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Quantum particle in a potential

I Hamiltonian: acting in L2(R3), given by

Hp = − ~2

2m
∆ + V

I Assumption: V : R3 → R3 continuous, lim|x|→∞ V (x) = +∞.
Then σ(Hp) is bounded below, pure point spectrum..

I Dynamics: i~∂tψ(x, t) = Hpψ(x, t). Therefore:
The eigenstates (Hpψ = λψ) are stationary.

I Hp could be used to model e.g. an electron in the electric
field of a nucleus. The eigenvalues of Hp are the the
quantized energy levels.

I Problem: The model cannot describe spontaneous decay to
the ground state: an excited state remains excited forever.
(No line spectrum!).

I Solution: Coupling to the electro-magnetic field (QED).
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Particle in the radiation field: Spectral lines

I Evidence for energy quantisation in
the hydrogen atom has been found
already before the invention of
Quantum Mechanics (Balmer 1885,
Lyman 1906).

I A photon is absorbed and lifts an
electron to its excited state, which
later decays and re-emits the photon.

I The frequency corresponds to the
energy difference to the energy levels.

I The Lyman-series corresponds
precisely to the spectrum of the

hydrogen atom H = − ~2
2m

∆− 1/|x|.
I Line broadening:
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Particle and radiation field: Pauli-Fierz model
Hilbert space: L2(R3)⊗F⊗2, F is the bosonic Fock space.

F =

∞⊕
n=0

F (n), F (n) = L2
symm(R3n).

Hamiltonian: H = 1
2m(p− eAϕ(q))2 + V +Hf with

I p = −i~∇q particle momentum, V (q) particle potential
I Energy of the free field (ω(k) = |k| dispersion relation):

Hf =
∑
λ=1,2

∫
d3k~ω(k)a∗(k, λ)a(k, λ)

I Coupling operator:

Aϕ(q) =
∑
λ=1,2

∫
d3k

√
~

2ω(k)
eλ(k)

(
eiq·k ϕ̂(k)a(k, λ)+ e−iq·k ϕ̂∗(k)a∗(k, λ)

)
eλ transversal vector field, ϕ form factor with UV cutoff.
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Pauli-Fierz Hamniltonian: spectrum

H =
1

2m
(p− eAϕ(q))2 + V +Hf

I Spectrum of Hp = − ~2
2m∆ + V :

I Spectrum of the free field Hf

I Spectrum of the coupled system:

I In the coupled system, the higher eigenvalues disappear and
become resonances.

I [Hunziker 1990]: Connection between resonances and metastability.

I [Bach, Fröhlich, Sigal 1998]: Found resonances in the PF model.
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Resonances: Definitions
H = H0 + eHI

Traditional definition: (e.g. Reed-Simon)

R(u)(z) = 〈u, (H − z)−1u〉, R
(u)
0 (z) = 〈u, (H0 − z)−1u〉

Assumption: For a dense subset of vectors u, R(u) and R
(u)
0 can be

continued analytically into the lower half plane, up to the point
p ∈ C, Im(p) < 0.

p is a resonance of H if R(u) is singular and R
(u)
0 is regular at p for

at least one u.

Equivalent definition: [BC 11]

µ(u)(∆) = 〈u,E(∆)u〉 scalar spectral measure of H

Assumption: For a dense subset of vectors u, the Lebesgue-density

φ(u) of µ(u), and of φ
(u)
0 , can be analytically continued up to the

point p ∈ C.

p is a resonance if φ
(u)
0 is regular and φ(u) is singular at p.
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Resonances and Lorenz profiles

φ(u) scalar spectrale density, p ∈ C resonance

I Simplest case: φ(u) has a simple pole at p.

I Since φ(u) is real analytic (on an interval), we

also know φ(u)(z) = φ(u)(z).

I If no other poles are nearby, we have

φ(u)(z) =
ϕ(u)(z)

(z − p)(z − p)
mit ϕ(u) holomorph.

I Sei p = ω̂− iγ/2. On the real axis, this produces
a Lorenz profile:

φ(u)(ω) ' C γ/2

(ω − ω̂)2 + γ2/4
.

I In the full Pauli-Fierz model, the precise complex
structure of the resolvent is unknown.
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Open quantum systmes: basics

I We want an effective description for the particle in the
radiation field, treating the field as an environment.

I Method of choice: open quantum systems.
I Simplest case: Hamiltonian H is such that e−βH is trace

class.
I The state at inverse temperature β is given by the density

matrix 1
Z(β) e−βH .

I Partition function: Z(β) = Tr e−βH .

I The inverse Laplace transform of Z(β) is a positive measure,
namely µ =

∑
j Njδλj . Measure of states

I µ(β) := 1
Z(β) e−β(·) µ, then

µ(β)(∆) =
1

Z(β)
Tr ( e−βH E(∆))

is the probability of measuring a value for the energy that lies
within ∆.
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Spectral discretisation

In many interesting cases (e.g. in the Pauli Fierz model), e−βH is
not trace class, and even has absolutely continuous spectrum. We
use a slight generalization of a standard technique from random
Schrödinger operators.

Definition

Let H be a self-adjoint operator in the Hilbert space H, and let
(Pn) be a family of orthogonal projections on H. Put
Hn = PnHPn.
We call Hn a spectral discretization of H (wrt. Pn) if:

(i) PnD(H) ⊂ D(H)

(ii) limn→∞ Pn = 1 strongly.

(iii) The spectrum of Hn (defined on PnH) consists of eigenvalues
of finite multiplicity, and e−βHn is trace class for all n.
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Effective description of a subsystem

H = H1 ⊗ 1 + 1⊗H2 +HI, auf H1 ⊗H2

I H1 Hilbert space of the small system, H2 HS of the large one.

I Assume: Tr e−βH exists, and so do those of H1, H2.

I Assume: The large system is in thermal equilibrium and is not
influenced by the small one (heat bath).

I The effective (un-normed) density matrix for the small system
is then given by

W (β) := (Tr e−βH2 )−1Tr 2 e−βH

I In the uncoupled system: W (β) = e−βH1 .

I Effective partition function: Z(β) = TrW (β) =
Tr e−βH

Tr e−βH2
.

I Idea: the inverse Laplace transform of Z(β) is the effective
measure of states of the open small system.

I But for this, it has to be a positive measure on R.
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The limit of an infinitely large system

H = H1 ⊗ 1 + 1⊗H2 +HI, in H1 ⊗H2

I In our case, e−βH2 is not trace class.
I Spectral discretizations: H2,n, Hn.
I Define

Zn(β) =
Tr e−βHn

Tr e−βH2,n
.

I We will show that limn→∞ Zn exists, and that the inverse
Laplace transform is a positive Borel measure µ.

I Interpretation: µ is the effective measure of states:

µ(β) =
1

Z(β)
e−β(·) µ

determines the probability for energy measurements at
temperature 1/β.

I The Lebesgue-density of µ is the effective density of states.
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Pauli-Fierz model: dipole approximation

H = (Hp +Hr)⊗ 1 + 1⊗Hf +HI in L2(R3)⊗F⊗2

with

Hp = −~2m

2
η2∆q +

1

2m
q2, particle Hamiltonian in L2(R3),

Hf = Hf,1 ⊗ 1 + 1⊗Hf,2 and Hf,σ = ~
∫
ω(k)a∗(k, σ)a(k, σ) dk.

Furthermore, HI = HI,1 ⊗ 1 + 1⊗HI,2 with

HI,σ =
e

m

∫
χc(k)

√
~

4π2ω(k)
(q · uσ(k))

(
a∗(k, σ) + a(k, σ)

)
dk,

and UV-cutoff χc = 1{|k|<C}, ω(k) = c|k|, c speed of light.

Hr in L2(R3) contains mass and energy renormalisation.
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Pauli-Fierz model: Spectral discretization

I For N ∈ N let Λj , j ∈ N be the half-open cube with volume
V = N−3 and corners in ( 1

NZ)3 ⊂ R3.

I Orthogonal projections:

PN (j) : L2(R3)→ L2(R3), f 7→ 〈hj , f〉hj mit hj :=
1√
V

1Λj .

I Put JN = {j ∈ N : Λj ∩B(0, N) 6= ∅}.
I PN =

∑
j∈JN PN (j) is also an orthogonal projection.

I Let PN be the second quantisation of PN . PN ist also OP.

I Put

Hf,N := (PN ⊗ PN )Hf (PN ⊗ PN ),

HN := (1⊗ PN ⊗ PN )H (1⊗ PN ⊗ PN ).

I Thm: Hf,N and HN are spectral discretizations of Hf und H.
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Effective partition function: finite UV cutoff

Theorem:
Tr e−

β
~HN and Tr e−

β
~Hf,N exist for all N ∈ N and all β > 0.

Z(β; γ) := limN→∞(Tr e−
β
~HN )/(Tr e−

β
~Hf,N ) exists for all

β > 0, and

Z(β; γ) =

[
2πρ e−2ρ ln(1+γ) sinϕ

∞∏
l=1

(
1 +

ρ2

l2
+

4

π

ρ

l
sin(ϕ) arctan

(
γ
ρ

l

))]−3

.

Above, sinφ ∼ e, ρ ∼ β, γ ∼ C.

Sketch of proof: Write HN as a system of n = 2|JN |+ 3 coupled
quantum oscillators; potential

∑
i,j AijXiXj ; A > 0 matrix with

entries λj . Use

Tr e−βH =
n∏
i=1

(
2 sinh(

β

2

√
λi)

)−1

= det

(
2 sinh

(
β

2
A

1
2

))−1

=

= β−n det(A)−
1
2

∞∏
l=1

det

(
In + (

β

2πl
)2A

)−1

.
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Effective density of states without UV cutoff

Theorem:
For all β > 0, Z(β) := limγ→∞ Z(β; γ) exists, and

Z(β) =
[ ρ

2π
e−2ρ ln(ρ) sinϕ

∣∣Γ(iρ e−iϕ )
∣∣2]3

.

Also, β 7→ Z(β) is the Laplace transform of a positive measure.

Sketch of proof: Convergence and computation of the limit with
hard analysis. For the inverse Laplace transform: Using Binet’s
formula,

ln Γ(z) =

∫ ∞
0

e−tz

t

(
1

1− e−t
− 1

t
− 1

2

)
dt+

ln(2π)

2
+(z−1

2) ln(z)−z

we find, with τ = i e−iϕ t and tϕ := 6(sinϕ+ (π2 − ϕ) cosϕ),

lnZ(β) =

∫ ∞
0

e−tρ g(t) dt − tϕ ρ, g(t) :=
6

t
Re

(
1

1− e−τ
− 1

τ
− 1

2

)
.

We show g(t) > 0 for t > 0. Thus lnZ(β) is completely
monotone, and so is Z(β).
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formula,

ln Γ(z) =

∫ ∞
0

e−tz

t

(
1

1− e−t
− 1

t
− 1

2

)
dt+

ln(2π)

2
+(z−1

2) ln(z)−z

we find, with τ = i e−iϕ t and tϕ := 6(sinϕ+ (π2 − ϕ) cosϕ),

lnZ(β) =

∫ ∞
0

e−tρ g(t) dt − tϕ ρ, g(t) :=
6

t
Re

(
1

1− e−τ
− 1

τ
− 1

2

)
.

We show g(t) > 0 for t > 0. Thus lnZ(β) is completely
monotone, and so is Z(β).
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Effective density of states: inverse Laplace tranfsorm

Z(β) =
[ ρ

2π
e−2ρ ln(ρ) sinϕ

∣∣Γ(iρ e−iϕ )
∣∣2]3

.

I Crucial observation: Z(β) = Y (ρ) e−tϕρ , and

Y (ρ) = expLg(ρ) = 1 +
∞∑
n=1

1

n!
Lg∗n(ρ).

I Above, h ∗ k (x) =
∫ x

0 h(t)k(x− t) dt.

I Thus

L−1Y = δ0 +

∞∑
n=1

1

n!
g∗n

I Up to translation and scaling, this is the effective density of
states!
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Effective density of states: complex structure

% = L−1Y = δ0 +

∞∑
n=1

1

n!
g∗n

Lemma: g is meromorphic with simple poles at

qj = 2πj e−iϕ und qj = 2πj eiϕ , j ∈ Z \ {0}.

The residues are Res(g; qj) = 3i
2πj , Res(g; qj) = −3i

2πj .

A first analysis of the singularities of the convolution products
leads to
Theorem: The effective density of states φ is continuous and
positive for ω > ωϕ. φ is real analytic, and can be continued to an
analytic function up to singularities at the points

pj = ωϕ + jη e−iϕ and pj = ωϕ + jη eiϕ , j ∈ Z \ {0},

and branch cuts along z = ωϕ + s e±iϕ for s ∈ R, |s| > η.
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Effective density of states: Lorenz profiles

Define the normed Lorenz profile `j(z) := −1
2πi(z−pj) + 1

2πi(z−pj) .

Theorem: Let N ∈ N and z = ωϕ + s eiχ for 0 < s < Nη and
|χ| < π

2 . Then

φ(z) =



N∑
j=1

(
j + 2

2

)
`j(z) + hN (z) for |χ| < ϕ,

−
3∑
j=1

(−1)j
(

3

j

)
`j(z) + h̃N (z) for |χ| > ϕ.

hN and h̃N are analytic up to singularities at pj , pj and cuts along
z = ωϕ + s e±iϕ , s > η. Moreover, there exists a constant
C = C(N), so that hN (and also h̃N ) satisfies the inequality
|hN (z)| 6 C(1 + | ln(ϕ− |χ|)|ηN ) for |χ| < ϕ.

Compare with µ0 =
∑∞

j=0

(
j + 2

2

)
δ(j+3/2)η (uncoupled

oscillator).
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Summary and open problems

I The effective density of states close to R is

φ(z) ≈
∑
j

(
j + 2

2

)
`j(z).

I The mass in each Lorenz profile corresponds to the
multiplicity of the eigenvalues of the uncoupled oscillator.

I Complex singularities are first order poles plus a small
perturbation.

I Definition: resonances of the effective system are the
complex singularities of the effective density of states.

I Metastability: Z(β)−1 e−β· µ gives the probability for
energy measurements at temperature 1/β.

2 4 6 8

50

100

150

jj�1�2 j�1�2

0.5

1.0

1.5

Open questions:
I how about other systems: spin-boson, hydrogen atom, . . .

I Connection with Hunzikers theory of resonances (Bach/Fröhlich/Sigal).

I Connection with works about return to equilibrium (Merkli/Sigal).
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