ(x, g(ε(1),φ, x))− log qφ(g(ε(1),φ, x)|x)

• Same for differentiating wrt θ.
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VAE training

VAE Training algorithm:

1. Draw a minibatchM = {x(i1), . . . , x(iM)} of M samples from
D = {x(i), i = 1, . . . ,N}

2. Draw M random εm ∼ p(ε), m = 1, . . . ,M.
3. Compute zm = g(ε(m),φ, x(im)) ∼ qφ(z|x(im)) using the encoder network

parameters.
4. Apply the decoder network to each latent variable zm and return

L̃θ,φ(M) =
1
M

M∑
m=1

log pθ(x(im), g(ε(m),φ, x(im)))−log qφ(g(ε(m),φ, x(im))|x(im))

5. Compute ∇θL̃θ,φ(M) and ∇φL̃θ,φ(M) by automatic differentiation and
update the parameters θ and φ by an SGD step.

Remark: L̃θ,φ(M) is an unbiased estimator of the training loss

1
N

N∑
i=1

Lθ,φ(x(i)) =
1
N

N∑
i=1

(
Ez∼qφ(z|x(i))

[
log pθ(x(i), z)

]
− Ez∼qφ(z|x(i))

[
log qφ(z|x(i))

])
where we have double stochasticity from sampling the batchM and
approximating each expectation with a single realization.
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VAE: Gaussian encoder and decoder

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

Example of Gaussian stochastic encoder and decoder:

• Gaussian stochastic encoder: qφ(z|x) = N (z;µ(x), diag(σ2(x))) with
(µ(x), logσ(x)) = NNφ(x).

• Gaussian prior : pθ(z) = N (z; 0, I) the prior is fixed without parameter
to learn.

• Gaussian stochastic decoder: pθ(x|z) = N (z;µdec(z), s2I) with
µdec(z) = NNθ(z): Fixed isotropic Gaussian around a decoded mean
µ(z). The noise level s > 0 should be fixed according to the dataset
range value.

• The architectures for NNφ and NNθ are generally chosen symmetric.
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VAE: Gaussian encoder and decoder

Density of a Gaussian distribution: For x ∈ Rd,

N (x;µ,Σ) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
logN (x;µ,Σ) = −d

2
log(2π)− 1

2
log(|Σ|)− 1

2
(x− µ)TΣ−1(x− µ)

Expression of the ELBO loss: With z = g(ε,φ, x) = µ(x) + σ(x)⊙ ε,

L̃θ,φ(x) = log pθ(x, z)− log qφ(z|x)
= log pθ(z) + log pθ(x|z)− log qφ(z|x)

= − k
2
log(2π)− 1

2
∥z∥2

− d
2
log(2π)− 1

2
log s2d − 1

2s2 ∥x− µdec(z)∥2

+
k
2
log(2π) +

1
2

k∑
j=1

log σ2
j (x) +

1
2
(z− µ(x))2 ⊘ σ2(x)

= − 1
2s2 ∥x− µdec(z)∥2︸ ︷︷ ︸

reconstruction error

− 1
2
∥z∥2 +

k∑
j=1

log σj(x) +
1
2
(z− µ(x))2 ⊘ σ2(x)

︸ ︷︷ ︸
latent code regularization

+C
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VAE: ELBO and Kullback–Leibler divergence

The “latent code regularization” is better seen by refactorizing the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x)

[
log

[
pθ(x, z)
qφ(z|x)

]]
= Ez∼qφ(z|x)

[
log

[
pθ(z)pθ(x|z)

qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x|z)] + Ez∼qφ(z|x)

[
log

[
pθ(z)

qφ(z|x)

]]
= Ez∼qφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

reconstruction error

−DKL(qφ(z|x) ∥ pθ(z))︸ ︷︷ ︸
latent code regularization

• The latent code regularization enforces all the approximate posterior to
be close to the prior.

• But to have a small reconstruction error, the support of the distributions
qφ(z|x) have to be well-separated.

• This results in an encoder-decoder with well-spread latent code
distribution.
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VAE: ELBO and Kullback–Leibler divergence

Refactorizing the ELBO:

Lθ,φ(x) = Ez∼qφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
reconstruction error

−DKL(qφ(z|x) ∥ pθ(z))︸ ︷︷ ︸
latent code regularization

Exercise: Example of Gaussian stochastic encoder

• Gaussian stochastic encoder: qφ(z|x) = N (z;µ(x),diag(σ2(x))) with
(µ(x), logσ(x)) = NNφ(x).

• Gaussian prior : pθ(z) = N (z; 0, I) the prior is fixed without parameter
to learn.

1. Compute the closed form formula for the KL-divergence:

DKL(qφ(z|x) ∥ pθ(z))

2. Use this expression to propose another unbiased estimator L̃θ,φ(x) of
the ELBO without MC estimate for the KL term.
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VAE: Other examples of stochastic decoders

input x sample x ∼ pθ(x|z)encoder qφ(z|·)

prob.
dist.

qφ(z|x) decoder pθ(x|·)

prob.
dist.

pθ(x|z)

latent
variable

z ∼ qφ(z|x)

• Stochastic decoder for binary data: With x ∈ {0, 1}d, one sets

pθ(x|z) = BernoulliVector(x; p(z)) where p(z) = NNθ(z).

Then, the likelihood is the binary cross-entropy:

log pθ(x|z) =
d∑
ℓ=1

xℓ log pℓ + (1− xℓ) log(1− pℓ)

• Stochastic decoder for discrete data: Same approach with a NN that
outputs a softmax array with the number of classes and cross-entropy...

• Here pixels are supposed independent resulting in noisy samples from
pθ(x|z)... But one often outputs the expectation for visualization!
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VAE: Results

From the original paper: (Kingma and Welling, 2014): “Auto-Encoding Variational

Bayes” (AEVB)

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pθ(x|z) with the learned parameters θ.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of −DKL(qφ(z)||pθ(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior pθ(z) = N (0, I) and the
posterior approximation qφ(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and σ
denote the variational mean and s.d. evaluated at datapoint i, and let µj and σj simply denote the
j-th element of these vectors. Then:

∫
qθ(z) log p(z) dz =

∫
N (z;µ,σ2) logN (z;0, I) dz

= −J
2
log(2π)− 1

2

J∑

j=1

(µ2
j + σ2

j )

10
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VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
• The code dimension is k = 2 for visualization (higher k values would

give better results).

Input test images: Output:

AE codes
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The prior distribution enforces regularity/tightness of the VAE latent code
distribution.
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VAE: Results

Numerical illustration with a subset of MNIST (1000 images only):

• Encoders and decoders are MLP trained for 1000 epochs.
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Variational Autoencoders

VAE had a huge impact on the community (24 516 citations on Google
Scholar!).

Lot of things can be improved (Kingma and Welling, 2019; Tomczak, 2022):

• Use more complex priors pθ(z) and decoder models qφ(z|x), eg using
normalizing flows (discussed later today).

• Use a hierarchy of latent variables z1, z2, etc.

Issues regarding VAE (Kingma and Welling, 2019; Tomczak, 2022):

• Posterior collapse: All approximate posteriors qφ(z|x) are stucked to the
prior to minimize the KL term of the ELBO.

• Hole problem: Some subset of the latent space is not populated by
encoded data.

• Blurriness of generative model: produced images tend to be blurry as for
standard autoencoders...

Pros of VAE:

• Very quick to sample once trained.
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VAE: SOTA resutls

(Vahdat and Kautz, 2020): “NVAE: A Deep Hierarchical Variational
Autoencoder”

• VAE can be made competitive using well-designed architectures.

NVAE: A Deep Hierarchical Variational Autoencoder

Arash Vahdat, Jan Kautz
NVIDIA

{avahdat, jkautz}@nvidia.com

Abstract

Normalizing flows, autoregressive models, variational autoencoders (VAEs), and
deep energy-based models are among competing likelihood-based frameworks
for deep generative learning. Among them, VAEs have the advantage of fast and
tractable sampling and easy-to-access encoding networks. However, they are cur-
rently outperformed by other models such as normalizing flows and autoregressive
models. While the majority of the research in VAEs is focused on the statistical
challenges, we explore the orthogonal direction of carefully designing neural archi-
tectures for hierarchical VAEs. We propose Nouveau VAE (NVAE), a deep hierar-
chical VAE built for image generation using depth-wise separable convolutions and
batch normalization. NVAE is equipped with a residual parameterization of Normal
distributions and its training is stabilized by spectral regularization. We show that
NVAE achieves state-of-the-art results among non-autoregressive likelihood-based
models on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ datasets and it
provides a strong baseline on FFHQ. For example, on CIFAR-10, NVAE pushes the
state-of-the-art from 2.98 to 2.91 bits per dimension, and it produces high-quality
images on CelebA HQ as shown in Fig. 1. To the best of our knowledge, NVAE is
the first successful VAE applied to natural images as large as 256×256 pixels. The
source code is available at https://github.com/NVlabs/NVAE.

1 Introduction

The majority of the research efforts on improving VAEs [1, 2] is dedicated to the statistical challenges,
such as reducing the gap between approximate and true posterior distributions [3, 4, 5, 6, 7, 8, 9, 10],
formulating tighter bounds [11, 12, 13, 14], reducing the gradient noise [15, 16], extending VAEs to
discrete variables [17, 18, 19, 20, 21, 22, 23], or tackling posterior collapse [24, 25, 26, 27]. The role
of neural network architectures for VAEs is somewhat overlooked, as most previous work borrows
the architectures from classification tasks.

Figure 1: 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28].

However, VAEs can benefit from designing special network architectures as they have fundamentally
different requirements. First, VAEs maximize the mutual information between the input and latent
variables [29, 30], requiring the networks to retain the information content of the input data as much

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

See also Very Deep VAE (Child, 2021).
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NVAE: Architecture details

LVAE(x) := Eq(z|x) [log p(x|z)]−DKL(q(z1|x)|p(z1))−
L∑

l=2

Eq(z<l|x) [DKL(q(zl|x, z<l)|p(zl|z<l))]

where q(z<l|x) =
∏l−1

i=1 q(zi|x, z<i) is the approximate posterior up to the
(l− 1)th group.

• Hierarchical architecture with
shared encoder/decoder
(Kingma et al., 2016).

• Complex cells using residual
network (batch normalization,
swish activation, ...).

• Conditioning based on shift in
Gaussian distribution.
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NVAE: Architecture details

• Hierarchical prior: p(zl|z<l) = N
(
µ(z<l), diagσ

2(z<l)
)

is a normal
distribution for the ith variable in zl in prior.

• Residual distribution that parameterizes q(z|x) relative to p(z):

q(zl|z<l, x) = N
(
µ(z<l) + ∆µ(z<l, x),diag

(
σ2(z<l) ·∆σ2(z<l, x)

))
where ∆µ(z<l, x) and ∆σ2(z<l, x) are the relative location and scale of
the approximate posterior with respect to the prior.

• ∆µ(z<l, x) and ∆σ2(z<l, x)
depends on features xl with the
same level

• Favors natural level of details
hierarchy.
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NVAE: Results of toy implementation

Samples of 64×64 portraits

Sample all levels
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NVAE: Results of toy implementation

Samples of 64×64 portraits

Fixed z1
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NVAE: Results of toy implementation

Samples of 64×64 portraits

Fixed z1 and z2
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VAE in practice

Practice session based on this hierarchical architecture (see my MVA
course).

Other ressources:

• Jakub Tomczak’s implementation:
https://github.com/jmtomczak/intro_dgm/blob/main/

vaes/vae_example.ipynb

... but it does not use the closed-form formula

DKL(qφ(z|x) ∥ pθ(z)) =
1
2

k∑
j=1

(
µj(x)2 + σj(x)2 − 1− log σj(x)2

)
.

• Simple MLP for MNIST (PyTorch examples):
https://github.com/pytorch/examples/tree/main/vae
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Generative Adversarial Networks
(GAN)



Generative Adversarial Networks (GAN)

Main references:

1. Original paper: (Goodfellow et al., 2014)

2. NIPS 2016 tutorial: (Goodfellow, 2017)
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Generative Adversarial Networks (GAN)

Image generation – Beyond Gaussian models
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Generative Adversarial Networks (GAN)

• Goal: design a complex model with high capacity able to map latent
random noise vectors z ∈ Rk to a realistic image x ∈ Rd.

• Idea: Take a deep neural network

• What about the loss? Measure if the generated image is
photo-realistic.
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Generative Adversarial Networks (GAN)

Define a loss measuring how much you can fool a classifier that has
learned to distinguish between real and fake images.

• Discriminator network: Try to distinguish between real and fake
images.

• Generator network: Fool the discriminator by generating realistic
images.
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Recap on binary classification

• Given a labeled dataset

D = {(x(i), y(i)), i = 1, . . . ,N} ⊂ Rd × {0, 1}
with binary labels y(i) ∈ {0, 1} that corresponds to two classes C0 and
C1.

• A parametric classifier fθ : Rd → [0, 1] outputs a probability such that

p = fθ(x) = P(x ∈ C1) and 1− p = 1− fθ(x) = P(x ∈ C0)

... ...

0

1

0 1

0

1

0 1

0

1

0 1

Estimated decision regions:
Ĉ1 = {x ∈ Rd, fθ(x) ≥ 1

2} and
Ĉ0 = Rd \ Ĉ1.

Complexity/capacity of the
network
⇒
Trade-off between
generalization and overfitting.
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Recap on binary classification

• Training: Logistic regression for binary classification: Maximum
likelihood of the dataset (opposite of binary crosss-entropy : BCELoss in
PyTorch):

max
θ

N∑
i=1

[
y(i) log fθ(x(i)) + (1− y(i)) log

(
1− fθ(x(i))

)]
• For neural networks, the probability fθ is obtained using the sigmoid

function σ(t) =
et

1 + et =
1

1 + e−t as the activation function of the last

layer.

• Beware that y(i) = 0 or 1 so only one term is non-zero.

• One could instead regroup the terms of the sum according to the label
values:

max
θ

N∑
(x(i),y(i))∈D

s.t. y(i)=1

log fθ(x(i)) +

N∑
(x(i),y(i))∈D

s.t. y(i)=0

log
(

1− fθ(x(i))
)
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Generative Adversarial Networks (GAN)

• Discriminator network: Consider two sets

• Dreal: a dataset of n real images (real = labeled with y(i) = 1),
• Dfake: a dataset of m fake images x = Gθg(z) (fake = labeled with

y(i) = 0).

• Goal: Find the parameters θd of a binary classification network
x 7→ Dθd (x) meant to classify real and fake images.
Minimize the binary cross-entropy, or maximize its negation

max
θd

∑
xreal∈Dreal

logDθd (xreal)︸ ︷︷ ︸
force predicted labels to be 1

for real images

+
∑

xfake∈Dfake

log(1− Dθd (xfake))︸ ︷︷ ︸
force predicted labels to be 0

for fake images

• How: Use gradient ascent (Adam).
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Generative Adversarial Networks (GAN)

• Generator network: Consider a given discriminative model x 7→ Dθd (x)
and consider Drand a set of m random latent vectors.

• Goal: Find the parameters θg of a network z 7→ Gθg(z) generating images
from random vectors z such that it fools the discriminator

min
θg

∑
z∈Drand

log(1− Dθd (Gθg(z)))︸ ︷︷ ︸
force the discriminator to think that

our generated fake images are not fake (away from 0)

(1)

or alternatively (works better in practice)

max
θg

∑
z∈Drand

logDθd (Gθg(z)))︸ ︷︷ ︸
force the discriminator to think that

our generated fake images are real (close to 1)

(2)

• How: Gradient descent for (1) or gradient ascent for (2) (Adam)
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Generative Adversarial Networks (GAN)

• Train both networks jointly.

• Minimax loss in a two player game (each player is a network):

min
θg

max
θd

∑
x∈Dreal

logDθd (x) +
∑

z∈Drand

log(1− Dθd (Gθg(z)︸ ︷︷ ︸
fake

)

• Training algorithm: Repeat until convergence

1. Fix θg, update θd with one step of gradient ascent,
2. Fix θd, update θg with one step of gradient descent for (1),

(or one step of gradient ascent for (2).)
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Generative Adversarial Networks (GAN)
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Generative Adversarial Networks (GAN)
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Generative Adversarial Networks (GAN)

Bruno Galerne Generative models for images I BIP AI for science 2024 68 / 109



Generative Adversarial Networks (GAN)

Convolutional GAN
(Radford et al., 2016)

• Generator: upsampling network with fractionally strided convolutions
(i.e. the transpose operator of convolution+subsampling , called
ConvTranspose2d in PyTorch),

• Discriminator: convolutional network with strided convolutions.
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Transposed convolution arithmetic

Fractionally strided convolutions:

• This is the transpose operator of convolution+subsampling (convolution
with stride).

• Called ConvTranspose2d in PyTorch

The transpose of convolving a 3× 3 kernel over a 5× 5 input padded with a
1× 1 border of zeros using 2× 2 strides (i.e., i = 5, k = 3, s = 2 and p = 1). It
is equivalent to convolving a 3× 3 kernel over a 3× 3 input (with 1 zero
inserted between inputs) padded with a 1× 1 border of zeros using unit
strides (i.e., i′ = 3, ĩ′ = 5, k′ = k, s′ = 1 and p′ = 1).

(source: From (Dumoulin and Visin, 2016))
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Generative Adversarial Networks (GAN)

Convolutional GAN
(Radford et al., 2016)

Generations of realistic bedrooms pictures,
from randomly generated latent variables.
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Generative Adversarial Networks (GAN)

Convolutional GAN
(Radford et al., 2016)

Interpolation in between points in latent space.
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Generative Adversarial Networks (GAN)

Convolutional GAN – Arithmetic
(Radford et al., 2016)
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Generative Adversarial Networks (GAN)

Convolutional GAN – Arithmetic
(Radford et al., 2016)
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Generative Adversarial Networks (GAN)

Generative Aversarial Networks: Style GAN (Karras et al., 2019)

Image size:
1024× 1024 px

(source: Karras et al.)
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GAN Training

Training with MNIST (60 000 images)

• Adam optimizer

• Learning rate 0.0002 for both the discriminator and the generator

Real images: Fake images, epoch 1:
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GAN Training

Training with MNIST (60 000 images)

• Adam optimizer

• Learning rate 0.0002 for both the discriminator and the generator

Real images: Fake images, epoch 2:
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GAN Training

Training with MNIST (60 000 images)

• Adam optimizer

• Learning rate 0.0002 for both the discriminator and the generator

Real images: Fake images, epoch 3:
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GAN Training

Training with MNIST (60 000 images)

• Adam optimizer

• Learning rate 0.0002 for both the discriminator and the generator

Real images: Fake images, epoch 10:
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GAN Training

Training with MNIST (60 000 images)

• Adam optimizer

• Learning rate 0.0002 for both the discriminator and the generator

Real images: Fake images, epoch 100:
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 1:
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 2:
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 3:
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 10:
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GAN Training

Training GANs is quite unstable!

The generator can suffer mode collapse: It always produces the same image
(one mode only).

Same as before but with SGD instead of Adam.
Real images: Fake images, epoch 100:
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GAN Training

Some heuristics inspired by optimal transport theory have been proposed
and called Wasserstein GAN (Arjovsky et al., 2017) (Gulrajani et al., 2017).
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Wasserstein GAN



Optimal transport

• The optimal transport theory provides mathematical tools to compare or
interpolate between probability distributions.

• Given two probability distributions µ0 and µ1 in P2(Rd) (the set of
probability measures with finite second moments on Rd), and a positive
cost function c : Rd × Rd → R+

MKc(µ0, µ1) := inf
γ∈Π(µ0,µ1)

∫
Rd×Rd

c(y0, y1)dγ(y0, y1),

where Π(µ0, µ1) is the set of probability distributions γ on Rd × Rd with
marginal distributions µ0 and µ1.

Proposition (Duality)

MKc(µ0, µ1) = sup
ϕ,ψ∈Φc(µ0,µ1)

∫
ϕdµ0 +

∫
ψdµ1,

where

Φc(µ0, µ1) = {ϕ, ψ ∈ Cb(Rd) s.t. ∀x, y, ϕ(x) + ψ(y) ≤ c(x, y)}.
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Optimal transport

Wasserstein distances: When using c(x, y) = ∥x− y∥p one defines
Wasserstein distances:

Definition
The p-Wasserstein distance Wp between µ0 and µ1 is defined as

Wp
p (µ0, µ1) := inf

Y0∼µ0;Y1∼µ1
E (∥Y0 − Y1∥p) = inf

γ∈Π(µ0,µ1)

∫
Rd×Rd

∥y0−y1∥pdγ(y0, y1).

1-Wasserstein distance and duality: See eg (Santambrogio, 2015)

For p = 1, one has

W1(µ0, µ1) = sup
ϕ∈Lip1

∫
ϕdµ0 −

∫
ϕdµ1 = sup

ϕ∈Lip1

Ex∼µ0(ϕ(x))− Ex∼µ1(ϕ(x))

where
Lip1 = {f : Rd → R, s.t. ∀x, y, |f (x)− f (y)| ≤ ∥x− y∥}.
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Optimal transport and GANs

Back to GANs:

• The role of the discriminator D is to differentiate the distribution preal(x) of
real images from the distribution pgen(x) of generated images.

• Ideally, one would like to optimize the generator to minimize
W1(preal, pgen).

• However it is not possible to compute this Wasserstein distance W1

because taking the sup over Lip1 is not tractable.

• (Arjovsky et al., 2017) proposes to restrict Lip1 to the set of Lip1

functions that are parameterized with some neural network:

W1(preal, pgen) = sup
ϕ∈Lip1

Ex∼preal(ϕ(x))− Ex∼pgen(ϕ(x))

≥ sup
Dθd

∈Lip1

Ex∼preal(Dθd (x))− Ex∼pgen(Dθd (x))
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Wassertsein GAN

GAN (Vanilla):

min
θg

max
θd

∑
x∈Dreal

logDθd (x) +
∑

z∈Drand

log(1− Dθd (Gθg(z))

Wassestein GAN:

min
θg

max
θd s.t.

Dθd
∈Lip1

∑
x∈Dreal

Dθd (x)−
∑

z∈Drand

Dθd (Gθg(z))

• We just got rid of the log and Dθd (x) is not a probability... but we now
have a constrained optimization “Dθd ∈ Lip1”.

• The original WGAN paper (Arjovsky et al., 2017) uses weight clipping to
restrict the Lipschitz constant (heuristic).
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Wassertsein GAN: Gradient Penalty

• It is known that optimal potential ϕ satisfies ∥∇xϕ(x)∥ = 1 a.e.
(Santambrogio, 2015).

• (Gulrajani et al., 2017) propose to use this property by minimizing:

min
θg

max
θd

∑
x∈Dreal

Dθd (x)−
∑

z∈Drand

Dθd (Gθg(z)) + λ
∑

xt

(∥∇xDθd (xt)∥ − 1)2

where each xt is a point from a segment joining a real and a fake image.

• This training procedure is referred as WGAN-GP.

• Note that the gradient is with respect to the image variable x and not the
parameters θg.
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Wassertsein GAN: Gradient Penalty

Gradient Penalty VS. weight clipping:

(source: From (Gulrajani et al., 2017))
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Wassertsein GAN

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)

G: No BN and a constant number of filters, D: DCGAN

G: 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

Gated multiplicative nonlinearities everywhere in G and D

tanh nonlinearities everywhere in G and D

101-layer ResNet G and D

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

5.2 Training varied architectures on LSUN bedrooms

To demonstrate our model’s ability to train many architectures with its default settings, we train six
different GAN architectures on the LSUN bedrooms dataset [30]. In addition to the baseline DC-
GAN architecture from [21], we choose six architectures whose successful training we demonstrate:
(1) no BN and a constant number of filters in the generator, as in [2], (2) 4-layer 512-dim ReLU
MLP generator, as in [2], (3) no normalization in either the discriminator or generator (4) gated
multiplicative nonlinearities, as in [23], (5) tanh nonlinearities, and (6) 101-layer ResNet generator
and discriminator.

Although we do not claim it is impossible without our method, to the best of our knowledge this
is the first time very deep residual networks were successfully trained in a GAN setting. For each
architecture, we train models using four different GAN methods: WGAN-GP, WGAN with weight
clipping, DCGAN [21], and Least-Squares GAN [17]. For each objective, we used the default set
of optimizer hyperparameters recommended in that work (except LSGAN, where we searched over
learning rates).

For WGAN-GP, we replace any batch normalization in the discriminator with layer normalization
(see section 4). We train each model for 200K iterations and present samples in Figure 2. We only
succeeded in training every architecture with a shared set of hyperparameters using WGAN-GP.
For every other training method, some of these architectures were unstable or suffered from mode
collapse.

5.3 Improved performance over weight clipping

One advantage of our method over weight clipping is improved training speed and sample quality.
To demonstrate this, we train WGANs with weight clipping and our gradient penalty on CIFAR-
10 [13] and plot Inception scores [22] over the course of training in Figure 3. For WGAN-GP,

6
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Wassertsein GAN

Wassertsein GAN using the gradient penalty is a more stable way to train
deep convolutional generators/discriminators.
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Style GAN

• Style GAN uses the loss of a WGAN-GP.

• Main innovation is the architecture of the generator.

• Open source.

Style GAN architecture and results from (Karras et al., 2019).
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Big GAN

• Another state-of-the-art GAN: BigGAN (Brock et al., 2019).
• Trained with vanilla GAN
• Large models and large batch size improve the results.

• Truncation trick:
• Train model with standard Gaussian in the latent space.
• Sample with truncated Gaussian.
• This improves the quality of results (but reduces the diversity).

• There are still problems with training instablities.
(source: (Brock et al., 2019))
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A cautionary tale

• Most of the recent improvements come from the architecture.

• It has been reported that Vanilla GAN performs as well as other GANs
upon fair comparison (Lucic et al., 2018).
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Summary of GANs

• Advantages:

• GANs provide(d) state-of-the-art results
• They provide interesting latent representations.
• They allows flexible losses and formulations.
• They allow for fast generation.

• Problems:

• GANs are very hard to train (collapse during training).
• Diversity is a problem (mode collapse).
• Theoretical analysis is hard.

Bruno Galerne Generative models for images I BIP AI for science 2024 90 / 109



Normalizing flows



Normalizing flows

Motivation: Learn an invertible mapping from the data space to the latent
space.

(source: From (Dinh et al., 2017))

• Latent space and data space have the same dimension.
• The latent distribution is generally assumed to be Gaussian.
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Normalizing flows

Two main issues:

1. Parameterize a generic parametric invertible transform gθ.

2. Learn the parameters θ to fit the dataset D = {x(i), i = 1, . . . ,N} ⊂ Rd.

Learning is performed by simple loglikelihood maximization:

max
θ

log pθ(D) where log pθ(D) = 1
|D|

∑
x∈D

log pθ(x).

• Here pθ = (gθ)#π0 with π0 = N (0, Id).

• Since gθ is assumed to a diffeomorphism, the expression is given
thanks to the change of variable formula.

• In practice the dataset D is discrete and one adds noise to the data to
deal with quantization and have a density (Kingma and Dhariwal, 2018).
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Invertible transformations

The density of pθ = (gθ)#π0 is given by a change of variable.

• We assume that gθ is a diffeomorphism
• For any f ∈ Cc(Rd,R)

Epθ (f (X)) =
∫
Rd

f (x)pθ(x)dx

Epθ (f (X)) = Eπ0(f (gθ(Z)))

=

∫
Rd

f (gθ(z))p0(z)dz (z = g−1
θ (x))

=

∫
Rd

f (x)p0(g−1
θ (x))|J(g−1

θ )(x)|dx.

where |J(g−1
θ )(x)| =

∣∣∣∣det( ∂g
θ−1,m
∂xn

(x)
)

1≤m,n≤d

∣∣∣∣ is the determinant of the

Jacobian.

Expression of the density:

pθ(x) = p0(g−1
θ (x))|J(g−1

θ )(x)|

Remark: Generalized using the co-area/area formula (Caterini et al., 2021)).
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Maximizing the log-likelihood

Expression of the density:

pθ(x) = p0(g−1
θ (x))|J(g−1

θ )(x)|

• Hence, maximizing the log-likelihood is equivalent to maximizing

L(θ) = 1
|D|

∑
xi∈D

log(p0(g−1
θ (xi))) + log(|J(g−1

θ (xi))|)

• Short notation: Jθ(x) := J(g−1
θ )(x).

Conditions on the transformations:

• gθ and g−1
θ are easy to compute and differentiate.

• The Jacobian Jθ is easy to compute and differentiate.

• But also gθ should be as complex as required by the data...
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Compositions of transformations

Composition of transformation: To obtain a complex flow one decomposes
the flow as K “simple” diffeomorphisms:

gθ = g0
θ ◦ g1

θ ◦ · · · ◦ gK
θ

Then

log(|J(g−1
θ (x))|) =

K∑
k=1

log(|J((gk
θ)

−1(xk))|)

with xk the proper intermediate step in the sequence.
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Different types of flows

• In (Rezende and Mohamed, 2015) planar and radial flows are presented.
• Two other very efficient flows (Dinh et al., 2017, 2015):

• Affine coupling layer.
• Invertible 1x1 convolution.

• How does the affine coupling layer work?

• We split x ∈ Rd in x = (x0, x1) with x0 ∈ Rd0 , x1 ∈ Rd1 .
• Forward transform gθ(x) = (x0, exp[sθ(x0)]⊙ x1 + tθ(x0)).
• Reverse transform g−1

θ (x) = (x0, (x1 − tθ(x0))⊘ exp[sθ(x0)]).
• Log-Jacobian: log(|Jθ(x)|) =

∑d1
i=1 sθ(x0)i.

• How does the invertible 1x1 convolution work?

• Matrix Wθ ∈ RC×C (number of channels), x ∈ RH×W×C.
• Forward transform gθ(x)i,j = Wθxi,j.
• Reverse transform g−1

θ (x)i,j = W−1
θ xi,j.

• Log-Jacobian log(|Jθ(x)|) = H ×W × log(|Wθ|).
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Different types of flows

• There is no spatial convolution in these operations.

• However there a way to generate the image in a multiscale way (Dinh
et al., 2017): Use a squeeze layer that change an image of size
H ×W × C into an image of size H/2×W/2× 4C by stacking spatial
neighbors in the channel component.

• Then the next 1x1 convolution mixes the formerly spatial neighbors.

(source: From (Dinh et al., 2017))
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Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

(source: From (Kingma and Dhariwal, 2018))

• Combining actnorm, invertible convolution and affine coupling layers
(multiple times).

• The “actnorm” layer is simply an affine layer.
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Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

High quality results
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Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

Linear interpolation in latent space between real images

• This experiments uses both the inference and generation of the flow.

• Not so easy to do with a GAN (we’ll talk about inference for GANs next
week).
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Generative Flow (GLOW) (Kingma and Dhariwal, 2018)

Effect of change of temperature: Samples obtained at temperatures 0,
0.25, 0.6, 0.7, 0.8, 0.9, 1.0.

• The temperature to be decreased for high-quality image generation:
latent codes z are sampled from N (0, σId) with σ < 1.
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