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The relativistic mean-field theory (RMF)

Approximations of the relativistic mean-field theory :

o Mean-field approximation : the nucleons behave as noninteracting particles
moving in a mean field generated by mesons and photons.

o No-sea approximation : we neglect the vacuum polarization (Dirac sea).
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The relativistic mean-field theory (RMF)

Approximations of the relativistic mean-field theory :

o Mean-field approximation : the nucleons behave as noninteracting particles
moving in a mean field generated by mesons and photons.

o No-sea approximation : we neglect the vacuum polarization (Dirac sea).
Fields generated by mesons and photons :

@ 0 meson : medium range attractive interaction;

@ w meson : short range repulsive interaction ;

@ p meson : description of isospin-dependent effects;

@ photon : electromagnetic interaction.
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The Lagrangian of the RMF theory can be written as

L= ['nuc/eons + Lmesons ['coupling-

Q
L‘«nuc/eons = Z Wa&a(i'yua,u - mb)wa

a=1
Lo 2 2y 1o 2
Linesons = E(a Uap.o' —m,o ) — 5(8“&) auw,, — my,w UJ#)
1 — 1——
—5(0"R"0,R, — m>R*R,) — SO AV DA,
['couplfng = —80c0pPs — guw“pp — ngM *Pu — GA#pZ = U(O’)
with U () = $bo® + 1bso*.
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Introduction
The relativistic mean-field theory (RMF)
The mean-field equations
The minimization problem

The Lagrangian of the RMF theory can be written as

L= ['nuc/eons + Lmesons ['coupling-

Q
L‘«nuc/eons = Z Wa&a(i'yua,u - mb)wa

a=1

Lmesons = %(8“08“0 — mia’) — %(Bl‘w”auwu — miwrw,)

 —— 1——
—5(0"R"0,R, — m>R*R,) — SO AV DA,
['couplfng = —80c0pPs — guw“pp — ngM CPup— GA#pZ = U(O’)

with U () = $bo® + 1bso*.
The densities are

Ps = 22:1 WaT/_)awm Pu = 2221 WoﬂZa’Yﬂ'@/}a:
Pu = Tocy WaBaTVuWar i = Lamy WaPa3 (L + 0)uta-
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The mean-field equations

Simplification of the model :
@ the single-particle states are eigenstates of 79 — only Ry, and po, appear;

@ stationarity : all time derivatives and spatial components of densities and
fields vanish — only the fields o, wo, Roo and Ag remain;;

Ya(x, ) = ™= a(x). (1.6)
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The mean-field equations

Introduction

The relativistic mean-field theory (RMF)
The mean-field equations
The minimization problem

Simplification of the model :

@ the single-particle states are eigenstates of 79 — only Ry, and po, appear;

@ stationarity : all time derivatives and spatial components of densities and
fields vanish — only the fields o, wo, Roo and Ag remain;;

We obtain

50/701/)04

(—~A+m5)o+ U'(o)
(—A+ mi)wo

(—A + m})Roo

— AAp

Ya(x, ) = ™= a(x). (1.6)

[—iv -V + my+ g-0 + guwoyo (1.7)

1
~+8» Rooyo70 + Eer’Yo(l + 70) | Ya,

—8oPs; (1.8)
8w o, (1.9)
8pPoo, (1.10)
eps. (1.11)
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We consider b, = b3 = 0 and we choose a fixed occupation of the orbitals, that

means
1 a=1,...,A
Wo = (1.12)
0 otherwise

where A is the nucleon number.
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Introduction
The relativistic mean-field theory (RMF)
The mean-field equations
The minimization problem

We consider b, = b3 = 0 and we choose a fixed occupation of the orbitals, that

means
1 a=1,...,A
Wo = (1.12)
0 otherwise

where A is the nucleon number.
In this case, the equations (1.8-1.11) can be solved explicitly and we obtain

2 —mo || 2 —me ||

& € 8w €
otha = |Ho—BEZ (S wps )+ 82 (S — 1.13
s [0 47f< |- *p>+47r( |- *po> P

2 —mp]-| 2

g (e " 1 e 1 c

L e — —(1 [
+7'o47r< B *poo>+2( —|—7'0)4ﬂ_ H*po Ya

where Hy = —iac - V + Smp.
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Using the convention 7o = 1 for the protons and 7o = —1 for the neutrons, the
nonlinear Dirac equations are given by
2 —mg || 2 —me, ||
gO' € gw €
H i = |Ho— — % = —— % 1.14
ot = [rh=p () + £ (S em) 0

2 s —my| 2

e e e 1
+2 *xpoo | +— [ — *p§ )| i = e
41 |- | 47 \ |- |

if1<i<Z, and

2 —mo || 2 —mg ||
. _ 8o 67 gl @
o o= [l (S ) + & (ST vm) a9
2 7 gmmpl|
& (e " * poo | | Yi = €ii
47 |-

if Z+1 < i <A, under the constraints [, ¢/¢; = §; for 1 <i,j < Z and
Z+1<i,j<A
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The minimization problem

The nonlinear Dirac equations are the Euler-Lagrange equations of the energy

functional
2 ps(x)ps(y)
S [ i How - / [, ) e g
Pt R3 xR3 |x — y|

// po(x)po(y) e ety
RIxRS X — Y]

// poo(X poo(y) e Molx=yl dxdy
R3 xR3 |X_.y|

//R3><R3 p6(x)p5(y) dxdy (1.16)

x =yl

under the constraints fn@ Vi =0 for 1 <i,j<ZandforZ+1<ij<A.
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Since this functional is not bounded from below under the constraints
Jgs ¥ b = 6, we introduce the following minimization problem ([1])

i = inf{S(W):/ i =65, 1<i,j<Z,Z+1<i,j <A,
R3
Aow(¥1,. ., ¥z) = 0,A, y(Yzi1,-..,9a) =0} (1.17)
together with its extension
I()\l,...,)\A) = mf{S(\II),/ 1/171/},—:)\,-6,-]71§i,j§2,
R3

Z4+1<i0,j < AN (W1, ..,12) =0,
Aw($z41, ... ,1a) = 0} (1.18)

where, for u=p,n, Ay = X(-c0,0)(Hu,w)-

Simona Rota Nodari
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If g5, 8,8 and e are sufficiently small, a minimizer of (1.17) is a solution of
the equations (1.14) and (1.15).
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Introduction
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If g5, 8,8 and e are sufficiently small, a minimizer of (1.17) is a solution of
the equations (1.14) and (1.15).

Theorem 2

| A

If g5, 8,8 and e are sufficiently small, any minimizing sequence of (1.17) is
relatively compact up to a translation if and only if the following condition holds

I <1 2a)+1(1 =AM, 1= ) (1.19)

for all \c € [0,1], k =1,..., A, such that E Ak € (0, A).

In particular, if (1.19) holds, there exists a minimum of (1.17).
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rociofithefmainlchectem Properties of the potential

Concentration-compactness lemma

Properties of the potential

If g5, 8w, &, and e are sufficiently small,

@ H, v is a self-adjoint isomorphism between HY/2 and its dual H=/2,

whose inverse is bounded independently of W

Simona Rota Nodari 10 /29



Proof of the main theorem a A
Properties of the potential
Concentration-compactness lemma

Properties of the potential

If g5, 8w, &, and e are sufficiently small,
@ H, v is a self-adjoint isomorphism between H? and its dual H™
whose inverse is bounded independently of W
A
@ any minimizing sequence W* = (¢, ..., 1%) is bounded in (Hl/Z(R3))

and / is bounded from below.

1/2
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Concentration-compactness lemma

Lemma 3 ([2],[3])

Let (Px)« be a sequence of probability measures on RN. Then there exists a
subsequence that we still denote by Py such that one of the following
properties holds :

© (compactness up to a translation) Iy* € RN, Ve > 0, IR < o
P (B (yk, R)) >1-¢

@ (vanishing) VR < oo
sup P« (B(y,R)) — 0;
yERN b
@ (dichotomy) 3a € (0,1), Ve > 0, VM < oo, IRy > M, Iy* € RV,
3R« - 400 such that

1P (B(Y*,Ro)) —al <&, |Pc(B(YR))—(1—-a)<e.
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Bibliography

Dichotomy does not occur

Properties of the potential
Concentration-compactness lemma

Let Py be a probability measure in R®> whose density is = >° [pk|2.

Simona Rota Nodari
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Proof of the main theorem S
Properties of the potential

Concentration-compactness lemma

Dichotomy does not occur

A
Let P, be a probability measure in R® whose density is % > [pk|2.
i=1

If dichotomy occurs (case iii.), then WK can be split into two parts W and W5.
More precisely,

Vi = Er(-— ¥y )l
Yo = Cr(-— Yy )Wr

with Ri — +00, £, = ¢ (;) Cu=2¢ (;) and
BNENES! {0 K<t
e ={5 M5 w={} s,
with £, ¢ € D(R?). We remind that dist (supp wﬁl,supp @Z),-’iz) - +o00 and
[f = (k1 + ko) ||, O for2<p<3.

Simona Rota Nodari 12/29



Proof of the main theorem .
Properties of the potential

Concentration-compactness lemma

Dichotomy does not occur

A
Let P, be a probability measure in R® whose density is % > K2
i=1

If dichotomy occurs (case iii.), then WK can be split into two parts W and W5.
More precisely,

Vi = Er(-— ¥y )l
Yo = Cr(-— Yy )Wr

with Ri — +00, £, = ¢ (;) Cu=2¢ (;) and
_J1 X<t _J 0 xI<1
e ={5 M5 w={} s,
with £, ¢ € D(R?). We remind that dist (supp w,ﬁl,supp @Z),-’iz) - +o00 and
Hw,k — (1/},-51 + w,{(’g)HLp - 0 for 2 < p < 3. Next, we may assume that

Jos WE10EL = Niby,  fos oo = (1 — Ni)dy (2.1)
for1<i,j<Z Z+1<ij<Aand0<) <1.
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Properties of the potential
Concentration-compactness lemma

Vi = (Y,

7w£,1) and W’Z( = (d’fz, ©00

,1/)5\,2) do not necessarily satisfy the

constraints of [ (A1,...,Aa) and /(1 — A1,...,1 — Xa) respectively.
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iooficihicinainitheciem Properties of the potential

Concentration-compactness lemma

WE = (Piy,. .., wfu) and W5 = (5 ,,. .. ,@Df\,z) do not necessarily satisfy the
constraints of [ (A1,...,Aa) and /(1 — A1,...,1 — Xa) respectively.
First of all, we show that, for u = p, n,

AV 20 et ’\;,w;"’fw 20 (2.2)

Wk

in HY/2(R3).

Simona Rota Nodari
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Proof of the main theorem .
Properties of the potential

Concentration-compactness lemma

vk = (zpfl, cee wfu) and Wk = (1/){(’2, e 7%’3,2) do not necessarily satisfy the
constraints of / (A1,...,Aa) and /(1 — Aq,...,1 — Xa) respectively.
First of all, we show that, for u = p, n,

AV —0 et ’\;,w;“’fw =0 (2.2)

vk

in HY/2(R3).
Second, using the implicit function theorem, we construct
z N
Of = (¥4, ¥h 1), 05 = (¥h5, ®h5) € (HY2(R)) " x (HY2(RY)) ", small

p,1s
A
perturbations of W%, Wk in (H1/2(]R3)) , such that
— k — k
Au,rbfd)“’l =0 et /\#’¢,2(¢H’2 = (2.3)

and
Gram,2 (¢Z’,-) = Gram,> (Wﬁ’;) (2.4)

foru=p,nand i =1,2.

Simona Rota Nodari
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Concentration-compactness lemma

Finally, thanks to the continuity of £ in H/2(R®), we obtain
I = lim EW ) > lim E(WY) + lim E(V5)
k—o0 k— 00 k— 0o
= lim £(®f)+ lim &£(®3)

k— o0 k—o0

I (Moo da) + 11— A, 1= Aa)

Y]

that clearly contradicts (1.19).

Simona Rota Nodari
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Concentration-compactness lemma

Vanishing does not occur

If vanishing occurs (case ii.), then VR < oo

sup /
y€R3 JB(y,R)

for j=1,...,Aand ¥¥, ... 4 converge strongly in LP(R®) to O for
2 < p < 3. As a consequence,

2
Y| =0

lim &(VF) = lim / ¥F Hof,

k— o0 k—)oo

and

A
/(Al,...,)\A):meAj
Jj=1

thanks to the constraints of the problem.

Simona Rota Nodari 15 /29



Proof of the main theorem .
Properties of the potential

Concentration-compactness lemma

Vanishing does not occur

If vanishing occurs (case ii.), then VR < oo

sup /
y€R3 JB(y,R)

for j=1,...,Aand ¥¥, ... 4 converge strongly in LP(R®) to O for
2 < p < 3. As a consequence,

2
Y| =0

lim S( lim / 'l/JJ Hlﬂ/}ja

k— o0 k—>°°
and
A
/()\1,...,)\/\) = meAj
Jj=1

thanks to the constraints of the problem.
This contradicts (1.19) because we have

A A
F=mpA=my Y X+ms > (1=X)=1(A,..., )+ (1= N,

Simona Rota Nodari
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Proof of the main theorem
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Open problem : The non

Properties of the potential
Concentration-compactness lemma

Let WX = Wk(. 4 y¥); U¥ is a minimizing sequence.

N0 (HY2A =

¥
- A - k,
{U*}, bounded in <H1/2(R3)) = Vo ae
~ [P &
Wk v 2<p<3

Simona Rota Nodari
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Concentration-compactness lemma

Let WK = W*(- 4 y*¥); U¥ is a minimizing sequence.
(HY2)A -

Wk v
ik : 123y Wk t]}
{U*} bounded in (H/*(R°)) = = a.e.
apn B o
Pk IT’ 0} 2<p<3

+ concentration-compactness argument

&1 LP ~
v TMII 2<p<3

Simona Rota Nodari 16 /29



Proof of the main theorem

Properties of the potential

Concentration-compactness lemma

Let Uk = Wk 4 yhy; Uk is a minimizing sequence.

Wk (H/2)A
. A . K,
{WU*}4 bounded in (Hl/z(R3)) = { Uk 2 1
o 1P
Uk ey \y

x

+ concentration-compactness argument
&1 LP ~

Since ||¢; — 1/3}‘||L2 — 0 for k — 400,

IREEN NS

for1<i,j<ZetZ+1<i,j<A

Simona Rota Nodari
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iooficihicinainitheciem Properties of the potential

Concentration-compactness lemma

Let Uk = Wk 4 yhy; Uk is a minimizing sequence.
(HY2)A -

Ve
~ A - k
{WU*}4 bounded in (H1/2(R3)) = { Wk 2 v a.e.
o 1P
Uk ey \y 2<p<3

x

+ concentration-compactness argument
&1 LP ~
Since ||¢; — 1/3}‘||L2 — 0 for k — 400,

e — i KE K — 5
[ didi=tim [ ot =a,

for1<i,j<ZetZ+1<i,j<A Moreover,/\;ql\TJH:Oforp:p,n
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iooficihicinainitheciem Properties of the potential

Concentration-compactness lemma

Let Uk = Wk 4 yhy; Uk is a minimizing sequence.

1/2\A
(H/7) W

" A . K,
{WU*}4 bounded in (H1/2(R3)) = { Wk 2 v a.e.

\le

wk L70c 7
v 2<p<3

x

+ concentration-compactness argument
Wk % U 2<p<3
Since |9 — 1/3}‘||L2 — 0 for k = +o0,
it = gim_ [ ot o=,
for1<i,j<ZetZ+1<ij<A. Moreover, /\;,@\TJH =0 for p = p, n and
E(W) < lim inf £(V¥) < £(1).

—+00
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Proof of the main theorem .
Properties of the potential

Concentration-compactness lemma

Let Uk = (AT OV Uk is a minimizing sequence.

1/2\A
(H/7) W

" A . K,
{WU*}4 bounded in (H1/2(R3)) = { Wk e ) a.e.

(I“Jk

e o

Yk lecy \py 2<p<3
k

+ concentration-compactness argument

&1 LP ~
v TMIJ 2<p<3

Since ||¢; — 12)f||Lz — 0 for k — 400,

Tedh = KE K — 5
[ didi=tim [ ot =a,
for1<i,j<ZetZ+1<i,j<A Moreover,/\;JI\TJ“:Ofor,u:p,nand

E(W) < liminf (W) < (D).
k—+o00

As a conclusion, W is a minimizer of (1.17) and the minimizing sequence {W*},

is relatively compact in (H*/?)” up to a translation.
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Solutions of the relativistic mean-field equations

X ={reBEr =" (m = 8)*y(mb - ) e (R} (3.)

Fp= {7 € X7 =, tr(y) = P} . (3.2)

Simona Rota Nodari 17 /29



Solutions of the relativistic mean-field equations

Solutions of the relativistic mean-field equations

X = {7 € B(H);~

y*, (mh — DAYy (mp — A)Y* e 01(7-[)} .

(3.1)
Mp = {’y eX;y = v,tr(y) = P}. (3.2)
Given v = (7p,7n) € X X X, we define
2 —mg || 2 —my ||
8s (€ 8w [ €
H, = Ho — B== [ ———— % ps == 3.3
e = [0 (ST ve) + £ (S m) @3
2 g gl 2
& (e " e (1
+4w< -] *"°°)+4w<\-|*”")}””
2 —mg || 2 —my, ||
8s (€ 8u (€
Fasfm = Hoy — == 5 = 3.4
= s (S en) + 2 (S em) G

_gi e*’"p|'| .
4 | X | Loo Yn

Simona Rota Nodari
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Solutions of the relativistic mean-field equatlons
Open problem : The nonrelativistic

where
ps(x) = pp(x) + pn(x)
po(x) = pp(x) + pa(x)
poo(x) = pp(x) — pa(x

with () = tr(B7,(x, X)), Ba(x) = tr(Byn(x, X)), ppl(x) = tr(yp(x, %)) et
pr(x) = tr(n(x, X)):

Simona Rota Nodari 18 /29



Solutions of the relativistic mean-field equations

where
ps(x) = Pp(x) + pn(x)
po(x) = pp(x) + pa(x)
poo(x) = pp(x) — pa(x)

with () = tr(B7,(x, X)), Ba(x) = tr(Byn(x, X)), ppl(x) = tr(yp(x, %)) et
pn(x) = tr(va(x, x)).
Finally, for & = p, n, we define

A/,:ll.:,w = XRr=* (Hﬂx’Y)'

Simona Rota Nodari 18 /29



Solutions of the relativistic mean-field equations

where
ps(x) = pp(x) + pn(x)
po(x) = pp(x) + pn(x)
poo(x) = pp(x) — palx)

with () = tr(B7,(x, X)), Ba(x) = tr(Byn(x, X)), ppl(x) = tr(yp(x, %)) et
pn(x) = tr(va(x, x)).
Finally, for & = p, n, we define

+
Au.,w = XRr=* (Hﬂx’Y)'

Let W = (W,, ¥,) be a minimizer of the problem (1.17) and consider 5, and 7,
the orthogonal projectors defined by

Fo =0 1) (il and  Fo =30, i) (il (3.5)

and we denote 5§ = (Fp, ¥n)-

Simona Rota Nodari
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Bibliography

Then, we show that, for u = p, n,

[H}h’% :7'/#] =0.

In fact, (3.6) implies
= e
= eiti

e_z

H,g
H,

Q_z
|

Simona Rota Nodari
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Solutions of the relativistic mean-field equations

Then, we show that, for u = p, n,
[Hu,5, 9] = 0. (3-6)
In fact, (3.6) implies
Hp,\DJJi =ep for1<i<Z,
Hn,lflef = 6,'12;,' for Z+1<i<A.

First, we remark that % = (5p, 9») minimizes the energy

s\ X )Ps —m xX—
E(rpme) = tr(Hoyp) + tr(Hoym) — E2 / / £s0PeY) (—rmo bl g,
R3 xR3 |X_Y|

// po(X PO(}’) —me|x—y| dxdy

R3 xR3 |X - .y|

/ / Po0(x)P00(y) y=mplx—y1 gy,
R3 X R3 Ix — y|

Pp\X)Pp\Y) (x)ep(y)
dxd 3.7
87?//ﬂea3xﬂe3 Ix =yl i 37

+  _rt +
onlyy=T7xTy

Simona Rota Nodari 19 /29
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Proof of the main theorem
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Open problem : The nonrelativistic limit
Bibliography

with

r; = {w€lzivp = A;vVPAI:W}’
v = {7" SANl AI’YFY"A::’Y} :

Simona Rota Nodari




Intrc

Proof of the main e

Solutions of the relativistic mean-field equatlons
Open problem : The nonrelativistic limit
Bibliography

with

r} = {’Yp €Elzivw= /\;77,,/\;7},
rx {7" €lMnivn = AIW’Y"AIV} °

7 n is a subset of
FZYN = {’Y = (FYFH’Y'T) € rz X rN; I:Hp_,'yv/-YP] = 07 I:HI;’)H’YH} = 0}

and, since 5 € '}, we have [H, ,%,] =0 for u=p,n

Simona Rota Nodari 20 /29



Solutions of the relativistic mean-field equations

with

I_} = {’Yp €lzivp = A;,W’Yp/\;n/}a
rn {'Yn (S rN; Yn = A:W’Yn/\:»y} .

%, is a subset of

FZJV = {’7 = (vafyﬂ) € rZ X rN; I:Hp_,’w’}/P] = 07 I:HI:'W'-YH} = 0}

and, since ¥ € FZN, we have [H;,,W&#] =0 for p = p, n.
Thus, we have to prove that [H,} ., 5,] =0 for u=p,n

Simona Rota Nodari 20 /29



Solutions of the relativistic mean-field equations

with

;7 = {’Yp €lzivp= /\;,W’Yp/\;v} )
rx {'Yn (S rN; Yn = A;W’Yn/\;;»y} .

%, is a subset of

FZ,N = {’Y = (Yp, 1) €Tz x Ty; [Hpm%] =0, [H':v’%} = 0}

and, since ¥ € r;,\,, we have [H};&,&#] =0 for p = p, n.
Thus, we have to prove that [H:ﬁ,'"yu] = 0 for u = p, n — by contradiction

For yu = p, n, we assume that [H; ., %,.] # 0 and we define

= UsF, (Us) ™ (38)

with U5 = exp (=& [H <, 5,])-
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As before, we construct v° = (5,75 ), small perturbation of 4° = (¥;,45) such
that 4° € '} . Next, we want to prove that
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Solutions of the relativistic mean-field equations

As before, we construct v° = (7,75 ), small perturbation of 4° = (%,,45) such
that 7* € FZN. Next, we want to prove that

Since (p,7s) is a small perturbation of (5,,4n), we can write

E(Vp, ) = E(Fp,An) = tr (Hp5(75 — ) + tr (Ha5 (72 — Fn)) + 0(€). (3.9)
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Solutions of the relativistic mean-field equations

As before, we construct v° = (7,75 ), small perturbation of 4° = (%,,45) such
that 7* € FZN. Next, we want to prove that

E(Vpr V) < E(Fps Fn)-

Since (p,7s) is a small perturbation of (5,,4n), we can write
E(Vp, ) = E(Fp,An) = tr (Hp5(75 — ) + tr (Ha5 (72 — Fn)) + 0(€). (3.9)
More precisely,
E(Vpr7n) = E(es Tn) = tr (Hp 555 (75 — 70)5.5)
ttr (Hp ’YAP 7( 'VP)AP,"?) +tr (H;rﬁ/\;rﬁ(%f - ’NV")AI“?)
+ tr (Hn 'y/\n,'y( 'Yn)/\,-,_ﬁ) + 0(6)
=T5 + T, + T+ T, +o(e). (3.10)
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Solutions of the relativistic mean-field equations

As before, we construct v° = (7,75 ), small perturbation of 4° = (%,,45) such
that 7* € FZN. Next, we want to prove that

E(Vpr V) < E(Fps Fn)-

Since (p,7s) is a small perturbation of (5,,4n), we can write

E(Vps ) = E(Fpy An) = tr (Hp5 (75 = 3p)) + tr (a5 (77 — 4n)) + 0(€). (3.9)
More precisely,
E(Vpr7n) = E(es Tn) = tr (Hp 555 (75 — 70)5.5)
+tr (Hos sz (5 = Ap)5) +tr (Hos s (7 = Fn)As5)
+tr (Hy 585 (¥a — Fn)A, 5) + o(e)
=T5 + T, + T+ T, +o(e). (3.10)

o T, =o(e) for p=p,n
o Tt = tr (HIAL5 (5 — AL ;) + ofe)
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Introduction

Proof of the main theorem

Solutions of the relativistic mean-field equations
Open problem : The nonrelativistic limit
Bibliography

By definition,

Vo= e = UpSuU) " —Fu
(1 —€ [H:Lr,:,a’?u]) Yo (1 +e [H/f,"?’:}'/ﬂ]) = Hu + o(e)
— [[Hi5: 3] Fu] + oe)-
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Solutions of the relativistic mean-field equations

By definition,
'72_’3’# = UZ (2/15)7 — Y
= (—e[HisT]) 3 (14 [Hi5u]) = T + o)
= _E[[ uw’YN] ]+O€)
Then

T: = —¢tr (H:ﬁ [[H:,%:Yu] 7’7#]) + 0(5)
for u = p,n and
E(Viv’)/ren) — E(Hp, An) = —€ Z tr (H;,ﬂ”/ [[H:ﬁ7;;/u] 7’3%]) +o(e)
pw=p,n
=22 3 tr (M 53)° — (HL5)72) + o(e)
u=p,n

=2 Z M, 'y’Y/J‘ :«/'~YH> <H:,'?;§/M7 H:,&’?#) + O(E) (3'11)

p=p,n

where (A, B) = tr(A”B) is the Hilbert-Schmidt inner product.
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Thanks to the Cauchy-Schwarz inequality, we obtain
E(psYn) — E(Fp,An) < 0;

the equality holds < (H,f s5.)" = +H,f s,
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Proof of the main e

Solutions of the relativistic mean-field equatlons
Open problem : The nonrelativistic limit
Bibliography

Thanks to the Cauchy-Schwarz inequality, we obtain

E(pr¥n) — E(FpsAn) < 0;

the equality holds < (H,f +5,.)" = +H, s,
(H;,fy'%)* = iH:,:y:Yu < [H:,:W:Yu] =0
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Solutions of the relativistic mean-field equations

Thanks to the Cauchy-Schwarz inequality, we obtain

the equality holds < (H,f s5.)" = +H,f s,
(H:ﬁf"yu)* =+H; A & [H:,,Y,’yu] =0; then, if [H:,:Y,'?M] #0 for u = p,n,
there exists v° € '}, such that

5(75775) - g(;}'/p,’?n) < 07

— contradiction : 4 minimizes the energy on FJZr,N.
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Solutions of the relativistic mean-field equations

Thanks to the Cauchy-Schwarz inequality, we obtain

the equality holds < (H,f s5.)" = +H,f s,

(Ht 53u)" = £H! <5, © [Hi5,5.] =0, then, if [H} ., 5.] #0 for u=p,n,

there exists v° € '}, such that

5(7;7’%61) - g(;}'/Paﬁ/n) < 07

— contradiction : 4 minimizes the energy on '} .

As a conclusion, [H,,5,5,] = 0 for ;= p,n and W is a solution of the
equations (1.14) and (1.15).
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Open problem : The nonrelativistic limit

The nonrelativistic limit

By a change of physical units, we introduce the speed of light ¢ and we obtain

[—icaV + B(mpc® + S) + V] Y = (mec® — )Y (4.1)
[—A + m%,cz] S = —gicps (4.2)
[—A + micz} V = g (4.3)

with p; > 0.
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Open problem : The nonrelativistic limit

The nonrelativistic limit

By a change of physical units, we introduce the speed of light ¢ and we obtain

[—icaV + B(mpc® + S) + V] Y = (mec® — )Y (4.1)
[—A + micz] S = —gicps (4.2)
[—A + micz} V = g (4.3)

with p; > 0. Writing v; = ( ij > the densities are given by
J

A

pe=>_(leif = hal) o i(w + Ixil?) (4.4)

j=1 j=1
and the equation (4.1) becomes

—icoVxj + (S + Ve = ) (4.5)
—icaVp; — (2mpc* +S — V — pj)x; =0 .
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Open problem : The nonrelativistic limit

From the system (4.5), we obtain

_ 7I'C0'thj
o 2mpc2 + S — V—/J,j.

Xi
For ¢ — 0o, we can write

1 (& \[-A T 1) 1
s = (&) [Z5+1] a--1(&) nro(F)en
L&) [ =8 +171 _1l(e) +o(2 (4.8)
c\m,) |m2c? rP=c\m,) c3 '

%4
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Open problem : The nonrelativistic limit

From the system (4.5), we obtain

_ 7I'C0'thj
o 2mpc2 + S — V—/J/j.

Xj (4.6)

For ¢ — 0o, we can write
1 /g \°[-A ! 1/g\° 1
= (2= —— il p=—=[==) g — )@
S c(ma> [m§c2+ ] P r:(mt7 P+ O c? (*7)
vo= (&) =2 ) s (8 hrio(E) s
c \ my, m2,c2 po = c \ my, po c3 '

and, in accord with the physical values of the meson masses and of the
coupling constants (see [4],[5]), we can suppose

(fz;)Z = (f;:)2 + ac (4.9)

2
1 (g—fr) = Impc’ (4.10)

c \ m,

with 2 > 0 small and 6 > 0.
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As a consequence,

A
S+Vv= 219mbc2z Ix;|> — apo + O (%) , (4.11)

Jj=1

A
1
S—V =—-20mc’ Z loi|> 4 apo + O (;) . (4.12)

Jj=1
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Open problem : The nonrelativistic limit

As a consequence,

A
2 2 1
S+ V =20myc Zl Ixj| — apo+ O (?) , (4.11)
=
A 1
2 2
S—V=-20mpc Zl lpil” + apo + O (;) . (4.12)
=
As a conclusion,
i = —ioVy; +0 (%) ) (4.13)

" 2mpe (1 = 192;‘:1 |90j‘2>
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Open problem : The nonrelativistic limit
Bibliography

Then, we obtain

1

A
s 2 2
———0oV (F(9)oV +—F(¢ g V; — = — 4.14
2 bU (F(®)oVex) 2ms (@) lo V" ok —apopr piepr ( )

=1

with F(®) = G,y and po = S el
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Open problem : The nonrelativistic limit

Then, we obtain

A
1 ) 2 2

— = oV (F(® S F(@) S oV Per— —_ 4.14
2ms 0V (F(®)oVeoi)+5 —F(®) 2. oV eil ok —apopr = —prpr (4.14)

with F(®) = (1_119%) and po = Zf:l lo;|?. Using the formula

0k0) = Ol + i€kmOm

where ey is the Levi-Civita symbol and y is the Kronecker delta, we get

—oV (F(®)oV) —V - (F(®)V) —io - (VF(®) x V)
— b (F(®)p) + VF(®) - (¢ x ).
—_— 7

spin-orbit term
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Open problem : The nonrelativistic limit

Then, we obtain

1 0
—TmbUV(F(‘D)UVW) e F(®)? ;\UVM Pk —apopk = —pkpk (4.14)
with F(®) = (1_119%) and po = Zf:l lo;|?. Using the formula

0k0) = Ol + i€kmOm
where ey is the Levi-Civita symbol and y is the Kronecker delta, we get

—oV (F(®)oV) = =V -(F(®)V)—io-(VF(®)x V)
= p-(F(®)p) + VF(P)-(px0).
| —
spin-orbit term

The equation (4.14) can be seen as the Euler-Lagrange equations of the energy

functional
> [ ael - [ (419)
2mb R3 1719p¢)+ 2 R3 - ’
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