KAM for NLS with harmonic potential

Laurent THOMANN

Université de Nantes

3rd Meeting of the GDR Quantum Dynamics MAPMO, Orléans, 2-4 February 2011.

(Joint work with Benoît Grébert)

글 🕨 🗦

The equation : We consider the nonlinear Schrödinger equation with harmonic potential

$$\begin{cases} i\partial_t u + \partial_x^2 u - x^2 u = |u|^2 u, \quad (t,x) \in \mathbb{R} \times \mathbb{R}, \\ u(0,x) = u_0(x), \end{cases}$$

Physical interest : Model for Bose-Einstein condensates.

Litterature : R. Fukuizumi, K. Yajima - G. Zang, R. Carles, ...

Motivation : The equation is globally well-posed in the energy space.

Let p > 1. Behaviour of

 $\|u(t)\|_{\mathcal{H}^{p}(\mathbb{R})}$

when $t \to \infty$?

(B)

Difficulty : Spectral structure of $-\partial_x^2 + x^2$: the eigenvalues are $\lambda_j = 2j - 1$, $j \ge 1$ and are completely resonant in the sense that there exist many $k \in \mathbb{N}^{\infty}$ of finite length so that $k \cdot \lambda = \sum_{j \ge 1} k_j \lambda_j = 0$. Therefore, we consider

$$\begin{cases} i\partial_t u + \partial_x^2 u - x^2 u + \varepsilon V(x)u = \varepsilon |u|^2 u, \quad (t, x) \in \mathbb{R} \times \mathbb{R}, \\ u(0, x) = u_0(x). \end{cases}$$
(NLS)

where $\varepsilon \ll 1$ and $V \in \mathcal{S}(\mathbb{R}, \mathbb{R})$.

Difficulty : Spectral structure of $-\partial_x^2 + x^2$: the eigenvalues are $\lambda_j = 2j - 1$, $j \ge 1$ and are completely resonant in the sense that there exist many $k \in \mathbb{N}^{\infty}$ of finite length so that $k \cdot \lambda = \sum_{j \ge 1} k_j \lambda_j = 0$. Therefore, we consider

$$\begin{cases} i\partial_t u + \partial_x^2 u - x^2 u + \varepsilon V(x)u = \varepsilon |u|^2 u, \quad (t,x) \in \mathbb{R} \times \mathbb{R}, \\ u(0,x) = u_0(x). \end{cases}$$
(NLS)

where $\varepsilon \ll 1$ and $V \in \mathcal{S}(\mathbb{R}, \mathbb{R})$.

Aim :

4

Construction of quasi-periodic in time solutions to (NLS) for typical V. In particular, the \mathcal{H}^{p} norm of these solutions will be bounded.

Quasi-periodicity :

 $f: \mathbb{R} \longrightarrow \mathbb{C}, t \mapsto f(t)$ is quasi-periodic if there exist $n \ge 1$, a periodic function $U: \mathbb{T}^n \longrightarrow \mathbb{C}$ and $(\omega_1, \ldots, \omega_n) \in \mathbb{R}^n$ so that for all $t \in \mathbb{R}$, $f(t) = U(\omega_1 t, \ldots, \omega_n t)$.

Denote by $A = -\partial_x^2 + x^2 - \varepsilon V(x)$.

▶ There exists an Hilbertian basis of $L^2(\mathbb{R})$ of eigenfunctions $(\varphi_j)_{j\geq 1}$ of A

$$A \, arphi_j = \lambda_j arphi_j, \,\,\, {
m with} \,\,\,\, \lambda_j \sim 2j-1 \,\,\,\,\, {
m and} \,\,\,\,\, arphi_j \sim {\it h}_j,$$

where $(h_j)_{j\geq 1}$ are the Hermite functions.

• For $p \ge 0$, we define the Sobolev spaces

$$\mathcal{H}^{p} = \mathcal{H}^{p}(\mathbb{R}) = \left\{ u \in \mathcal{S}'(\mathbb{R}) : A^{p/2}u \in L^{2}(\mathbb{R}) \right\}.$$

Let $u = \sum_{j \ge 1} w_{j}\varphi_{j} \in \mathcal{H}^{p}$, then
$$\|u\|_{\mathcal{H}^{p}}^{2} \sim \sum_{j \ge 1} j^{p}|w_{j}|^{2}.$$

• • = •

The result on the nonlinear equation

Our main result concerning the nonlinear Schrödinger equation (NLS) is the following

Theorem (B. Grébert - LT)

Let $n \ge 1$ be an integer. Then there exist a large class of $V \in S(\mathbb{R})$ and $\varepsilon_0 > 0$ such that for each $\varepsilon < \varepsilon_0$ the solution of (NLS) with initial datum

$$u_{0}(x) = \sum_{j=1}^{n} l_{j}^{1/2} e^{i\theta_{j}} \varphi_{j}(x), \qquad (IC)$$

with $(I_1, \cdots, I_n) \subset (0, 1]^n$ and $(\theta_1, \ldots, \theta_n) \in \mathbb{T}^n$, is quasi-periodic.

- When θ covers Tⁿ, the set of solutions of (NLS) with initial condition (IC) covers a n dimensional torus which is invariant by (NLS).
- Our result also applies to any non linearity $\pm |u|^{2m}u$, with $m \ge 1$.
- The set $\{1, \dots, n\}$ can be replaced by any finite set of \mathbb{N} of cardinality n.

The more precise result

Let $n \ge 1$ and $\Pi = [-1, 1]^n$. There exist $(f_k)_{1 \le k \le n} \in \mathcal{S}(\mathbb{R})$ such that if we set

$$V(x,\xi) = \sum_{j=1}^n \xi_k f_k(x),$$

with $\xi = (\xi_1, \ldots, \xi_n) \in \Pi$ we have

Theorem (B. Grébert - LT)

Let $n \ge 1$ be an integer. Then there exists a Cantor set $\Pi \subset \Pi$ of full measure and $\varepsilon_0 > 0$ so that for each $\varepsilon < \varepsilon_0$ and $\xi \in \Pi$ the solution of (NLS) with initial datum

$$u_{0}(x) = \sum_{j=1}^{n} l_{j}^{1/2} e^{i\theta_{j}} \varphi_{j}(\xi, x), \qquad (IC)$$

with $(I_1, \cdots, I_n) \subset (0, 1]^n$ and $(\theta_1, \ldots, \theta_n) \in \mathbb{T}^n$, is quasi-periodic.

The solution u reads

$$u(t,x)=\sum_{j=1}^n \left(I_j+y_j(t)\right)^{\frac{1}{2}} \mathrm{e}^{\mathrm{i}\theta_j(t)}\varphi_j(\xi,x)+\sum_{j\geq 1} z_j(t)\varphi_{j+n}(\xi,x).$$

Some previous results

 S.B. Kuksin '93 and J. Pöschel '96 : Case λ_j ~ cj^d with d > 1 or with smoothing nonlinearity.

- S.B. Kuksin & J. Pöschel '96 : NLS on [0, π] without external parameter ξ.
- ► H. Eliasson & S.B. Kuksin '08 : NLS on T^d with V ★ u perturbation.
- B. Grébert, R. Imekraz & E. Paturel '08 : Normal forms technics.

Key ingredient

Use of dispersive properties of the Hermite functions

$$\forall r > 2, \exists \beta(r) > 0, \|h_j\|_{L^r(\mathbb{R})} \leq C_r j^{-\beta(r)} \|h_j\|_{L^2(\mathbb{R})}.$$

(K. Yajima-G. Zhang '01)

The symplectic structure

We consider the (complex) Hilbert space ℓ_p^2 defined by the norm

$$\|w\|_p^2 = \sum_{j\geq 1} |w_j|^2 j^p$$

We define the symplectic phase space \mathcal{P}^{p} as

$$\mathcal{P}^{p} = \mathbb{T}^{n} \times \mathbb{R}^{n} \times \ell_{p}^{2} \times \ell_{p}^{2} \ni (\theta, y, z, \overline{z}),$$

equipped with the canonic symplectic structure

$$\sum_{j=1}^n \mathrm{d}\theta_j \wedge \mathrm{d}y_j \ + \ i \sum_{j\geq 1} \mathrm{d}z_j \wedge \mathrm{d}\overline{z}_j.$$

글 🕨 🗦

The Hamiltonian formulation

Let $p \ge 2$ and $n \ge 1$. Fix $(l_1, \dots, l_n) \in]0, 1]^n$ and write $\begin{cases}
u(x) = \sum_{j=1}^n (y_j + l_j)^{\frac{1}{2}} e^{i\theta_j} \varphi_j(\xi, x) + \sum_{j\ge 1} z_j \varphi_{j+n}(\xi, x), \\
\overline{u}(x) = \sum_{j=1}^n (y_j + l_j)^{\frac{1}{2}} e^{-i\theta_j} \varphi_j(\xi, x) + \sum_{j\ge 1} \overline{z}_j \varphi_{j+n}(\xi, x),
\end{cases}$

where $(\theta, y, z, \bar{z}) \in \mathcal{P}^p = \mathbb{T}^n \times \mathbb{R}^n \times \ell_p^2 \times \ell_p^2$ are regarded as variables. In this setting equation (*NLS*) reads as the Hamilton equations associated to the Hamiltonian function H = N + P where

$$N = \sum_{j=1}^n \lambda_j(\xi) y_j + \sum_{j \ge 1} \Lambda_j(\xi) z_j \bar{z}_j$$

 $\Lambda_j(\xi) = \lambda_{j+n}(\xi)$ and

$$P(\theta, y, z, \overline{z}) = \frac{\varepsilon}{2} \int_{\mathbb{R}} \left| \sum_{j=1}^{n} (y_j + l_j)^{\frac{1}{2}} e^{i\theta_j} \varphi_j(\xi, x) + \sum_{j\geq 1} z_j \varphi_{j+n}(\xi, x), \right. \\ \left. \sum_{j=1}^{n} (y_j + l_j)^{\frac{1}{2}} e^{-i\theta_j} \varphi_j(\xi, x) + \sum_{j\geq 1} \overline{z}_j \varphi_{j+n}(\xi, x) \right|^4 dx.$$

-

The Hamiltonian formulation

In other words, we obtain the following system, which is equivalent to (NLS)

$$\begin{cases} \dot{\theta}_{j} = \frac{\partial H}{\partial y_{j}}, \quad \dot{y}_{j} = -\frac{\partial H}{\partial \theta_{j}}, \quad 1 \leq j \leq n \\ \dot{z}_{j} = i \frac{\partial H}{\partial \overline{z}_{j}}, \quad \dot{\overline{z}}_{j} = -i \frac{\partial H}{\partial z_{j}}, \quad j \geq 1 \\ (\theta_{j}(0), y_{j}(0), z_{j}(0), \overline{z}_{j}(0)) = (\theta_{j}^{0}, y_{j}^{0}, z_{j}^{0}, \overline{z}_{j}^{0}) \end{cases}$$

where the initial conditions are chosen so that

$$u_0(x) = \sum_{j=1}^n (l_j + y_j^0)^{\frac{1}{2}} e^{i\theta_j^0} \varphi_j(\varepsilon, x) + \sum_{j\geq 1} z_j^0 \varphi_{j+n}(\xi, x).$$

(문) 문

Consider a smooth function $F = F(\theta, y, z, \overline{z})$, and denote by X_F^t the flow of the equation

$$\begin{cases} \dot{\theta}_{j} = \frac{\partial F}{\partial y_{j}}, \quad \dot{y}_{j} = -\frac{\partial F}{\partial \theta_{j}}, \quad 1 \leq j \leq n \\ \dot{z}_{j} = i \frac{\partial F}{\partial \overline{z}_{j}}, \quad \dot{\overline{z}}_{j} = -i \frac{\partial F}{\partial z_{j}}, \quad j \geq 1 \\ (\theta_{j}(0), y_{j}(0), z_{j}(0), \overline{z}_{j}(0)) = (\theta_{j}^{0}, y_{j}^{0}, z_{j}^{0}, \overline{z}_{j}^{0}) \end{cases}$$

If F is small enough, X_F^1 is well defined and we have

- (i) The application X_F^1 preserves the symplectic structure.
- (ii) For any smooth G we have

$$\frac{\mathsf{d}}{\mathsf{d}t}(G \circ X_F^t) = \{G, F\} \circ X_F^t.$$

Idea of the KAM iteration

Find F so that $H \circ X_F^1$ is in a better form than H = N + P.

▲ 글 ▶ - 글

Write the expansion

$$P = \sum_{m,q,\overline{q}} \sum_{k \in \mathbb{Z}^n} P_{kmq\overline{q}} e^{ik \cdot \theta} y^m z^q \overline{z}^{\overline{q}},$$

We then consider the second order Taylor approximation of P which is

$$R = \sum_{2|m|+|q+\overline{q}|\leq 2} \sum_{k\in\mathbb{Z}^n} R_{kmq\overline{q}} e^{ik\cdot\theta} y^m z^q \overline{z}^{\overline{q}},$$

where $R_{kmq\bar{q}} = P_{kmq\bar{q}}$ Thanks to the Taylor formula we can write

$$H \circ X_{F}^{1} = N \circ X_{F}^{1} + R \circ X_{F}^{1} + (P - R) \circ X_{F}^{1}$$

$$= N + \{N, F\} + \int_{0}^{1} (1 - t)\{\{N, F\}, F\} \circ X_{F}^{t} dt +$$

$$+ R + \int_{0}^{1} \{R, F\} \circ X_{F}^{t} dt + (P - R) \circ X_{F}^{1}.$$

Assume that we can find F and \widehat{N} which has the same form as N and which satisfy the so-called homological equation

$$\{N,F\}+R=\widehat{N}.$$

글 🖒 🛛 글

Once the homological equation is solved : We define the new normal form by $N_+ = N + \hat{N}$, the frequencies of which are given by

$$\lambda^+(\xi)=\lambda(\xi)+\widehat\lambda(\xi)$$
 and $\Lambda^+(\xi)=\Lambda(\xi)+\widehat\Lambda(\xi),$

where

$$\widehat{\lambda}_j(\xi) = rac{\partial \widehat{N}}{\partial y_j}(0,0,0,0,\xi) \text{ and } \widehat{\lambda}_j(\xi) = rac{\partial^2 \widehat{N}}{\partial z_j \partial \overline{z}_j}(0,0,0,0,\xi).$$

We define the new perturbation term P_+ by

$$\mathbf{P}_{+}=(\mathbf{P}-\mathbf{R})\circ X_{\mathbf{F}}^{1}+\int_{0}^{1}\left\{ R(t),\mathbf{F}\right\} \circ X_{\mathbf{F}}^{t}\,\mathrm{d}t,$$

where $R(t) = (1-t)\widehat{N} + tR$ in such a way that

 $H\circ X_F^1=N_++P_+.$

Convergence : If $P = O(\varepsilon)$ and $F = O(\varepsilon)$. Then $R = O(\varepsilon)$ and the quadratic part of P_+ is $O(\varepsilon^2)$.

At the end we obtain a symplectic transformation Φ (near the origin) so that $H^* = H \circ \Phi = N^* + P^*$, where

$$N^{\star} = \sum_{j=1}^{n} \lambda_j^{\star}(\xi) y_j + \sum_{j \ge 1} \Lambda_j^{\star}(\xi) z_j \overline{z}_j,$$

and P^* has no quadratic part in z, \overline{z} and no linear part in y. Then the new coordinates $(y', \theta', z', \overline{z}') = \Phi^{-1}(y, \theta, z, \overline{z})$ satisfy

$$\begin{cases} \dot{\theta}'_{j} = \frac{\partial H^{\star}}{\partial y'_{j}}, \quad \dot{y}'_{j} = -\frac{\partial H^{\star}}{\partial \theta'_{j}}, \quad 1 \le j \le n \\ \dot{z}'_{j} = i \frac{\partial H^{\star}}{\partial \overline{z}'_{j}}, \quad \dot{\overline{z}}'_{j} = -i \frac{\partial H^{\star}}{\partial z'_{j}}, \quad j \ge 1. \end{cases}$$
(NH)

In particular, the solution to (*NH*) with initial condition $(\theta'_i(0), y'_i(0), z'_i(0), \overline{z}'_i(0)) = (\theta'^0_i, 0, 0, 0)$ reads

$$(heta_j'(t),y_j'(t),z_j'(t),\overline{z}_j'(t))=(t\lambda_j^\star+ heta_j'^0,0,0,0).$$

Hence we have constructed a quasi-periodic solution to (NLS).

글 눈 옷 글 눈 드 글 :

The homological equation

Aim : Solve

$$\{N,F\}+R=\widehat{N},$$

with

$$N = \sum_{j=1}^n \lambda_j(\xi) y_j + \sum_{j\geq 1} \Lambda_j(\xi) z_j \overline{z}_j \; .$$

We look for a solution F of the form

$$F = \sum_{2|m|+|q+\overline{q}|\leq 2} \sum_{k\in\mathbb{Z}^n} F_{kmq\overline{q}} e^{ik\cdot\theta} y^m z^q \overline{z}^{\overline{q}}.$$

A direct computation gives

$$iF_{kmq\overline{q}} = \begin{cases} \frac{R_{kmq\overline{q}}}{k \cdot \lambda(\xi) + (q - \overline{q}) \cdot \Lambda(\xi)}, & \text{if } |k| + |q - \overline{q}| \neq 0, \\\\ 0, & \text{otherwise}, \end{cases}$$

$$\widehat{N} = [R] = \sum_{|m|+|q|=1} R_{0mqq} y^m z^q \overline{z}^q.$$

< ∃ >

æ

Control of the frequencies

We show that we can find $(f_k)_{1 \le k \le n}$ such that

Small divisors control : There exist a subset $\Pi_{\alpha} \subset \Pi$ with $\text{Meas}(\Pi \setminus \Pi_{\alpha}) \longrightarrow 0$ when $\alpha \longrightarrow 0$ and $\tau > 1$, such that for all $\xi \in \Pi_{\alpha}$

$$ig| m{k} \cdot \lambda(\xi) + m{l} \cdot \Lambda(\xi) ig| \geq lpha rac{\langle I
angle}{1 + |m{k}|^{ au}}, \quad (m{k}, m{l}) \in \mathcal{Z},$$

where $\mathcal{Z} := \{(k, l) \in \mathbb{Z}^n \times \mathbb{Z}^\infty, (k, l) \neq 0, |l| \leq 2\}.$

To perform the KAM method, we now have to check this condition persists after each iteration. This will be the case if the perturbation $\widehat{\Lambda}_j$ satisfies $|\widehat{\Lambda}_j| \leq C \varepsilon j^{-\beta}$ for some $\beta > 0$.

3 3 4

Control of the frequencies

We have

$$\widehat{\Lambda}_{j}(\xi) = \frac{\partial^{2}\widehat{N}}{\partial z_{j}\partial\overline{z}_{j}}(0,0,0,0,\xi) = \frac{\partial^{2}P}{\partial z_{j}\partial\overline{z}_{j}}(0,0,0,0,\xi).$$

In our case, we have $P = \frac{\varepsilon}{2} \int_{\mathbb{R}} |u|^{4}$, therefore $\frac{\partial^{2}P}{\partial z_{j}\partial\overline{z}_{j}} = 2\varepsilon \int_{\mathbb{R}} \varphi_{j+n}^{2} |u|^{2}.$

Now by the dispersive estimate $\| \varphi_j \|_{L^\infty(\mathbb{R})} \leq C j^{-1/12}$ we get

$$\left|\frac{\partial^2 P}{\partial z_j \partial \overline{z}_j}\right| \leq \varepsilon \|\varphi_{j+n}\|_{L^{\infty}(\mathbb{R})}^2 \|u\|_{L^2(\mathbb{R})}^2 \leq C\varepsilon j^{-1/6} \|u\|_{L^2(\mathbb{R})}^2.$$

< ∃⇒

Ξ.

We consider the linear equation

$$\begin{cases} i\partial_t u + \partial_x^2 u - x^2 u + \epsilon V(t\omega, x)u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}, \\ u(0, x) = u_0(x), \end{cases}$$
(LS)

where the potential $V : \mathbb{T}^n \times \mathbb{R} \ni (\theta, x) \mapsto \mathbb{R}$ satisfies

- V is analytic in θ .
- V is C^{∞} in x, with bounded derivatives.
- V satisfies $|V(\theta, x)| \leq C(1 + x^2)^{-\delta}$ for some $\delta > 0$.

▶ < ∃ >

Reducibility of the linear equation

$$\begin{cases} i\partial_t u + \partial_x^2 u - x^2 u + \epsilon V(t\omega, x)u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}, \\ u(0, x) = u_0(x). \end{cases}$$
(L5)

Theorem (B. Grébert - LT)

There exists ϵ_0 such that for all $0 \le \epsilon < \epsilon_0$ there exists $\Lambda_{\varepsilon} \subset [0, 2\pi)^n$ such that $|[0, 2\pi)^n \setminus \Lambda_{\varepsilon}| \to 0$ as $\epsilon \to 0$, and such that for all $\omega \in \Lambda_{\varepsilon}$, the linear Schrödinger equation (LS) reduces, in $L^2(\mathbb{R})$, to a linear equation with constant coefficients.

Reducibility of the linear equation

$$\begin{cases} i\partial_t u + \partial_x^2 u - x^2 u + \epsilon V(t\omega, x)u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}, \\ u(0, x) = u_0(x). \end{cases}$$
(LS)

Theorem (B. Grébert - LT)

There exists ϵ_0 such that for all $0 \le \epsilon < \epsilon_0$ there exists $\Lambda_{\varepsilon} \subset [0, 2\pi)^n$ such that $|[0, 2\pi)^n \setminus \Lambda_{\varepsilon}| \to 0$ as $\epsilon \to 0$, and such that for all $\omega \in \Lambda_{\varepsilon}$, the linear Schrödinger equation (LS) reduces, in $L^2(\mathbb{R})$, to a linear equation with constant coefficients.

Corollary

Let $\omega \in \Lambda_{\epsilon}$, then any solution u of (LS) is almost-periodic in time and we have the bounds

$$(1-\varepsilon C)\|u_0\|_{\mathcal{H}^{p}} \leq \|u(t)\|_{\mathcal{H}^{p}} \leq (1+\varepsilon C)\|u_0\|_{\mathcal{H}^{p}}, \quad \forall t \in \mathbb{R},$$

for some $C = C(p, \omega)$.

Reducibility of the linear equation

Some previous results

- D. Bambusi & S. Graffi '01; J. Lui & X. Yuan '10 : Case x^β, β > 2.
- W.-M. Wang '08 : Case x², for some particular V.
- ► H. Eliasson & S.B. Kuksin '08 : NLS on T^d.
- ▶ W.-M. Wang '08, J.-M. Delort '10, D. Fang & Q. Zhang '10 : NLS on \mathbb{T}^d : Bounds $||u(t)||_{H^p} \leq (\ln t)^{c^p}$ if V is analytic.
- ▶ J.-M. Delort '10 :

Existence of solutions so that $||u(t)||_{\mathcal{H}^p} \gtrsim t^{p/2}$ if V is allowed to be a pseudo-differential operator.

Hamiltonian formulation

Equation (LS) reads as a non autonomous Hamiltonian system

$$\left\{ egin{array}{ll} \dot{z}_j = -i(2j-1)z_j - iarepsilon rac{\partial}{\partial ar{z}_j} \widetilde{Q}(t,z,ar{z}), & j \geq 1 \ \dot{ar{z}}_j = i(2j-1)ar{z}_j + iarepsilon rac{\partial}{\partial ar{z}_j} \widetilde{Q}(t,z,ar{z}), & j \geq 1 \end{array}
ight.$$

where

$$\widetilde{Q}(t,z,\overline{z}) = \int_{\mathbb{R}} V(\omega t,x) \big(\sum_{j\geq 1} z_j h_j(x)\big) \big(\sum_{j\geq 1} \overline{z}_j h_j(x)\big) dx.$$

We re-interpret this system as an autonomous Hamiltonian system in an extended phase space

$$\begin{cases} \dot{z}_{j} = -i(2j-1)z_{j} - i\varepsilon\frac{\partial}{\partial\bar{z}_{j}}Q(\theta, z, \bar{z}) & j \geq 1\\ \dot{\bar{z}}_{j} = i(2j-1)\bar{z}_{j} + i\varepsilon\frac{\partial}{\partial\bar{z}_{j}}Q(\theta, z, \bar{z}) & j \geq 1\\ \dot{\theta}_{j} = \omega_{j} & j = 1, \cdots, n\\ \dot{y}_{j} = -\varepsilon\frac{\partial}{\partial\theta_{j}}Q(\theta, z, \bar{z}) & j = 1, \cdots, n \end{cases}$$

where

$$Q(heta, z, ar{z}) = \int_{\mathbb{R}} V(heta, x) ig(\sum_{j \ge 1} z_j h_j(x) ig) ig(\sum_{j \ge 1} ar{z}_j h_j(x) ig) dx.$$

▲臣▶ ▲臣▶ 臣 のへで

Linear dynamics

Here the external parameters are directly the frequencies $\omega = (\omega_j)_{1 \le j \le n} \in [0, 2\pi)^n =: \Pi$ and the normal frequencies $\Omega_j = 2j - 1$ are constant.

Using the KAM scheme, we are able to show the existence of a set of parameters $\Pi_{\varepsilon} \subset \Pi$ with $|\Pi \setminus \Pi_{\varepsilon}| \to 0$ when $\varepsilon \to 0$ and a coordinate transformation $\Phi : \Pi_{\varepsilon} \times \mathcal{P}^0 \longrightarrow \mathcal{P}^0$, such that $H \circ \Phi = N^*$, where N^* takes the form

$$\mathcal{N}^{\star}(\omega) = \sum_{j=1}^{n} \omega_j y_j + \sum_{j\geq 1} \Omega_j^{\star} z_j ar{z}_j.$$

In the new coordinates, $(y', \theta', z', \overline{z}') = \Phi^{-1}(y, \theta, z, \overline{z})$, the dynamic is linear with y' invariant :

$$\left\{ \begin{array}{ll} \dot{z}_j' = i\Omega_j^* z_j' & j \geq 1 \\ \dot{\bar{z}}_j' = -i\Omega_j^* \bar{z}_j' & j \geq 1 \\ \dot{\theta}_j' = \omega_j & j = 1, \cdots, n \\ \dot{y}_j' = 0 & j = 1, \cdots, n. \end{array} \right.$$