TP Master 2 – Processus aléatoires

TP 2 – Le modèle d'Ising en dimension 1

Selon votre préférence, vous pouvez coder ce TP en C ou en Python.

1. Énergie d'une configuration

On considère le modèle d'Ising sur l'ensemble $\Lambda = \{0, 1, \dots, N-1\}$. On rappelle qu'une configuration de ce modèle est un élément $x = (x_0, \dots, x_{N-1})$ de $\mathscr{X} = \{-1, 1\}^{\Lambda}$. Son énergie est

$$H(x) = -\sum_{i=0}^{N-2} x_i x_{i+1} - h \sum_{i=0}^{N-1} x_i ,$$

où $h \in \mathbb{R}$ est un paramètre appelé champ magnétique.

Écrire une fonction prenant en argument une configuration et le champ magnétique, et qui retourne l'énergie de cette configuration.

2. Dynamique de Glauber

On rappelle que la dynamique de Glauber à température inverse $\beta > 0$ est définie comme suit.

- Les seules transitions permises sont celles qui changent le signe d'un seul spin : x' peut être atteint en un pas depuis x si, et seulement si, il existe $i \in \Lambda$ tel que $x'_i = -x_i$ et $x'_j = x_j$ pour $j \neq i$.
- La probabilité d'une transition permise est

$$p_{xx'} = \begin{cases} \frac{1}{N} & \text{si } H(x') \leqslant H(x) ,\\ \frac{1}{N} e^{-\beta [H(x') - H(x)]} & \text{sinon } . \end{cases}$$

- (a) Donner une expression simple de H(x') H(x) lorsque x' est obtenue en changeant le signe du ième spin de x.
- (b) Écrire une fonction prenant en argument une configuration x et l'indice i d'un spin, et qui retourne H(x') H(x) lorsque x' est obtenue en changeant le signe du ième spin de x.
- (c) Simuler quelques trajectoires de la chaîne de Markov, pour un N fixé (par exemple N=10) et différentes valeurs de paramètres h et β . On pourra représenter l'évolution au cours du temps en imprimant une configuration par ligne.

3. Évolution de quelques observables

- (a) Écrire une fonction qui, à partir d'une configuration initiale x(0) et un temps T, imprime H(x(n)) pour $n=0,\ldots,T$. Tester cette fonction pour différentes valeurs des paramètres.
- (b) Écrire une fonction qui calcule l'aimantation $m(x) = \sum_{i=0}^{N-1} x_i$ d'une configuration x.
- (c) Écrire une fonction qui, à partir d'une configuration initiale x(0) et un temps T, imprime m(x(n)) pour $n=0,\ldots,T$. Tester cette fonction pour différentes valeurs des paramètres.
- (d) Comparer cette évolution à celle de sa movenne ergodique (ou de Cesaro).