High frequency
analysis of the
dissipative Helmholtz
equation

Julien ROYER

Introduction

Helmholtz equation with
non constant absorption
index

Outline

Uniform resolvent
estimates

High frequency analysis of the dissipative
Helmholtz equation

Julien ROYER

GDR Quantum dynamics - Orléans

February 4, 2011



High frequency .
B The Helmholtz equation
equation

Julien ROYER

Introduction We study on R™ the following Helmholtz equation:
e
index

(—h®A + Vi(z) — ihVa(z) — E)u = S.

Uniform resolvent
estimates

, , This equation models accurately the propagation of the
N.Iolljrre.s meth.od in the . . 4 . .
SIS electromagnetic field of a laser in material medium.

Resolvent estimates for the
dissipative Schradinger
operator

Vi(z) — E : refraction index,
Va(xz) : absorption index,

S . source term,

h wave length,
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The Helmholtz equation

We study on R™ the following Helmholtz equation:
(=h2A + Vi(z) — ihVa(z) — E)uy = S.

This equation models accurately the propagation of the
electromagnetic field of a laser in material medium.

Vi(z) — E : refraction index,
Va(xz) : absorption index,
S . source term,
h wave length, 0<h « 1.

We consider the high frequency approximation i — 0.
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o When V5 is constant, it can be put in the spectral parameter:

Introduction
Helmholtz equation with

non constant absorption h
. (Hy' = zp)un = 5,

Uniform resolvent

estimates with

H = —h?A + Vi(z) and 2z, = E + ihVs.
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The non-selfadjoint Schrodinger operator

o When V5 is constant, it can be put in the spectral parameter:
(th - zh)uh = Sa
with

H = —h?A + Vi(z) and 2z, = E + ihVs.

o When V5 is variable, it has to be in the operator itself:
(Hh - E)Uh = Sa
with

Hy, = —h*A + Vi(x) — ihVa(z).

v~ we have to work with a non-selfadjoint operator.
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e H is said to be maximal dissipative if any dissipative extension of
T H is trivial. In this case :
estimates
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Resolvent estimates for the

o The resolvent (H — z)~! is well-defined if I 2 > 0 and

_ 1
[ =27 gagy <

Imz’
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Helmholtz equation with
non constant absorption
index

e H is said to be maximal dissipative if any dissipative extension of
W o H is trivial. In this case :

estimates

Mourre’s method in the
dissipative setting

e e The resolvent (H — z)~ ! is well-defined if I ~ > 0 and
operator
G = 2 oy < 1
LH) = Imz’

o H generates a contractions semi-group

PER, e e [ <1

and for o € D(H):

% He_itHgo”i =2Im <He_itH<p, e_itH<p> <0.




High frequency
analysis of the
dissipative Helmholtz
equation

Julien ROYER

Introduction

Helmholtz equation with
non constant absorption
index

Outline

Uniform resolvent
estimates

Questions

@ We first look for uniform resolvent estimates:

sup

Rez~FE
Im z>0

(H, © I2(R") < HE).

[(H —2)7Y LOHLHE) S C
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@ We first look for uniform resolvent estimates:

S 1 = <
Im z>0

(H1 < L2(R™) < H}). This gives the limiting absorption
principle:

lim (H — (E + ip)) ™" exists in £(H1, H}),

pn—0+

and

[ullyr = |(H = (B +i0) 718 ,s < ]Sy, -
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@ We first look for uniform resolvent estimates:

Vhel0. ko). sup [(Hi=2)7 | ey gy < olh)
Im z>0

(H1 < L23(R™) < H}). This gives the limiting absorption
principle:

lim (H — (E + ip)) ™" exists in £(H1, H}),

pn—0+
and
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Questions

@ We first look for uniform resolvent estimates:

Vh 6]07 hO]’ sup ”(Hh - Z)_1|| L(Hl,?-[f) < C(h)
Rez~FE
Im z2>0

(H1 < L23(R™) < H}). This gives the limiting absorption
principle:

lim (H — (E + ip)) ™" exists in £(H1, H}),

pn—0+

and

lunllyr = [(Hn = (B +i0) 7 Shyn < c(h) [Shlyy, -

We study these estimates in an abstract setting, and then for
the dissipative Schrodinger operator.
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Questions

Q@ We study the semiclassical measures for the solution uy of
the Helmholtz equation for a particular term source Sj:

<Op}fm(‘1)uhm,uhm> — qdu,

where h,, — 0 and

Opy (9)u(z) = zﬂh Jf

(Weyl quantization of q).

i

en

M=% Jpan

w18 g (222 ) uly) dy de
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Mourre's commutators method

Theorem (E.Mourre 81,...)
Let Hy be a self-adjoint operator on the Hilbert space H.

The self-adjoint operator A on H is said to be conjugate to Hy on
the open set J c R if

e some conditions about the commutators [Hy, iA] and
[[H:,iA], iA] are satisfied,

@ and for some o > 0:

L, (Hy)[Hy, AL, (Hy) 2 ol (Hy).

In this case, for 6 > % and a compact I  J there exists ¢ > 0
such that for Rez € I and Im z # 0

o= ], <

) = (1+ )2
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Mourre's commutators method

Theorem

Let H = H, — 1V be a dissipative operator on the Hilbert space
‘H, where H; is self-adjoint and V' > 0 is self-adjoint and
Hy-bounded with relative bound <1.

The self-adjoint operator A on H is said to be conjugate to H on
the open set J R if

e some conditions about the commutators [Hy, i4], |
and [[H,iA], iA], [[ V', iA], iA] are satisfied,
o and for some o > 0:

V,iA]

L, (Hy)[Hy, AL, (Hy) 2 ol (Hy).

In this case, for 6 > % and a compact I  J there exists ¢ > 0
such that for Rez € I and Im 2z > ()

[~ (-7 (] <e
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Two words about the assumption

1, (Hy)[Hy, AL, (Hy) 2 ol y(Hy).

o We do not have a functionnal calculus for the non-selfadjoint
operator H.

We use functionnal calculus for the self-adjoint part Hy, and
the assumption that the dissipative part V is “smaller” than
H.
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Two words about the assumption

1, (Hy)[Hy, AL, (Hy) 2 aly(Hy).

o We do not have a functionnal calculus for the non-selfadjoint
operator H.

We use functionnal calculus for the self-adjoint part H;, and

the assumption that the dissipative part V is “smaller” than
H.

Lemma (Quadratic estimates)

Let T"= Ty — 1T where Ty is self-adjoint and T > 0 is
self-adjoint and Tgr-bounded with relative bound <1.
If B*B < T, , @ is bounded and Im z > 0 we have

|B(T —2)71Q| < [@*(T - 2~'q|*.
@ We use the quadratic estimates with
T = Hy, —ie¢(H)[Hy, iA]¢(Hy), supp¢ < J,
and B = \/e\Jap(Hy).
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Two words about the assumption

1, (Hy)[Hy, AL, (Hy) 2 aly(Hy).

o We do not have a functionnal calculus for the non-selfadjoint
operator H.

We use functionnal calculus for the self-adjoint part H;, and

the assumption that the dissipative part V is “smaller” than
H.

Lemma (Quadratic estimates)

Let T"= Ty — 1T where Ty is self-adjoint and T > 0 is
self-adjoint and Tgr-bounded with relative bound <1.
If B*B < T, , @ is bounded and Im z > 0 we have

BT -2 @ <@ (T~ 27 ¢l
@ We use the quadratic estimates with
T =H —iV —iep(H)[H —iV,iAl¢(Hy), supp¢ c J,
and B = \/e\Jap(Hy).
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Mourre's commutators method

Theorem (J.R. 10)

Let H = Hy — 1V be a dissipative operator on the Hilbert space
‘H, where H; is self-adjoint and V' = (0 is self-adjoint and
Hi-bounded with relative bound <1.

The self-adjoint operator A on H is said to be conjugate to H on
the open set J c R if

o some conditions about the commutators [Hy, iA], [V, iA]
and [[Hy,iA], iA], [[ V. iA]. iA] are satisfied,
@ and for some o >0, 8 = 0:

1,(Hy)([Hy, iA]+5 V)1, (Hy) = ol ;(Hy).

In this case, for 6 > % and a compact I c J there exists ¢ > 0
such that for Rez € I and Im z > 0

[~ (=2 <A>*“HL,(H) <e.
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More about abstract resolvent estimates

o Limiting absorption principle: for A € J the limit

lim (A)° (H — (A +ip)) 1 (4)°

n—0+
exists in £(#) and defines a continuous function of A.
o Estimate in Besov spaces.

o Estimates for the powers of the resolvent and regularity of the
limit.
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with

Uniform resolvent

estimates

109 Vi (2)] < e (2) 771 p>0
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Classical flow

o Let
HF = —h2A + Vi (2)
with
10°Vi(2)] < co (z) P71 p>o0.
o Let

p(z,€) = |€]* + Va(2).

We denote by ¢t($0)€0) = (T(t7$07§0)az(t7z07§0)) the
solution of the hamiltonian system

atT( ) = 22(2‘:)7
0E(t) = =V Va(@()),

7(0) = 3, £(0) =&

~
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Resolvent estimates

Theorem (D.Robert-H.Tamura 87, X.P.Wang 87)

Let 6 > % and E > 0.
Then we can find hg > 0, a neighborhood I of E and ¢ > 0 such
that for h €]0, hg] and Re z € I and Im z # 0 we have

o~ et =7 @ ey <

if and only if E is non-trapping:

p($7§) =F= |E(t7$,£)| t—>—i-”L) +00.
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Resolvent estimates
Theorem (J.R. 10)

Let 6 > % and E > 0. Suppose that V > 0 is of long range.
Then we can find hg > 0, a neighborhood I of E and ¢ > 0 such
that for h €]0, hg] and Re z € I and I =z > 0 we have

()7 (B = )7 ()|

c

S —
L(L2R"))  h
if and only if for (z,£&) € p~Y({E})

sup [Z(t, z,&)| <0 =
teR

AT € R, Va(Z(T,z,€)) > 0.
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Resolvent estimates
Theorem (J.R. 10)

Let 6 > % and E > 0. Suppose that V > 0 is of long range.
Then we can find hg > 0, a neighborhood I of E and ¢ > 0 such
that for h €]0, hg] and Re z € I and I =z > 0 we have

[RC L INES

if and only if for (z,€) € p~1({E})

sup |z(t,z,€)| <0 = AT eR, Vo(z(T,z,£)) > 0.
teR

We have the limiting absorption principle and the limit of the
resolvent

(Hyp — (E +i0))" ' : L*°(R") — L* °(R")
gives the unique outgoing solution for the equation

(Hh —E)u =S.
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Outine o We look for a conjugate operator of the form

Uniform resolvent

estimates s 2
Mourre’s method in the Ah = Opg(a7 . § + T($,§)), e C(?C (R n)

dissipative setting
Resolvent estimates for the

gipatie Seiidney (if V1 =0 we can choose r = 0).

operator

Semiclassical measure

@ In order to have
]lJ(H1h)[H1haiAh]]lJ(H1h) = COh]lJ(H1h)7 co >0,
after quantization, we construct 7 such that

{p,.%‘f-'—?"(.%‘,é)}? Co on pil(‘])
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C. Gérard and A. Martinez (88) constructed a conjugate operator

to H{*, using pseudo-differential calculus.

o We look for a conjugate operator of the form

Ah = Opf(l’ ) § + T($,§)),

(if V1 =0 we can choose r = 0).

@ In order to have

re C5 (R*™)

Ly (HP) ([ iAp]+0 Vo)1 (HY) = eohd ;(HY),

after quantization, we construct 7 such that

{paz §+ 7"(:17,5)}"‘/8‘/2 = ¢y on pil(‘])

co >0,
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Semiclassical measure for the solution of the

Helmholtz equation
Let
up, = (H, — (E + iO))_ISh

where
Hy, = —h*A + Vy(z) — ihVa(z)
and S}, is an explicit source term which concentrates on a bounded
submanifold of R™:
o I" bounded submanifold of R™ of dimension d € [0, n — 1], or
Lebesgue measure on T,
o Ae Cr (),
o SeSRM),
Sh(ilf) =h

r—z

A(z)S( -

1—n—d

) dor).

r
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Introduction Let

e up = (Hy — (B +i0))~' S
o where

Uniform resolvent Hh — _hZA + Vl(.’lf) _ ZhVQ(.’E)

estimates

and S}, is an explicit source term which concentrates on a bounded
submanifold of R™:

o I" bounded submanifold of R™ of dimension d € [0, n — 1], or
Lebesgue measure on T,

o Ae Cy (),
o Se SR,
Su(z) =h5" | A(2)S (x ; z) dor(2).
r
We have:
1
Vo > > 1Sn ] 2.5 gy = O(Vh)
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Semiclassical measure for the solution of the

Helmholtz equation
Let
up, = (H, — (E + iO))_ISh
where
Hy, = —h*A + Vy(z) — ihVa(z)

and S}, is an explicit source term which concentrates on a bounded
submanifold of R™:

o I" bounded submanifold of R™ of dimension d € [0, n — 1], or
Lebesgue measure on T,

o Ae Cy (),
o SeSR"),
Sp(z) = W A(z)S (w — z) dor(2).
r h
We have:
1
Vo > 3 IS 2.6 ey = O(Vh) and lun 2.5 @y = O(

Sl
=
N—



High frequency
analysis of the
dissipative Helmholtz
equation

Julien ROYER

Introduction

Helmholtz equation with
non constant absorption
index

Outline
Uniform resolvent
estimates

Mourre’s method in the
dissipative setting

Resolvent estimates for the
dissipative Schrédinger
operator

Semiclassical measure
Statement of the Theorem

Insight into the new

Known results for a constant absorption index

J.D.Benamou-F.Castella-T.Katsaounis-B.Perthame-02:
T" = {0}, semiclassical measure as the limit of the Wigner

transform

(see also F.Castella (05)).
F.Castella-B.Perthame-O.Runborg-02: T' affine subspace of
R™ Vi =0.

X.P.Wang-P.Zhang-06: V; # 0.

E.Fouassier-06: two source points.

E.Fouassier-07: V7 discontinuous along a hyperplane.

J.-F.Bony-09: T" = {0}, microlocal point of view.
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The Assumptions

V1 of long range.

V4 of short range:
0" Va(@)] < ca ()™ 7771 p>0,
o F satisfies the damping assumption on trapped trajectories:

sup [z(t,z,8)| <0 = AT eR, Vo(z(T,z,£)) > 0.
teR

Vzel, Vi(z)<E.
if Npl = {(z,g) eNT : € + Vi(z) = E} then

ongr({we Ngl' : 3t > 0,¢"(w) € NgI'}) = 0.
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Theorem (J.R. 10)

o There exists a non-negative Radon measure 1 on R*" such
that

Vge CF(R®™), (Opp(q)un,un) — | qdp.

h—0  Jr2n

@  is characterized by the following three properties:
a. suppp < p ' ({E}).
b. =0 on the incoming region {|z| » 1,z - £ < —1 |z| |¢]}.
c. u satisfies the Liouville equation
n 15 2
{211} +2Vou = m(2m) " AP [€1 7 |3 o

K(2:8)
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Theorem (J.R. 10)

o There exists a non-negative Radon measure 1 on R*" such
that

Vge C"(R*™), (Op(q)un, un) -—> | qdp.
d R2n

@  is characterized by the following three properties:
a. suppp < p ' ({E}).
b. =0 on the incoming region {|z| » 1,z - £ < —1 |z| |¢]}.
c. u satisfies the Liouville equation
n 15 2
{211} +2Vou = m(2m) " AP [€1 7 |3 o
R(2.6)

o These three properties imply that for all g € Cg*(R*") the
integral of q is given by

fff K(z,€)q(¢ (2, ))e 2% V2@ @) ds go (4 €)dt
0 JNgI'
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o Non-selfadjointness of Hj,.
o Geometry of ' (and NgT').
o Trapped trajectories.
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To avoid large times, we first study

for any fixed T > 0.
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for some non-negative Radon measure 1 on R2".
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