Non-Hermitian operators in QM & DT-symmetry

David KREJČIŘÍK

http://gemma.ujf.cas.cz/~david/

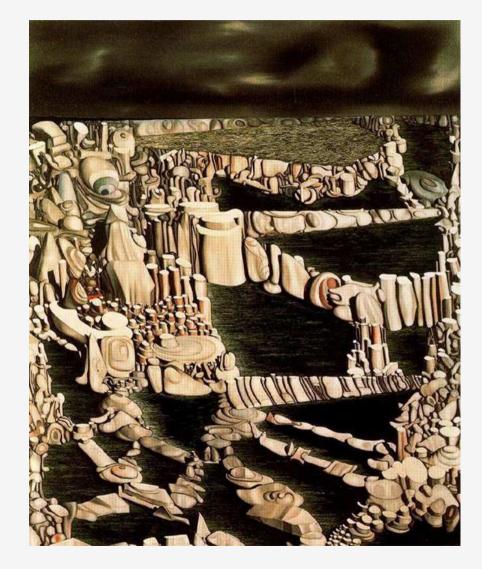
Ikerbasque, Basque Foundation for Science Basque Center for Applied Mathematics, Bilbao, Kingdom of Spain & Nuclear Physics Institute ASCR, Řež, Czech Republic

Hors de ligne (Outline)

- 1. QM with non-Hermitian operators (just some conceptual remarks)
- 2. PT-symmetry(what is known and my point of view)
- 3. physical PT-symmetric model in QM (non-self-adjoint Robin boundary conditions)
- 4. Conclusions

¿ QM with non-Hermitian operators ?

 $H^* = H$



 $H^{\operatorname{PT}}=H$

Imaginary Numbers by Yves Tanguy, 1954 (Museo Thyssen-Bornemisza, Madrid)

Insignificant non-Hermiticity

Example 1. evolution operator $U(t) = \exp(-itH)$:

$$i\dot{U}(t) = H U(t)$$

 $U(0) = I$

Insignificant non-Hermiticity

Example 1. evolution operator $U(t) = \exp(-itH)$: $\begin{cases} i\dot{U}(t) = H U(t) \\ U(0) = I \end{cases}$

Example 2. resolvent operator $R(z) = (H - z)^{-1}$, $z \in \mathbb{C}$

Insignificant non-Hermiticity

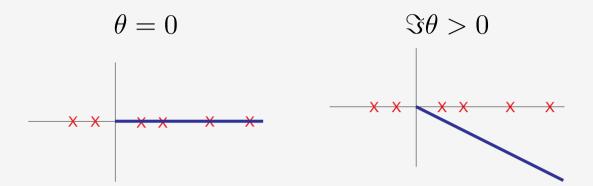
Example 1. evolution operator $U(t) = \exp(-itH)$: $\begin{cases} i\dot{U}(t) = H U(t) \\ U(0) = I \end{cases}$

Example 2. resolvent operator $R(z) = (H - z)^{-1}$, $z \in \mathbb{C}$

Theorem (spectral theorem).
Let
$$H = H^*$$
. Then
$$f(H) = \int_{\sigma(H)} f(\lambda) \ dE_H(\lambda)$$

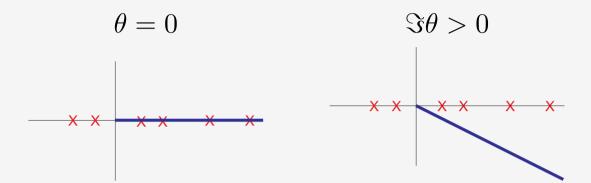
for any complex-valued continuous function f.

Example 1. complex scaling $H_{\theta} := S_{\theta}(-\Delta + V)S_{\theta}^{-1}$, $(S_{\theta}\psi)(x) := e^{\theta/2}\psi(e^{\theta}x)$



[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

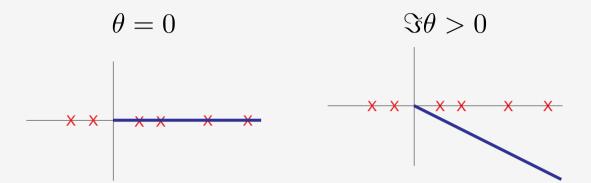
Example 1. complex scaling $H_{\theta} := S_{\theta}(-\Delta + V)S_{\theta}^{-1}$, $(S_{\theta}\psi)(x) := e^{\theta/2}\psi(e^{\theta}x)$



[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

Example 2. adiabatic transition probability for $H(t) := \vec{\gamma}(t/\tau) \cdot \vec{\sigma}, \quad \tau \to \infty$ [Berry 1990], [Joye, Kunz, Pfister 1991], [Jakšić, Segert 1993], ...

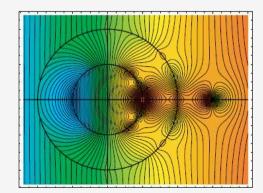
Example 1. complex scaling $H_{\theta} := S_{\theta}(-\Delta + V)S_{\theta}^{-1}$, $(S_{\theta}\psi)(x) := e^{\theta/2}\psi(e^{\theta}x)$

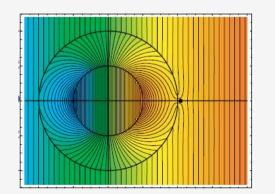


[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

Example 2. adiabatic transition probability for $H(t) := \vec{\gamma}(t/\tau) \cdot \vec{\sigma}, \quad \tau \to \infty$ [Berry 1990], [Joye, Kunz, Pfister 1991], [Jakšić, Segert 1993], ...

Example 3. cloaking effects in metamaterials $H_{\eta} := -\nabla \cdot a_{\eta} \nabla$, $a_{\eta}(x) := \begin{cases} +1, & x \in \Omega_{+} \\ -1+in, & x \in \Omega_{-} \end{cases}$



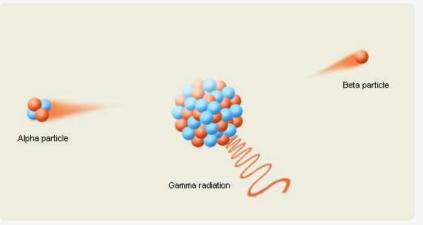


[Pendry 2004], [Milton, Nicorovici 2006], [Bouchitté, Schweizer 2009], ...

Approximate non-Hermiticity

open systems

Example 1. radioactive decay



Example 2. dissipative Schrödinger operators in semiconductor physics Baro, Behrndt, Kaiser, Neidhardt, Rehberg, ...

Example 3. repeated interaction quantum systems

Bruneau, Joye, Merkli, Pillet, ...

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating "physical axioms" of QM

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating "physical axioms" of QM

i no !

Theorem (Stone's theorem).

Unitary groups on a Hilbert space are generated by self-adjoint operators.

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating "physical axioms" of QM

i no !

Theorem (Stone's theorem).

Unitary groups on a Hilbert space are generated by self-adjoint operators.

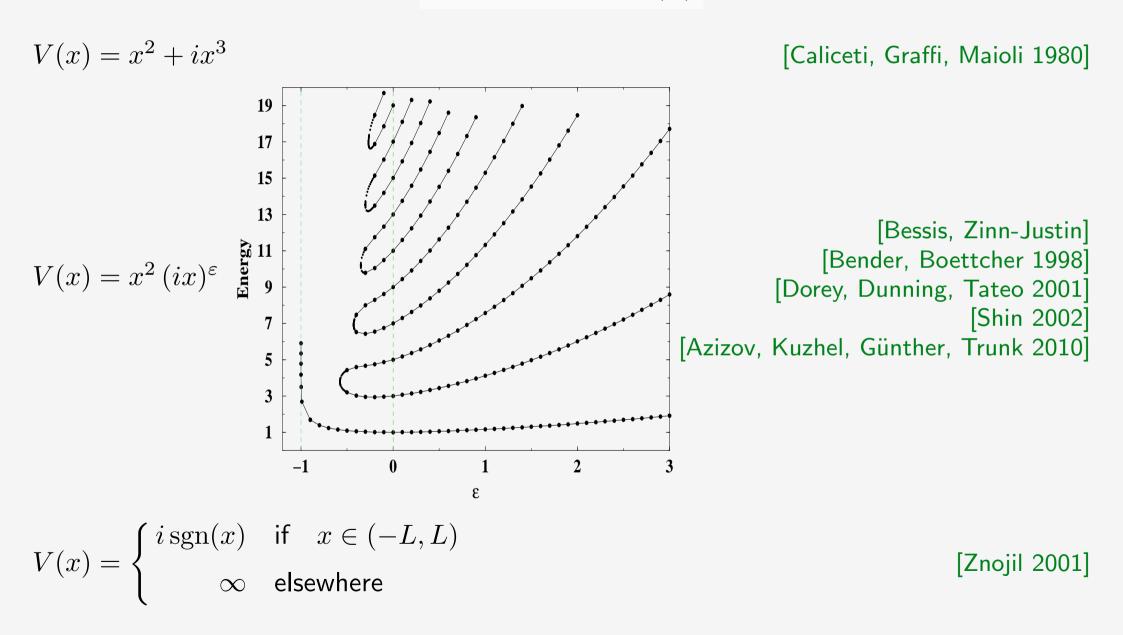
į yes ?

by changing the Hilbert space

. . .

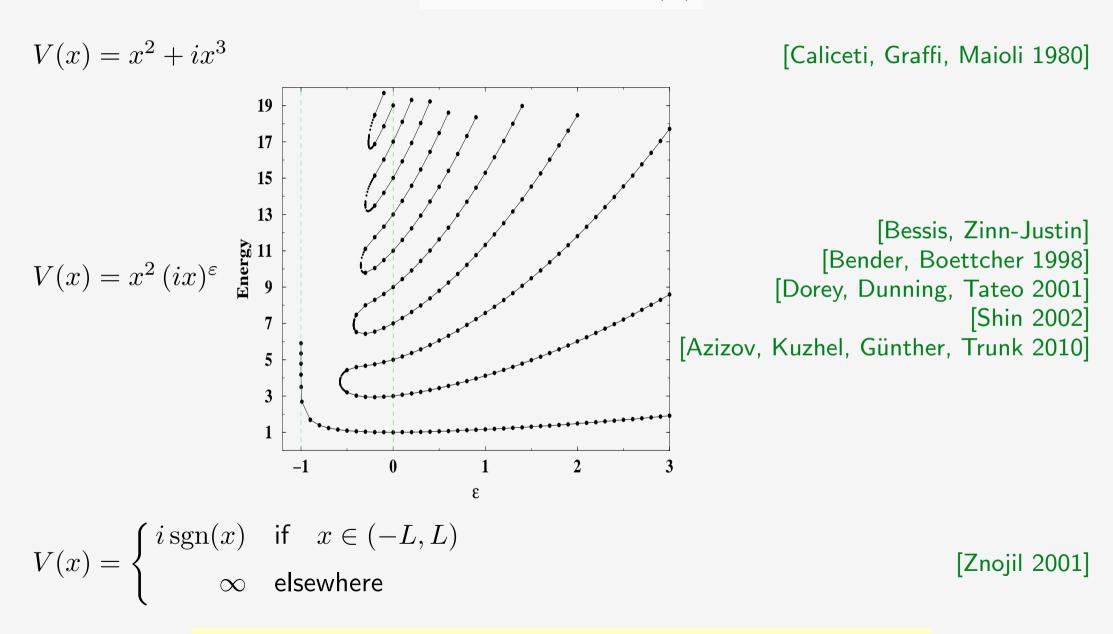
Non-Hermitian Hamiltonians with real spectra

 $-\Delta + V$ in $L^2(\mathbb{R})$

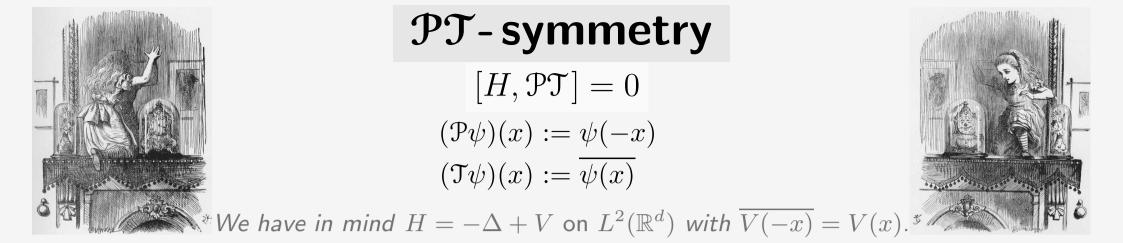


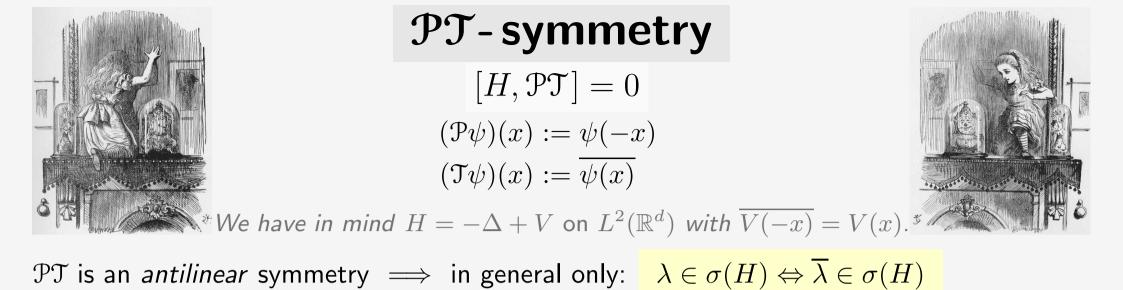
Non-Hermitian Hamiltonians with real spectra

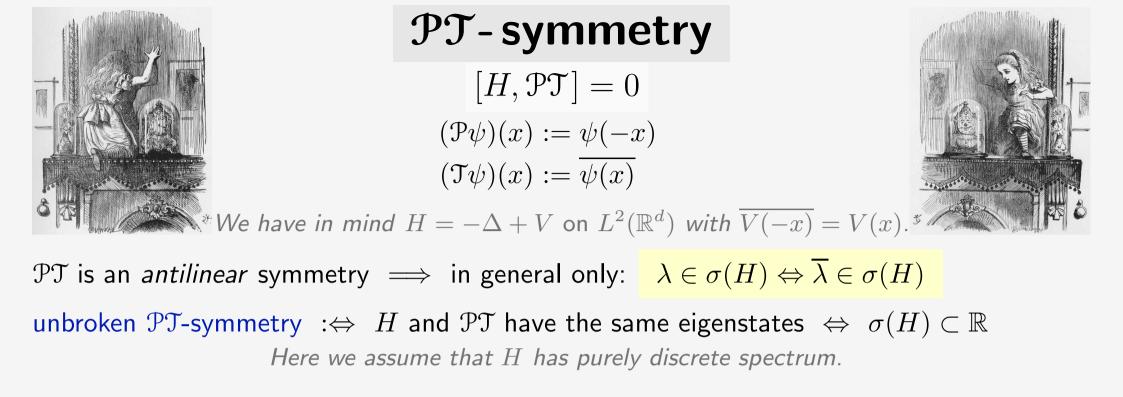
 $-\Delta + V$ in $L^2(\mathbb{R})$

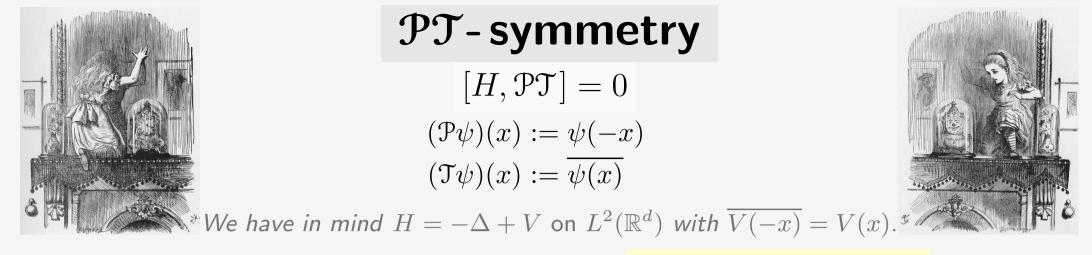


¿ What is behind the reality of the spectrum ?









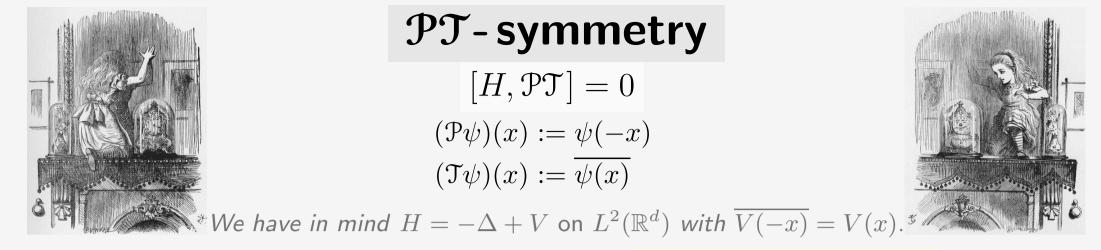
 \mathfrak{PT} is an *antilinear* symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$ *

unbroken \mathfrak{PT} -symmetry : \Leftrightarrow H and \mathfrak{PT} have the same eigenstates \Leftrightarrow $\sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Let $H_0 := -\Delta + V_0$ be self-adjoint, with purely discrete and simple spectrum. Let V be bounded and \mathcal{PT} -symmetric. Define $H_{\varepsilon} := H_0 + \varepsilon V$.

 $\implies \sigma(H_{\varepsilon})$ is dicrete and simple $\stackrel{*}{\implies} \sigma(H_{\varepsilon}) \cap J \subset \mathbb{R}$ for every bounded J and small ε



 \mathfrak{PT} is an *antilinear* symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$ *

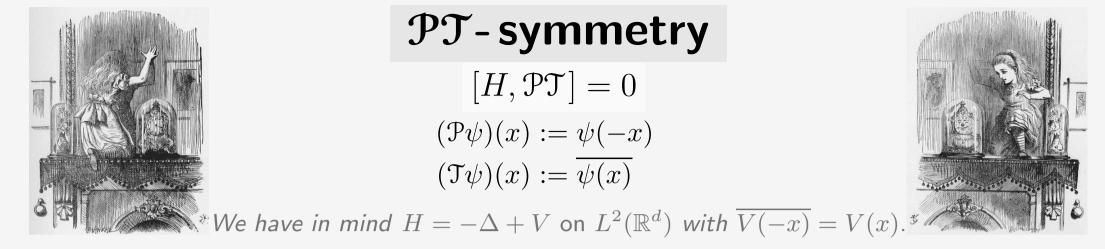
unbroken \mathfrak{PT} -symmetry : $\Leftrightarrow H$ and \mathfrak{PT} have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Let $H_0 := -\Delta + V_0$ be self-adjoint, with purely discrete and simple spectrum. Let V be bounded and \mathcal{PT} -symmetric. Define $H_{\varepsilon} := H_0 + \varepsilon V$.

 $\implies \sigma(H_{\varepsilon})$ is dicrete and simple $\stackrel{*}{\implies} \sigma(H_{\varepsilon}) \cap J \subset \mathbb{R}$ for every bounded J and small ε

Moreover, let the eigenstates of H_{ε} form a Riesz basis. $H\psi_n = E_n\psi_n$, $H^*\phi_n = E_n\phi_n$ $\implies H^* = \Theta H \Theta^{-1}$ where $\Theta := \sum_n \phi_n \langle \phi_n, \cdot \rangle$ is self-adjoint, bounded and positive $\implies H$ is Hermitian in $(L^2, \langle \cdot, \Theta \cdot \rangle)$, *i.e.* $\Theta^{1/2} H \Theta^{-1/2}$ is Hermitian in $(L^2, \langle \cdot, \cdot \rangle)$



 \mathfrak{PT} is an *antilinear* symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$ *

unbroken \mathfrak{PT} -symmetry : $\Leftrightarrow H$ and \mathfrak{PT} have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Let $H_0 := -\Delta + V_0$ be self-adjoint, with purely discrete and simple spectrum. Let V be bounded and \mathcal{PT} -symmetric. Define $H_{\varepsilon} := H_0 + \varepsilon V$.

 $\implies \sigma(H_{\varepsilon})$ is dicrete and simple $\stackrel{*}{\implies} \sigma(H_{\varepsilon}) \cap J \subset \mathbb{R}$ for every bounded J and small ε

Moreover, let the eigenstates of H_{ε} form a Riesz basis. $H\psi_n = E_n\psi_n$, $H^*\phi_n = E_n\phi_n$ $\implies H^* = \Theta H\Theta^{-1}$ where $\Theta := \sum_n \phi_n \langle \phi_n, \cdot \rangle$ is self-adjoint, bounded and positive $\implies H$ is Hermitian in $(L^2, \langle \cdot, \Theta \cdot \rangle)$, *i.e.* $\Theta^{1/2}H\Theta^{-1/2}$ is Hermitian in $(L^2, \langle \cdot, \cdot \rangle)$

Albeverio-Fei-Kurasov, Bender-Boettcher, Caliceti-Graffi-Sjöstrand, Boulton-Levitin-Marletta, Kretschmer-Szymanowski, Fring, Langer-Tretter, Mostafazadeh, Scholtz-Geyer-Hahne, Znojil, ...

to understand $\mathfrak{PT}H\mathfrak{PT} = H$ in a more general setting than:

• $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$

•
$$(\mathcal{P}\psi)(x) := \psi(-x), \quad (\mathcal{T}\psi)(x) := \overline{\psi(x)}$$

to understand $\mathfrak{PT}H\mathfrak{PT} = H$ in a more general setting than:

• $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$ • $(\mathfrak{P}\psi)(x) := \psi(-x)$, $(\mathfrak{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a \mathcal{PT} -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

to understand $\mathfrak{PT}H\mathfrak{PT} = H$ in a more general setting than:

•
$$H = -\Delta + V$$
 on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$
• $(\mathcal{P}\psi)(x) := \psi(-x)$, $(\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a \mathcal{PT} -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$) e.g. S := PT

to understand $\mathfrak{PT}H\mathfrak{PT} = H$ in a more general setting than:

• $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$ • $(\mathcal{P}\psi)(x) := \psi(-x), \quad (\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a \mathcal{PT} -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$) e.g. S := PT

2. self-adjointness in Krein spaces H is self-adjoint in an *indefinite* inner product space e.g. $[\cdot, \cdot] := \langle \cdot, \mathcal{P} \cdot \rangle$ after noticing $\mathcal{P}H\mathcal{P} = \mathcal{T}H\mathcal{T} = H^*$ [Langer, Tretter 2004]

to understand $\mathfrak{PT}H\mathfrak{PT} = H$ in a more general setting than:

• $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$ • $(\mathcal{P}\psi)(x) := \psi(-x)$, $(\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a \mathcal{PT} -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$) e.g. S := PT

2. self-adjointness in Krein spaces H is self-adjoint in an *indefinite* inner product space e.g. $[\cdot, \cdot] := \langle \cdot, \mathcal{P} \cdot \rangle$ after noticing $\mathcal{P}H\mathcal{P} = \mathcal{T}H\mathcal{T} = H^*$ [Langer, Tretter 2004]

3. \mathcal{J} -self-adjointness $H^* = \mathcal{J}H\mathcal{J}$ with \mathcal{J} conjugation (involutive and $\langle \mathcal{J}\phi, \mathcal{J}\psi \rangle = \langle \psi, \phi \rangle$) e.g. $\mathcal{J} := \mathcal{T}$ after noticing $\mathcal{T}H\mathcal{T} = \mathcal{P}H\mathcal{P} = H^*$ [Borisov, D.K. 2007]

to understand $\mathfrak{PT}H\mathfrak{PT} = H$ in a more general setting than:

• $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$ • $(\mathcal{P}\psi)(x) := \psi(-x), \quad (\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a \mathcal{PT} -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$) e.g. S := PT

2. self-adjointness in Krein spaces H is self-adjoint in an *indefinite* inner product space e.g. $[\cdot, \cdot] := \langle \cdot, \mathcal{P} \cdot \rangle$ after noticing $\mathcal{P}H\mathcal{P} = \mathcal{T}H\mathcal{T} = H^*$ [Langer, Tretter 2004]

3. \mathcal{J} -self-adjointness $H^* = \mathcal{J}H\mathcal{J}$ with \mathcal{J} conjugation (involutive and $\langle \mathcal{J}\phi, \mathcal{J}\psi \rangle = \langle \psi, \phi \rangle$) e.g. $\mathcal{J} := \mathcal{T}$ after noticing $\mathcal{T}H\mathcal{T} = \mathcal{P}H\mathcal{P} = H^*$ [Borisov, D.K. 2007]

Remark. In general (in ∞ -dimensional spaces), all the classes of operators are unrelated. [Siegl 2008]

¿ Physical relevance ?

¿ Physical relevance ?

suggestions:

- nuclear physics [Scholtz, Geyer, Hahne 1992]
- optics [Klaiman, Günther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
- solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
- superconductivity [Rubinstein, Sternberg, Ma 2007]
- electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009]

experiments:

• optics [Guo et al. 2009], [Longhi 2009], [Rüter et al. 2010]

¿ Physical relevance ?

suggestions:

- nuclear physics [Scholtz, Geyer, Hahne 1992]
- optics [Klaiman, Günther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
- solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
- superconductivity [Rubinstein, Sternberg, Ma 2007]
- electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009]

experiments:

• optics [Guo et al. 2009], [Longhi 2009], [Rüter et al. 2010]

i but !

"So far, there have been no experiments that prove clearly and definitively that quantum systems defined by non-Hermitian PT-symmetric Hamiltonians do exist in nature." [Bender 2007]

[D.K., Bíla, Znojil 2006]

[D.K., Bíla, Znojil 2006]

$$\begin{aligned} \mathcal{H} &:= L^2(0,\pi), \quad H_{\alpha}\psi := -\psi'', \quad D(H_{\alpha}) := \left\{ \psi \in W^{2,2}(0,\pi) \middle| \begin{array}{l} \psi'(0) + i\alpha\psi(0) = 0\\ \psi'(\pi) + i\alpha\psi(\pi) = 0 \end{array} \right\} \\ \alpha \in \mathbb{R} \\ \frac{d\psi}{dn} - i\alpha\psi = 0 \end{aligned}$$

Theorem 1. H_{α} is an *m*-sectorial operator with compact resolvent satisfying

$$H^*_{\alpha} = H_{-\alpha} = \Im H_{\alpha} \Im$$

(T-self-adjointness)

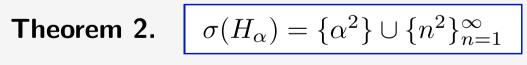
[D.K., Bíla, Znojil 2006]

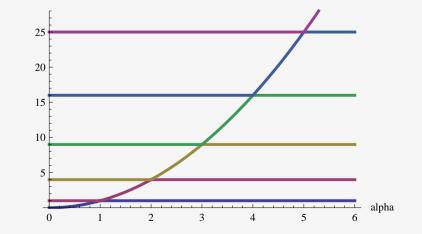
$$\begin{aligned} \mathcal{H} &:= L^2(0,\pi), \quad H_{\alpha}\psi := -\psi'', \quad D(H_{\alpha}) := \left\{ \psi \in W^{2,2}(0,\pi) \middle| \begin{array}{l} \psi'(0) + i\alpha\psi(0) = 0\\ \psi'(\pi) + i\alpha\psi(\pi) = 0 \end{array} \right\} \\ \alpha \in \mathbb{R} \\ \frac{d\psi}{dn} - i\alpha\psi = 0 \end{aligned}$$

Theorem 1. H_{α} is an *m*-sectorial operator with compact resolvent satisfying

$$H^*_{\alpha} = H_{-\alpha} = \Im H_{\alpha} \Im$$

(T-self-adjointness)



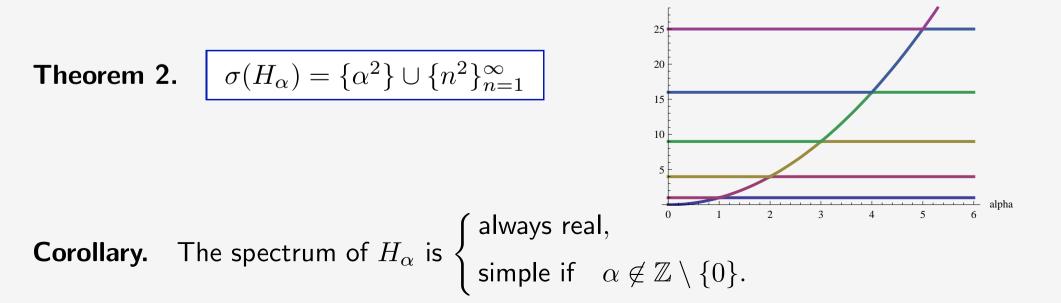


[D.K., Bíla, Znojil 2006]

Theorem 1. H_{α} is an *m*-sectorial operator with compact resolvent satisfying

$$H^*_{\alpha} = H_{-\alpha} = \Im H_{\alpha} \Im$$

(T-self-adjointness)



The metric operator

[D.K. 2007], [D.K., Siegl, Železný 2010]

Theorem 3. Let $\alpha \in (-1, 1)$.

Then H_{α} is similar to a self-adjoint operator $\tilde{H}_{\alpha} := \Theta_{\alpha}^{1/2} H_{\alpha} \Theta_{\alpha}^{-1/2}$ with

$$\Theta_{\alpha} := I + K_{\alpha}$$

 $K_{\alpha}(x,x') := \alpha e^{i\alpha(x-x')} \left[\tan(\pi\alpha/2) + i \cos(\pi\alpha/2) \operatorname{sgn}(x-x') \right]$

The metric operator

[D.K. 2007], [D.K., Siegl, Železný 2010]

Theorem 3. Let $\alpha \in (-1, 1)$.

Then H_{α} is similar to a self-adjoint operator $\tilde{H}_{\alpha} := \Theta_{\alpha}^{1/2} H_{\alpha} \Theta_{\alpha}^{-1/2}$ with

$$\Theta_{\alpha} := I + K_{\alpha}$$

$$K_{\alpha}(x,x') := \alpha e^{i\alpha(x-x')} \left[\tan(\pi\alpha/2) + i \cos(\pi\alpha/2) \operatorname{sgn}(x-x') \right]$$

Remark. As $\alpha \to 0$, $\tilde{H}_{\alpha} = T_{\alpha} + \mathcal{O}(\alpha^3)$ with

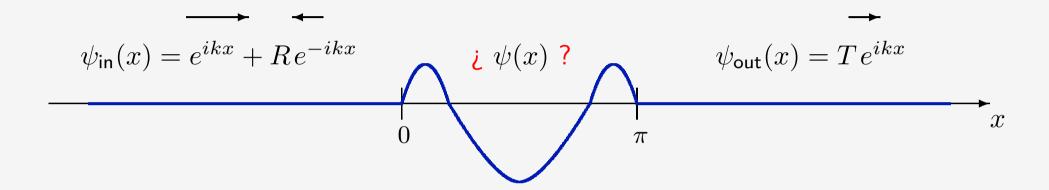
 $(T_{\alpha}\psi)(x) := -\psi''(x) - \alpha^2 \,\psi(x) + \frac{1}{4} \,\alpha^2 \left[\psi(0) + \psi(\pi)\right]$

$$D(T_{\alpha}) := \left\{ \psi \in W^{2,2}(0,\pi) \left| \psi'(0) = -\psi'(\pi) = \frac{1}{4} \alpha^2 \int_0^{\pi} \psi(x) \, dx \right\} \right\}$$

The physical realisation

[Hernandez-Coronado, D.K., Siegl 2010]

scattering by a compactly supported *even* potential V: $-\psi'' + V\psi = k^2\psi$ k > 0



The physical realisation

[Hernandez-Coronado, D.K., Siegl 2010]

scattering by a compactly supported even potential V: $-\psi'' + V\psi = k^2\psi$ k > 0

$$\psi_{in}(x) = e^{ikx} + Re^{-ikx}$$

$$\psi_{out}(x) = Te^{ikx}$$

The physical realisation

[Hernandez-Coronado, D.K., Siegl 2010]

scattering by a compactly supported *even* potential V: $-\psi'' + V\psi = k^2\psi$ k > 0

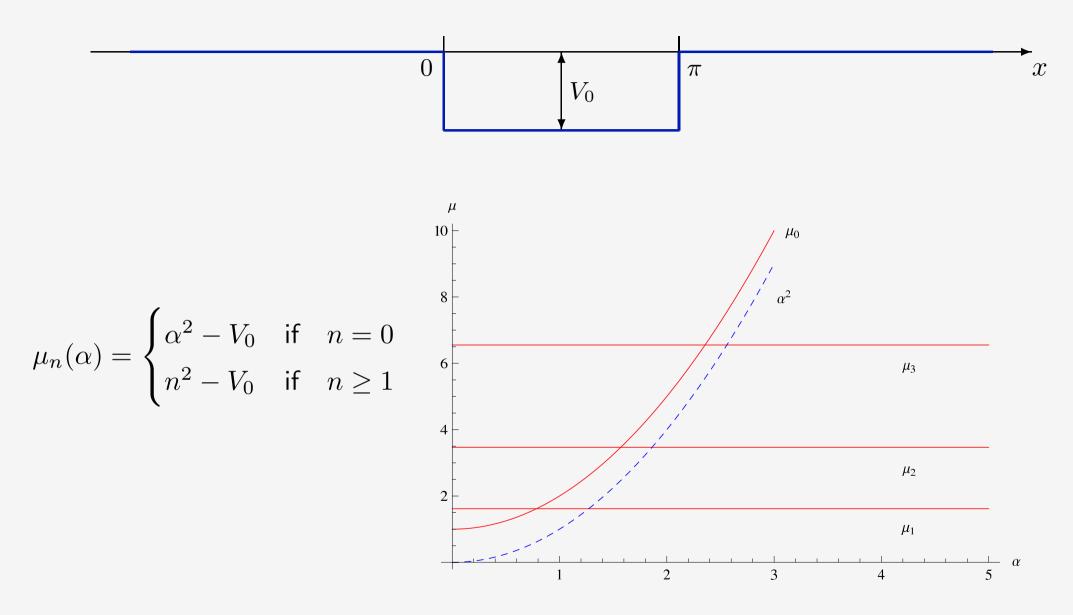
$$\psi_{in}(x) = e^{ikx} + Re^{-ikx}$$

$$\psi_{out}(x) = Te^{ikx}$$

solutions given by a non-self-adjoint PT-symmetric spectral problem:

$$\begin{cases} -\psi'' + V\psi = \mu(\alpha)\psi & \text{in } (0,\pi) \\ \psi' + i\alpha\psi = 0 & \text{at } 0,\pi \\ \mu(\alpha) = \alpha^2 \end{cases}$$

Square-well potential

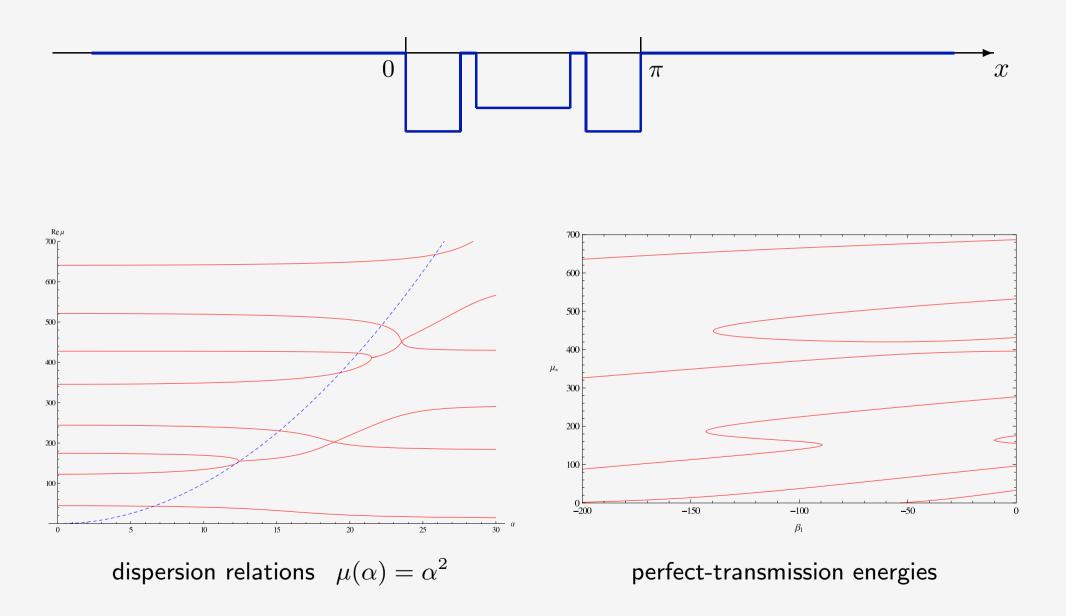


perfect transmission energies: $\left\{n^2 - V_0\right\}_{n=1}^{\infty}$

¿ Significance of complex spectra ?

¿ Significance of complex spectra ?

i loss of perfect transmission energies !



The inverse problem

scattering data \longrightarrow spectrum

The inverse problem

scattering data \longrightarrow spectrum

initial PTE problem

$$egin{aligned} & -\psi'' + V\psi = \mu(lpha)\,\psi & \mbox{in} & (0,\pi) \ & \psi' + ilpha\,\psi = 0 & \mbox{at} & 0,\pi \ & \ & \mu(lpha) = lpha^2 \end{aligned}$$

shifted scatterer

modified initial problem

$$\begin{cases} -\psi'' + (V+V_0)\psi = \mu_0(\alpha)\psi & \text{in } (0,\pi) \\ \psi' + i\alpha\psi = 0 & \text{at } 0,\pi \iff \begin{cases} -\psi'' + V\psi = \mu(\alpha)\psi & \text{in } (0,\pi) \\ \psi' + i\alpha\psi = 0 & \text{at } 0,\pi \\ \mu(\alpha) = \alpha^2 & \mu(\alpha) = \alpha^2 - V_0 \end{cases}$$

Consequently:

$$V_0 \mapsto \mathsf{PTEs}(V_0) \implies \alpha \mapsto \mu(\alpha)$$

(provided that $V_0 \mapsto \mathsf{PTEs}(V_0)$ are invertible)

Conclusions

- Ad **PT-symmetry**:
- \rightarrow no extension of QM
- \rightarrow rather an alternative (pseudo-Hermitian) representation
- \rightarrow overlooked for over 70 years
- j some rigorous treatments still missing !

Conclusions

Ad **PT-symmetry**:

- \rightarrow no extension of QM
- \rightarrow rather an alternative (pseudo-Hermitian) representation
- \rightarrow overlooked for over 70 years
- i some rigorous treatments still missing !

Ad our model:

 \rightarrow shamefully simple

- \rightarrow rigorous treatment
- j physical relevance !

Conclusions

Ad **PT-symmetry**:

- \rightarrow no extension of QM
- \rightarrow rather an alternative (pseudo-Hermitian) representation
- \rightarrow overlooked for over 70 years
- i some rigorous treatments still missing !

Ad our model:

ightarrow shamefully simple

- \rightarrow closed fomulae for the spectrum, metric operator, self-adjoint counterpart, etc.
- \rightarrow rigorous treatment
- j physical relevance !

Generalisations:

- ightarrow higher-dimensional models with both the point and continuous spectra
- $\rightarrow\,$ curvature-induced effects

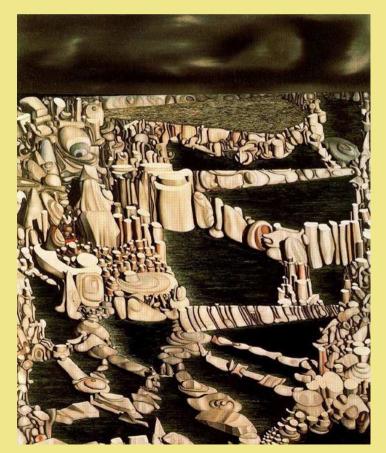
i many open problems ! (spectral theory of non-self-adjoint operators is "in its infancy")

ESF exploratory workshop on

Mathematical aspects of the physics with non-self-adjoint operators

30 August - 3 September 2010 Prague, Czech Republic

http://www.ujf.cas.cz/ESFxNSA/



Imaginary numbers 1954 by Y. Tanguy

Studying non-self-adjoint operators is like being a vet rather than a doctor: one has to acquire a much wider range of knowledge, and to accept that one cannot expect to have as high a rate of success when confronted with particular cases.

E. B. Davies 2007

My PT-symmetric life

http://gemma.ujf.cas.cz/~david/

• D.K., H. Bíla and M. Znojil: "Closed formula for the metric in the Hilbert space of a \mathcal{PT} -symmetric model"; J. Phys. A 39 (2006), pp. 10143-10153.

• D.K.: "Calculation of the metric in the Hilbert space of a \mathcal{PT} -symmetric model via the spectral theorem"; J. Phys. A: Math. Theor. 41 (2008) 244012.

• D. Borisov and D.K.: " \mathcal{PT} -symmetric waveguides"; Integral Equations Operator Theory 62 (2008), no. 4, 489-515.

• D.K. and M. Tater: "Non-Hermitian spectral effects in a \mathcal{PT} -symmetric waveguide"; J. Phys. A: Math. Theor. 41 (2008) 244013.

• D.K. and P. Siegl: " $\mathcal{P}\mathcal{T}$ -symmetric models in curved manifolds"; J. Phys. A: Math. Theor. 43 (2010) 485204.

• H. Hernandez-Coronado, D.K. and P. Siegl: "Perfect transmission scattering as a \mathcal{PT} -symmetric spectral problem"; submitted (2010).

• D.K., P. Siegl and J. Železný: "Non-Hermitian PT-symmetric Sturm-Liouville operators and to them similar Hamiltonians"; under preparation.