TD Master 2 – Mathématiques financières

Corrigé Série 1 – Intégrales stochastiques

Exercice 1

Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction déterministe, de carré intégrable, et soit

$$X_t = \int_0^t h(s) dB_s - \frac{1}{2} \int_0^t h(s)^2 ds$$
.

Soit $Y_t = e^{X_t}$.

1. Calculer dY_t à l'aide de la formule d'Itô.

Comme

$$dX_t = h(t) dB_t - \frac{1}{2}h(t)^2 dt ,$$

la formule d'Itô (avec $u(t,x) = e^x$ et $dX_t^2 = h(t)^2 dt$) donne

$$dY_t = e^{X_t} dX_t + \frac{1}{2} e^{X_t} dX_t^2$$

$$= e^{X_t} h(t) dB_t - \frac{1}{2} e^{X_t} h(t)^2 dt + \frac{1}{2} e^{X_t} h(t)^2 dt$$

$$= h(t)Y_t dB_t.$$

2. Soit N une variable aléatoire normale centrée, de variance σ^2 . Montrer que

$$\mathbb{E}\left(\mathbf{e}^{N}\right) = \mathbf{e}^{\sigma^{2}/2}$$

En complétant le carré $[x-x^2/2\sigma^2=\sigma^2/2-(x-\sigma^2)^2/2\sigma^2]$, il vient

$$\mathbb{E}(e^{N}) = \int_{-\infty}^{\infty} e^{x} \frac{e^{-x^{2}/2\sigma^{2}}}{\sqrt{2\pi\sigma^{2}}} dx = e^{\sigma^{2}/2} \int_{-\infty}^{\infty} \frac{e^{-(x-\sigma^{2})^{2}/2\sigma^{2}}}{\sqrt{2\pi\sigma^{2}}} dx = e^{\sigma^{2}/2}.$$

3. En déduire que Y_t est une martingale.

Soit $t > s \ge 0$. On peut écrire

$$Y_t = Y_s \exp\left\{ \int_s^t h(u) dB_u - \frac{1}{2} \int_s^t h(u)^2 du \right\} = e^{-\beta/2} Y_s e^N$$

avec
$$\beta = \int_s^t h(u)^2 du$$
 et $N = \int_s^t h(u) dB_u$. Comme $Y_s \subseteq \mathcal{F}_s$ et $N \perp \mathcal{F}_s$,

$$\mathbb{E}\left(Y_t|\mathcal{F}_s\right) = e^{-\beta/2} Y_s \mathbb{E}\left(e^N\right).$$

Or N suit une loi normale centrée, de variance β en vertu de l'isométrie d'Itô. Par conséquent, $\mathbb{E}(e^N) = e^{\beta/2}$, ce qui implique la propriété de martingale $\mathbb{E}(Y_t|\mathcal{F}_s) = Y_s$.

Remarque: Un autre raisonnement possible est d'observer qu'en vertu de 1.,

$$Y_t = Y_0 + \int_0^t h(s) Y_s \, \mathrm{d}B_s$$

qui est une martingale, puisque c'est l'intégrale d'Itô d'un processus adapté.

4. Calculer $\mathbb{E}(Y_t)$.

 Y_t étant une martingale, on a $\mathbb{E}(Y_t) = \mathbb{E}(Y_t | \mathcal{F}_0) = \mathbb{E}(Y_0) = 1$.

Exercice 2

On considère les deux processus stochastiques

$$X_t = \int_0^t e^s dB_s , \qquad Y_t = e^{-t} X_t .$$

1. Déterminer $\mathbb{E}(X_t)$, $\operatorname{Var}(X_t)$, $\mathbb{E}(Y_t)$ et $\operatorname{Var}(Y_t)$.

 X_t étant l'intégrale d'un processus adapté, on a $\mathbb{E}(X_t)=0$. Par conséquent, l'isométrie d'Itô donne $\mathrm{Var}(X_t)=\mathbb{E}(X_t^2)=\int_0^t \mathrm{e}^{2s}\,\mathrm{d}s=\frac{1}{2}[\mathrm{e}^{2t}-1]$. Enfin, par linéarité $\mathbb{E}(Y_t)=0$ et par bilinéarité $\mathrm{Var}(Y_t)=\mathrm{e}^{-2t}\mathrm{Var}(X_t)=\frac{1}{2}[1-\mathrm{e}^{-2t}]$.

2. Spécifier la loi de X_t et de Y_t .

Etant des intégrales stochastiques de fonctions déterministes, X_t et Y_t suivent des lois normales (centrées, de variance calculée ci-dessus).

3. Montrer que Y_t converge en loi vers une variable Y_{∞} lorsque $t \to \infty$ et spécifier sa loi.

La fonction caractéristique de Y_t est $\mathbb{E}\left(e^{i\,uY_t}\right) = e^{-u^2\,\mathrm{Var}(Y_t)/2}$. Elle converge donc vers $e^{-u^2/4}$ lorsque $t\to\infty$. Par conséquent, Y_t converge en loi vers une variable Y_∞ , de loi normale centrée de variance 1/2.

4. Exprimer dY_t en fonction de Y_t et de B_t .

La formule d'Itô avec $u(t,x) = e^{-t}x$ donne

$$dY_t = -e^{-t} X_t dt + e^{-t} dX_t = -Y_t dt + dB_t.$$

 Y_t est appelé processus d'Ornstein-Uhlenbeck.

Exercice 3

Soit

$$X_t = \int_0^t s \, \mathrm{d}B_s \; .$$

1. Calculer $\mathbb{E}(X_t)$ et $Var(X_t)$.

 X_t étant l'intégrale d'un processus adapté, on a $\mathbb{E}(X_t) = 0$. Par conséquent, l'isométrie d'Itô donne $\text{Var}(X_t) = \mathbb{E}(X_t^2) = \int_0^t s^2 \, \mathrm{d}s = \frac{1}{3}t^3$.

2. Quelle est la loi de X_t ?

 X_t suit une loi normale centrée de variance $\frac{1}{3}t^3$.

3. Calculer $d(tB_t)$ à l'aide de la formule d'Itô.

La formule d'Itô avec u(t,x) = tx donne $d(tB_t) = B_t dt + t dB_t$.

4. En déduire une relation entre X_t et

$$Y_t = \int_0^t B_s \, \mathrm{d}s \; .$$

Comme $B_s ds = d(sB_s) - s dB_s$, on a la formule d'intégration par parties

$$Y_t = \int_0^t \mathrm{d}(sB_s) - \int_0^t s \, \mathrm{d}B_s = tB_t - X_t .$$

 Y_t suit donc une loi normale de moyenne nulle.

- 5. Calculer la variance de Y_t ,
 - (a) directement à partir de sa définition;

Comme
$$\mathbb{E}(B_s B_u) = s \wedge u$$
,

$$\mathbb{E}(Y_t^2) = \mathbb{E} \int_0^t \int_0^t B_s B_u \, ds \, du = \int_0^t \int_0^t (s \wedge u) \, ds \, du$$
$$= \int_0^t \left[\int_0^u s \, ds + \int_u^t u \, ds \right] du = \int_0^t \left[\frac{1}{2} u^2 + ut - u^2 \right] du = \frac{1}{3} t^3.$$

(b) en calculant d'abord la covariance de B_t et X_t , à l'aide d'une partition de [0,t]. Pour calculer la covariance, on introduit une partition $\{t_k\}$ de [0,t], d'espacement 1/n. Alors

$$cov(B_t, X_t) = \mathbb{E}(B_t X_t)$$

$$= \mathbb{E} \int_0^t s B_t dB_s$$

$$= \lim_{n \to \infty} \sum_k t_{k-1} \mathbb{E}(B_t (B_{t_k} - B_{t_{k-1}}))$$

$$= \lim_{n \to \infty} \sum_k t_{k-1} (t_k - t_{k-1})$$

$$= \int_0^t s ds = \frac{1}{2} t^2.$$

Il suit que

$$Var(Y_t) = Var(tB_t) + Var(X_t) - 2cov(tB_t, X_t) = t^3 + \frac{1}{3}t^3 - 2t cov(B_t, X_t) = \frac{1}{3}t^3.$$

En déduire la loi de Y_t .

 $Y_t = tB_t - X_t$ étant une combinaison linéaire de variables normales centrés, elle suit également une loi normale centrée, en l'occurrence de variance $t^3/3$. Remarquons que Y_t représente l'aire (signée) entre la trajectoire Brownienne et l'axe des abscisses.