Identification of Green’s Functions Singularities by Cross Correlation

of Ambient Noise Signals

Josselin Garnier (Université Paris 7 & IHES)

With C. Bardos (Paris 7), G. Papanicolaou (Stanford), and K. Sglna (UC Irvine).

Classical problem in geophysics: Travel time estimation (for background velocity

estimation).

e Method 1: Use of earthquake signals.
e Method 2: Use of seismic noise and cross correlation techniques in order to estimate

the Green’s function.
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Travel time estimation by cross correlation

e Ambient noise sources (o) emit stationary random signals.

e The waves propagate in the (inhomogeneous) medium.

e The signals u(t,x1) and u(t,x2) are recorded at two sensors &1 and xs.
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e What information (about the medium) can possibly be in these signals ?
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Travel time estimation by cross correlation

e Ambient noise sources (o) emit stationary random signals.
e The waves propagate in the (inhomogeneous) medium.
e The signals u(t,x1) and u(t,x2) are recorded at two sensors &1 and xs.
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e Compute the empirical cross correlation:

1 T
Cr (7,21, 2) = f/ w(t, m)ult + 7, @) dt
0

o Cr(1,21,x2) is related to the Green’s function from x; to a2 !
e The singular component of the Green’s function from x; to @2 gives the travel time

from a1 to ax-.
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Estimations of travel times between pairs of sensors
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Surface (Rayleigh) waves [from Shapiro, Campillo, et al, Science 307 (2005), 1615]
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Background velocity estimation from travel time estimations
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Wave equation

1 O%*u
c?(x) Ot?

+ radiation condition.

— Agu =n(t, ), x € R?

e Sources n(t,x): Gaussian process, with mean zero, with covariance

(n(t1, y1)n(t2, y2)) = F(t2 — t1)l'(y1, y2)

e Stationary in time: (n(¢, y))t , €t (n(t + h, y))t , have the same statistical

distribution for any h = the time correlation function F' depends only on t2 — t;.

e The spatial distribution of the sources is characterized by I'(yi1,y2). To simplify:

I'(y1,y2) = To(y1)d(y1 — y2)

The function I'g characterizes the spatial support of the sources.
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Empirical cross correlation and statistical cross correlation
Empirical cross correlation:

1 T
CT(T,wl,wg) _— ?/ u(t,azl)u(t + T, CBQ)dt
0

with u(t,x) = [[ G(s,x,y)n(t — s,y)dsdy and G = causal time-dependent Green’s

function.

1. The expectation of C'r (with respect to the distribution of the sources) is

independent of the integration time T
<CT(T7 L1, w2)> — C(l) (7—7 L1, $2)

where the statistical cross correlation C'Y) is given by

o )(7' T1,T2) /dy/de W ml,y)é(w,mg,y)Fo(y)F(w)e_iw
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Empirical cross correlation and statistical cross correlation
Empirical cross correlation:

1 T
CT(T,wl,wg) _— ?/ u(t,azl)u(t + T, wg)dt
0

with u(t,x) = [[ G(s,x,y)n(t — s,y)dsdy and G = causal time-dependent Green’s

function.

1. The expectation of C'r (with respect to the distribution of the sources) is

independent of the integration time T
<CT(T7 L1, m2)> — C(l) (7—7 L1, $2)

where the statistical cross correlation C'Y) is given by

1 A ~ 7 —ilWT
0D (7,0, ) = o- / dy / dwC(w, @1, y)C(w, 2, 4)To(y) F(w)e

2. The empirical cross correlation is a self-averaging quantity:
T — o0 (1)
Cr(rt,x1,x2) — C“/ (1,21, 22)

in probability.

More precisely, the fluctuations of C'r around its expectation C' (1) are of order T~1/2,
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The ideal situation

Cross correlation with noise sources distributed on a closed surface 0B(0, L):

1 A A > —iwT
CW (1, @1, 22) = Dy /dw/aB( . dS(y)G(w,x1,yY)G(w, x2,y)F(w)e
0,
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The ideal situation

Cross correlation with noise sources distributed on a closed surface 0B(0, L):
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Helmholtz-Kirchhoff theorem:

A = ) = A
G(w7w17w2) — G(wawlan) — ﬂ/ dS(y)G(wawhy)G(wvw%y)
8B(0,L)

Ce
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The ideal situation

Cross correlation with noise sources distributed on a closed surface 0B(0, L):

1 —
CW (1, @1, 22) = . /dw/aB( . dS(y)G
0,

(w, @1, Y)G(w, T2, y) F(w)e
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Helmholtz-Kirchhoff theorem:

A

G(w7w17 wQ) - G(wa $1,€U2) —

21 =
Zw/ dS(y)G(w,x1,y)
Ce JoB(0,L)

If 1) the medium is homogeneous outside B(0, D),

2) the sources are distributed uniformly on the sphere 0B(0, L), with L > D.
Then for any x1,x2 € B(0, D) we have (up to a multiplicative constant):
0

ot

C(1>(T,m1,w2) = Fx,; |G(1,x1,x2) — G(—T7, @1, 22)]
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Ideal situation:
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Singular component at T (x1, x2) No singular component

High-frequency analysis (geometric optics regime): The cross correlation
C(l)(T, &1, x2) has singular components iff the ray joining x; and x5 reaches into the
source region (i.e. the support of I'g). Then there are one or two singular components

at 7 = 7T (€1, x2) (travel time from x; to x2).

[More exactly:
the rays y — &1 — @2 contribute to the singular component at 7 = T (a1, ®2),

the rays y — &2 — x1 contribute to the singular component at 7 = —7 (x1, ®2).]
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Sketch of proof: WKB approximation + stationary phase analysis

Time correlation function of the sources F*(t) = F($) = F(w) = eF(ew).

C(l)(77w13w2) — 217'(‘ dy/de W wlvy)G(w $2,y)Fo(y> F(gw)e_iWT
w— % 1 w - —i<T
= o [y [ G (% 21y) 6 (% e y) Lol Flw)e

WKB approximation for G( y) ~ a(x,y)e’ e T (2,y).

CW (1, @1, z2) /dy/dwa (21, y)a(zz, y)To(y)F(w)e' =T
with the rapid phase
wT'(y) = w[T (x2,y) — T (x1,y) — 7]

Use of the stationary phase theorem. The dominant contribution comes from the

stationary points (w,y) satisfying:

Vy (wT(y)) =0, 0. (wT(y)) =0

— two conditions:
VyT(y,x2) =VyT(y,z1), T(z2,y)—T(z1,y) =
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e Here, the cross correlation method does not allow for travel time estimation,

because there is not enough “directional diversity”.
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e Here, the cross correlation method does not allow for travel time estimation,

because there is not enough “directional diversity”.

e Idea (first suggested by M. Campillo [1]): exploit the scattering properties of the

medium in order to enhance the “directional diversity”.

[1] M. Campillo and L. Stehly, Fos Trans. AGU 88(52) (2007), Fall Meet. Suppl., Abstract S51D-07.



% XX
x\xxxxx/
X Xy x XX X X
£ xxX xx XxxX\
K x X X X X X\
/XXX XXX XK XXX
\xxxxxxxxxxxxxxwm
XX XXX XX XX XX
&OXXX X XXX X Xx XXX x X xR
AxX XX XX % Xy X X XX x Xx X
AKXy Xxx X)X X x5 X X XXX 5
KX X X X Xy XXX X XK Xx X x XX XX xx
3 X X o xR XXXy X 30x XXX Ky XX XX RS
\xxxxxxxxxxxxxxxxxxxxxxxxxxxxx%
XX XX XX XX XX XXX s X X XK ek Xxx X
XX s XX X XXk ¢ 30X X o X X X XX X X X X XXX X
X300 XXX 5 ) XX e Xy XxX XXX Xy e XX\
Xox X XX XXX XX XXX X XXX s x X Xy XX XXy
‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
\xxxxxxxxxxxxx2xxxxxxxxxxxxxxxxxxx~
wxxxxxxxxxxx%x&xxxxxxxxxxxxxxx)
XX XX )X X )X ¢ ERY X 3 K XXX X X X X e X xx Xx
[ X % %X X X ¢ X x X XX 3 XX 5 s s XX X X X xx XX e |
XX XXX X Xk X X X XXX X XXX X Xy XXXy X5 X X
,xxxxxxxxxwimnqxxxxxxxxxxxxxxxxxxxxx
W XX X )X X ¢ % XX xxxxxxxxxxxxxxxxxx&
AXXXXXXXXWAXX X5 XXX XX XX s XXy XX
XX XX X XX XX x ) XX XX 3 XX )X X X x oy XXX R
W% e XX XX X 5 3 X x XXX X X x 3¢ XX XX xx XX X
130X 5 X 30¢ XX X XX XX XX X Xk xx X X x X
Mxxxxxxxxxxxxxxxxxxxxxxxxxxxx\
XXX X XXX 5 XX )X X XXX XX e XX X XX
XXX XX X XX XXX X X X XX X X
XXX XX XKy x5 XX x X XX XX X0 X A
XXX XX x X XX XX o o o XX XXX x X X/
W yox XX X X XXX 30X o sex Xx Xy X%/
N x X000 XX XXy 5 X o Xy X XX Xy
VXX XX X0 X X XX XXX X XX X 0y
X XXX XXX X XX x X g X xX %
XXX X X XX xX X7 O
/xxxxxxx\x\ O
N X x XX

e ©)

ty

ty (left figure) and a randomly inhomogeneous med

i

Configurations in which wave fields have directional divers

(right figure).

1uarm

1C CaVvl

An ergod

February 3, 2011

GDR Dynamique Quantique



The wave equation in an ergodic cavity

<i+3)2u—v -[02(:13)V |lu=n(t,z), =in u(x) =0, x €N
T, ' ot v ” T ’ |

e ) is a bounded open set  C RY.
e c(x) is smooth.

e 7, is the attenuation time.

e n(t,x): noisy sources.

It is a zero-mean stationary (in time) Gaussian process with autocorrelation function

(n(tr,yn)n(ta,g2) = Fltz — )0 (B2, 5 — )

The function & — I'(ax,0) models the spatial support of the sources.

The function z — I'(x, z) is the local spatial autocorrelation function.

Example: I'(x, z) = d(z) would mean “sources everywhere, delta-correlated in space”.

GDR Dynamique Quantique February 3, 2011



e Covariance of the noise:

(n(t1, y1)n(te,y2)) = F*(t2 — t1)I" (y1, y2)

Time covariance:

Spatial covariance:

. Tty r—y
T (. :P( | )
(z,y) 5 .

The spatial correlation radius of the noise sources is of the same order as the
decoherence time (¢)
— time and space noise correlations contribute to the Green’s function estimation at

the same order of magnitude.

GDR Dynamique Quantique February 3, 2011



e The covariance operator ©° : L?(Q) — L?*() defined by
O%U(e) = [ T*(a.y)u(y)dy
is a zero-order pseudodifferential operator with symbol f(a:, )
0% = Op° [[(z, £)] ,
where the Fourier transform I'(z, &) of the function z — I'(x, 2) is
D(x, &) = /F(a:, z)e **dz

and we have used the Weyl quantization Op°® defined by
az —|— r+y

Op° [I'(=, &)](

GDR Dynamique Quantique
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It is possible to reconstruct the singular components of the Green’s function in the
ergodic case, up to a smoothing operator that depends on I' and F*.

There are two ingredients in the proof:

1) Approximation of full wave propagation by classical ray dynamics (Egorov
theorem): the singular (high-frequency) components propagate along the rays (X4, &,)
of geometric optics (Hamiltonian flow h(x, &) = c(x)|€|) defined by

aX: £, B
dt — C(Xt>’€_1;| ) Xo(ﬂ?,é) =,
o veXlel,  &ol@ o) =¢.

and with specular reflection at the boundary 0f2.
2) Ergodicity of the ray dynamics in the cavity €2: starting from almost any point @

and almost any direction &, the ray (X4, &,) visits all the energy surface.
For any f € L°(S™(€2)) and for (@, &) in a subset of full measure of S™(2),

1 » 1

lim / F(Xe(@. )., (@ ©)ds = [ 1= —os [S oy Jdntm).

where S*(€2) is the cotangent spherical bundle (energy surface)

S () ={(x,§) € T"Q, c(x)|§| = 1}

GDR Dynamique Quantique February 3, 2011



Main result [1]: If ¢ € W*°°(Q), T" is smooth, bounded, and integrable, then
8;CV (1, z,y) is the kernel of the operator

e To Kp Fr[G(7) — G(—7)] + R*(T) + Rr, (1),

for any 7 > 0, where
e GG(7) is the Green’s function operator with kernel G(1,z, y),

e F1 is the convolution operator in 7 (due to the time correlations of the sources):
FrG(T) = /FS(S>G(T — s)ds

e Kt is the smoothing operator (due to the spatial correlations of the sources):

N Ja dzc(z)™* faB(o,l) dS(n)f(z, €] CZ))

Kt = Op [kr (c(w)é)} ) kr(€) = Jodze(2)7 [450.0) 45 (1)

[1] C. Bardos, J. Garnier, and G. Papanicolaou, Inverse Problems 24, 015011 (2008).



Main result [1]: If ¢ € W**°(Q), [" is smooth, bounded, and integrable, then
0-C'V (7, &, y) is the kernel of the operator

e Ta KiF5|G(1) — G(—7)] + R°(7) + R, (7),

for any 7 > 0, where
e GG(7) is the Green’s function operator with kernel G(7, z, y),

e F1 is the convolution operator in 7 (due to the time correlations of the sources):

FoG(r) = / F*()G(r — s)ds
e Kt is the smoothing operator (due to the spatial correlations of the sources):

e e 7 N Jo dzc(z f@B(O 1)dS("7)f<zv|é|c(Z))
K5 = 0p [k (c(@)8) | b (€) = = dzc( W

e the remainder R°(7) is determined by the error in the semiclassical approximation

and it is small if € is small (Egorov theorem).

e the remainder Rr, (7) is determined by the rate of convergence of the ergodic
theorem for the function I' of the classical Hamiltonia,n flow.

If T.,¢ is the characteristic convergence time of + fo (X5, &, )ds to its ergodic limit
kr(c(x)€), then Ry, (1) is small if Ty >> Torg.

[1] C. Bardos, J. Garnier, and G. Papanicolaou, Inverse Problems 24, 015011 (2008).



The wave equation in a randomly scattering medium:

the radiative transport regime

1 0%*uf
ct(x)? Ot?

—Au* =n(t,z), xR’

e The velocity in the medium c®(x) is of the form

1 1 ]
A )

The slowly varying background velocity co(a) is smooth and bounded.
The rapid random fluctuations of the medium are described by the process v°(ax) with

mean zero and covariance

1 + T2 iB2—€B1>

E[v®(x1)v° (z2)] = eR( L

(locally stationary random medium with small fluctuations with amplitude ~ gl/?

and correlation length ~ ¢).

e The noise sources n°(t, ) have mean zero and covariance

. . to — 1 + —
<n (t1,y1)’n (tQ,y2)> :F( 2 . 1)F(y1 . y2, Y2 - y1)
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e Consider the Radiative Transport Equation [1]:

aa_vf L Vew VW —Vaw -V W = /a(a:, k,K)(W(t,z, k') —W(t,z k))dk'

with the initial condition

W(t=0,z k) ==I(x, k) (x)

N | —

the dispersion relation

w(x, k) = co(x)|K|
and the scattering cross section

ey (@)|kl”
2(2m)3

R(z,k — &) (co()|K| — co(z)|K'|)

o(x, Kk, K) =

— Amplitude factor (energy density illuminating @):

Alx, k) = /OOO W(t,x, rk)dt

[1] L. Ryzhik, J. Keller, and G. Papanicolaou, Wave Motion 24, 327 (1996).



e Diffusive regime.

Diffusion-approximation: When the distance L between the sources and the
observation area around a is much larger than the transport mean free path
(determined by R), then the amplitude factor A(x, k) becomes independent of the
direction k/|K|:

Az, k) = Az, ||)
We then have [1]

10 £Y £Y
587‘0 (57_%—7 w—|—7)

== // 7_ _ 7_ (y Yy )[GCO(w) (7_/7 y,) — Gco(a})(_Tla y/)}dyldT/

where

Geolmy) = 47r1|y|5(7- N M)

and

Kz(y) = 2772/ Az, k)sinc(k|y|) k* dk

— smoothing due to the time and space correlations of the sources.
Note: estimation of the Green’s function only between two nearby points.

[1] J. Garnier and K. Sglna, to appear in Commun. Math. Sciences February 3, 2011



The wave equation in a randomly scattering medium:

overview

e Trade-off between
- directional diversity enhancement due to scattering
- fluctuations of the cross correlations with respect to the distribution of the random

medium

e Example: three-dimensional scattering medium in the diffusion approximation
regime [1]

— good trade-off when the distance from the sources to the observation points is
larger than the mean free path and when the distance between the observation points

is smaller than the mean free path.

[1] J. Garnier and K. Sglna, to appear in Commun. Math. Sciences February 3, 2011



The wave equation in a randomly scattering medium:

overview

e Trade-off between
- directional diversity enhancement due to scattering
- fluctuations of the cross correlations with respect to the distribution of the random

medium

e Eixample: three-dimensional scattering medium in the diffusion approximation
regime [1]

— good trade-off when the distance from the sources to the observation points is
larger than the mean free path and when the distance between the observation points

is smaller than the mean free path.

e Example: randomly layered media (2]

— large fluctuations, but poor directional diversity enhancement.

[2] J. Garnier and K. Sglna, to appear in SIAM J. Imaging Sciences February 3, 2011



The wave equation in a randomly scattering medium:

overview

e Trade-off between
- directional diversity enhancement due to scattering
- fluctuations of the cross correlations with respect to the distribution of the random

medium

e Eixample: three-dimensional scattering medium in the diffusion approximation
regime [1]

— good trade-off when the distance from the sources to the observation points is
larger than the mean free path and when the distance between the observation points

is smaller than the mean free path.

e Example: randomly layered media [2]

— large fluctuations, but poor directional diversity enhancement.

e Eixample: three-dimensional weakly scattering medium in the single-scattering
regime [3]

— the scattered waves have small amplitudes compared to the primary energy flux.

— it is possible to enhance the stability by using fourth-order cross correlations.

[3] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009). February 3, 2011



Fourth-order cross correlations for travel time estimation
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Use of auxiliary sensors x4 ;, J = 1,..., N. Algorithm:

1) for each j, compute the cross correlations Cr (7, @4, ;, 1) and Cr (7, x4, T2):

1 T
Cr (7, Ta s 1) = T/ w(t, Bo)ult + 7 @)t 1 =1,2
0
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Fourth-order cross correlations for travel time estimation
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Use of auxiliary sensors x4 ;, J = 1,..., N. Algorithm:

1) for each j, compute the cross correlations Cr (7, @4, ;, 1) and Cr (7, x4, T2):

1 T
Cr (7, Ta s 1) = T/ w(t, Bo)ult + 7 @)t 1 =1,2
0

2) consider the tails of Cr (7, ®q,;,x1) and Cr (7, X4, j, 2):

CT,coda(T, Ta,j, ®1) = OT(T, Ta,j, 1) [ L(—10y,—101) (T) + L1y 10y (7)), 1=1,2

GDR Dynamique Quantique February 3, 2011



Fourth-order cross correlations for travel time estimation

cross correlation X,
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Use of auxiliary sensors @4, j, j = 1,..., N. Algorithm:

1) for each j, compute the cross correlations Cr (7, @4, ;, 1) and Cr (7, x4, T2):

1

T

T
Cr(T,@a,j, 1) = / u(t,xq ) )u(t +71,x)dt, 1=1,2
0

2) consider the tails of Cr (7, @4, ;,x1) and Cr (T, 4 j, 2):

CT,COda(Ty mCL,j) wl) — CT(T7 wa,j? ml) |:1(_T627_T61) (7—) —|_ 1(T617T62) (T)i| ) l 17 2

3) compute the cross correlations between the tails and sum over j:

N %S}
Cj(ﬂg)(T,wl,wQ) — Z/ CT,COda(T/,wa,j,ah)CT,Coda(T, + 7, wa,j,wg)dT/
j=1v 7
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Using asymptotic analysis [1]: C® has singular components if
1) there are scatterers along the ray joining &1 and x-.
2) there are auxiliary sensors along rays joining sources and scatterers.

These singular components are at 7 = +7 (@1, €2).
It is not required that the ray joining @; and a2 reaches into the source region !

If the scattering region covers the region of interest or surrounds it, then C® has

singular components at 7 = £7 (x1, 2) !

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009). February 3, 2011
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Reflector imaging with ambient noise signals [1]

e Ambient noise sources (o) emit stationary random signals.
e The signals (u(t,x;));=1,....n are recorded by the sensors (x;);j=1,..n (A).

e The cross correlation matrix is computed:

T
sz"mj (t) — % / ’LL(S, w’b)u(s +t, wj)ds
0

e Reflector imaging (4) by migration of the cross correlation matrix.

1
05 signal recorded at X,
0
-0.5 . . )

0 100 200 300
t

C 1 .

| | signal recorded at x
A 5 [ ‘ : 0 >
A | | —05 1 L L
A ! 0 100 200 300 -
AX

1
coda correlation X 7%
50 100 o 5
Z -
_150 _100 -5 80 85 90 95 100 105 110 115 120

e There is information in the noise (in its correlation structure) !

[1] J. Garnier and G. Papanicolaou, SIAM J. I'maging Sciences 2, 396 (2009). February 3, 2011



Conclusion

e Travel time estimation is possible using cross correlation of ambient noise signals.

Also: source localization and imaging of reflectors.

e It is possible to exploit the scattering properties of the medium for travel time

estimation. The use of special fourth-order cross correlation is helpful.

e It is possible to exploit the scattering properties of the medium for imaging by cross

correlating and migrating the coda cross correlations (migration with C 1) and /or

(7(3)).

e Main applications in geophysics (global, regional, and local scales: volcano

monitoring, oil reservoir monitoring). Also in microwave imaging.
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