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Nonlinear passive control of self-sustained oscillations Context and state of the art

Nonlinear Energy Sink (NES)
▶ NES: Nonlinear Energy Sink

▶ Oscillators with strongly nonlinear stiffness (here purely cubic) with linear damping:
ÿ + µẏ + αy3 = 0

▶ Coupled to a Primary Structure (PS), the NES:
- can adjust its frequency to that of the PS (relation amplitude/frequency)
- irreversibly absorbs the energy of the SP (under certain conditions)

Targeted Energy Transfer (TET)
[Vakakis et al. (2006), Springer]

▶ Used for passive and broadband vibration mitigation in mechanical and acoustic systems:
- Free vibrations
- Forced vibrations
- Self-sustained vibrations
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Nonlinear passive control of self-sustained oscillations Context and state of the art

Self-sustained oscillations: Van der Pol (VDP) oscillator

Van der Pol (VDP) oscillator

m1 = 1

VDP(−ερ, ελ)

k = 1
x

m1 = 1 : mass
k = 1 : stiffness
⇒ ω0 = √k/m1 = 1 :

angular frequency
−ερ : linear damping
ελ : nonlinear damping

ẍ − ερẋ + ελẋx2 + x
ρ : bifurcation parameter

ρ = 0 : Hopf bifurcation point of equilibrium xe = 0

▶ ρ < 0 : Stable equilibrium

0 1400
-2

0

2

▶ ρ > 0 : Unstable equilibrium + periodic solution

0 1400
-2

0

2
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Nonlinear passive control of self-sustained oscillations Context and state of the art

Van der Pol oscillator coupled to an NES

m1 = 1

Primary System
(VDP) NES

m2= ε

(−ερ, ελ) εµ

k = 1 εα
x

m1 = 1 : mass of the VdP
m2 = ε : mass of the NES
⇒ ε = m2/m1 : mass ratio between NES and VDP
εµ : linear damping of the NES
εα : cubic stiffness of theNES

y
x : displacement of the VdP y: displacement of the NES

Assumption
Small-mass NES ⇒ 0 < ε ≪ 1
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Nonlinear passive control of self-sustained oscillations Context and state of the art

Mitigation limit of the NES
Bifurcation diagram

Steady-state amplitude as a function of the
bifurcation parameter ρ
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Quasi-periodic
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Mitigation limit of the NES
Bifurcation diagram

Steady-state amplitude as a function of the
bifurcation parameter ρ

ρ∗: mitigation limit
-1 0 1 3
0

1
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3
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MITIGATION
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MITIGATION

Zeroth-order global stability analysis [Gandelman & Bar (2012), Physica D]
Theoretical prediction of the mitigation limit when ε = 0
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Nonlinear passive control of self-sustained oscillations Context and state of the art

Equations of the Amplitude-Phase Modulation Dynamics (APMD)
▶ Change of variable: x (VDP) and y (NES) ⇒ u = x + εy and v = x − y

⇒ 1 : 1 resonance capture assumption
≡ u et v are amplitude- and phase-modulated ⇒ u(t) = r (t) sin(t + θ1(t)) et v (t) = s(t) sin(t + θ2(t))

↪→ Computing the APMD using an averaging procedure:

ṙ = εf (r, s, ∆)
ṡ = g1(r, s, ∆, ε)
∆̇ = g2(r, s, ∆, ε)

r et s: amplitudes of u and v
∆ = θ1 − θ2: phase difference between u and v

Original dynamics:
Periodic regime ≡ APMD:

Non-zero equilibrium

APMD ≡ fast-slow dynamical system : 2 fast variables s and ∆ et 1 slow variable r
⇒ Time evolution of the system = succession fast epochs and slow epochs
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ṡ = g1(r, s, ∆, ε)
∆̇ = g2(r, s, ∆, ε)

r et s: amplitudes of u and v
∆ = θ1 − θ2: phase difference between u and v

Original dynamics:
Periodic regime ≡ APMD:

Non-zero equilibrium

APMD ≡ fast-slow dynamical system : 2 fast variables s and ∆ et 1 slow variable r
⇒ Time evolution of the system = succession fast epochs and slow epochs

Baptiste Bergeot PERISTOCH Days November 28 and 29, 2024 9 / 39



Nonlinear passive control of self-sustained oscillations Context and state of the art

Equations of the Amplitude-Phase Modulation Dynamics (APMD)
▶ Change of variable: x (VDP) and y (NES) ⇒ u = x + εy and v = x − y

⇒ 1 : 1 resonance capture assumption
≡ u et v are amplitude- and phase-modulated ⇒ u(t) = r (t) sin(t + θ1(t)) et v (t) = s(t) sin(t + θ2(t))

↪→ Computing the APMD using an averaging procedure:
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Nonlinear passive control of self-sustained oscillations Context and state of the art

Zeroth-order fast-slow analysis of the APMD
APMD ≡ fast-slow dynamical system

▶ Time evolution of the system = succession fast epochs and slow epochs
▶ Theoretical analysis:

- [Gandelman & Bar (2012), Physica D]: multiple scales method
- [Bergeot et al. (2016), Int J Non Linear Mech]: Geometric Singular Perturbation Theory (GSPT)

APMD
at the fast time scale t

ṙ = εf (r, s, ∆)
ṡ = g1(r, s, ∆, ε)
∆̇ = g2(r, s, ∆, ε)
ṙ = 0
ṡ = g1 (r, s, ∆, 0)
∆̇ = g2 (r, s, ∆, 0)

↪→ fast subsystem
describes the fast epochs

We sate ε = 0

Singularly
perturbed

system

APMD
at the slow time scale τ = εt

r ′ = f (r, s, ∆)
εs′ = g1 (r, s, ∆, ε)
ε∆′ = g2 (r, s, ∆, ε)

r ′ = f (r, s, ∆)
0 = g1 (r, s, ∆, 0)
0 = g2 (r, s, ∆, 0)

↪→ slow subsystem
describes the slow epoch
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Nonlinear passive control of self-sustained oscillations Context and state of the art

Zeroth-order fast-slow analysis of the APMD

Critical manifold (CM)

M0 = { (r, s, ∆)
∣∣∣ g1(r, s, ∆, 0) = 0 , g2(r, s, ∆, 0) = 0}

r = H(s) and ∆ = G(s)

Figure. r = H(s)

r

s

From the fast subsystem: Stability M0 ⇒ 2 attracting branches et 1 repelling branch
From the slow subsystem: Equilibria (on M0) ⇒ • Stable equilibria • Unstable equilibria
Asymptotic behavior (when ε → 0) of APMD:

▶ During fast epochs: horizontal trajectories outside M0 towards an attracting branch
▶ During slow epochs: on a attracting branch of M0 to a stable equilibrium or moving away from an unstable

equilibrium in the slow subsystem
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Nonlinear passive control of self-sustained oscillations Context and state of the art

Zeroth-order fast-slow analysis of the APMD
Global stability analysis: theoretical prediction of the mitigation limit

• Initial condition • Stable equilibria • Unstable equilibria • Fold points • Zeroth-order arrival point
Original dynamics (OD): SMR

APMD: Relaxation oscilllations

r

s

Left fold point

Attracting
CM

Attracting
CM

Repelling
CM

OD: No mitigation (periodic)
APMD: Stable equilibrium

r

s

Left fold point

Attracting
CM

Attracting
CM

Repelling
CM

Zeroth-order arrival point
(sa, ra) = (sU, rLF)
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Zeroth-order fast-slow analysis of the APMD
Global stability analysis: theoretical prediction of the mitigation limit

• Initial condition • Stable equilibria • Unstable equilibria • Fold points • Zeroth-order arrival point
Original dynamics (OD): SMR

APMD: Relaxation oscilllations

r

s

Left fold point
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Attracting
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OD: No mitigation (periodic)
APMD: Stable equilibrium

r
s

Left fold point

Attracting
CM

Attracting
CM

Repelling
CM

Zeroth-order arrival point
(sa, ra) = (sU, rLF)

Zeroth-order theoretical prediction of the mitigation limit
Value of the bifurcation parameter ρ (denoted as ρ∗0 ) solution of:

reM = ra = rLF ⇒ Analytical expression of ρ∗0
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Zeroth-order fast-slow analysis of the APMD
Global stability analysis: theoretical prediction of the mitigation limit

• Initial condition • Stable equilibria • Unstable equilibria • Fold points • Zeroth-order arrival point
Original dynamics (OD): SMR

APMD: Relaxation oscilllations
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OD: No mitigation (periodic)
APMD: Stable equilibrium

r
s

Left fold point

Attracting
CM

Attracting
CM

Repelling
CM

Zeroth-order arrival point
(sa, ra) = (sU, rLF)

Today: presentation of 2 orignal results
▶ Result 1: scaling law and new theoretical estimation of the mitigation limit [Bergeot (2021), J Sound Vib]
▶ Result 2: effect of noise on the mitigation limit of the NES [Bergeot (2023), Int. J. Non-Linear Mech.]
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Nonlinear passive control of self-sustained oscillations Scaling law and new theoretical estimation of the mitigation limit
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Nonlinear passive control of self-sustained oscillations Scaling law and new theoretical estimation of the mitigation limit

The limitations of zeroth-order analysis - theoretical vs numerical results for ε = 0.015
Numerical time simulation

of the APMD
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▶ For “large” values of ε: Underestimation of the arrival point ⇒ Overestimation of the mitigation limit

▶ No description of the evolution of the mitigation limit as a function of ε.
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Nonlinear passive control of self-sustained oscillations Scaling law and new theoretical estimation of the mitigation limit

Center manifold reduction of the APMD at the left fold point and scaling law (1/2)
Attracting Repelling

0.0 0.2 0.4 0.60.0
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0.4

Reduction here

At the left fold point (rLF, sLF, ∆LF) the APMD . . .
r ′ = f (r, s, ∆)

εs′ = g1 (r, s, ∆, ε)
ε∆′ = g2 (r, s, ∆, ε)

. . . is reduced to the normal form of the dynamic
saddle-node bifurcation:

ε̂x ′ = x2 + y
y′ = 1

y: new slow variable linked to r
x : new fast variable linked to s et ∆
ε̂: new small parameter linked to ε

⇒ Has a analytical solution:

Scaling law (normal form)
Analytical expression of x as a function y and ε̂:

x⋆(y, ε̂) = ε̂1/3 Ai′ (−ε̂−2/3y)
Ai (−ε̂−2/3y)

Ai: Airy function
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Center manifold reduction of the APMD at the left fold point and scaling law (2/2)

Scaling law (APMD)
Analytical expression of s as a function of r and ε:

s⋆(r, ε) = sLF + ε1/3K1
Ai′ (−ε−2/3K2

(r − rLF))
Ai (−ε−2/3K2

(r − rLF))

▶ K1 and K2: constants depending on model parameters
▶ Ai and Ai′: Airy function and its derivative

New estimation of the arrival point (sa, r a)
r0 < ra < r∞

r0: defined as s⋆(r ) = sLF ⇒ first zero of Ai′
r∞: defined as s⋆(r ) → ∞ ⇒ first zero of Ai
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Nonlinear passive control of self-sustained oscillations Scaling law and new theoretical estimation of the mitigation limit

New theoretical estimation of the mitigation limit
From the zeroth-order analysis
Value of ρ (denoted as ρ∗0 ) solution of:

reM = ra = rLF

From the scaling law
Lower bound: ρ∗ε,inf solution of:

reM = ra = r∞

Upper bound: ρ∗ε,sup solution of:

reM = ra = r0

As a function of µ for ε = 0.015 :

Theoretical:

Numerical:
Original dynamics
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Nonlinear passive control of self-sustained oscillations Effect of noise on the mitigation limit of the NES

The stochastic system
VDP oscillator with stochastic forcing

m1 = 1

Primary System (VDP)
NES

m2= ε

(−ερ, ελ) εµ

k = 1 εα
x

εσ√2ξ(t)

y

▶ ξ(τ): white noise with ξ(t) = dW (t)/dt and
W (t) the Wiener process

▶ Assumption: small level of noise, i.e., of
order O(ε)

Stochastic APMD
APMD ≡ fast-slow dynamical system with white noise

acting on the slow variable r

ṙ = εf (r, s, ∆) + εσξ(τ)
ṡ = g1(r, s, ∆, ε)
∆̇ = g2(r, s, ∆, ε)
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Nonlinear passive control of self-sustained oscillations Effect of noise on the mitigation limit of the NES

Probability of being in a mitigation regime
▶ Definition. Denoted as ph,n : probability for the system of being in a mitigation regime after a given number n

of full cycles of relaxation oscillations.
▶ In practice ph,n computed as the proportion of samples for which we observe at least n + 1 consecutive full

cycles of relaxation oscillations from the beginning of the sample

Deterministic

0

1

Figure: ph,n in the deterministic case

Noise tends to promote the non mitigation regimes for high noise levels

Baptiste Bergeot PERISTOCH Days November 28 and 29, 2024 20 / 39



Nonlinear passive control of self-sustained oscillations Effect of noise on the mitigation limit of the NES

Probability of being in a mitigation regime
▶ Definition. Denoted as ph,n : probability for the system of being in a mitigation regime after a given number n

of full cycles of relaxation oscillations.
▶ In practice ph,n computed as the proportion of samples for which we observe at least n + 1 consecutive full

cycles of relaxation oscillations from the beginning of the sample

Deterministic

0

1

Figure: ph,n in the deterministic case

Noise tends to promote the non mitigation regimes for high noise levels

Baptiste Bergeot PERISTOCH Days November 28 and 29, 2024 20 / 39



Nonlinear passive control of self-sustained oscillations Effect of noise on the mitigation limit of the NES

Probability of being in a mitigation regime
▶ Definition. Denoted as ph,n : probability for the system of being in a mitigation regime after a given number n

of full cycles of relaxation oscillations.
▶ In practice ph,n computed as the proportion of samples for which we observe at least n + 1 consecutive full

cycles of relaxation oscillations from the beginning of the sample

Stochastic:

Deterministic

0

1

Stochastic:

Deterministic

0

1

Figure: ph,n obtained using the Monte Carlo method with the stochastic APMD

Noise tends to promote the non mitigation regimes for high noise levels

Baptiste Bergeot PERISTOCH Days November 28 and 29, 2024 20 / 39



Nonlinear passive control of self-sustained oscillations Effect of noise on the mitigation limit of the NES

Probability of being in a mitigation regime
▶ Definition. Denoted as ph,n : probability for the system of being in a mitigation regime after a given number n

of full cycles of relaxation oscillations.
▶ In practice ph,n computed as the proportion of samples for which we observe at least n + 1 consecutive full

cycles of relaxation oscillations from the beginning of the sample

Stochastic:

Deterministic

0

1

Stochastic:

Deterministic

0

1

Figure: ph,n obtained using the Monte Carlo method with the stochastic APMD

Noise tends to promote the non mitigation regimes for high noise levels

Baptiste Bergeot PERISTOCH Days November 28 and 29, 2024 20 / 39



Nonlinear passive control of self-sustained oscillations Effect of noise on the mitigation limit of the NES

Probability of being in a mitigation regime
▶ Definition. Denoted as ph,n : probability for the system of being in a mitigation regime after a given number n

of full cycles of relaxation oscillations.
▶ In practice ph,n computed as the proportion of samples for which we observe at least n + 1 consecutive full

cycles of relaxation oscillations from the beginning of the sample

Stochastic:

Deterministic

0

1 Stochastic:

Deterministic

0

1

Figure: ph,n obtained using the Monte Carlo method with the stochastic APMD

Noise tends to promote the non mitigation regimes for high noise levels

Baptiste Bergeot PERISTOCH Days November 28 and 29, 2024 20 / 39



Nonlinear passive control of self-sustained oscillations Effect of noise on the mitigation limit of the NES

Analytical results
PhD of Israa Zogheib (Nov. 2023- ; Dir. Nils Berglund and Baptiste Bergeot)

Objective
Prove the previous observations and predict the
probability of being in a mitigation regime

First step
Reduced problem: dynamic saddle-node bifurcation
with noise acting on the slow variable

ε̂x ′ = x2 + y
y′ = 1 + √ε̂σ̂ξ(τ)

We define:
▶ The first-passage time, denoted as T , as follows

T = inf{t > 0 : x = X}
▶ The value of y for t = T as yT
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. . . which suggests that:
The expectation of the ordinate of the arrival point in
presence noise is larger than the deterministic value

. . . and gives a first element to prove that:
Noise promotes the non mitigation regimes
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Transient phenomena in reed musical instruments

Plan

1. Nonlinear passive control of self-sustained oscillations

2. Transient phenomena in reed musical instruments
2.1. Context
2.2. Appearance of sound and bifurcation delay
2.3. Nature of sound and tipping phenomenon
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Transient phenomena in reed musical instruments Context

Single-reed musical instruments:
Saxophones

Clarinets

▶ Modeled by nonlinear dynamical systems linking control
parameters (mouth pressure γ) to output variables (acoustic
pressure p inside the mouthpiece)

▶ Previous theoretical studies on sound production performed
with control parameters constant in time show that:

- Appearance of sound = Hopf bifurcation of the trivial
equilibrium (silence, i.e., p = 0) to a stable periodic
solution (musical note)

- Several stable solutions coexist in general =
Multistability
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Transient phenomena in reed musical instruments Context

Observation
During transients the musician varies the control parameters in time

Questions
▶ In the context of musical acoustics: during an attack transient, when the mouth pressure increases, what are

the consequences:
1 on the appearance of sound?
2 on the nature of the sound in case of multistability? ⇒ silence? note? another note?

▶ Open problems in nonlinear dynamics: nonlinear dynamical systems with time-varying parameters when
1 a bifurcation point is crossed ⇒ bifurcation delay [Benoit et al. (1991), Lect. Notes Math.]
2 a multistability domain is crossed ⇒ tipping phenomenon [Ashwin et al. (2012), Philos Trans R Soc Lond, A]

Presented work
Predicting appearance of sound and the nature of attack transient

in a simple models in the case of a slow linear variation of the
control parameter

“mouth pressure” γ
γ̇ = ε with 0 < ε ≪ 1
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Transient phenomena in reed musical instruments Context

Refined physical model

Air flow vs p
nonlinear (Bernoulli)

Reed dynamics
linear

Body (linear acoustic resonator)

⇒ System of coupled nonlinear ODEs

Simple models having
⇒ One-dimensional ODE:

ẋ = f (x, γ)
x : amplitude of the mouthpiece pressure p

γ: control (or bifurcation) parameter
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ẋ = f (x, γ)
x : amplitude of the mouthpiece pressure p

γ: control (or bifurcation) parameter

Baptiste Bergeot PERISTOCH Days November 28 and 29, 2024 26 / 39



Transient phenomena in reed musical instruments Context

Model with a slowly time-varying γ = fast-slow system
x : fast variable
γ: slow variable

ẋ = f (x, γ)
γ̇ = ε

Simple model
at the

fast time scale t
ẋ = f (x, γ)
γ̇ = ε
ẋ = f (x, γ)
γ̇ = 0

↪→ fast subsystem

We
state
ε = 0

Simple model
at the

slow time scale τ = εt
εẋ = f (x, γ)
γ̇ = 1
0 = f (x, γ)

γ′ = 1
↪→ slow subsystem

Critical manifold
▶ Defined by:

M0 = {(x, γ) ∈ R2 | f (x, γ) = 0}

▶ = bifurcation diagram of the fast subsystem
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ẋ = f (x, γ)
γ̇ = ε

Simple model
at the

fast time scale t
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Transient phenomena in reed musical instruments Appearance of sound and bifurcation delay

Plan

1. Nonlinear passive control of self-sustained oscillations

2. Transient phenomena in reed musical instruments
2.1. Context
2.2. Appearance of sound and bifurcation delay
2.3. Nature of sound and tipping phenomenon
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Transient phenomena in reed musical instruments Appearance of sound and bifurcation delay
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Transient phenomena in reed musical instruments Appearance of sound and bifurcation delay

The need for stochastic modelling
Noise (physical or numerical) reduces bifurcation delay

and must be taken into account in the models

ẋ = f (x, γ) + σξ(t)
γ̇ = ε

with ξ(t)(white noise) acting on the fast variable

6 samples of the model

0 0.9

10-10

10-8

10-6

10-4

0.01

1 Bifurcation delay

Definition: dynamic bifurcation point γ̂dyn

Value of γ such as E
[x(γ)2] = x(γ0)2
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Transient phenomena in reed musical instruments Appearance of sound and bifurcation delay

Analytical prediction of bifurcation delay
Analytical solution of: ẋ = f (x, γ) + σξ(t)

γ̇ = ε [Bergeot & Vergez (2022), Nonlinear Dyn]

⇒ Three regimes are identified [Berglund & Gentz (2006), Springer]:
Regime I

Deterministic
Regime II
Stochastic
(small σ )

Regime III
Stochastic
(large σ )

Analytical: as a function of ε
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[Bergeot et al. (2014), J Acoust Soc Am]
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Transient phenomena in reed musical instruments Nature of sound and tipping phenomenon

Plan

1. Nonlinear passive control of self-sustained oscillations

2. Transient phenomena in reed musical instruments
2.1. Context
2.2. Appearance of sound and bifurcation delay
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Transient phenomena in reed musical instruments Nature of sound and tipping phenomenon

Deterministic model first
x : fast variable
γ: slow variable

ẋ = f (x, γ)
γ̇ = ε

Remark. f (x, γ) now takes into account that reed
motion is limited by the instrument mouthpiece

Critical manifold
▶ Defined by:

M0 = {(x, γ) ∈ R2 | f (x, γ) = 0}

▶ = bifurcation diagram of the fast subsystem

▶ Has a bistability domain

Bistability
domain

Critical manifold
Attracting
Repelling

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In the bistability domain f (x, γ) = 0 has 3 solutions:
▶ 2 stable equilibria
▶ 1 unstable equilibrium
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Transient phenomena in reed musical instruments Nature of sound and tipping phenomenon

Problem statement
▶ For a given initial condition, which attracting branch of the critical manifold will

the trajectory of (1) follows when it crosses the bistability domain?
⇒ More concisely: tipping of not tipping?

ẋ = f (x, γ)
γ̇ = ε (1)

Figure. Numerical simulations of (1) with two close
initial conditions N1 and N2

Observation
Although N1 and N2 are very close in the phase space,
they lead to qualitatively different behaviors during
transient:

▶ With N1: no sound is produced ⇒ NO TIPPING

▶ With N2: a sound is produced ⇒ TIPPING

Remark
Bifurcation delay
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Transient phenomena in reed musical instruments Nature of sound and tipping phenomenon

ẋ = f (x, γ)
γ̇ = ε (1)

UD = (γl, γu) × R+ ; U = (0, γu) × R+
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In UD , M0 has 3 branches:
M0,ai = {(x, γ) ∈ UD | x = x⋆i (γ)} , i = 1, 2

M0,r = {(x, γ) ∈ UD | x = x⋆3 (γ)}

Fenichel’s theorem
⇓

In UD , one has 3 invariant manifolds:
Mε,ai = {(x, γ) ∈ UD | x = x̄i(γ, ε)} , i = 1, 2

Mε,r = {(x, γ) ∈ UD | x = x̄3(γ, ε)}
with

x̄i(γ, ε) = x⋆i (γ) + O(ε) i = 1, 2, 3
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Transient phenomena in reed musical instruments Nature of sound and tipping phenomenon

Tipping separatrix

ẋ = f (x, γ)
γ̇ = ε (1)

We define the special solution S of (1), called tipping
separatrix∗, in U as

S = {(x, γ) ∈ U | x = x̄3(γ, ε)}

In practice
S is numerically approximated using a time reversal
procedure since here Mε,r is attracting in reverse time

Critical manifold
Attracting
Repelling

S

0.0 0.5 1.0 1.5
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0.4

0.6

0.8

1.0

1.2

1.4

∗[Bergeot et al. (2024), Chaos]
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Transient phenomena in reed musical instruments Nature of sound and tipping phenomenon

Result [Bergeot et al. (2024), Chaos]
Tipping or not tipping?

The tipping separatrix S splits U into two subsets B1and B2:
B1 = {(x, γ) ∈ U | x < x̄3(γ, ε)} NO TIPPING

B2 = {(x, γ) ∈ U | x > x̄3(γ, ε)} TIPPING

Orbits originating from initial conditions in B1 (resp.
B2) follow Mε,a1 (resp. Mε,a2 ) when the slow variable
γ crosses the bistability domain UD

B2

B1

Critical manifold
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Back to the problem statement
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Explanation. Although N1 and N2 are very close in the
phase space, they are not in the same B subset, that
leads to qualitatively different behavior during transient
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Transient phenomena in reed musical instruments Nature of sound and tipping phenomenon

Effect of noise on tipping phenomenon
A white noise of level σ is added to the fast variable x

Deterministic: σ = 0
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Probability of tipping PTip
Definition
For a given initial condition, the probability of tipping PTip is the probability that a sample of the stochastic system
follows Mε,a2 when the slow variable γ crosses the bistability domain UD .

In practice, here PTip is the probability that the trajectory of the stochastic system remains above the tipping
(deterministic) separatrix S when y = yl (the lower bound of the bistability domain UD ).

PTip computed numerically (Monte Carlo method
with 2000 samples) for 3 initial conditions:
• ∈ B1 • ∈ S • ∈ B2
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Thank you for your attention
Questions?
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