Some results on interspike interval statistics in conductance-based models for neuron action potentials

Nils Berglund

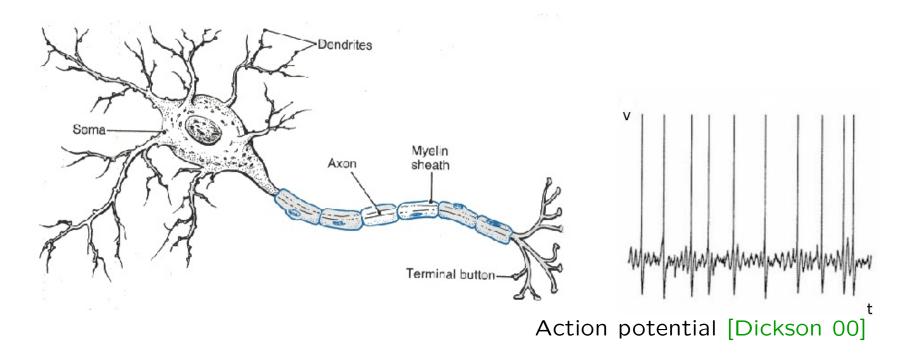
MAPMO, Université d'Orléans
CNRS, UMR 7349 et Fédération Denis Poisson
www.univ-orleans.fr/mapmo/membres/berglund
nils.berglund@math.cnrs.fr

Collaborators: Barbara Gentz (Bielefeld) Christian Kuehn (Vienne), Damien Landon (Orléans)

Projet ANR MANDy, Mathematical Analysis of Neuronal Dynamics

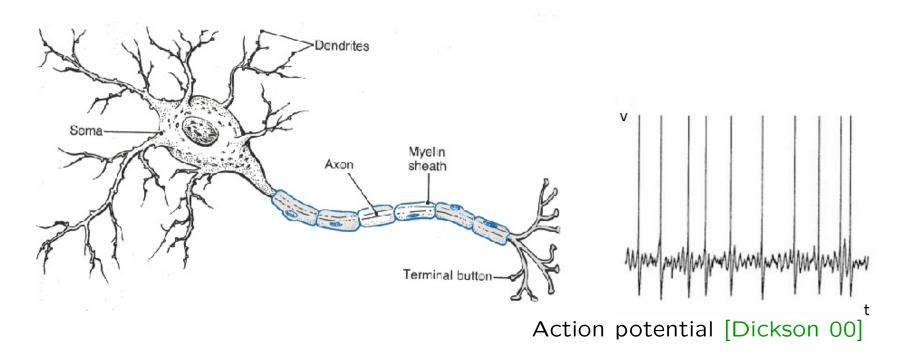
Random Models in Neuroscience UPMC, Paris, July 5, 2012

The Poisson hypothesis



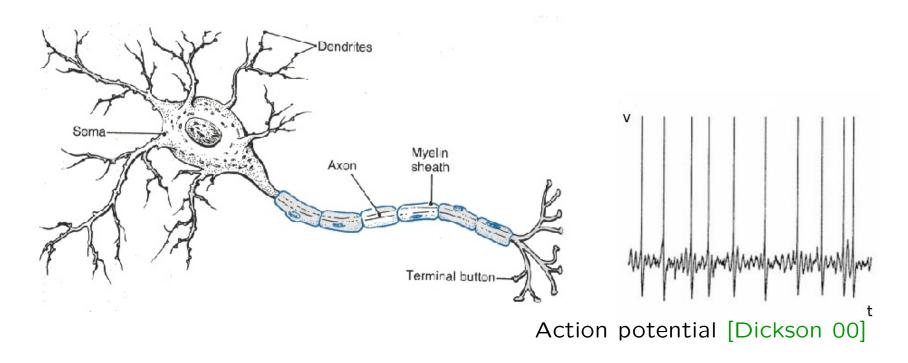
▶ Interspike interval (ISI) statistics (under random stimulation)

The Poisson hypothesis



- ▷ Interspike interval (ISI) statistics (under random stimulation)
- ▶ Poisson hypothesis: ISI has exponential distribution Consequence: Markov property

The Poisson hypothesis



- ▷ Interspike interval (ISI) statistics (under random stimulation)
- ▶ Poisson hypothesis: ISI has exponential distribution Consequence: Markov property
- ▶ For which models is it a good approximation? What ISI can we expect for other (stochastic, conductance-based) models?

Stochastic differential equation (SDE)

$$dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$$

Exit problem:

Given $\mathcal{D} \subset \mathbb{R}^n$, characterise First-exit time (and location) $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$

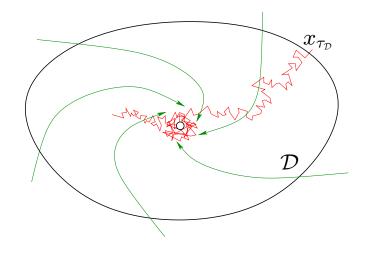


Stochastic differential equation (SDE)

$$dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$$

Exit problem:

Given $\mathcal{D} \subset \mathbb{R}^n$, characterise First-exit time (and location) $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$



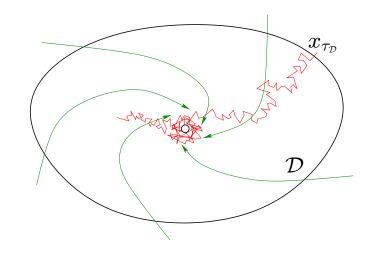
When do we have
$$\lim_{\sigma\to 0}\mathbb{P}\big\{\tau_{\mathcal{D}}>s\mathbb{E}[\tau_{\mathcal{D}}]\big\}=\mathrm{e}^{-s}$$
 ?

Stochastic differential equation (SDE)

$$dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$$

Exit problem:

Given $\mathcal{D} \subset \mathbb{R}^n$, characterise First-exit time (and location) $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$



When do we have $\lim_{\sigma \to 0} \mathbb{P} \left\{ \tau_{\mathcal{D}} > s \mathbb{E}[\tau_{\mathcal{D}}] \right\} = \mathrm{e}^{-s}$?

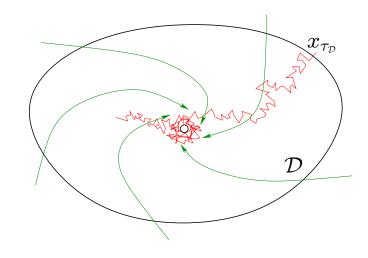
- \triangleright True if $n = 1 \Rightarrow$ true for integrate-and-fire models
- \triangleright True if $\mathcal{D} \subset$ basin of attraction [Day '83]
- \triangleright True if $f(x) = -\nabla U(x)$ and g(x) = 1 [Bovier et al '04]

Stochastic differential equation (SDE)

$$dx_t = f(x_t) dt + \sigma g(x_t) dW_t \qquad x \in \mathbb{R}^n$$

Exit problem:

Given $\mathcal{D} \subset \mathbb{R}^n$, characterise First-exit time (and location) $\tau_{\mathcal{D}} = \inf\{t > 0 \colon x_t \notin \mathcal{D}\}$



When do we have $\lim_{\sigma \to 0} \mathbb{P} \{ \tau_{\mathcal{D}} > s \mathbb{E}[\tau_{\mathcal{D}}] \} = e^{-s}$?

- \triangleright True if $n=1 \Rightarrow$ true for integrate-and-fire models
- \triangleright True if $\mathcal{D} \subset$ basin of attraction [Day '83]
- ightharpoonup True if $f(x) = -\nabla U(x)$ and g(x) = 1 [Bovier et al '04]
- \triangleright Not necessarily true if $n \geqslant 2$, curl $f \neq 0$ and $\partial \mathcal{D} \supset$ det orbit

Consider the FHN equations in the form

$$\varepsilon \dot{x} = x - x^3 + y$$
$$\dot{y} = a - x - by$$

 $\triangleright x \propto$ membrane potential of neuron

 $\triangleright y \propto$ proportion of open ion channels (recovery variable)

 $\triangleright \varepsilon \ll 1 \Rightarrow \text{fast-slow system}$

 $\triangleright b = 0$ in the following for simplicity

Consider the FHN equations in the form

$$\varepsilon \dot{x} = x - x^3 + y$$
$$\dot{y} = a - x - by$$

 $\triangleright x \propto$ membrane potential of neuron

 $\triangleright y \propto$ proportion of open ion channels (recovery variable)

 $\triangleright \varepsilon \ll 1 \Rightarrow \text{fast-slow system}$

 $\triangleright b = 0$ in the following for simplicity

Stationary point $P = (a, a^3 - a)$

Linearisation has eigenvalues $\frac{-\delta \pm \sqrt{\delta^2 - \varepsilon}}{\varepsilon}$ where $\delta = \frac{3a^2 - 1}{2}$

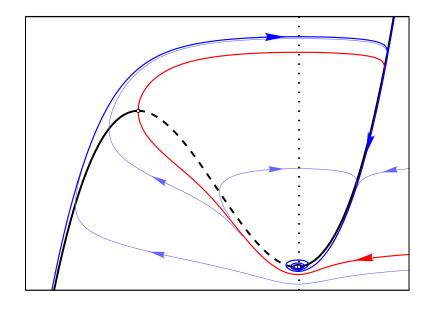
 $\triangleright \delta > 0$: stable node $(\delta > \sqrt{\varepsilon})$ or focus $(0 < \delta < \sqrt{\varepsilon})$

 $\triangleright \delta = 0$: singular Hopf bifurcation [Erneux & Mandel '86]

 $\triangleright \delta < 0$: unstable focus $(-\sqrt{\varepsilon} < \delta < 0)$ or node $(\delta < -\sqrt{\varepsilon})$

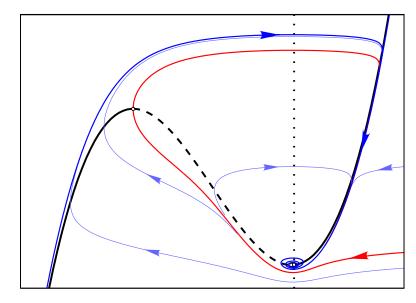
 $\delta > 0$:

- $\triangleright P$ is asymptotically stable
- b the system is excitable
- ▷ one can define a separatrix



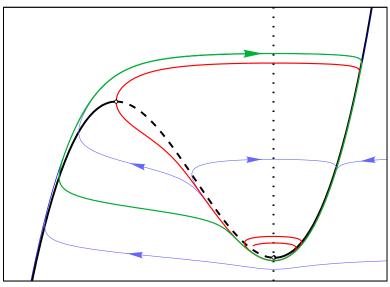
$\delta > 0$:

- $\triangleright P$ is asymptotically stable
- b the system is excitable



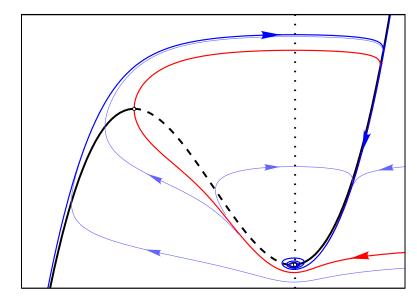
$\delta < 0$:

- $\triangleright P$ is unstable
- ▷ ∃ asympt. stable periodic orbit
- \triangleright sensitive dependence on δ : canard (duck) phenomenon [Callot, Diener, Diener '78, Benoît '81, ...]



$\delta > 0$:

- $\triangleright P$ is asymptotically stable
- b the system is excitable



$\delta < 0$:

- $\triangleright P$ is unstable
- ▷ ∃ asympt. stable periodic orbit
- \triangleright sensitive dependence on δ : canard (duck) phenomenon [Callot, Diener, Diener '78, Benoît '81, . . .]

Stochastic FHN equations

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$

$$dy_t = [a - x_t] dt + \sigma_2 dW_t^{(2)}$$

 $\triangleright W_t^{(1)}, W_t^{(2)}$: independent Wiener processes

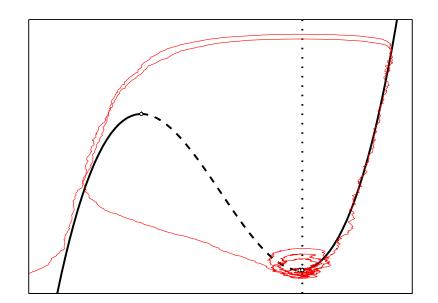
$$> 0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$$

Stochastic FHN equations

$$dx_t = \frac{1}{\varepsilon} [x_t - x_t^3 + y_t] dt + \frac{\sigma_1}{\sqrt{\varepsilon}} dW_t^{(1)}$$
$$dy_t = [a - x_t] dt + \sigma_2 dW_t^{(2)}$$

 $\triangleright W_t^{(1)}, W_t^{(2)}$: independent Wiener processes

$$> 0 < \sigma_1, \sigma_2 \ll 1, \ \sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$$



$$\varepsilon = 0.1$$

$$\delta = 0.02$$

$$\sigma_1 = \sigma_2 = 0.03$$

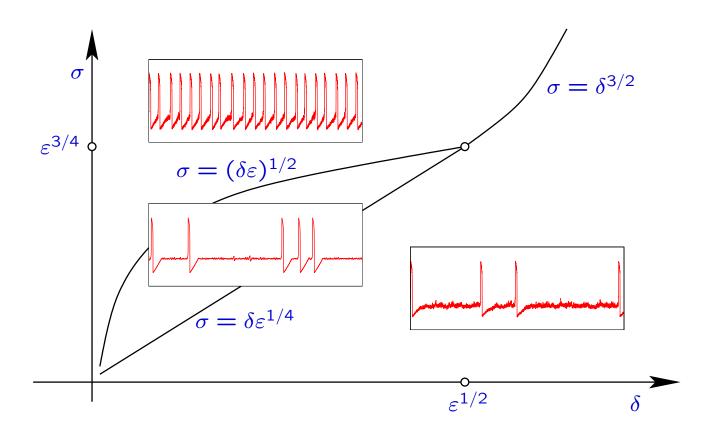
Some previous work

- ▶ Numerical: Kosmidis & Pakdaman '03, ..., Borowski et al '11
- ▶ Moment methods: Tanabe & Pakdaman '01
- ▶ Approx. of Fokker–Planck equ: Lindner et al '99, Simpson & Kuske '11
- ▶ Large deviations: Muratov & Vanden Eijnden '05, Doss & Thieullen '09

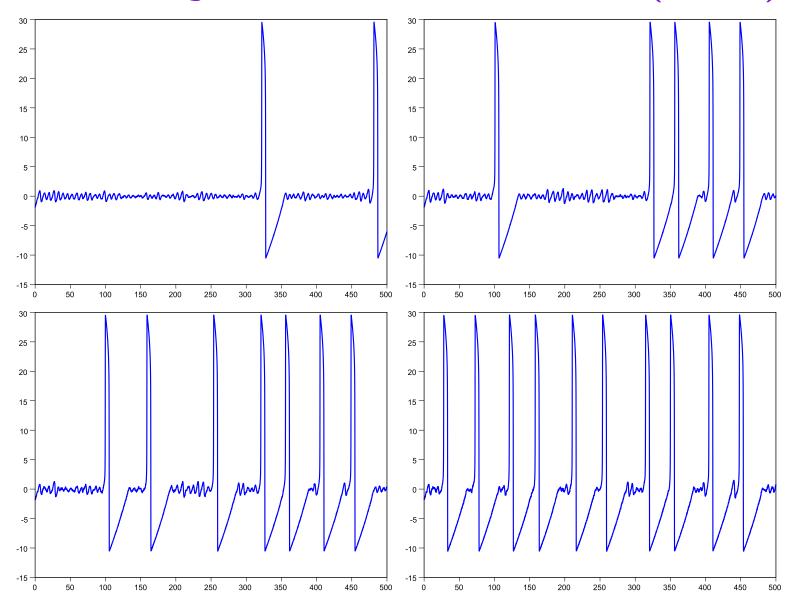
Some previous work

- ▶ Numerical: Kosmidis & Pakdaman '03, ..., Borowski et al '11
- ▶ Moment methods: Tanabe & Pakdaman '01
- ▶ Approx. of Fokker–Planck equ: Lindner et al '99, Simpson & Kuske '11
- ▶ Large deviations: Muratov & Vanden Eijnden '05, Doss & Thieullen '09

Proposed "phase diagram" [Muratov & Vanden Eijnden '08]

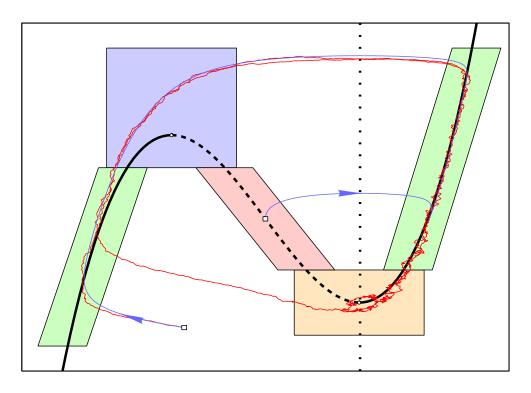


Intermediate regime: mixed-mode oscillations (MMOs)

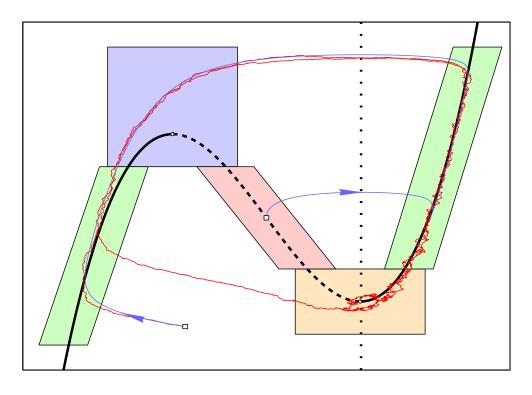


Time series $t \mapsto -x_t$ for $\varepsilon = 0.01$, $\delta = 3 \cdot 10^{-3}$, $\sigma = 1.46 \cdot 10^{-4}$, ..., $3.65 \cdot 10^{-4}$

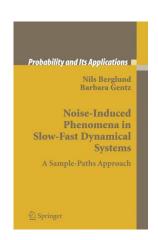
Precise analysis of sample paths



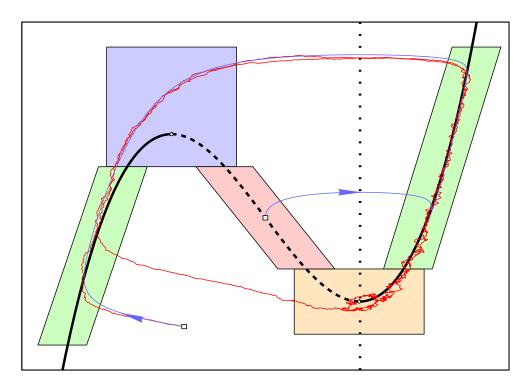
Precise analysis of sample paths



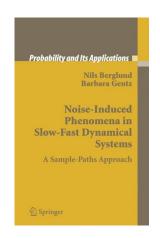
Dynamics near stable branch, unstable branch and saddle—node bifurcation: already done in [B & Gentz '05]



Precise analysis of sample paths

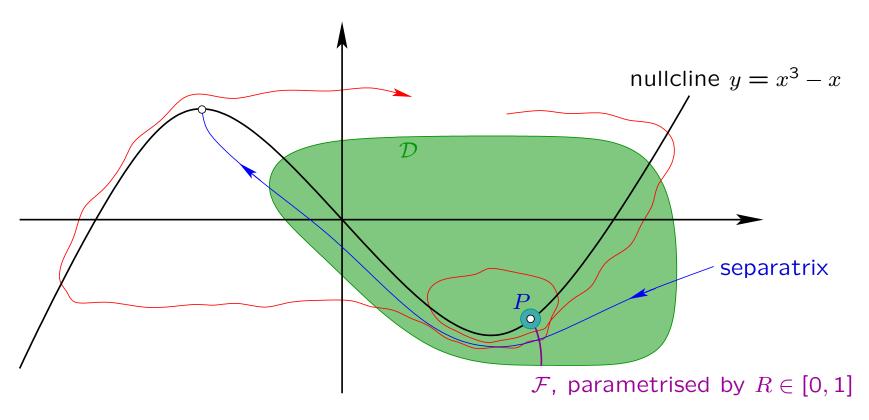


- Dynamics near stable branch, unstable branch and saddle—node bifurcation: already done in [B & Gentz '05]
- ▷ Dynamics near singular Hopf bifurcation: To do



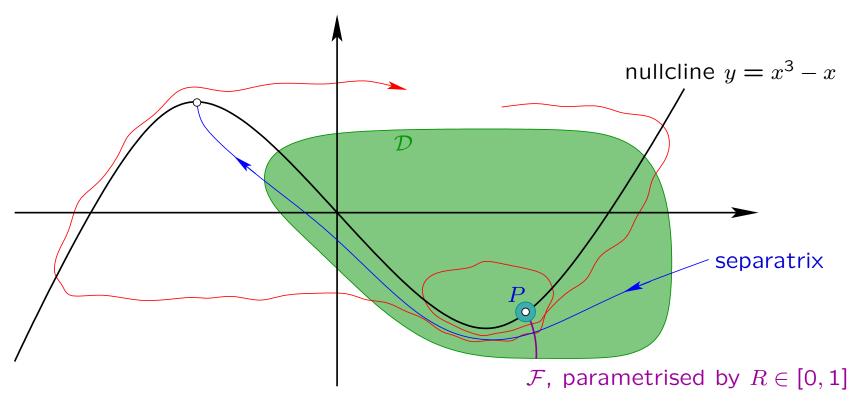
Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N:



Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N:



 $(R_0, R_1, \dots, R_{N-1})$ substochastic Markov chain with kernel

$$K(R_0, A) = \mathbb{P}^{R_0} \{ R_\tau \in A \}$$

 $R \in \mathcal{F}$, $A \subset \mathcal{F}$, $\tau =$ first-hitting time of \mathcal{F} (after turning around P) N = number of turns around P until leaving \mathcal{D}

General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]

Principal eigenvalue: eigenvalue λ_0 of K of largest module. $\lambda_0 \in \mathbb{R}$ Quasistationary distribution: prob. measure π_0 s.t. $\pi_0 K = \lambda_0 \pi_0$

General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]

Principal eigenvalue: eigenvalue λ_0 of K of largest module. $\lambda_0 \in \mathbb{R}$ Quasistationary distribution: prob. measure π_0 s.t. $\pi_0 K = \lambda_0 \pi_0$

Theorem 1: [B & Landon, 2011] Assume $\sigma_1, \sigma_2 > 0$

- $\triangleright \lambda_0 < 1$
- $\triangleright K$ admits quasistationary distribution π_0
- $\triangleright N$ is almost surely finite
- $\triangleright N$ is asymptotically geometric:

$$\lim_{n\to\infty} \mathbb{P}\{N=n+1|N>n\}=1-\lambda_0$$

 $\triangleright \mathbb{E}[r^N] < \infty$ for $r < 1/\lambda_0$, so all moments of N are finite

General results on distribution of SAOs

General theory of continuous-space Markov chains: [Orey '71, Nummelin '84]

Principal eigenvalue: eigenvalue λ_0 of K of largest module. $\lambda_0 \in \mathbb{R}$ Quasistationary distribution: prob. measure π_0 s.t. $\pi_0 K = \lambda_0 \pi_0$

Theorem 1: [B & Landon, 2011] Assume $\sigma_1, \sigma_2 > 0$

- $\triangleright \lambda_0 < 1$
- $\triangleright K$ admits quasistationary distribution π_0
- $\triangleright N$ is almost surely finite
- $\triangleright N$ is asymptotically geometric:

$$\lim_{n\to\infty} \mathbb{P}\{N=n+1|N>n\}=1-\lambda_0$$

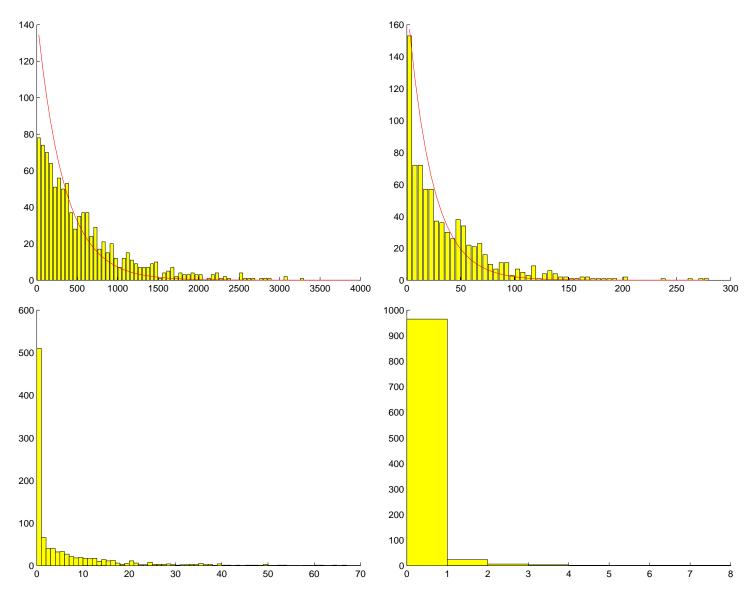
 $\triangleright \mathbb{E}[r^N] < \infty$ for $r < 1/\lambda_0$, so all moments of N are finite

Proof:

- ▶ uses Frobenius-Perron-Jentzsch-Krein-Rutman-Birkhoff theorem
- \triangleright [Ben Arous, Kusuoka, Stroock '84] implies uniform positivity of K
- b which implies spectral gap

Histograms of distribution of SAO number N (1000 spikes)

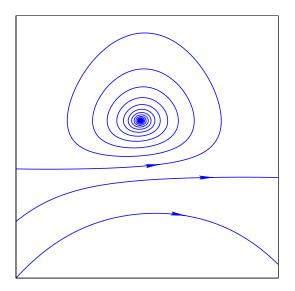
$$\sigma = \varepsilon = 10^{-4}, \delta = 1.2 \cdot 10^{-3}, \dots, 10^{-4}$$



Dynamics near the separatrix

Change of variables:

- \triangleright Straighten nullcline $\dot{x} = 0$
- \Rightarrow variables (ξ, z) where nullcline: $\{z = \frac{1}{2}\}$



$$d\xi_t = \left(\frac{1}{2} - z_t - \frac{\sqrt{\varepsilon}}{3} \xi_t^3\right) dt$$

$$dz_t = \left(\tilde{\mu} + 2\xi_t z_t + \frac{2\sqrt{\varepsilon}}{3} \xi_t^4\right) dt$$

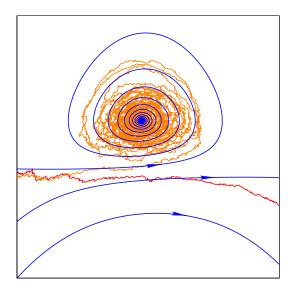
where

$$\tilde{\mu} = \frac{\delta}{\sqrt{\varepsilon}}$$

Dynamics near the separatrix

Change of variables:

- > Translate to Hopf bif. point
- \triangleright Straighten nullcline $\dot{x} = 0$
- \Rightarrow variables (ξ, z) where nullcline: $\{z = \frac{1}{2}\}$



$$d\xi_{t} = \left(\frac{1}{2} - z_{t} - \frac{\sqrt{\varepsilon}}{3}\xi_{t}^{3}\right)dt + \tilde{\sigma}_{1} dW_{t}^{(1)}$$

$$dz_{t} = \left(\tilde{\mu} + 2\xi_{t}z_{t} + \frac{2\sqrt{\varepsilon}}{3}\xi_{t}^{4}\right)dt - 2\tilde{\sigma}_{1}\xi_{t} dW_{t}^{(1)} + \tilde{\sigma}_{2} dW_{t}^{(2)}$$

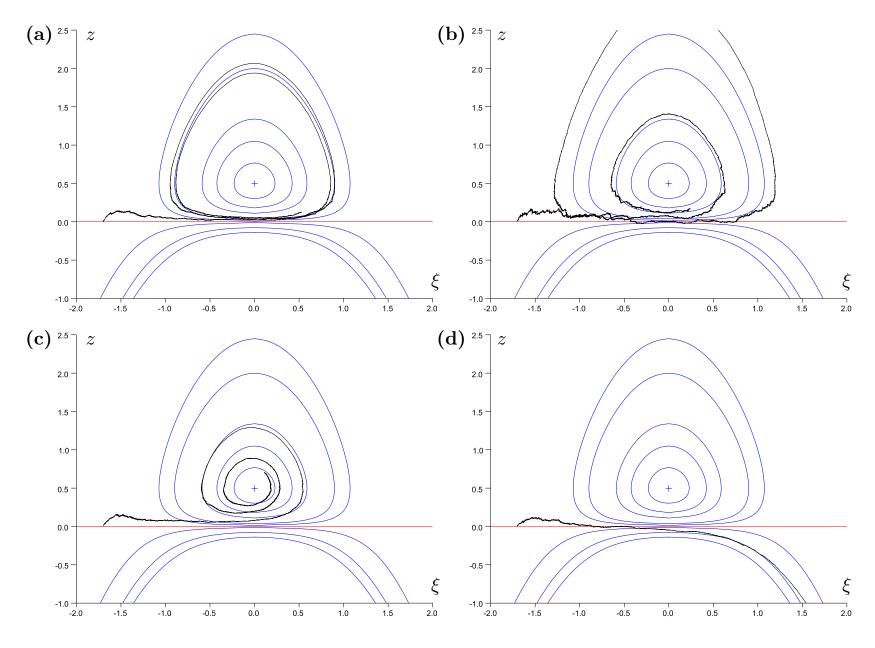
where

$$\tilde{\mu} = \frac{\delta}{\sqrt{\varepsilon}} - \tilde{\sigma}_1^2$$
 $\tilde{\sigma}_1 = -\sqrt{3} \frac{\sigma_1}{\varepsilon^{3/4}}$ $\tilde{\sigma}_2 = \sqrt{3} \frac{\sigma_2}{\varepsilon^{3/4}}$

Upward drift dominates if $\tilde{\mu}^2 \gg \tilde{\sigma}_1^2 + \tilde{\sigma}_2^2 \Rightarrow (\varepsilon^{1/4}\delta)^2 \gg \sigma_1^2 + \sigma_2^2$

Rotation around P: use that $2z e^{-2z-2\xi^2+1}$ is constant for $\tilde{\mu} = \varepsilon = 0$

Dynamics near the separatrix



Transition from weak to strong noise

Linear approximation:

$$dz_t^0 = (\tilde{\mu} + tz_t^0) dt - \tilde{\sigma}_1 t dW_t^{(1)} + \tilde{\sigma}_2 dW_t^{(2)}$$

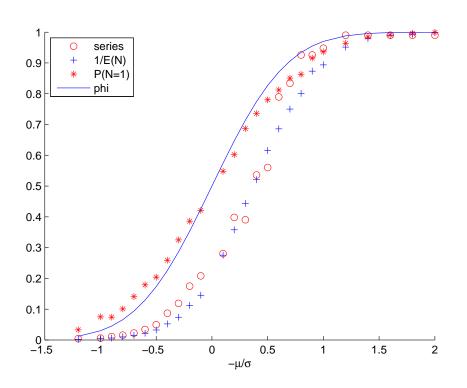
$$\Rightarrow \quad \mathbb{P}\{\text{no SAO}\} \simeq \Phi\left(-\pi^{1/4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{\mathrm{e}^{-y^2/2}}{\sqrt{2\pi}} \,\mathrm{d}y$$

Transition from weak to strong noise

Linear approximation:

$$dz_t^0 = (\tilde{\mu} + tz_t^0) dt - \tilde{\sigma}_1 t dW_t^{(1)} + \tilde{\sigma}_2 dW_t^{(2)}$$

$$\Rightarrow \quad \mathbb{P}\{\text{no SAO}\} \simeq \Phi\left(-\pi^{1/4} \frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}}\right) \qquad \Phi(x) = \int_{-\infty}^x \frac{\mathrm{e}^{-y^2/2}}{\sqrt{2\pi}} \,\mathrm{d}y$$



*: P{no SAO}

 $+: 1/\mathbb{E}[N]$

 \circ : $1-\lambda_0$

curve: $x \mapsto \Phi(\pi^{1/4}x)$

$$x = -\frac{\tilde{\mu}}{\sqrt{\tilde{\sigma}_1^2 + \tilde{\sigma}_2^2}} = -\frac{\varepsilon^{1/4}(\delta - \sigma_1^2/\varepsilon)}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

Theorem 2: [B & Landon 2011] Assume ε and $\delta/\sqrt{\varepsilon}$ sufficiently small There exists $\kappa>0$ s.t. for $\sigma^2\leqslant (\varepsilon^{1/4}\delta)^2/\log(\sqrt{\varepsilon}/\delta)$

Theorem 2: [B & Landon 2011]

Assume ε and $\delta/\sqrt{\varepsilon}$ sufficiently small

There exists $\kappa > 0$ s.t. for $\sigma^2 \leqslant (\varepsilon^{1/4}\delta)^2/\log(\sqrt{\varepsilon}/\delta)$

▶ Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

Theorem 2: [B & Landon 2011]

Assume ε and $\delta/\sqrt{\varepsilon}$ sufficiently small

There exists $\kappa > 0$ s.t. for $\sigma^2 \leqslant (\varepsilon^{1/4}\delta)^2/\log(\sqrt{\varepsilon}/\delta)$

▶ Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

$$\mathbb{E}^{\mu_0}[N] \geqslant C(\mu_0) \exp\left\{\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

where $C(\mu_0)$ = probability of starting on \mathcal{F} above separatrix

Theorem 2: [B & Landon 2011]

Assume ε and $\delta/\sqrt{\varepsilon}$ sufficiently small

There exists $\kappa > 0$ s.t. for $\sigma^2 \leq (\varepsilon^{1/4}\delta)^2/\log(\sqrt{\varepsilon}/\delta)$

▶ Principal eigenvalue:

$$1 - \lambda_0 \leqslant \exp\left\{-\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

$$\mathbb{E}^{\mu_0}[N] \geqslant C(\mu_0) \exp\left\{\kappa \frac{(\varepsilon^{1/4}\delta)^2}{\sigma^2}\right\}$$

where $C(\mu_0)$ = probability of starting on \mathcal{F} above separatrix

Proof:

- \triangleright Construct $A \subset \mathcal{F}$ such that K(x,A) exponentially close to 1 for all $x \in A$
- \triangleright Use two different sets of coordinates to approximate K: Near separatrix, and during SAO

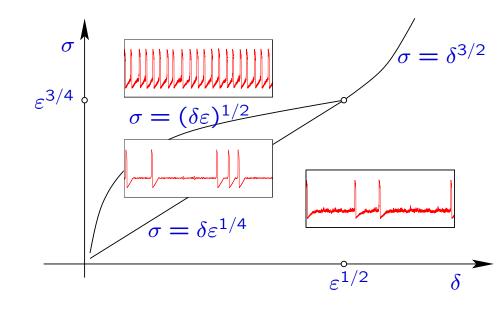
The story so far

Three regimes for $\delta < \sqrt{\varepsilon}$:

 $\triangleright \sigma \ll \varepsilon^{1/4} \delta$: rare isolated spikes interval $\simeq \mathcal{E}xp(\sqrt{\varepsilon} e^{-(\varepsilon^{1/4}\delta)^2/\sigma^2})$

 $ho \ \varepsilon^{1/4} \delta \ll \sigma \ll \varepsilon^{3/4}$: transition asympt geometric nb of SAOs $\sigma = (\delta \varepsilon)^{1/2}$: geometric(1/2)

 $\triangleright \sigma \gg \varepsilon^{3/4}$: repeated spikes



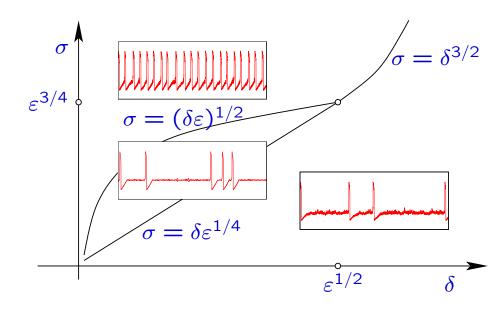
The story so far

Three regimes for $\delta < \sqrt{\varepsilon}$:

$$\triangleright \sigma \ll \varepsilon^{1/4} \delta$$
: rare isolated spikes interval $\simeq \mathcal{E}xp(\sqrt{\varepsilon} e^{-(\varepsilon^{1/4} \delta)^2/\sigma^2})$

 $ho \ \varepsilon^{1/4} \delta \ll \sigma \ll \varepsilon^{3/4}$: transition asympt geometric nb of SAOs $\sigma = (\delta \varepsilon)^{1/2}$: geometric(1/2)

 $\triangleright \sigma \gg \varepsilon^{3/4}$: repeated spikes

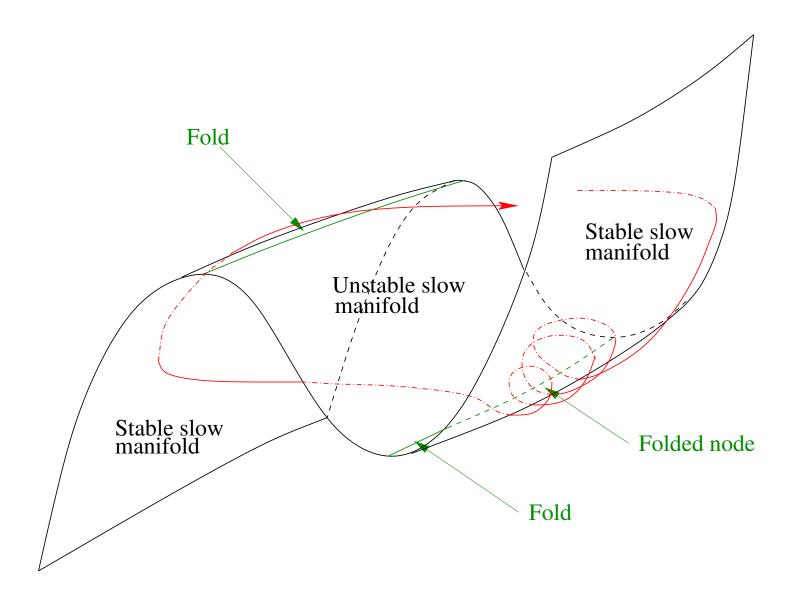


Perspectives

- \triangleright interspike interval distribution \simeq periodically modulated exponential how is it modulated?
- ▶ transient effects are important bias towards N=1 relation between $\mathbb{P}\{\text{no SAO}\}$, $1/\mathbb{E}[N]$ and $1-\lambda_0$
- \triangleright consequences of postspike distribution $\mu_0 \neq \pi_0$
- \triangleright sharper bounds on λ_0 (and π_0)

Higher dimensions

Systems with one fast and two slow variables



Folded node singularity

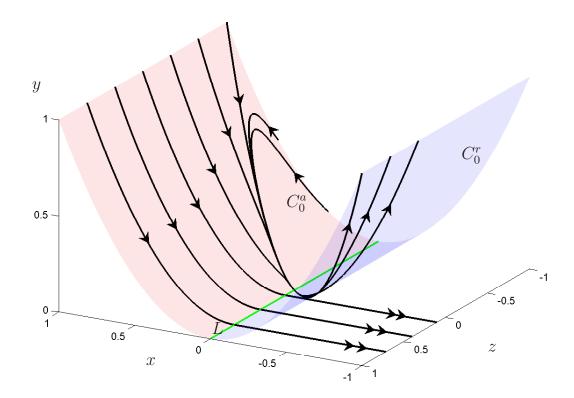
Normal form [Benoît, Lobry '82, Szmolyan, Wechselberger '01]:

$$\begin{split} \epsilon \dot{x} &= y - x^2 \\ \dot{y} &= -(\mu + 1)x - z \\ \dot{z} &= \frac{\mu}{2} \end{split} \tag{+ higher-order terms)}$$

Folded node singularity

Normal form [Benoît, Lobry '82, Szmolyan, Wechselberger '01]:

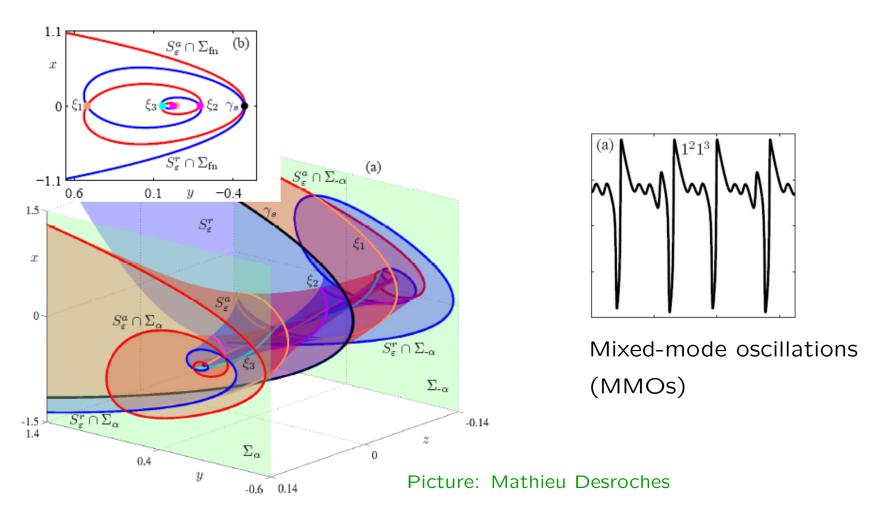
$$\begin{split} \epsilon \dot{x} &= y - x^2 \\ \dot{y} &= -(\mu + 1)x - z \\ \dot{z} &= \frac{\mu}{2} \end{split} \tag{+ higher-order terms)}$$



Folded node singularity

Theorem [Benoît, Lobry '82, Szmolyan, Wechselberger '01]:

For $2k + 1 < \mu^{-1} < 2k + 3$, the system admits k canard solutions. The j^{th} canard makes (2j + 1)/2 oscillations

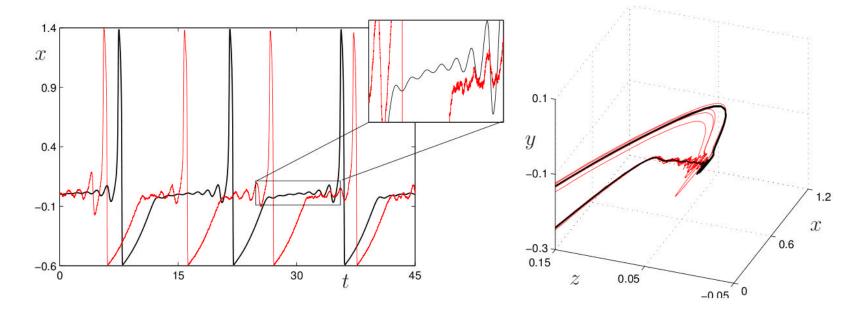


Effect of noise

$$dx_t = \frac{1}{\varepsilon} (y_t - x_t^2) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW_t^{(1)}$$

$$dy_t = [-(\mu + 1)x_t - z_t] dt + \sigma dW_t^{(2)} + \text{h.o.t.}$$

$$dz_t = \frac{\mu}{2} dt$$

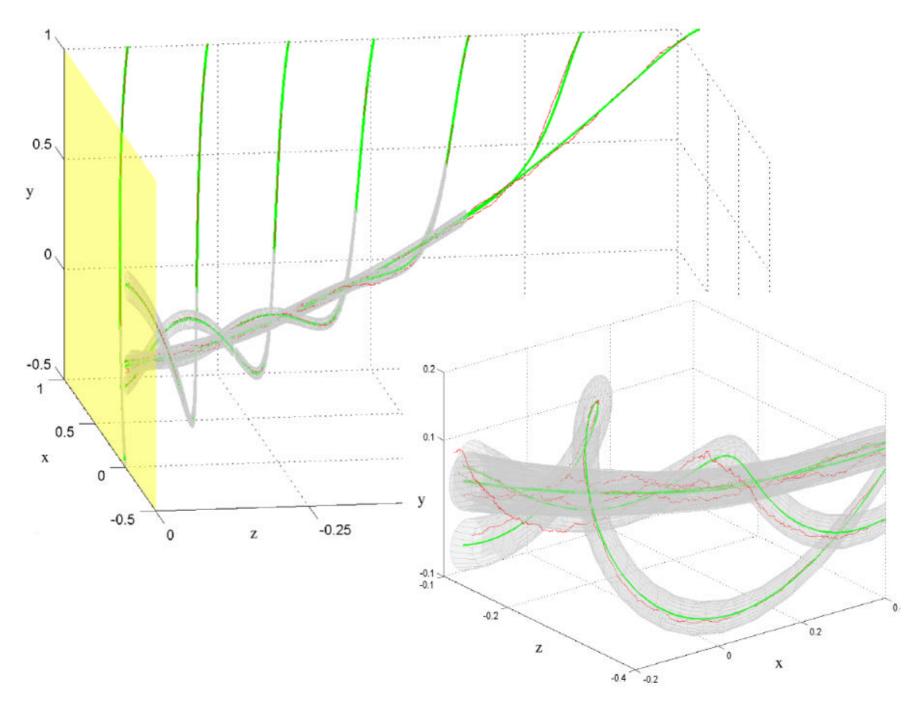


- Noise smears out small amplitude oscillations
- Early transitions modify the mixed-mode pattern

Main results

Theorem 3: [B, Gentz, Kuehn 2010]

- \triangleright For $z \le 0$, paths stay with high probability in covariance tubes
- \triangleright For z=0, section of tube is close to circular with radius $\mu^{-1/4}\sigma$
- \triangleright Distance between k^{th} and $k+1^{\text{st}}$ canard $\sim e^{-(2k+1)^2\mu}$



Main results

Theorem 3: [B, Gentz, Kuehn 2010]

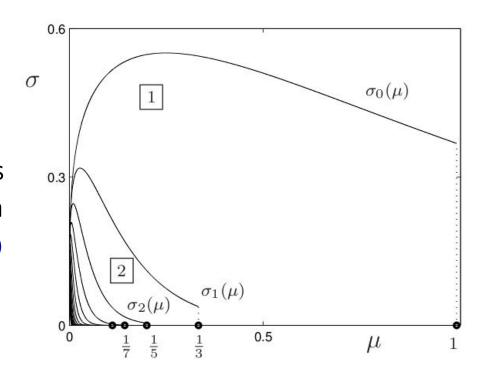
- \triangleright For $z \le 0$, paths stay with high probability in covariance tubes
- \triangleright For z=0, section of tube is close to circular with radius $\mu^{-1/4}\sigma$
- \triangleright Distance between k^{th} and $k+1^{\text{st}}$ canard $\sim e^{-(2k+1)^2\mu}$

Corollary:

Let

$$\sigma_k(\mu) = \mu^{1/4} e^{-(2k+1)^2 \mu}$$

Canards with $\frac{2k+1}{4}$ oscillations become indistinguishable from noisy fluctuations for $\sigma > \sigma_k(\mu)$



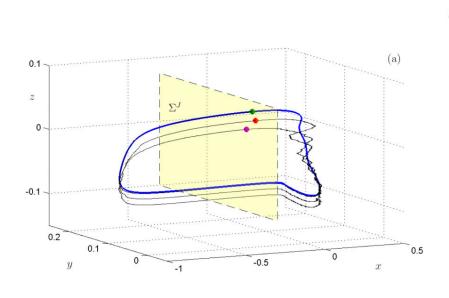
Main results

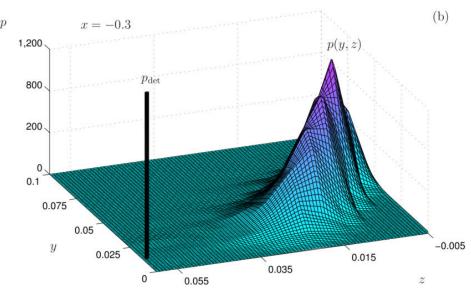
Theorem 3: [B, Gentz, Kuehn 2010]

- \triangleright For $z \le 0$, paths stay with high probability in covariance tubes
- \triangleright For z=0, section of tube is close to circular with radius $\mu^{-1/4}\sigma$
- \triangleright Distance between k^{th} and $k+1^{\text{st}}$ canard $\sim e^{-(2k+1)^2\mu}$

Theorem 4: [B, Gentz, Kuehn 2010]

For z>0, paths are likely to escape after time of order $\sqrt{\mu|\log\sigma|}$





What's next?

- ▷ Estimate global return map for stochastic system
- ▶ Analyse possible mixed-mode patterns Possible scenario:
 - metastable transitions between regular patterns

What's next?

- ▷ Estimate global return map for stochastic system
- - metastable transitions between regular patterns

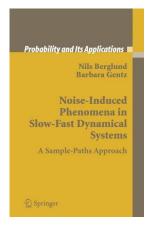
Summary

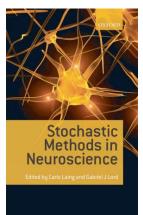
- ▷ ISI distributions are not always exponential
- ▶ Transient effects are important (QSD, metastability)
- ▶ Precise sample path analysis is possible, useful tools exist (in some cases): singular perturbation theory, large deviations, martingales, substochastic Markov processes, . . .
- > Still many open problems: other bifurcations, better approximation of QSD, higher dimensions, other types of noise, . . .

Further reading

N.B. and Barbara Gentz, *Noise-induced phe-nomena in slow-fast dynamical systems, A sample-paths approach*, Springer, Probability and its Applications (2006)

N.B. and Barbara Gentz, *Stochastic dynamic bifurcations and excitability*, in C. Laing and G. Lord, (Eds.), *Stochastic methods in Neuroscience*, p. 65-93, Oxford University Press (2009)





N.B., Stochastic dynamical systems in neuroscience, Oberwolfach Reports 8:2290–2293 (2011)

N.B., Barbara Gentz and Christian Kuehn, *Hunting French Ducks in a Noisy Environment*, J. Differential Equations **252**:4786–4841 (2012)

N.B. and Damien Landon, *Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model*, Nonlinearity, at press (2012). arXiv:1105.1278

www.univ-orleans.fr/mapmo/membres/berglund

Additional material

Linearized stochastic equation around a canard $(x_t^{\text{det}}, y_t^{\text{det}}, z_t^{\text{det}})$

$$d\zeta_t = A(t)\zeta_t dt + \sigma dW_t \qquad A(t) = \begin{pmatrix} -2x_t^{\text{det}} & 1\\ -(1+\mu) & 0 \end{pmatrix}$$

$$\zeta_t = U(t)\zeta_0 + \sigma \int_0^t U(t,s) \, dW_s$$
 $(U(t,s) : principal solution of $\dot{U} = AU)$$

Gaussian process with covariance matrix

$$Cov(\zeta_t) = \sigma^2 V(t)$$
 $V(t) = U(t)V(0)U(t)^{-1} + \int_0^t U(t,s)U(t,s)^T ds$

Linearized stochastic equation around a canard $(x_t^{\text{det}}, y_t^{\text{det}}, z_t^{\text{det}})$

$$d\zeta_t = A(t)\zeta_t dt + \sigma dW_t \qquad A(t) = \begin{pmatrix} -2x_t^{\text{det}} & 1\\ -(1+\mu) & 0 \end{pmatrix}$$

$$\zeta_t = U(t)\zeta_0 + \sigma \int_0^t U(t,s) \, dW_s$$
 $(U(t,s) : principal solution of $\dot{U} = AU)$$

Gaussian process with covariance matrix

$$Cov(\zeta_t) = \sigma^2 V(t)$$
 $V(t) = U(t)V(0)U(t)^{-1} + \int_0^t U(t,s)U(t,s)^T ds$

Covariance tube :

$$\mathcal{B}(h) = \left\{ \langle (x, y) - (x_t^{\text{det}}, y_t^{\text{det}}), V(t)^{-1} [(x, y) - (x_t^{\text{det}}, y_t^{\text{det}})] \rangle < h^2 \right\}$$

Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with $z_t \leq 0$):

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \, \mathrm{e}^{-\kappa h^2/2\sigma^2}$$

Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with $z_t \leq 0$):

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \,\mathrm{e}^{-\kappa h^2/2\sigma^2}$$

Sketch of proof:

- \triangleright (Sub)martingale : $\{M_t\}_{t\geqslant 0}$, $\mathbb{E}\{M_t|M_s\}=(\geqslant)M_s$ for $t\geqslant s\geqslant 0$
- ho Doob's submartingale inequality : $\mathbb{P}\Big\{\sup_{0\leqslant t\leqslant T}M_t\geqslant L\Big\}\leqslant \frac{1}{L}\mathbb{E}[M_T]$

Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with $z_t \leq 0$):

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \,\mathrm{e}^{-\kappa h^2/2\sigma^2}$$

Sketch of proof:

- ho (Sub)martingale : $\{M_t\}_{t\geqslant 0}$, $\mathbb{E}\{M_t|M_s\}=(\geqslant)M_s$ for $t\geqslant s\geqslant 0$
- ho Doob's submartingale inequality : $\mathbb{P}\Big\{\sup_{0\leqslant t\leqslant T}M_t\geqslant L\Big\}\leqslant \frac{1}{L}\mathbb{E}[M_T]$
- ho Linear equation : $\zeta_t = \sigma \int_0^t U(t,s) \, \mathrm{d}W_s$ is no martingale but can be approximated by martingale on small time intervals
- $\triangleright \exp\{\gamma\langle \zeta_t, V(t)^{-1}\zeta_t\rangle\}$ approximated by submartingale
- \triangleright Doob's inequality yields bound on probability of leaving $\mathcal{B}(h)$ during small time intervals. Then sum over all time intervals

Theorem 3: [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with $z_t \leq 0$):

$$\mathbb{P}\left\{\tau_{\mathcal{B}(h)} < t\right\} \leqslant C(t) \,\mathrm{e}^{-\kappa h^2/2\sigma^2}$$

Sketch of proof:

- \triangleright (Sub)martingale : $\{M_t\}_{t\geqslant 0}$, $\mathbb{E}\{M_t|M_s\} = (\geqslant)M_s$ for $t\geqslant s\geqslant 0$
- ho Doob's submartingale inequality : $\mathbb{P}\Big\{\sup_{0\leqslant t\leqslant T}M_t\geqslant L\Big\}\leqslant \frac{1}{L}\mathbb{E}[M_T]$
- ho Linear equation : $\zeta_t = \sigma \int_0^t U(t,s) \, \mathrm{d}W_s$ is no martingale but can be approximated by martingale on small time intervals
- $\triangleright \exp{\{\gamma\langle\zeta_t,V(t)^{-1}\zeta_t\rangle\}}$ approximated by submartingale
- \triangleright Doob's inequality yields bound on probability of leaving $\mathcal{B}(h)$ during small time intervals. Then sum over all time intervals
- \triangleright Nonlinear equation : $d\zeta_t = A(t)\zeta_t dt + b(\zeta_t, t) dt + \sigma dW_t$

$$\zeta_t = \sigma \int_0^t U(t,s) dW_s + \int_0^t U(t,s)b(\zeta_s,s) ds$$

Second integral can be treated as small perturbation for $t \leqslant \tau_{\mathcal{B}(h)}$

Early transitions

Let \mathcal{D} be neighbourhood of size \sqrt{z} of a canard for z > 0 (unstable)

Theorem 4: [B, Gentz, Kuehn 2010]

 $\exists \kappa, C, \gamma_1, \gamma_2 > 0$ such that for $\sigma |\log \sigma|^{\gamma_1} \leqslant \mu^{3/4}$ probability of leaving \mathcal{D} after $z_t = z$ satisfies

$$\mathbb{P}\left\{z_{\tau_{\mathcal{D}}} > z\right\} \leqslant C |\log \sigma|^{\gamma_2} e^{-\kappa(z^2 - \mu)/(\mu |\log \sigma|)}$$

Small for $z\gg\sqrt{\mu|\log\sigma|/\kappa}$

Sketch of proof:

- \triangleright Escape from neighbourhood of size $\sigma |\log \sigma|/\sqrt{z}$: compare with linearized equation on small time intervals + Markov property
- \triangleright Escape from annulus $\sigma|\log\sigma|/\sqrt{z}\leqslant \|\zeta\|\leqslant \sqrt{z}$: use polar coordinates and averaging
- ▶ To combine the two regimes : use Laplace transforms