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Classical problem in geophysics: Travel time estimation (for background velocity

estimation).

• Method 1: Use of earthquake signals.

• Method 2: Use of seismic noise and cross correlation techniques in order to estimate

the Green’s function.
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Travel time estimation by cross correlation

• Ambient noise sources (◦) emit stationary random signals.

• The waves propagate in the (inhomogeneous) medium.

• The signals u(t,x1) and u(t,x2) are recorded at two sensors x1 and x2.
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• What information (about the medium) can possibly be in these signals ?
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• Compute the empirical cross correlation:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

• CT (τ,x1,x2) is related to the Green’s function from x1 to x2 !

• The singular component of the Green’s function from x1 to x2 gives the travel time

from x1 to x2.
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Estimations of travel times between pairs of sensors

Surface (Rayleigh) waves [from Shapiro, Campillo, et al, Science 307 (2005), 1615]
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Background velocity estimation from travel time estimations

[from Shapiro, Campillo, et al, Science 307 (2005), 1615]
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Wave equation

1

c2(x)

∂2u

∂t2
−∆xu = n(t,x), x ∈ R

d

+ radiation condition.

• Sources n(t,x): Gaussian process, with mean zero, with covariance

〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)Γ(y1,y2)

• Stationary in time:
(

n(t,y)
)

t,y
et

(

n(t+ h,y)
)

t,y
have the same statistical

distribution for any h =⇒ the time correlation function F depends only on t2 − t1.

• The spatial distribution of the sources is characterized by Γ(y1,y2). To simplify:

Γ(y1,y2) = Γ0(y1)δ(y1 − y2)

The function Γ0 characterizes the spatial support of the sources.
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Empirical cross correlation and statistical cross correlation

Empirical cross correlation:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

with u(t,x) =
∫∫

G(s,x,y)n(t− s,y)dsdy and G = causal time-dependent Green’s

function.

1. The expectation of CT (with respect to the distribution of the sources) is

independent of the integration time T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2)

where the statistical cross correlation C(1) is given by

C(1)(τ,x1,x2) =
1

2π

∫

dy

∫

dωĜ(ω,x1,y)Ĝ(ω,x2,y)Γ0(y)F̂ (ω)e−iωτ

GDR Dynamique Quantique February 3, 2011



Empirical cross correlation and statistical cross correlation

Empirical cross correlation:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

with u(t,x) =
∫∫
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independent of the integration time T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2)

where the statistical cross correlation C(1) is given by

C(1)(τ,x1,x2) =
1

2π

∫

dy

∫

dωĜ(ω,x1,y)Ĝ(ω,x2,y)Γ0(y)F̂ (ω)e−iωτ

2. The empirical cross correlation is a self-averaging quantity:

CT (τ,x1,x2)
T→∞
−→ C(1)(τ,x1,x2)

in probability.

More precisely, the fluctuations of CT around its expectation C(1) are of order T−1/2.
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The ideal situation

Cross correlation with noise sources distributed on a closed surface ∂B(0, L):

C(1)(τ,x1,x2) =
1

2π

∫

dω

∫

∂B(0,L)

dS(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)F̂ (ω)e−iωτ
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Helmholtz-Kirchhoff theorem:

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) =
2iω

ce

∫

∂B(0,L)

dS(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)

GDR Dynamique Quantique February 3, 2011



The ideal situation

Cross correlation with noise sources distributed on a closed surface ∂B(0, L):

C(1)(τ,x1,x2) =
1

2π

∫

dω

∫

∂B(0,L)

dS(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)F̂ (ω)e−iωτ

x
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B(0,D)

B(0,L)

Helmholtz-Kirchhoff theorem:

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) =
2iω

ce

∫

∂B(0,L)

dS(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)

If 1) the medium is homogeneous outside B(0,D),

2) the sources are distributed uniformly on the sphere ∂B(0, L), with L≫ D.

Then for any x1,x2 ∈ B(0,D) we have (up to a multiplicative constant):

∂

∂τ
C(1)(τ,x1,x2) = F ∗τ [G(τ,x1,x2)−G(−τ,x1,x2)]
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Ideal situation:
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What about situations such as:

x
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x
2

x
1

x
2

?
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x
1

x
2

x
1

x
2

Singular component at T (x1,x2) No singular component

High-frequency analysis (geometric optics regime): The cross correlation

C(1)(τ,x1,x2) has singular components iff the ray joining x1 and x2 reaches into the

source region (i.e. the support of Γ0). Then there are one or two singular components

at τ = ±T (x1,x2) (travel time from x1 to x2).

[More exactly:

the rays y → x1 → x2 contribute to the singular component at τ = T (x1,x2),

the rays y → x2 → x1 contribute to the singular component at τ = −T (x1,x2).]
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Sketch of proof: WKB approximation + stationary phase analysis

Time correlation function of the sources F ε(t) = F ( t
ε
) =⇒ F̂ ε(ω) = εF̂ (εω).

C(1)(τ,x1,x2) =
1

2π

∫

dy

∫

dω Ĝ(ω,x1,y)Ĝ(ω,x2,y)Γ0(y)εF̂ (εω)e−iωτ

ω→
ω
ε=

1

2π

∫

dy

∫

dω Ĝ
(ω

ε
,x1,y

)

Ĝ
(ω

ε
,x2,y

)

Γ0(y)F̂ (ω)e−iω
ε
τ

WKB approximation for Ĝ
(

ω
ε
,x,y

)

∼ a(x,y)ei
ω
ε
T (x,y):

C(1)(τ,x1,x2) =
1

2π

∫

dy

∫

dω a(x1,y)a(x2,y)Γ0(y)F̂ (ω)ei
ω
ε
T (y)

with the rapid phase

ωT (y) = ω[T (x2,y)− T (x1,y)− τ ]

Use of the stationary phase theorem. The dominant contribution comes from the

stationary points (ω,y) satisfying:

∇y

(

ωT (y)
)

= 0 , ∂ω
(

ωT (y)
)

= 0

→֒ two conditions:

∇yT (y,x2) = ∇yT (y,x1) , T (x2,y)− T (x1,y) = τ
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a) Favorable configuration b) C(1)(τ,x1,xj)
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c) Unfavorable configuration d) C(1)(τ,x1,xj)
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• Here, the cross correlation method does not allow for travel time estimation,

because there is not enough “directional diversity”.
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• Here, the cross correlation method does not allow for travel time estimation,

because there is not enough “directional diversity”.

• Idea (first suggested by M. Campillo [1]): exploit the scattering properties of the

medium in order to enhance the “directional diversity”.

[1] M. Campillo and L. Stehly, Eos Trans. AGU 88(52) (2007), Fall Meet. Suppl., Abstract S51D-07.
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Configurations in which wave fields have directional diversity:

An ergodic cavity (left figure) and a randomly inhomogeneous medium (right figure).
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The wave equation in an ergodic cavity

( 1

Ta
+

∂

∂t

)2

u−∇x ·
[

c2(x)∇x

]

u = n(t,x), x in Ω, u(x) = 0, x ∈ ∂Ω

• Ω is a bounded open set Ω ⊂ R
d.

• c(x) is smooth.

• Ta is the attenuation time.

• n(t,x): noisy sources.

It is a zero-mean stationary (in time) Gaussian process with autocorrelation function

〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)Γ
(

y1 + y2

2
,y2 − y1

)

The function x 7→ Γ(x, 0) models the spatial support of the sources.

The function z 7→ Γ(x,z) is the local spatial autocorrelation function.

Example: Γ(x, z) = δ(z) would mean “sources everywhere, delta-correlated in space”.
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• Covariance of the noise:

〈n(t1,y1)n(t2,y2)〉 = F ε(t2 − t1)Γ
ε(y1,y2)

Time covariance:

F ε(t2 − t1) = F
( t2 − t1

ε

)

Spatial covariance:

Γε(x,y) = Γ
(

x+ y

2
,
x− y

ε

)

The spatial correlation radius of the noise sources is of the same order as the

decoherence time (ε)

→֒ time and space noise correlations contribute to the Green’s function estimation at

the same order of magnitude.
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• The covariance operator Θε : L2(Ω) → L2(Ω) defined by

Θεψ(x) =

∫

Γε(x,y)ψ(y)dy

is a zero-order pseudodifferential operator with symbol Γ̂(x, ξ)

Θε = Opε[Γ̂(x, ξ)
]

,

where the Fourier transform Γ̂(x, ξ) of the function z 7→ Γ(x,z) is

Γ̂(x, ξ) =

∫

Γ(x,z)e−iξ·zdz ,

and we have used the Weyl quantization Opε defined by

Opε[Γ̂(x, ξ)
]

ψ(x) =
1

(2π)d

∫∫

Γ̂
(

x+ y

2
, ξ

)

e
i
ε
ξ·(x−y)ψ(y)dydξ
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It is possible to reconstruct the singular components of the Green’s function in the

ergodic case, up to a smoothing operator that depends on Γε and F ε.

There are two ingredients in the proof:

1) Approximation of full wave propagation by classical ray dynamics (Egorov

theorem): the singular (high-frequency) components propagate along the rays (Xt, ξt)

of geometric optics (Hamiltonian flow h(x, ξ) = c(x)|ξ|) defined by

dXt

dt
= c(Xt)

ξt

|ξt|
, X0(x, ξ) = x ,

dξt

dt
= −∇c(Xt)|ξt| , ξ0(x, ξ) = ξ ,

and with specular reflection at the boundary ∂Ω.

2) Ergodicity of the ray dynamics in the cavity Ω: starting from almost any point x

and almost any direction ξ, the ray (Xt, ξt) visits all the energy surface.

For any f ∈ L∞(S∗(Ω)) and for (x, ξ) in a subset of full measure of S∗(Ω),

lim
t→∞

1

t

∫ t

0

f
(

Xs(x, ξ), ξs(x, ξ)
)

ds = f̄ :=
1

µ(S∗(Ω))

∫

S∗(Ω)

f(m)dµ(m).

where S∗(Ω) is the cotangent spherical bundle (energy surface)

S∗(Ω) = {(x, ξ) ∈ T ∗Ω , c(x)|ξ| = 1}
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Main result [1]: If c ∈W 4,∞(Ω), Γ̂ is smooth, bounded, and integrable, then

∂τC
(1)(τ,x,y) is the kernel of the operator

e
−

τ
Ta Kε

ΓF
ε
F [G(τ)−G(−τ)] +Rε(τ) +RTa(τ) ,

for any τ > 0, where

• G(τ) is the Green’s function operator with kernel G(τ,x,y),

• Fε
F is the convolution operator in τ (due to the time correlations of the sources):

Fε
FG(τ) =

∫

F ε(s)G(τ − s)ds

• Kε
Γ is the smoothing operator (due to the spatial correlations of the sources):

Kε
Γ = Opε

[

k̂Γ
(

c(x)ξ
)

]

, k̂Γ(ξ̃) =

∫

Ω
dzc(z)−d

∫

∂B(0,1)
dS(η)Γ̂

(

z, |ξ̃| η

c(z)

)

∫

Ω
dzc(z)−d

∫

∂B(0,1)
dS(η)

[1] C. Bardos, J. Garnier, and G. Papanicolaou, Inverse Problems 24, 015011 (2008).
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• the remainder Rε(τ) is determined by the error in the semiclassical approximation

and it is small if ε is small (Egorov theorem).

• the remainder RTa(τ) is determined by the rate of convergence of the ergodic

theorem for the function Γ̂ of the classical Hamiltonian flow.

If Terg is the characteristic convergence time of 1
t

∫ t

0
Γ̂(Xs, ξs)ds to its ergodic limit

k̂Γ(c(x)ξ), then RTa(τ) is small if Ta ≫ Terg.

[1] C. Bardos, J. Garnier, and G. Papanicolaou, Inverse Problems 24, 015011 (2008).



The wave equation in a randomly scattering medium:

the radiative transport regime

1

cε(x)2
∂2uε

∂t2
−∆uε = nε(t,x), x ∈ R

3

• The velocity in the medium cε(x) is of the form

1

cε(x)2
=

1

c20(x)
[1 + νε(x)]

The slowly varying background velocity c0(x) is smooth and bounded.

The rapid random fluctuations of the medium are described by the process νε(x) with

mean zero and covariance

E
[

νε(x1)ν
ε(x2)

]

= εR
(x1 + x2

2
,
x2 − x1

ε

)

(locally stationary random medium with small fluctuations with amplitude ∼ ε1/2

and correlation length ∼ ε).

• The noise sources nε(t,x) have mean zero and covariance

〈

nε(t1,y1)n
ε(t2,y2)

〉

= F
( t2 − t1

ε

)

Γ
(y1 + y2

2
,
y2 − y1

ε

)
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• Consider the Radiative Transport Equation [1]:

∂W

∂t
+∇κω · ∇xW −∇xω · ∇κW =

∫

σ(x,κ,κ′)
(

W (t,x,κ′)−W (t,x,κ)
)

dκ′

with the initial condition

W (t = 0,x,κ) =
1

2
Γ̂(x,κ)c20(x)

the dispersion relation

ω(x,κ) = c0(x)|κ|

and the scattering cross section

σ(x,κ,κ′) =
πc20(x)|κ|

2

2(2π)3
R̂(x,κ− κ

′)δ
(

c0(x)|κ| − c0(x)|κ
′|
)

→֒ Amplitude factor (energy density illuminating x):

A(x,κ) =

∫

∞

0

W (t,x,κ)dt

[1] L. Ryzhik, J. Keller, and G. Papanicolaou, Wave Motion 24, 327 (1996).



• Diffusive regime.

Diffusion-approximation: When the distance L between the sources and the

observation area around x is much larger than the transport mean free path

(determined by R̂), then the amplitude factor A(x,κ) becomes independent of the

direction κ/|κ|:

A(x,κ) = A(x, |κ|)

We then have [1]

1

ε

∂

∂τ
C(1)(ετ,x−

εy

2
,x+

εy

2

)

ε→0
−→

∫∫

F (τ − τ ′)Kx(y − y
′)
[

Gc0(x)(τ
′,y′)−Gc0(x)(−τ

′,y′)
]

dy′dτ ′

where

Gc0(τ,y) =
1

4π|y|
δ
(

τ −
|y|

c0

)

and

Kx(y) =
1

2π2

∫

∞

0

A(x, k)sinc(k|y|)k2dk

→֒ smoothing due to the time and space correlations of the sources.

Note: estimation of the Green’s function only between two nearby points.

[1] J. Garnier and K. Sølna, to appear in Commun. Math. Sciences February 3, 2011



The wave equation in a randomly scattering medium:

overview

• Trade-off between

- directional diversity enhancement due to scattering

- fluctuations of the cross correlations with respect to the distribution of the random

medium

• Example: three-dimensional scattering medium in the diffusion approximation

regime [1]

→ good trade-off when the distance from the sources to the observation points is

larger than the mean free path and when the distance between the observation points

is smaller than the mean free path.

[1] J. Garnier and K. Sølna, to appear in Commun. Math. Sciences February 3, 2011



The wave equation in a randomly scattering medium:

overview

• Trade-off between

- directional diversity enhancement due to scattering

- fluctuations of the cross correlations with respect to the distribution of the random

medium

• Example: three-dimensional scattering medium in the diffusion approximation

regime [1]

→ good trade-off when the distance from the sources to the observation points is

larger than the mean free path and when the distance between the observation points

is smaller than the mean free path.

• Example: randomly layered media [2]

→ large fluctuations, but poor directional diversity enhancement.

[2] J. Garnier and K. Sølna, to appear in SIAM J. Imaging Sciences February 3, 2011



The wave equation in a randomly scattering medium:

overview

• Trade-off between

- directional diversity enhancement due to scattering

- fluctuations of the cross correlations with respect to the distribution of the random

medium

• Example: three-dimensional scattering medium in the diffusion approximation

regime [1]

→ good trade-off when the distance from the sources to the observation points is

larger than the mean free path and when the distance between the observation points

is smaller than the mean free path.

• Example: randomly layered media [2]

→ large fluctuations, but poor directional diversity enhancement.

• Example: three-dimensional weakly scattering medium in the single-scattering

regime [3]

→ the scattered waves have small amplitudes compared to the primary energy flux.

→ it is possible to enhance the stability by using fourth-order cross correlations.

[3] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009). February 3, 2011



Fourth-order cross correlations for travel time estimation
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Use of auxiliary sensors xa,j , j = 1, . . . , N . Algorithm:

1) for each j, compute the cross correlations CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT (τ,xa,j ,xl) =
1

T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2
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Fourth-order cross correlations for travel time estimation
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Use of auxiliary sensors xa,j , j = 1, . . . , N . Algorithm:

1) for each j, compute the cross correlations CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT (τ,xa,j ,xl) =
1

T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2

2) consider the tails of CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT,coda(τ,xa,j ,xl) = CT (τ,xa,j ,xl)
[

1(−Tc2,−Tc1)(τ) + 1(Tc1,Tc2)(τ)
]

, l = 1, 2
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Fourth-order cross correlations for travel time estimation
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1) for each j, compute the cross correlations CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT (τ,xa,j ,xl) =
1

T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2

2) consider the tails of CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT,coda(τ,xa,j ,xl) = CT (τ,xa,j ,xl)
[

1(−Tc2,−Tc1)(τ) + 1(Tc1,Tc2)(τ)
]

, l = 1, 2

3) compute the cross correlations between the tails and sum over j:

C
(3)
T (τ,x1,x2) =

N
∑

j=1

∫

∞

−∞

CT,coda(τ
′,xa,j ,x1)CT,coda(τ

′ + τ,xa,j ,x2)dτ
′
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Using asymptotic analysis [1]: C(3) has singular components if

1) there are scatterers along the ray joining x1 and x2.

2) there are auxiliary sensors along rays joining sources and scatterers.

These singular components are at τ = ±T (x1,x2).

It is not required that the ray joining x1 and x2 reaches into the source region !

If the scattering region covers the region of interest or surrounds it, then C(3) has

singular components at τ = ±T (x1,x2) !

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009). February 3, 2011
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Reflector imaging with ambient noise signals [1]

• Ambient noise sources (◦) emit stationary random signals.

• The signals (u(t,xj))j=1,...,n are recorded by the sensors (xj)j=1,...,n (N).

• The cross correlation matrix is computed:

Cxi,xj
(t) =

1

T

∫ T

0

u(s,xi)u(s+ t,xj)ds

• Reflector imaging (�) by migration of the cross correlation matrix.
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• There is information in the noise (in its correlation structure) !

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009). February 3, 2011



Conclusion

• Travel time estimation is possible using cross correlation of ambient noise signals.

Also: source localization and imaging of reflectors.

• It is possible to exploit the scattering properties of the medium for travel time

estimation. The use of special fourth-order cross correlation is helpful.

• It is possible to exploit the scattering properties of the medium for imaging by cross

correlating and migrating the coda cross correlations (migration with C(1) and/or

C(3)).

• Main applications in geophysics (global, regional, and local scales: volcano

monitoring, oil reservoir monitoring). Also in microwave imaging.
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