Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

High frequency analysis of the dissipative Helmholtz equation

Julien ROYER

GDR Quantum dynamics - Orléans

February 4, 2011

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

The Helmholtz equation

We study on \mathbb{R}^n the following Helmholtz equation:

$$(-h^2\Delta + V_1(x) - ihV_2(x) - E)u = S.$$

This equation models accurately the propagation of the electromagnetic field of a laser in material medium.

$V_1(x) - E$:	refraction index,
$V_2(x)$:	absorption index,
S	:	source term,
h	:	wave length,

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

The Helmholtz equation

We study on \mathbb{R}^n the following Helmholtz equation:

$$(-h^2\Delta + V_1(x) - ihV_2(x) - E)u = S.$$

This equation models accurately the propagation of the electromagnetic field of a laser in material medium.

$V_1(x) - E$:	refraction index,
$V_2(x)$:	absorption index,
S	:	source term,

h : wave length, $0 < h \ll 1$.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

The Helmholtz equation

We study on \mathbb{R}^n the following Helmholtz equation:

$$(-h^{2}\Delta + V_{1}(x) - ihV_{2}(x) - E)u_{h} = S.$$

This equation models accurately the propagation of the electromagnetic field of a laser in material medium.

$V_1(x) - E$:	refraction index,
$V_2(x)$:	absorption index,
S	:	source term,
h	:	wave length, $0 < h \ll 1$.

We consider the high frequency approximation $h \rightarrow 0$.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

The non-selfadjoint Schrödinger operator

• When V_2 is constant, it can be put in the spectral parameter:

$$(H_1^h - z_h)u_h = S,$$

with

$$H_1^h = -h^2 \Delta + V_1(x)$$
 and $z_h = E + ihV_2$.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

The non-selfadjoint Schrödinger operator

• When V_2 is constant, it can be put in the spectral parameter:

$$(H_1^h - z_h)u_h = S,$$

with

$$H_1^h = -h^2 \Delta + V_1(x)$$
 and $z_h = E + ihV_2$.

• When V_2 is variable, it has to be in the operator itself:

$$(H_h - E)u_h = S,$$

with

$$H_h = -h^2 \Delta + V_1(x) - ih V_2(x).$$

 \cdots we have to work with a non-selfadjoint operator.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Dissipative operators

The operator H on the Hilbert space \mathcal{H} is said to be dissipative if

 $\forall \varphi \in \mathcal{D}(H), \quad \operatorname{Im} \langle H\varphi, \varphi \rangle \leqslant 0.$

H is said to be maximal dissipative if any dissipative extension of H is trivial.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Dissipative operators

The operator H on the Hilbert space \mathcal{H} is said to be dissipative if

$$\forall \varphi \in \mathcal{D}(H), \quad \operatorname{Im} \langle H\varphi, \varphi \rangle \leq 0.$$

 ${\cal H}$ is said to be maximal dissipative if any dissipative extension of ${\cal H}$ is trivial. In this case :

• The resolvent $(H - z)^{-1}$ is well-defined if Im z > 0 and

$$\left\| (H-z)^{-1} \right\|_{\mathcal{L}(\mathcal{H})} \leq \frac{1}{\operatorname{Im} z}$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Dissipative operators

The operator H on the Hilbert space \mathcal{H} is said to be dissipative if

$$\forall \varphi \in \mathcal{D}(H), \quad \operatorname{Im} \langle H\varphi, \varphi \rangle \leq 0.$$

H is said to be maximal dissipative if any dissipative extension of H is trivial. In this case :

• The resolvent $(H-z)^{-1}$ is well-defined if $\operatorname{Im} z > 0$ and

$$\left\| (H-z)^{-1} \right\|_{\mathcal{L}(\mathcal{H})} \leqslant \frac{1}{\operatorname{Im} z}$$

• *H* generates a contractions semi-group

$$t \in \mathbb{R}_+ \mapsto e^{-itH}, \quad \left\| e^{-itH} \right\|_{\mathcal{L}(\mathcal{H})} \leqslant 1,$$

and for $\varphi \in \mathcal{D}(H)$:

$$\frac{d}{dt} \left\| e^{-itH} \varphi \right\|_{\mathcal{H}}^2 = 2 \operatorname{Im} \left\langle H e^{-itH} \varphi, e^{-itH} \varphi \right\rangle \leqslant 0.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Questions

We first look for uniform resolvent estimates:

$$\sup_{\substack{\operatorname{Re} z \sim E \\ \operatorname{Im} z > 0}} \| (H - z)^{-1} \|_{\mathcal{L}(\mathcal{H}_1, \mathcal{H}_1^*)} \leq c$$

$$(\mathcal{H}_1 \subset L^2(\mathbb{R}^n) \subset \mathcal{H}_1^*)$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Questions

We first look for uniform resolvent estimates:

$$\sup_{\substack{\operatorname{Re} z \sim E \\ \operatorname{Im} z > 0}} \left\| (H - z)^{-1} \right\|_{\mathcal{L}(\mathcal{H}_1, \mathcal{H}_1^*)} \leq c$$

 $(\mathcal{H}_1 \subset L^2(\mathbb{R}^n) \subset \mathcal{H}_1^*)$. This gives the limiting absorption principle:

$$\lim_{\mu \to 0^+} (H - (E + i\mu))^{-1} \text{ exists in } \mathcal{L}(\mathcal{H}_1, \mathcal{H}_1^*),$$

and

$$\|u\|_{\mathcal{H}_1^*} = \|(H - (E + i0))^{-1}S\|_{\mathcal{H}_1^*} \leq c \|S\|_{\mathcal{H}_1}.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Questions

We first look for uniform resolvent estimates:

$$\forall h \in]0, h_0], \quad \sup_{\substack{\operatorname{Re} z \sim E \\ \operatorname{Im} z > 0}} \left\| (H_h - z)^{-1} \right\|_{\mathcal{L}(\mathcal{H}_1, \mathcal{H}_1^*)} \leq c(h)$$

 $(\mathcal{H}_1 \subset L^2(\mathbb{R}^n) \subset \mathcal{H}_1^*)$. This gives the limiting absorption principle:

$$\lim_{\mu \to 0^+} (H - (E + i\mu))^{-1} \text{ exists in } \mathcal{L}(\mathcal{H}_1, \mathcal{H}_1^*),$$

and

$$\|u_h\|_{\mathcal{H}_1^*} = \|(H_h - (E + i0))^{-1}S_h\|_{\mathcal{H}_1^*} \le c(h) \|S_h\|_{\mathcal{H}_1}$$

.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Questions

We first look for uniform resolvent estimates:

$$\forall h \in]0, h_0], \quad \sup_{\substack{\operatorname{Re} z \sim E \\ \operatorname{Im} z > 0}} \left\| (H_h - z)^{-1} \right\|_{\mathcal{L}(\mathcal{H}_1, \mathcal{H}_1^*)} \leq c(h)$$

 $(\mathcal{H}_1 \subset L^2(\mathbb{R}^n) \subset \mathcal{H}_1^*)$. This gives the limiting absorption principle:

$$\lim_{\mu \to 0^+} (H - (E + i\mu))^{-1} \text{ exists in } \mathcal{L}(\mathcal{H}_1, \mathcal{H}_1^*),$$

and

$$\|u_h\|_{\mathcal{H}_1^*} = \|(H_h - (E + i0))^{-1}S_h\|_{\mathcal{H}_1^*} \le c(h) \|S_h\|_{\mathcal{H}_1}$$

.

We study these estimates in an abstract setting, and then for the dissipative Schrödinger operator.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Questions

We study the semiclassical measures for the solution u_h of the Helmholtz equation for a particular term source S_h:

$$\left\langle \operatorname{Op}_{h_m}^w(q) u_{h_m}, u_{h_m} \right\rangle \xrightarrow[m \to \infty]{} \int_{\mathbb{R}^{2n}} q \ d\mu,$$

where
$$h_m \to 0$$
 and

$$Op_h^w(q)u(x) = \frac{1}{(2\pi h)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{\frac{i}{h}\langle x-y,\xi\rangle} q\left(\frac{x+y}{2},\xi\right) u(y) \, dy \, d\xi$$

(Weyl quantization of q).

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Mourre's commutators method

Theorem (E.Mourre 81,...)

Let H_1 be a self-adjoint operator on the Hilbert space \mathcal{H} .

The self-adjoint operator A on \mathcal{H} is said to be conjugate to H_1 on the open set $J \subset \mathbb{R}$ if

• some conditions about the commutators [H₁, iA] and [[H₁, iA], iA] are satisfied,

• and for some $\alpha > 0$:

 $\mathbb{1}_{J}(H_{1})[H_{1}, iA]\mathbb{1}_{J}(H_{1}) \ge \alpha \mathbb{1}_{J}(H_{1}).$

In this case, for $\delta > \frac{1}{2}$ and a compact $I \subset J$ there exists c > 0 such that for $\operatorname{Re} z \in I$ and $\operatorname{Im} z \neq 0$

$$\langle A \rangle^{-\delta} (H_1 - z)^{-1} \langle A \rangle^{-\delta} \Big\|_{\mathcal{L}(\mathcal{H})} \leq c.$$

 $\langle \lambda \rangle = \left(1 + \left|\lambda\right|^2\right)^{\frac{1}{2}}$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Mourre's commutators method

Theorem

Let $H = H_1 - iV$ be a dissipative operator on the Hilbert space \mathcal{H} , where H_1 is self-adjoint and $V \ge 0$ is self-adjoint and H_1 -bounded with relative bound <1.

The self-adjoint operator A on \mathcal{H} is said to be conjugate to H on the open set $J \subset \mathbb{R}$ if

• some conditions about the commutators [H₁, iA], [V, iA] and [[H₁, iA], iA], [[V, iA], iA] are satisfied,

```
• and for some \alpha > 0:
```

 $\mathbb{1}_J(H_1)[H_1, iA]\mathbb{1}_J(H_1) \ge \alpha \mathbb{1}_J(H_1).$

In this case, for $\delta > \frac{1}{2}$ and a compact $I \subset J$ there exists c > 0 such that for $\operatorname{Re} z \in I$ and $\operatorname{Im} z > 0$

$$\left|\langle A \rangle^{-\delta} (H-z)^{-1} \langle A \rangle^{-\delta} \right|_{\mathcal{L}(\mathcal{H})} \leq c.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Two words about the assumption

 $\mathbb{1}_J(H_1)[H_1, iA]\mathbb{1}_J(H_1) \ge \alpha \mathbb{1}_J(H_1).$

• We do not have a functionnal calculus for the non-selfadjoint operator *H*.

We use functionnal calculus for the self-adjoint part H_1 , and the assumption that the dissipative part V is "smaller" than H_1 .

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Two words about the assumption

 $\mathbb{1}_{J}(H_{1})[H_{1}, iA]\mathbb{1}_{J}(H_{1}) \ge \alpha \mathbb{1}_{J}(H_{1}).$

• We do not have a functionnal calculus for the non-selfadjoint operator *H*.

We use functionnal calculus for the self-adjoint part H_1 , and the assumption that the dissipative part V is "smaller" than H_1 .

Lemma (Quadratic estimates)

Let $T = T_R - iT_I$ where T_R is self-adjoint and $T_I \ge 0$ is self-adjoint and T_R -bounded with relative bound <1. If $B^*B \le T_I$, Q is bounded and $\operatorname{Im} z > 0$ we have

$$||B(T-z)^{-1}Q|| \leq ||Q^*(T-z)^{-1}Q||^{\frac{1}{2}}.$$

• We use the quadratic estimates with

$$T = H_1 - i\varepsilon\phi(H_1)[H_1, iA]\phi(H_1), \quad \operatorname{supp} \phi \subset J_1$$

and $B = \sqrt{\varepsilon} \sqrt{\alpha} \phi(H_1)$.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Two words about the assumption

 $\mathbb{1}_{J}(H_{1})[H_{1}, iA]\mathbb{1}_{J}(H_{1}) \ge \alpha \mathbb{1}_{J}(H_{1}).$

• We do not have a functionnal calculus for the non-selfadjoint operator *H*.

We use functionnal calculus for the self-adjoint part H_1 , and the assumption that the dissipative part V is "smaller" than H_1 .

Lemma (Quadratic estimates)

Let $T = T_R - iT_I$ where T_R is self-adjoint and $T_I \ge 0$ is self-adjoint and T_R -bounded with relative bound <1. If $B^*B \le T_I$, Q is bounded and $\operatorname{Im} z > 0$ we have

$$||B(T-z)^{-1}Q|| \leq ||Q^*(T-z)^{-1}Q||^{\frac{1}{2}}.$$

• We use the quadratic estimates with

 $T = H_1 - iV - i\varepsilon\phi(H_1)[H_1 - iV, iA]\phi(H_1), \quad \operatorname{supp} \phi \subset J,$ and $B = \sqrt{\varepsilon}\sqrt{\alpha}\phi(H_1).$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Mourre's commutators method

Theorem (J.R. 10)

Let $H = H_1 - iV$ be a dissipative operator on the Hilbert space \mathcal{H} , where H_1 is self-adjoint and $V \ge 0$ is self-adjoint and H_1 -bounded with relative bound <1.

The self-adjoint operator A on \mathcal{H} is said to be conjugate to H on the open set $J \subset \mathbb{R}$ if

- some conditions about the commutators [H₁, iA], [V, iA] and [[H₁, iA], iA], [[V, iA], iA] are satisfied,
- and for some $\alpha > 0$, $\beta \ge 0$:

 $\mathbb{1}_{J}(H_{1})([H_{1}, iA] + \beta V) \mathbb{1}_{J}(H_{1}) \ge \alpha \mathbb{1}_{J}(H_{1}).$

In this case, for $\delta > \frac{1}{2}$ and a compact $I \subset J$ there exists c > 0 such that for $\operatorname{Re} z \in I$ and $\operatorname{Im} z > 0$

$$\left|\langle A \rangle^{-\delta} (H-z)^{-1} \langle A \rangle^{-\delta} \right|_{\mathcal{L}(\mathcal{H})} \leq c.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

More about abstract resolvent estimates

• Limiting absorption principle: for $\lambda \in J$ the limit

$$\lim_{\mu \to 0^+} \langle A \rangle^{-\delta} \left(H - (\lambda + i\mu) \right)^{-1} \langle A \rangle^{-\delta}$$

exists in $\mathcal{L}(\mathcal{H})$ and defines a continuous function of λ .

- Estimate in Besov spaces.
- Estimates for the powers of the resolvent and regularity of the limit.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Classical flow

Let

$$H_1^h = -h^2 \Delta + V_1(x)$$

with

$$|\partial^{\alpha} V_1(x)| \leq c_{\alpha} \langle x \rangle^{-\rho - |\alpha|}, \quad \rho > 0.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Classical flow

Let

$$H_1^h = -h^2 \Delta + V_1(x)$$

with

$$|\partial^{\alpha} V_1(x)| \leq c_{\alpha} \langle x \rangle^{-\rho - |\alpha|}, \quad \rho > 0.$$

Let

$$p(x,\xi) = |\xi|^2 + V_1(x).$$

We denote by $\phi^t(x_0, \xi_0) = (\overline{x}(t, x_0, \xi_0), \overline{\xi}(t, x_0, \xi_0))$ the solution of the hamiltonian system

$$\begin{cases} \partial_t \overline{x}(t) = 2\overline{\xi}(t), \\ \partial_t \overline{\xi}(t) = -\nabla V_1(\overline{x}(t)), \\ \overline{x}(0) = x_0, \quad \overline{\xi}(0) = \xi_0. \end{cases}$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Resolvent estimates

Theorem (D.Robert-H.Tamura 87, X.P.Wang 87)

Let $\delta > \frac{1}{2}$ and E > 0.

Then we can find $h_0 > 0$, a neighborhood I of E and $c \ge 0$ such that for $h \in]0, h_0]$ and $\operatorname{Re} z \in I$ and $\operatorname{Im} z \ne 0$ we have

$$\left\| \langle x \rangle^{-\delta} \left(H_1^h - z \right)^{-1} \langle x \rangle^{-\delta} \right\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \leqslant \frac{c}{h}$$

if and only if E is non-trapping:

$$p(x,\xi) = E \Longrightarrow |\overline{x}(t,x,\xi)| \xrightarrow[t \to \pm\infty]{} +\infty.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Resolvent estimates

Theorem (J.R. 10)

Let $\delta > \frac{1}{2}$ and E > 0. Suppose that $V_2 \ge 0$ is of long range. Then we can find $h_0 > 0$, a neighborhood I of E and $c \ge 0$ such that for $h \in [0, h_0]$ and $\operatorname{Re} z \in I$ and $\operatorname{Im} z > 0$ we have

$$\left\| \langle x \rangle^{-\delta} (H_h - z)^{-1} \langle x \rangle^{-\delta} \right\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \leq \frac{c}{h}$$

if and only if for $(x,\xi) \in p^{-1}(\{E\})$

 $\sup_{t\in\mathbb{R}} |\overline{x}(t,x,\xi)| < \infty \quad \Longrightarrow \quad \exists T\in\mathbb{R}, \ V_2(\overline{x}(T,x,\xi)) > 0.$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Resolvent estimates

Theorem (J.R. 10)

Let $\delta > \frac{1}{2}$ and E > 0. Suppose that $V_2 \ge 0$ is of long range. Then we can find $h_0 > 0$, a neighborhood I of E and $c \ge 0$ such that for $h \in]0, h_0]$ and $\operatorname{Re} z \in I$ and $\operatorname{Im} z > 0$ we have

$$\left\| \langle x \rangle^{-\delta} \left(H_h - z \right)^{-1} \langle x \rangle^{-\delta} \right\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \leq \frac{c}{h}$$

if and only if for $(x,\xi) \in p^{-1}(\{E\})$

 $\sup_{t \in \mathbb{R}} |\overline{x}(t, x, \xi)| < \infty \quad \Longrightarrow \quad \exists T \in \mathbb{R}, \ V_2(\overline{x}(T, x, \xi)) > 0.$

We have the limiting absorption principle and the limit of the resolvent

$$(H_h - (E + i0))^{-1} : L^{2,\delta}(\mathbb{R}^n) \to L^{2,-\delta}(\mathbb{R}^n)$$

gives the unique outgoing solution for the equation

$$(H_h - E)u = S.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties C. Gérard and A. Martinez (88) constructed a conjugate operator to H_1^h , using pseudo-differential calculus.

• We look for a conjugate operator of the form

 $A_h = \operatorname{Op}_h^w(x \cdot \xi + r(x,\xi)), \quad r \in C_0^\infty(\mathbb{R}^{2n})$ (if $V_1 = 0$ we can choose r = 0).

In order to have

 $\mathbb{1}_{J}(H_{1}^{h})[H_{1}^{h}, iA_{h}]\mathbb{1}_{J}(H_{1}^{h}) \ge c_{0}h\mathbb{1}_{J}(H_{1}^{h}), \quad c_{0} > 0,$

after quantization, we construct r such that

$$\{p, x \cdot \xi + r(x, \xi)\} \ge c_0 \text{ on } p^{-1}(J).$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties C. Gérard and A. Martinez (88) constructed a conjugate operator to H_1^h , using pseudo-differential calculus.

• We look for a conjugate operator of the form

 $A_h = \operatorname{Op}_h^w(x \cdot \xi + r(x,\xi)), \quad r \in C_0^\infty(\mathbb{R}^{2n})$ (if $V_1 = 0$ we can choose r = 0).

In order to have

 $\mathbb{1}_{J}(H_{1}^{h})([H_{1}^{h}, iA_{h}] + \beta V_{2})\mathbb{1}_{J}(H_{1}^{h}) \ge c_{0}h\mathbb{1}_{J}(H_{1}^{h}), \quad c_{0} > 0,$

after quantization, we construct r such that

 $\{p, x \cdot \xi + r(x, \xi)\} + \beta V_2 \ge c_0 \quad \text{on } p^{-1}(J).$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Semiclassical measure for the solution of the Helmholtz equation

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Semiclassical measure for the solution of the Helmholtz equation

Let

$$u_h = (H_h - (E + i0))^{-1}S_h$$

where

$$H_h = -h^2 \Delta + V_1(x) - ih V_2(x)$$

and S_h is an explicit source term which concentrates on a bounded submanifold of \mathbb{R}^n :

- Γ bounded submanifold of \mathbb{R}^n of dimension $d \in [[0, n-1]]$, σ_{Γ} Lebesgue measure on Γ ,
- $A \in C_0^\infty(\Gamma)$,

•
$$S \in \mathcal{S}(\mathbb{R}^n)$$
,

$$S_h(x) = h^{\frac{1-n-d}{2}} \int_{\Gamma} A(z) S\left(\frac{x-z}{h}\right) \, d\sigma_{\Gamma}(z).$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Semiclassical measure for the solution of the Helmholtz equation

Let

$$u_h = (H_h - (E + i0))^{-1}S_h$$

where

$$H_h = -h^2 \Delta + V_1(x) - ih V_2(x)$$

and S_h is an explicit source term which concentrates on a bounded submanifold of \mathbb{R}^n :

- Γ bounded submanifold of \mathbb{R}^n of dimension $d \in [[0, n-1]]$, σ_{Γ} Lebesgue measure on Γ ,
- $A \in C_0^\infty(\Gamma)$,

•
$$S \in \mathcal{S}(\mathbb{R}^n)$$
,

$$S_h(x) = h^{\frac{1-n-d}{2}} \int_{\Gamma} A(z) S\left(\frac{x-z}{h}\right) \, d\sigma_{\Gamma}(z).$$

We have:

$$\forall \delta > \frac{1}{2}, \quad \|S_h\|_{L^{2,\delta}(\mathbb{R}^n)} = O\left(\sqrt{h}\right)$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Semiclassical measure for the solution of the Helmholtz equation

Let

$$u_h = (H_h - (E + i0))^{-1}S_h$$

where

$$H_h = -h^2 \Delta + V_1(x) - ih V_2(x)$$

and S_h is an explicit source term which concentrates on a bounded submanifold of \mathbb{R}^n :

- Γ bounded submanifold of \mathbb{R}^n of dimension $d \in [[0, n-1]]$, σ_{Γ} Lebesgue measure on Γ ,
- $A \in C_0^\infty(\Gamma)$,

•
$$S \in \mathcal{S}(\mathbb{R}^n)$$
,

$$S_h(x) = h^{\frac{1-n-d}{2}} \int_{\Gamma} A(z) S\left(\frac{x-z}{h}\right) \, d\sigma_{\Gamma}(z).$$

We have:

$$\forall \delta > \frac{1}{2}, \quad \|S_h\|_{L^{2,\delta}(\mathbb{R}^n)} = O\left(\sqrt{h}\right) \quad \text{and} \quad \|u_h\|_{L^{2,-\delta}(\mathbb{R}^n)} = O\left(\frac{1}{\sqrt{h}}\right).$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Known results for a constant absorption index

• J.D.Benamou-F.Castella-T.Katsaounis-B.Perthame-02: $\Gamma=\{0\},$ semiclassical measure as the limit of the Wigner transform

(see also F.Castella (05)).

- F.Castella-B.Perthame-O.Runborg-02: Γ affine subspace of \mathbb{R}^n , $V_1 = 0$.
- X.P.Wang-P.Zhang-06: $V_1 \neq 0$.
- E.Fouassier-06: two source points.
- E.Fouassier-07: V_1 discontinuous along a hyperplane.
- J.-F.Bony-09: $\Gamma = \{0\}$, microlocal point of view.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

The Assumptions

- V_1 of long range.
- V_2 of short range:

$$\partial^{\alpha} V_2(x) \leq c_{\alpha} \langle x \rangle^{-1-\rho-|\alpha|}, \quad \rho > 0.$$

• *E* satisfies the damping assumption on trapped trajectories:

 $\sup_{t\in\mathbb{R}} |\overline{x}(t,x,\xi)| < \infty \quad \Longrightarrow \quad \exists T\in\mathbb{R}, \ V_2(\overline{x}(T,x,\xi)) > 0.$

•
$$\forall z \in \Gamma$$
, $V_1(z) < E$.
• if $N_E \Gamma = \left\{ (z,\xi) \in N\Gamma : |\xi|^2 + V_1(z) = E \right\}$ then
 $\sigma_{N_E \Gamma} \left(\{ w \in N_E \Gamma : \exists t > 0, \phi^t(w) \in N_E \Gamma \} \right) = 0.$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Theorem (J.R. 10)

• There exists a non-negative Radon measure μ on \mathbb{R}^{2n} such that

$$\forall q \in C_0^{\infty}(\mathbb{R}^{2n}), \quad \langle \operatorname{Op}_h^w(q)u_h, u_h \rangle \xrightarrow[h \to 0]{} \int_{\mathbb{R}^{2n}} q \, d\mu.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Theorem (J.R. 10)

• There exists a non-negative Radon measure μ on \mathbb{R}^{2n} such that

$$\forall q \in C_0^{\infty}(\mathbb{R}^{2n}), \quad \langle \operatorname{Op}_h^w(q)u_h, u_h \rangle \xrightarrow[h \to 0]{} \int_{\mathbb{R}^{2n}} q \, d\mu.$$

- μ is characterized by the following three properties:
 - a. supp $\mu \subset p^{-1}(\{E\})$.
 - b. $\mu = 0$ on the incoming region $\{|x| \gg 1, x \cdot \xi \leq -\frac{1}{2} |x| |\xi|\}.$
 - c. μ satisfies the Liouville equation

$$\{p,\mu\} + 2V_2\mu = \underbrace{\pi(2\pi)^{d-n} |A(z)|^2 |\xi|^{-1} |\hat{S}(\xi)|^2}_{\kappa(z,\xi)} \sigma_{N_E\Gamma}.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Theorem (J.R. 10)

• There exists a non-negative Radon measure μ on \mathbb{R}^{2n} such that

$$\forall q \in C_0^{\infty}(\mathbb{R}^{2n}), \quad \langle \operatorname{Op}_h^w(q)u_h, u_h \rangle \xrightarrow[h \to 0]{} \int_{\mathbb{R}^{2n}} q \, d\mu.$$

- μ is characterized by the following three properties:
 - a. supp $\mu \subset p^{-1}(\{E\}).$
 - b. $\mu = 0$ on the incoming region $\{|x| \gg 1, x \cdot \xi \leq -\frac{1}{2} |x| |\xi|\}.$
 - c. μ satisfies the Liouville equation

$$\{p,\mu\} + 2V_2\mu = \underbrace{\pi(2\pi)^{d-n} |A(z)|^2 |\xi|^{-1} |\hat{S}(\xi)|^2}_{\kappa(z,\xi)} \sigma_{N_E\Gamma}.$$

These three properties imply that for all q ∈ C₀[∞](ℝ²ⁿ) the integral of q is given by

 $\int_0^\infty \int_{N_E\Gamma} \kappa(z,\xi) q(\phi^t(z,\xi)) e^{-2\int_0^t V_2(\phi^s(z,\xi)) \, ds} \, d\sigma_{N_E\Gamma}(z,\xi) dt$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

The three new difficulties:

- Non-selfadjointness of H_h .
- Geometry of Γ (and $N_E\Gamma$).
- Trapped trajectories.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Time-dependant approach

Let $w \in \mathbb{R}^{2n}$ and $q \in C_0^{\infty}(\mathbb{R}^{2n})$ supported close to w.

$$Op_{h}^{w}(q)u_{h} = \frac{i}{h} \int_{0}^{T_{0}} Op_{h}^{w}(q) e^{-\frac{it}{h}(H_{h}-E)} S_{h} dt$$
$$+ Op_{h}^{w}(q) e^{-\frac{iT_{0}}{h}(H_{h}-E)} u_{h}.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Time-dependant approach

Let $w \in \mathbb{R}^{2n}$ and $q \in C_0^{\infty}(\mathbb{R}^{2n})$ supported close to w.

$$Op_{h}^{w}(q)u_{h} = \frac{i}{h} \int_{0}^{T_{0}} Op_{h}^{w}(q) e^{-\frac{it}{h}(H_{h}-E)} S_{h} dt$$
$$+ Op_{h}^{w}(q) e^{-\frac{iT_{0}}{h}(H_{h}-E)} u_{h}.$$

Let

$$U_1^h(t) = e^{-\frac{it}{h}H_1^h}, \quad U_h(t) = e^{-\frac{it}{h}H_h}$$

Proposition

Let $t \ge 0$ and $a \in C_b^{\infty}(\mathbb{R}^{2n})$. We have

$$U_1^h(t)^* \operatorname{Op}_h^w(a) U_1^h(t) = \operatorname{Op}_h^w(a \circ \phi^t) + \underset{h \to 0}{O}(h)$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Time-dependant approach

Let $w \in \mathbb{R}^{2n}$ and $q \in C_0^{\infty}(\mathbb{R}^{2n})$ supported close to w.

$$Op_{h}^{w}(q)u_{h} = \frac{i}{h} \int_{0}^{T_{0}} Op_{h}^{w}(q) e^{-\frac{it}{h}(H_{h}-E)} S_{h} dt + Op_{h}^{w}(q) e^{-\frac{iT_{0}}{h}(H_{h}-E)} u_{h}.$$

Let

$$U_1^h(t) = e^{-\frac{it}{h}H_1^h}, \quad U_h(t) = e^{-\frac{it}{h}H_h}$$

Proposition

Let $t \ge 0$ and $a \in C_b^{\infty}(\mathbb{R}^{2n})$. We have

$$U_h(t)^* \operatorname{Op}_h^w(a) U_h(t) = \operatorname{Op}_h^w\left((a \circ \phi^t) e^{-2\int_0^t V_2 \circ \phi^s \, ds} \right) + \underset{h \to 0}{O}(h).$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Partial semiclassical measures

To avoid large times, we first study

$$u_h^T = \frac{i}{h} \int_0^T e^{\frac{it}{h}(H_h - E)} S_h \ dt$$

for any fixed $T \ge 0$.

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Partial semiclassical measures

To avoid large times, we first study

$$u_h^T = \frac{i}{h} \int_0^T e^{\frac{it}{h}(H_h - E)} S_h \ dt$$

for any fixed $T \ge 0$. This gives a mesure μ_T such that

$$\left\langle \operatorname{Op}_{h}^{w}(q)u_{h}^{T}, u_{h}^{T}\right\rangle \xrightarrow[h \to 0]{} \int_{\mathbb{R}^{2n}} q \ d\mu_{T}.$$

Julien ROYER

Introduction

Helmholtz equation with non constant absorption index

Outline

Uniform resolvent estimates

Mourre's method in the dissipative setting

Resolvent estimates for the dissipative Schrödinger operator

Semiclassical measure

Statement of the Theorem

Insight into the new difficulties

Partial semiclassical measures

To avoid large times, we first study

$$u_h^T = \frac{i}{h} \int_0^T e^{\frac{it}{h}(H_h - E)} S_h \ dt$$

for any fixed $T \ge 0$. This gives a mesure μ_T such that

$$\left\langle \operatorname{Op}_{h}^{w}(q)u_{h}^{T}, u_{h}^{T} \right\rangle \xrightarrow[h \to 0]{} \int_{\mathbb{R}^{2n}} q \ d\mu_{T}$$

$$\begin{aligned} \forall \varepsilon > 0, \exists T_0 > 0, \forall T \ge T_0, \\ \limsup_{h \to 0} \left| \langle \operatorname{Op}_h^w(q) u_h, u_h \rangle - \left\langle \operatorname{Op}_h^w(q) u_h^T, u_h^T \right\rangle \right| &\leq \varepsilon, \end{aligned}$$

and

۵

$$\int_{\mathbb{R}^{2n}} q \ d\mu_T \xrightarrow[T \to +\infty]{} \int_{\mathbb{R}^{2n}} q \ d\mu,$$

for some non-negative Radon measure μ on \mathbb{R}^{2n} .