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iU(t) = HU(t)
Example 1. evolution operator U(t) = exp(—itH):

U0) =1

Example 2. resolvent operator R(z) = (H —2)"!, 2¢€C

Theorem (spectral theorem).
Let H = H*. Then

F(H) = / o T By

for any complex-valued continuous function f.
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Example 1. complex scaling Hy := Sp(—A+V)S; ', (Sep)(z) := e?/2 (%)
0 =0 360 >0

BN

[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...
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Example 2. adiabatic transition probability for H(t) :=4(t/7) -8, 7T — o0
[Berry 1990], [Joye, Kunz, Pfister 1991], [Jaksi¢, Segert 1993], ...

+1, xr € Q_|_

Example 3. cloaking effects in metamaterials H, := -V -a,V, a,(z) := {
N — | —1+1in, z€Q_

[Pendry 2004], [Milton, Nicorovici 2006], [Bouchitté, Schweizer 2009], ...



Approximate non-Hermiticity
open systems

Example 1. radioactive decay

Beta particle

8

-
J 'y
- B
Alnha patticle “J

Gamma radiation

Example 2. dissipative Schrodinger operators in semiconductor physics

Baro, Behrndt, Kaiser, Neidhardt, Rehberg, ...

Example 3. repeated interaction quantum systems

Bruneau, Joye, Merkli, Pillet, ...
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I.e. non-Hermitian observables,
without violating “physical axioms” of QM

Theorem (Stone’s theorem).
Unitary groups on a Hilbert space are generated by self-adjoint operators.

i yes ?

by changing the Hilbert space



Non-Hermitian Hamiltonians with real spectra
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[Bender, Boettcher 1998]
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f [Shin 2002]
| [Azizov, Kuzhel, Giinther, Trunk 2010]

Energy

V(z) = 22 (iz)°

[Znojil 2001]
oo elsewhere

vsgn(x) if x € (—L,
V(x):{ gn(x) € (—L,L)

i What is behind the reality of the spectrum ?



PT - symmetry
[H,PT] =0

(P) () = 9(~2)
(TY)(2) = 9@




PT - symmetry
[H,PT] =0

(P6) () = ()
(T9)(2) = ()
“We have in mind H = —A +V on L*(R?) with V(—x) = V(z).5#

PT is an antilinear symmetry = in generalonly: A€ o(H) & )\ € o(H)



PT - symmetry
[H,PT] =0

(PU)(2) = ¥(~2)
(TY) (@) := ()
#We have in mind H = —A +V on L*(R?) with V(—z) = V(z).

PT is an antilinear symmetry = in generalonly: A€ o(H) & )\ € o(H)

unbroken PT-symmetry :< H and PTJ have the same eigenstates < o(H) C R
Here we assume that H has purely discrete spectrum.



PT - symmetry
[H,PT] =0

(P6) () = ()
(T) () := ()
*We have in mind H=—A +V on L*(R%) with V(—z) = V(aj).*"’

PT is an antilinear symmetry = in generalonly: M€ o(H) & Aco(H) *

unbroken PT-symmetry :< H and PTJ have the same eigenstates < o(H) C R
Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Let Hy := —A + Vj be self-adjoint, with purely discrete and simple spectrum.
Let V' be bounded and PT-symmetric. Define H. := Hy + V.

—> o(H.) is dicrete and simple — o(H:)N'J CR  for every bounded J and small ¢



PT - symmetry
[H,PT] =0

(P6) () = ()
(T) () := ()
*We have in mind H=—A+V on L*(R%) with V(—z) =V (z).*

PT is an antilinear symmetry = in generalonly: M€ o(H) & Aco(H) *

unbroken PT-symmetry :< H and PT have the same eigenstates < o(H) C R
Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Let Hy := —A + Vj be self-adjoint, with purely discrete and simple spectrum.
Let V' be bounded and PT-symmetric. Define H. := Hy + V.

—> o(H.) is dicrete and simple — o(H:)N'J CR  for every bounded J and small ¢

Moreover, let the eigenstates of H. form a Riesz basis. H, = E n, H ¢ = Encn
—> H*=0OHO™ ! where |©:=>" ¢,(¢n,")| is self-adjoint, bounded and positive

—> H is Hermitian in <L2,<~,@~>), ie. ©Y2HO /2 is Hermitian in (L2,(-,->)




PT - symmetry
[H,PT] =0

P0)(@) = V(=)
(T) () := ()
We have in mind H = —A+V on L?>(R%) with V(—z) = V(x).¥

PT is an antilinear symmetry = in generalonly: M€ o(H) & Aco(H) *

unbroken PT-symmetry :< H and PT have the same eigenstates < o(H) C R
Here we assume that H has purely discrete spectrum.
perturbation-theory insight

Let Hy := —A + Vj be self-adjoint, with purely discrete and simple spectrum.
Let V' be bounded and PT-symmetric. Define H. := Hy + V.

—> o(H.) is dicrete and simple — o(H:)N'J CR  for every bounded J and small ¢

Moreover, let the eigenstates of H. form a Riesz basis. H,, = E ¢n, H ¢n = Encn
—> H*=0OHO™ ! where |©:=>" ¢,(¢n,")| is self-adjoint, bounded and positive

—> H is Hermitian in (L2,<~,@~>), ie. ©Y2HO /2 is Hermitian in (L2,(-,->)

Albeverio-Fei-Kurasov, Bender-Boettcher, Caliceti-Graffi-Sjostrand, Boulton-Levitin-Marletta,
Kretschmer-Szymanowski, Fring, Langer-Tretter, Mostafazadeh, Scholtz-Geyer-Hahne, Znojil, ...
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Mathematical frameworks

to understand | PT H PT = H |in a more general setting than:
e H=—-A+Von L?RY%) with V(—z)=V(x)

o (Py)(x) :=9(—x), (TY)(z):= ()

Remark. In general, a PT-symmetric operator is not similar
to a self-adjoint, normal or spectral operator.

1. antilinear symmetry |[H,8] =0 with 8 antiunitary (bijective and (8¢, 8v¢) = (1, ¢))
eg. &:=PT

2. self-adjointness in Krein spaces H is self-adjoint in an indefinite inner product space

e.g. |, :=(,P) after noticing PHP =THT = H" [Langer, Tretter 2004]

3. J-self-adjointness H* = JHJ with J conjugation (involutive and (J¢, Jv) = (1, $))
e.g. J:= T after noticing THT = PHP = H" [Borisov, D.K. 2007]

Remark. In general (in co-dimensional spaces), all the classes of operators are unrelated.
[Siegl 2008]
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i Physical relevance ?

suggestions:
e nuclear physics [Scholtz, Geyer, Hahne 1992]
e optics [Klaiman, Giinther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
e solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
e superconductivity [Rubinstein, Sternberg, Ma 2007]
e electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009]

experiments:
e optics [Guo et al. 2009], [Longhi 2009], [Ruter et al. 2010]

i but !

“So far, there have been no experiments that prove clearly and definitively that quantum
systems defined by non-Hermitian PT-symmetric Hamiltonians do exist in nature.”
[Bender 2007]
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¥'(0) + iagp(0) =
H:= L?0,7), Huy:=—", D(H,) =< ¥ eW>»2(0,r)
' (m) +dop(m) =
—A
[ i
& d
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The simplest PJ - symmetric model

[D.K., Bila, Znojil 2006]

H:= L?0,7), Huy:=—", D(H,) =< ¥ eW>»2(0,r)
—A
O 0
o &
%——zaw—() %4—@0@—0
Theorem 1.

Theorem 2.

Corollary. The spectrum of H, is {

Y (0) + iarp(0) = 0
() +iagp(m) = 0

H,, is an m-sectorial operator with compact resolvent satisfying

H*=H_,=TH,T

o(Ha) = {a’} U{n?}72,

always real,

(T-self-adjointness)

/

25x

20F

15}

10F

simple if o ¢ Z\ {0}.

aceR



The metric operator
[D.K. 2007], [D.K., Siegl, Zelezny 2010]

Theorem 3. Let a € (—1,1).
Then H, is similar to a self-adjoint operator H, = @(1)/2 H, @;1/2 with

O, =1+ K,

Ko(z,2') ==« gia(z—a’) [tan(wa/Z) + ¢ cos(ma/2) sgn(x — x’)}




The metric operator
[D.K. 2007], [D.K., Siegl, Zelezny 2010]

Theorem 3. Let a € (—1,1).
Then H, is similar to a self-adjoint operator H, = @(1)/2 H, @;1/2 with

O, =1+ K,

Ko(z,2') ==« gia(z—a’) [tan(wa/Z) + ¢ cos(ma/2) sgn(x — x’)}

~

Remark. As a — 0, H, =T, + O(a?) with
(Ta)(z) == —¢/"(2) — 0? (z) + 1 02 [(0) + ()
D(To) = {$ € W22(0,m)| /(0) = —¢/(m) = } o [J w(z) do |



The physical realisation
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The physical realisation
[Hernandez-Coronado, D.K., Siegl 2010]

scattering by a compactly supported even potential V: —¢" + Vip = k%t
Yin(x) = F% 4 Re k= i Y(z)? Wour () = T eik=

/\ /N

k>0

'o\/lr

{ " +Vy =k in (0,7)

perfect transmission — /
v —iky =0 at O, 7

(i.,e. R=0)

solutions given by a non-self-adjoint PT-symmetric spectral problem:

(=" + VY =pla)y in (0,7)
W'+ i) = 0 at 0,7

_/\

\ pla) = o

Y



Square-well potential

10 -

a?—Vy if n=0

pin () = E /
n?—Vy if n>1 6 /

M3

M2

M

. . . 0.
perfect transmission energies: {n2 — Vo}n—l

Y
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i loss of perfect transmission energies !
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dispersion relations u(a) = « perfect-transmission energies
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The inverse problem

scattering data —— spectrum

initial PTE problem

(" + V= (@) in (0,7)
{ Y +iayp =0 at 0,7
\ pla) = o
shifted scatterer modified initial problem
(=" + (V + Vo) = po(a)yp in (0, ) (=" + VY =p(a)y in (0,m)
Y 4o =0 at 0,1 = { Y +iayp=0 at 0,7
\ pla) = o \ p(a) = o =V

Consequently:
Vo= PTEs(Vy) — aw pula)

(provided that V) — PTEs(Vp) are invertible)
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Conclusions
Ad PT-symmetry :

— no extension of QM
— rather an alternative (pseudo-Hermitian) representation
— overlooked for over 70 years

i some rigorous treatments still missing !

Ad our model:

— shamefully simple
— closed fomulae for the spectrum, metric operator, self-adjoint counterpart, etc.
— rigorous treatment

i physical relevance !

Generalisations:

— higher-dimensional models with both the point and continuous spectra
— curvature-induced effects

i many open problems ! (<= spectral theory of non-self-adjoint operators is “in its infancy”)



ESF exploratory workshop on

Mathematical aspects of the physics with
non-self-adjoint operators

30 August - 3 September 2010
Prague, Czech Republic

http://www.ujf.cas.cz/ESFxNSA/

Studying non-self-adjoint

operators is like being a

‘ : vet rather than a doctor:
JUNDIHTIC

SETTING SCIENCE AGENDAS FOR EUROPE

one has to acquire a much

wider range of knowledge,
and to accept that one
cannot expect to have as

high a rate of success

Fetl
' SL

4 2 LT .- \\\\.\,\\3"3“'\“\,1

when confronted with

particular cases.

E. B. Davies 2007

Imaginary numbers 1954 by Y. Tanguy



My PT-symmetric life

http: //gemma.ujf.cas.cz/ david/
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