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The relativistic mean-field theory (RMF)

Approximations of the relativistic mean-field theory :

Mean-field approximation : the nucleons behave as noninteracting particles
moving in a mean field generated by mesons and photons.

No-sea approximation : we neglect the vacuum polarization (Dirac sea).

Fields generated by mesons and photons :

σ meson : medium range attractive interaction ;

ω meson : short range repulsive interaction ;

ρ meson : description of isospin-dependent effects ;

photon : electromagnetic interaction.
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The Lagrangian of the RMF theory can be written as

L = Lnucleons + Lmesons + Lcoupling . (1.1)

Lnucleons =
Ω∑
α=1

wαψ̄α(iγµ∂µ −mb)ψα (1.2)

Lmesons =
1

2
(∂µσ∂µσ −m2

σσ
2)− 1

2
(∂µων∂µων −m2

ωω
µωµ)

−1

2
(∂µRν∂µRν −m2

ρR
µRµ)− 1

2
∂µAν∂µAν (1.3)

Lcoupling = −gσσρs − gωω
µρµ − gρR

µ · ρµ − eAµρcµ − U (σ) (1.4)

with U (σ) = 1
3
b2σ

3 + 1
4
b3σ

4.
The densities are

ρs =
∑Ω
α=1 wαψ̄αψα, ρµ =

∑Ω
α=1 wαψ̄αγµψα,

ρµ =
∑Ω
α=1 wαψ̄ατγµψα, ρcµ =

∑Ω
α=1 wαψ̄α

1
2
(1 + τ0)γµψα.

(1.5)
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The mean-field equations

Simplification of the model :

the single-particle states are eigenstates of τ0 → only R0µ and ρ0µ appear ;

stationarity : all time derivatives and spatial components of densities and
fields vanish → only the fields σ, ω0, R00 and A0 remain ;

ψα(x, t) = e−iεαtψα(x). (1.6)

We obtain

εαγ0ψα = [−iγ · ∇+ mb + gσσ + gωω0γ0 (1.7)

+gρR00γ0τ0 +
1

2
eA0γ0(1 + τ0)

]
ψα,

(−∆ + m2
σ)σ + U ′(σ) = −gσρs , (1.8)

(−∆ + m2
ω)ω0 = gωρ0, (1.9)

(−∆ + m2
ρ)R00 = gρρ00, (1.10)

−∆A0 = eρc0. (1.11)
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We consider b2 = b3 = 0 and we choose a fixed occupation of the orbitals, that
means

wα =

{
1 α = 1, . . . ,A

0 otherwise
(1.12)

where A is the nucleon number.
In this case, the equations (1.8-1.11) can be solved explicitly and we obtain

εαψα =

[
H0 − β

g 2
σ

4π

(
e−mσ|·|

| · | ? ρs

)
+

g 2
ω

4π

(
e−mω|·|

| · | ? ρ0

)
(1.13)

+τ0
g 2
ρ

4π

(
e−mρ|·|

| · | ? ρ00

)
+

1

2
(1 + τ0)

e2

4π

(
1

| · | ? ρ
c
0

)]
ψα

where H0 = −iα · ∇+ βmb.
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Using the convention τ0 = 1 for the protons and τ0 = −1 for the neutrons, the
nonlinear Dirac equations are given by

Hp,Ψψi :=

[
H0 − β

g 2
σ

4π

(
e−mσ|·|

| · | ? ρs

)
+

g 2
ω

4π

(
e−mω|·|

| · | ? ρ0

)
(1.14)

+
g 2
ρ

4π

(
e−mρ|·|

| · | ? ρ00

)
+

e2

4π

(
1

| · | ? ρ
c
0

)]
ψi = εiψi

if 1 ≤ i ≤ Z , and

Hn,Ψψi :=

[
H0 − β

g 2
σ

4π

(
e−mσ|·|

| · | ? ρs

)
+

g 2
ω

4π

(
e−mω|·|

| · | ? ρ0

)
(1.15)

−
g 2
ρ

4π

(
e−mρ|·|

| · | ? ρ00

)]
ψi = εiψi

if Z + 1 ≤ i ≤ A, under the constraints
∫
R3 ψ

∗
i ψj = δij for 1 ≤ i , j ≤ Z and

Z + 1 ≤ i , j ≤ A.
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The minimization problem

The nonlinear Dirac equations are the Euler-Lagrange equations of the energy
functional

E(Ψ) =
A∑

j=1

∫
R3

ψ∗j H0ψj −
g 2
σ

8π

∫ ∫
R3×R3

ρs(x)ρs(y)

|x − y | e−mσ|x−y| dxdy

+
g 2
ω

8π

∫ ∫
R3×R3

ρ0(x)ρ0(y)

|x − y | e−mω|x−y| dxdy

+
g 2
ρ

8π

∫ ∫
R3×R3

ρ00(x)ρ00(y)

|x − y | e−mρ|x−y| dxdy

+
e2

8π

∫ ∫
R3×R3

ρc0(x)ρc0(y)

|x − y | dxdy (1.16)

under the constraints
∫
R3 ψ

∗
i ψj = δij for 1 ≤ i , j ≤ Z and for Z + 1 ≤ i , j ≤ A.
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Since this functional is not bounded from below under the constraints∫
R3 ψ

∗
i ψj = δij , we introduce the following minimization problem ([1])

I = inf

{
E(Ψ);

∫
R3

ψ∗i ψj = δij , 1 ≤ i , j ≤ Z ,Z + 1 ≤ i , j ≤ A,

Λ−p,Ψ(ψ1, . . . , ψZ ) = 0,Λ−n,Ψ(ψZ+1, . . . , ψA) = 0
}

(1.17)

together with its extension

I (λ1, . . . , λA) = inf

{
E(Ψ);

∫
R3

ψ∗i ψj = λiδij , 1 ≤ i , j ≤ Z ,

Z + 1 ≤ i , j ≤ A,Λ−p,Ψ(ψ1, . . . , ψZ ) = 0,

Λ−n,Ψ(ψZ+1, . . . , ψA) = 0
}

(1.18)

where, for µ = p, n, Λ−µ,Ψ = χ(−∞,0)(Hµ,Ψ).
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Theorem 1

If gσ, gω, gρ and e are sufficiently small, a minimizer of (1.17) is a solution of
the equations (1.14) and (1.15).

Theorem 2

If gσ, gω, gρ and e are sufficiently small, any minimizing sequence of (1.17) is
relatively compact up to a translation if and only if the following condition holds

I < I (λ1, . . . , λA) + I (1− λ1, . . . , 1− λA) (1.19)

for all λk ∈ [0, 1], k = 1, . . . ,A, such that
A∑

k=1

λk ∈ (0,A).

In particular, if (1.19) holds, there exists a minimum of (1.17).
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Properties of the potential

If gσ, gω, gρ and e are sufficiently small,

Hµ,Ψ is a self-adjoint isomorphism between H1/2 and its dual H−1/2,
whose inverse is bounded independently of Ψ

any minimizing sequence Ψk = (ψk
1 , . . . , ψ

k
A) is bounded in

(
H1/2(R3)

)A
and I is bounded from below.
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Concentration-compactness lemma

Lemma 3 ([2],[3])

Let (Pk)k be a sequence of probability measures on RN . Then there exists a
subsequence that we still denote by Pk such that one of the following
properties holds :

1 (compactness up to a translation) ∃y k ∈ RN , ∀ε > 0, ∃R <∞

Pk

(
B
(

y k ,R
))
≥ 1− ε;

2 (vanishing) ∀R <∞
sup
y∈RN

Pk (B (y ,R)) −→
k

0;

3 (dichotomy) ∃α ∈ (0, 1), ∀ε > 0, ∀M <∞, ∃R0 ≥ M, ∃y k ∈ RN ,
∃Rk −→

k
+∞ such that∣∣Pk

(
B
(
y k ,R0

))
− α

∣∣ ≤ ε, ∣∣Pk

(
B
(
y k ,Rk

)c)− (1− α)
∣∣ ≤ ε.
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Dichotomy does not occur

Let Pk be a probability measure in R3 whose density is 1
A

A∑
i=1

|ψk
i |2.

If dichotomy occurs (case iii.), then Ψk can be split into two parts Ψk
1 and Ψk

2 .
More precisely,

ψk
i,1 = ξR0 (· − y k)ψk

i

ψk
i,2 = ζRk (· − y k)ψk

i

with Rk −→
k

+∞, ξµ = ξ
(
·
µ

)
, ζµ = ζ

(
·
µ

)
and

ξ(x) =

{
1 |x | ≤ 1
0 |x | ≥ 2

ζ(x) =

{
0 |x | ≤ 1
1 |x | ≥ 2

with ξ, ζ ∈ D(R3). We remind that dist
(
supp ψk

i,1, supp ψ
k
i,2

)
−→
k

+∞ and∥∥ψk
i −

(
ψk

i,1 + ψk
i,2

)∥∥
Lp
−→
k

0 for 2 ≤ p < 3. Next, we may assume that∫
R3 ψ

k∗
i,1ψ

k
j,1 = λiδij ,

∫
R3 ψ

k∗
i,2ψ

k
j,2 = (1− λi )δij (2.1)

for 1 ≤ i , j ≤ Z , Z + 1 ≤ i , j ≤ A and 0 ≤ λi ≤ 1.
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Ψk
1 = (ψk

1,1, . . . , ψ
k
A,1) and Ψk

2 = (ψk
1,2, . . . , ψ

k
A,2) do not necessarily satisfy the

constraints of I (λ1, . . . , λA) and I (1− λ1, . . . , 1− λA) respectively.
First of all, we show that, for µ = p, n,

Λ−
µ,Ψk

1

Ψk
µ,1 −→

k
0 et Λ−

µ,Ψk
2

Ψk
µ,2 −→

k
0 (2.2)

in H1/2(R3).
Second, using the implicit function theorem, we construct

Φk
1 = (Φk

p,1,Φ
k
n,1),Φk

2 = (Φk
p,2,Φ

k
n,2) ∈

(
H1/2(R3)

)Z
×
(

H1/2(R3)
)N

, small

perturbations of Ψk
1 , Ψk

2 in
(

H1/2(R3)
)A

, such that

Λ−
µ,Φk

1

Φk
µ,1 = 0 et Λ−

µ,Φk
2

Φk
µ,2 = 0 (2.3)

and
GramL2 (Φk

µ,i ) = GramL2 (Ψk
µ,i ) (2.4)

for µ = p, n and i = 1, 2.
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µ,i ) (2.4)

for µ = p, n and i = 1, 2.
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Finally, thanks to the continuity of E in H1/2(R3), we obtain

I = lim
k→∞

E(Ψk) ≥ lim
k→∞

E(Ψk
1) + lim

k→∞
E(Ψk

2)

= lim
k→∞

E(Φk
1) + lim

k→∞
E(Φk

2)

≥ I (λ1, . . . , λA) + I (1− λ1, . . . , 1− λA)

that clearly contradicts (1.19).
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Vanishing does not occur

If vanishing occurs (case ii.), then ∀R <∞

sup
y∈R3

∫
B(y,R)

∣∣∣ψk
j

∣∣∣2 −→
k

0

for j = 1, . . . ,A and ψk
1 , . . . , ψ

k
A converge strongly in Lp(R3) to 0 for

2 < p < 3. As a consequence,

lim
k→∞

E(Ψk) =
A∑

j=1

lim
k→∞

∫
R3

ψk∗
j H0ψ

k
j ,

and

I (λ1, . . . , λA) = mb

A∑
j=1

λj

thanks to the constraints of the problem.
This contradicts (1.19) because we have

I = mbA = mb

A∑
j=1

λj +mb

A∑
j=1

(1−λj) = I (λ1, . . . , λA)+ I (1− λ1, . . . , 1− λA) .
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Let Ψ̃k = Ψk(·+ y k) ; Ψ̃k is a minimizing sequence.

{Ψ̃k}k bounded in
(

H1/2(R3)
)A
⇒


Ψ̃k (H1/2)A−−−−⇀

k
Ψ̃

Ψ̃k −→
k

Ψ̃ a.e.

Ψ̃k
L
p
loc−−→
k

Ψ̃ 2 ≤ p < 3

+ concentration-compactness argument

Ψ̃k Lp−→
k

Ψ̃ 2 ≤ p < 3

Since ‖ψ̃j − ψ̃k
j ‖L2 → 0 for k → +∞,∫

R3

ψ̃∗i ψ̃j = lim
k→+∞

∫
R3

ψk∗
i ψk

j = δij

for 1 ≤ i , j ≤ Z et Z + 1 ≤ i , j ≤ A. Moreover, Λ−
µ,Ψ̃

Ψ̃µ = 0 for µ = p, n and

E(Ψ̃) ≤ lim inf
k→+∞

E(Ψk) ≤ E(Ψ̃).

As a conclusion, Ψ̃ is a minimizer of (1.17) and the minimizing sequence {Ψk}k
is relatively compact in (H1/2)A up to a translation.
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Solutions of the relativistic mean-field equations

X =
{
γ ∈ B(H); γ = γ∗, (m2

b −∆)1/4γ(m2
b −∆)1/4 ∈ σ1(H)

}
. (3.1)

ΓP =
{
γ ∈ X ; γ2 = γ, tr(γ) = P

}
. (3.2)

Given γ = (γp, γn) ∈ X × X , we define

Hp,γγp :=

[
H0 − β

g 2
σ

4π

(
e−mσ|·|

| · | ? ρs

)
+

g 2
ω

4π

(
e−mω|·|

| · | ? ρ0

)
(3.3)

+
g 2
ρ

4π

(
e−mρ|·|

| · | ? ρ00

)
+

e2

4π

(
1

| · | ? ρp
)]

γp

Hn,γγn :=

[
H0 − β

g 2
σ

4π

(
e−mσ|·|

| · | ? ρs

)
+

g 2
ω

4π

(
e−mω|·|

| · | ? ρ0

)
(3.4)

−
g 2
ρ

4π

(
e−mρ|·|

| · | ? ρ00

)]
γn
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where

ρs(x) = ρ̄p(x) + ρ̄n(x)

ρ0(x) = ρp(x) + ρn(x)

ρ00(x) = ρp(x)− ρn(x)

with ρ̄p(x) = tr(βγp(x , x)), ρ̄n(x) = tr(βγn(x , x)), ρp(x) = tr(γp(x , x)) et
ρn(x) = tr(γn(x , x)).
Finally, for µ = p, n, we define

Λ±µ,γ = χR±(Hµ,γ).

Let Ψ̃ = (Ψ̃p, Ψ̃n) be a minimizer of the problem (1.17) and consider γ̃p and γ̃n
the orthogonal projectors defined by

γ̃p =
∑Z

i=1 |ψ̃i 〉 〈ψ̃i | and γ̃n =
∑A

i=Z+1 |ψ̃i 〉 〈ψ̃i | (3.5)

and we denote γ̃ = (γ̃p, γ̃n).
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Then, we show that, for µ = p, n,

[Hµ,γ̃ , γ̃µ] = 0. (3.6)

In fact, (3.6) implies

Hp,Ψ̃ψ̃i = εi ψ̃i for 1 ≤ i ≤ Z ,

Hn,Ψ̃ψ̃i = εi ψ̃i for Z + 1 ≤ i ≤ A.

First, we remark that γ̃ = (γ̃p, γ̃n) minimizes the energy

E(γp, γn) = tr(H0γp) + tr(H0γn)− g 2
σ

8π

∫ ∫
R3×R3

ρs(x)ρs(y)

|x − y | e−mσ|x−y| dxdy

+
g 2
ω

8π

∫ ∫
R3×R3

ρ0(x)ρ0(y)

|x − y | e−mω|x−y| dxdy

+
g 2
ρ

8π

∫ ∫
R3×R3

ρ00(x)ρ00(y)

|x − y | e−mρ|x−y| dxdy

+
e2

8π

∫ ∫
R3×R3

ρp(x)ρp(y)

|x − y | dxdy (3.7)

on Γ+
Z ,N = Γ+

Z × Γ+
N
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with

Γ+
Z =

{
γp ∈ ΓZ ; γp = Λ+

p,γγpΛ+
p,γ

}
,

Γ+
N =

{
γn ∈ ΓN ; γn = Λ+

n,γγnΛ+
n,γ

}
.

Γ+
Z ,N is a subset of

Γ̄Z ,N =
{
γ = (γp, γn) ∈ ΓZ × ΓN ;

[
H−p,γ , γp

]
= 0,

[
H−n,γ , γn

]
= 0
}

and, since γ̃ ∈ Γ+
Z ,N , we have

[
H−µ,γ̃ , γ̃µ

]
= 0 for µ = p, n.

Thus, we have to prove that
[
H+
µ,γ̃ , γ̃µ

]
= 0 for µ = p, n → by contradiction

For µ = p, n, we assume that
[
H+
µ,γ̃ , γ̃µ

]
6= 0 and we define

γ̃εµ = Uεµγ̃µ
(
Uεµ
)−1

(3.8)

with Uεµ = exp
(
−ε
[
H+
µ,γ̃ , γ̃µ

])
.
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As before, we construct γε = (γεp , γ
ε
n ), small perturbation of γ̃ε = (γ̃εp , γ̃

ε
n ) such

that γε ∈ Γ+
Z ,N . Next, we want to prove that

E(γεp , γ
ε
n ) < E(γ̃p, γ̃n).

Since (γεp , γ
ε
n ) is a small perturbation of (γ̃p, γ̃n), we can write

E(γεp , γ
ε
n )− E(γ̃p, γ̃n) = tr

(
Hp,γ̃(γεp − γ̃p)

)
+ tr (Hn,γ̃(γεn − γ̃n)) + o(ε). (3.9)

More precisely,

E(γεp , γ
ε
n )− E(γ̃p, γ̃n) = tr

(
H+

p,γ̃Λ+
p,γ̃(γεp − γ̃p)Λ+

p,γ̃

)
+ tr

(
H−p,γ̃Λ−p,γ̃(γεp − γ̃p)Λ−p,γ̃

)
+ tr

(
H+

n,γ̃Λ+
n,γ̃(γεn − γ̃n)Λ+

n,γ̃

)
+ tr

(
H−n,γ̃Λ−n,γ̃(γεn − γ̃n)Λ−n,γ̃

)
+ o(ε)

:= T +
p + T−p + T +

n + T−n + o(ε). (3.10)

T−µ = o(ε) for µ = p, n

T +
µ = tr

(
H+
µ,γ̃Λ+

µ,γ̃(γ̃εµ − γ̃µ)Λ+
µ,γ̃

)
+ o(ε)
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By definition,

γ̃εµ − γ̃µ = Uεµγ̃µ(Uεµ)−1 − γ̃µ
=

(
1− ε

[
H+
µ,γ̃ , γ̃µ

])
γ̃µ
(
1 + ε

[
H+
µ,γ̃ , γ̃µ

])
− γ̃µ + o(ε)

= −ε
[[

H+
µ,γ̃ , γ̃µ

]
, γ̃µ
]

+ o(ε).

Then
T +
µ = −ε tr

(
H+
µ,γ̃

[[
H+
µ,γ̃ , γ̃µ

]
, γ̃µ
])

+ o(ε)

for µ = p, n and

E(γεp , γ
ε
n )− E(γ̃p, γ̃n) = −ε

∑
µ=p,n

tr
(
H+
µ,γ̃

[[
H+
µ,γ̃ , γ̃µ

]
, γ̃µ
])

+ o(ε)

= 2ε
∑
µ=p,n

tr
(

(H+
µ,γ̃ γ̃µ)2 − (H+

µ,γ̃)2γ̃2
µ

)
+ o(ε)

= 2ε
∑
µ=p,n

〈(H+
µ,γ̃ γ̃µ)∗,H+

µ,γ̃ γ̃µ〉 − 〈H
+
µ,γ̃ γ̃µ,H

+
µ,γ̃ γ̃µ〉+ o(ε) (3.11)

where 〈A,B〉 = tr(A∗B) is the Hilbert–Schmidt inner product.
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Thanks to the Cauchy-Schwarz inequality, we obtain

E(γεp , γ
ε
n )− E(γ̃p, γ̃n) ≤ 0 ;

the equality holds ⇔ (H+
µ,γ̃ γ̃µ)∗ = ±H+

µ,γ̃ γ̃µ.

(H+
µ,γ̃ γ̃µ)∗ = ±H+

µ,γ̃ γ̃µ ⇔
[
H+
µ,γ̃ , γ̃µ

]
= 0 ; then, if

[
H+
µ,γ̃ , γ̃µ

]
6= 0 for µ = p, n,

there exists γε ∈ Γ+
Z ,N such that

E(γεp , γ
ε
n )− E(γ̃p, γ̃n) < 0,

→ contradiction : γ̃ minimizes the energy on Γ+
Z ,N .

As a conclusion, [Hµ,γ̃ , γ̃µ] = 0 for µ = p, n and Ψ̃ is a solution of the
equations (1.14) and (1.15).
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The nonrelativistic limit

By a change of physical units, we introduce the speed of light c and we obtain[
−icα∇+ β(mbc2 + S) + V

]
ψj = (mbc2 − µj)ψj (4.1)[

−∆ + m2
σc2
]

S = −g 2
σcρs (4.2)[

−∆ + m2
ωc2
]

V = g 2
ωcρ0 (4.3)

with µj ≥ 0. Writing ψj =

(
ϕj

χj

)
, the densities are given by

ρs =
A∑

j=1

(
|ϕj |2 − |χj |2

)
ρ0 =

A∑
j=1

(
|ϕj |2 + |χj |2

)
(4.4)

and the equation (4.1) becomes{
−icσ∇χj + (S + V )ϕj = −µjϕj

−icσ∇ϕj − (2mbc2 + S − V − µj)χj = 0
(4.5)
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From the system (4.5), we obtain

χj =
−icσ∇ϕj

2mbc2 + S − V − µj
. (4.6)

For c →∞, we can write

S = −1

c

(
gσ
mσ

)2 [ −∆

m2
σc2

+ 1

]−1

ρs = −1

c

(
gσ
mσ

)2

ρs + O

(
1

c3

)
(4.7)

V =
1

c

(
gω
mω

)2 [ −∆

m2
ωc2

+ 1

]−1

ρ0 =
1

c

(
gω
mω

)2

ρ0 + O

(
1

c3

)
(4.8)

and, in accord with the physical values of the meson masses and of the
coupling constants (see [4],[5]), we can suppose(

gσ
mσ

)2

=

(
gω
mω

)2

+ ac (4.9)

1

c

(
gσ
mσ

)2

= ϑmbc2 (4.10)

with a > 0 small and θ > 0.
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As a consequence,

S + V = 2ϑmbc2
A∑

j=1

|χj |2 − aρ0 + O

(
1

c3

)
, (4.11)

S − V = −2ϑmbc2
A∑

j=1

|ϕj |2 + aρ0 + O

(
1

c3

)
. (4.12)

As a conclusion,

χj =
−iσ∇ϕj

2mbc
(

1− ϑ
∑A

j=1 |ϕj |2
) + O

(
1

c2

)
. (4.13)
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Then, we obtain

− 1

2mb
σ∇ (F (Φ)σ∇ϕk)+

ϑ

2mb
F (Φ)2

A∑
j=1

|σ∇ϕj |2ϕk−aρΦϕk = −µkϕk (4.14)

with F (Φ) = 1
(1−ϑρΦ)

and ρΦ =
∑A

j=1 |ϕj |2. Using the formula

σkσl = δkl1 + iεklmσm

where εklm is the Levi-Civita symbol and δkl is the Kronecker delta, we get

−σ∇ (F (Φ)σ∇) = −∇ · (F (Φ)∇)− iσ · (∇F (Φ)×∇)

= p · (F (Φ)p) +∇F (Φ) · (p× σ)︸ ︷︷ ︸
spin-orbit term

.

The equation (4.14) can be seen as the Euler-Lagrange equations of the energy
functional

J(Φ) =
1

2mb

A∑
i=1

∫
R3

|σ∇ϕi |2

(1− ϑρΦ)+

− a

2

∫
R3

ρ2
Φ. (4.15)
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Then, we obtain
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2mb
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ϑ

2mb
F (Φ)2
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j=1

|σ∇ϕj |2ϕk−aρΦϕk = −µkϕk (4.14)

with F (Φ) = 1
(1−ϑρΦ)

and ρΦ =
∑A

j=1 |ϕj |2. Using the formula

σkσl = δkl1 + iεklmσm

where εklm is the Levi-Civita symbol and δkl is the Kronecker delta, we get

−σ∇ (F (Φ)σ∇) = −∇ · (F (Φ)∇)− iσ · (∇F (Φ)×∇)

= p · (F (Φ)p) +∇F (Φ) · (p× σ)︸ ︷︷ ︸
spin-orbit term

.

The equation (4.14) can be seen as the Euler-Lagrange equations of the energy
functional

J(Φ) =
1

2mb

A∑
i=1

∫
R3

|σ∇ϕi |2

(1− ϑρΦ)+

− a

2

∫
R3

ρ2
Φ. (4.15)

Simona Rota Nodari 27 / 29



Introduction
Proof of the main theorem

Solutions of the relativistic mean-field equations
Open problem : The nonrelativistic limit

Bibliography

Then, we obtain

− 1

2mb
σ∇ (F (Φ)σ∇ϕk)+

ϑ

2mb
F (Φ)2

A∑
j=1

|σ∇ϕj |2ϕk−aρΦϕk = −µkϕk (4.14)

with F (Φ) = 1
(1−ϑρΦ)

and ρΦ =
∑A

j=1 |ϕj |2. Using the formula

σkσl = δkl1 + iεklmσm

where εklm is the Levi-Civita symbol and δkl is the Kronecker delta, we get

−σ∇ (F (Φ)σ∇) = −∇ · (F (Φ)∇)− iσ · (∇F (Φ)×∇)

= p · (F (Φ)p) +∇F (Φ) · (p× σ)︸ ︷︷ ︸
spin-orbit term

.

The equation (4.14) can be seen as the Euler-Lagrange equations of the energy
functional

J(Φ) =
1

2mb

A∑
i=1

∫
R3

|σ∇ϕi |2

(1− ϑρΦ)+

− a

2

∫
R3

ρ2
Φ. (4.15)

Simona Rota Nodari 27 / 29



Introduction
Proof of the main theorem

Solutions of the relativistic mean-field equations
Open problem : The nonrelativistic limit

Bibliography

Esteban, M.J., Séré, E.
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