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Introduction

The equation : We consider the nonlinear Schrédinger equation with harmonic
potential

i0eu+ 03u — x°u = |u]Pu, (t,x) €R xR,
u(0, x) = uo(x),

Physical interest : Model for Bose-Einstein condensates.
Litterature : R. Fukuizumi, K. Yajima - G. Zang, R. Carles, ...
Motivation : The equation is globally well-posed in the energy space.

Let p > 1. Behaviour of
lu(t)[|e )

when t — o0 ?
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Introduction

Difficulty : Spectral structure of —92 + x? : the eigenvalues are \; = 2j — 1,

Jj > 1 and are completely resonant in the sense that there exist many k € N*°
of finite length so that k- A=}, kiA; = 0.
Therefore, we consider

et B —xCuteViu=clulu, (LX) RxE, o
u(0, x) = wo(x).

where ¢ € 1 and V € S(R,R).
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Introduction

Difficulty : Spectral structure of —92 + x? : the eigenvalues are \; = 2j — 1,
Jj > 1 and are completely resonant in the sense that there exist many k € N*°
of finite length so that k- A=}, kiA; = 0.

Therefore, we consider

{ iOeu+ Zu— x*u+eV(X)u=eluffu, (t,x) €R xR, (NLS)

u(0, x) = wo(x).

where ¢ € 1 and V € S(R,R).

Aim :

Construction of quasi-periodic in time solutions to (NLS) for typical V. In
particular, the HP norm of these solutions will be bounded.

Quasi-periodicity :

f:R — C, t — f(t) is quasi-periodic if there exist n > 1, a periodic function

U:T" — C and (w1, ...,wn) € R" so that for all t € R,
f(t) = U(wit,. .. ,wat).
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Introduction

Denote by A= —82 + x* — eV/(x).
» There exists an Hilbertian basis of L>(R) of eigenfunctions (;);>1 of A

Atpj = Aj¥j, with )\j ~2j—1 and ©wj ~ hj,

where (hj)j>1 are the Hermite functions.

» For p > 0, we define the Sobolev spaces
HP = HP(R) = {ue S'(R) : A”?uc [*(R)}.

> Letu:Zchpjer,then

j=1

2 . 2
lullfen ~ > i wil>.

jz1
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The result on the nonlinear equation

Our main result concerning the nonlinear Schrédinger equation (NLS) is the
following

Theorem (B. Grébert - LT)

Let n > 1 be an integer. Then there exist a large class of V € S(R) and g0 > 0
such that for each € < e the solution of (NLS) with initial datum

Z l1/2ele_,<p (IC)
with (I, ,In) C (0,1]" and (64, ...,0,) € T", is quasi-periodic.

» When 6 covers T", the set of solutions of (NLS) with initial condition (/C)
covers a n dimensional torus which is invariant by (NLS).

» Our result also applies to any non linearity +|u|*™u, with m > 1.

» Theset {1,---,n} can be replaced by any finite set of N of cardinality n.
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The more precise result

Let n > 1 and M = [—1,1]". There exist (fc)1<k<n € S(R) such that if we set

= &fi(x),

with &€ = (&1,...,&n) € T we have

Theorem (B. Grébert - LT)

Let n > 1 be an integer. Then there exists a_Cantor set M 1 of full measure
and eo > 0 so that for each € < €g and & € I the solution of (NLS) with initial
datum

uo(x) = Z 112" g(¢, ), (1)

with (I, - ,1n) C (0,1]" and (01, ...,0n) € T", is quasi-periodic.

The solution u reads

n

u(t,x) = 3 (1 +1i(8) 2006, %) + 3 zi(8) gy (6, ).

j=1 j>1
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Some previous results

\4

S.B. Kuksin '93 and J. Pdschel '96 :
Case \j ~ ¢j with d > 1 or with smoothing nonlinearity.

S.B. Kuksin & J. Péschel '96 :
NLS on [0, 7] without external parameter &.

H. Eliasson & S.B. Kuksin '08 :
NLS on T? with V % u perturbation.

B. Grébert, R. Imekraz & E. Paturel '08 :
Normal forms technics.

\4

v

v

Key ingredient
Use of dispersive properties of the Hermite functions

Vr>2, 38(r) >0, |[hillrwy < G POlhi] 2y

(K. Yajima-G. Zhang '01)
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The symplectic structure

We consider the (complex) Hilbert space ¢3 defined by the norm

2 2.
Iwllp =D Iwil”

j=1
We define the symplectic phase space P* as
PP =T"xR" x5 x (33 (0,y,2,%),

equipped with the canonic symplectic structure

Zn:do,-/\dy,- + iy dzAdz;.

=t i>1
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The Hamiltonian formulation
Let p>2and n> 1. Fix (h,...,I,) €]0,1]” and write
n 1 9.
u(x) = Zj:l(yi +1j)ze el‘pj(fvx) + EjZl zjpj+n(€, %),
- n 1 g, —
G(x) = 27, (v + ) 2e (€, X) + 351 Zipin(€, %),

where (0,y,z,z) € PP =T" x R" x Ef, X Zf, are regarded as variables. In this
setting equation (NLS) reads as the Hamilton equations associated to the
Hamiltonian function H = N + P where

N =Y XNEyi+ D N(©z3,

i1

A/(E) = Ajn(€) and

P(e Y, Z, Z /‘Z(yl+l 2e JSDJ 57 +ZZJSOJ+"(§)X)

j>1

S0+ B3 g6, x) + 3 Fippaneon)| e
j=1

j>1
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The Hamiltonian formulation

In other words, we obtain the following system, which is equivalent to (NLS)

), —OH v _ _OH < i<p
0 ay; 0 Vi 96; IS
.'7.6H Lii.BH .
ijlafjv Zj = Isz’ JZ]-

(6(0),%(0), 2:(0), Z;(0)) = (6}, 57, 27, 2}),

where the initial conditions are chosen so that

n

uo(x) = > (i + v9) 2% (e, x) + > 2 ein(€, ).

=1 i1
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The general KAM strategy

Consider a smooth function F = F(0,y,z,Z), and denote by X§ the flow of the

equation
), _ OF . _ _OF
=%y Vi=—5g 1=Jj<n
. _ :OF 5. — _jOF :
Zj Igz ; Zj 62 y J Z 1

(6;(0),%(0), 2:(0), Z;(0)) = (6}, 7. 27, 2}).
If Fis small enough, X} is well defined and we have

(i) The application X} preserves the symplectic structure.

(i) For any smooth G we have

S (Goxt) ={G Fyoxt
Idea of the KAM iteration

Find F so that H oX,% is in a better form than H = N + P.
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The general KAM strategy

Write the expansion
0 L
P = Z Z Pimgs e "y z927,
m,q,q keZn
We then consider the second order Taylor approximation of P which is
0 L
R = Z Z kaqa e’ yquZq7
2|m|+|q+d|<2 kezn

where Rimgg = Pimqg
Thanks to the Taylor formula we can write

HoXt = NoXt+RoXf+(P—R)oX¢

1
N+{N,F}+/ (1—t){{N,F} F}oXidt+
0
1
+R+/ {R,F}oXfdt+ (P —R)oX¢.
0

Assume that we can find F and N which has the same form as N and which
satisfy the so-called homological equation

{N,F} +R=N.
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The general KAM strategy

Once the homological equation is solved : We define the new normal form by
Ny = N + N, the frequencies of which are given by

XF(E) = ME) + A(€) and AT(€) = A(€) + (&),

where

82

~ ON -
Aj(£)=a7j(070,0,07£) and A;(§) = 92,07,

2 _(0,0,0,0,¢).
We define the new perturbation term P by
1
P, =(P— R)oxé+/ {R(t), F } o X{dt,
0

where R(t) = (1 — t)N + tR in such a way that
Ho X =Ny + P, .

Convergence : If P = O(e) and F = O(g). Then R = O(¢) and the quadratic
part of P, is O(¢?).
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The general KAM strategy

At the end we obtain a symplectic transformation ® (near the origin) so that
H*=Ho® = N* + P*, where

N =3 Ny + ) N (©)zz,
i1 i1

and P* has no quadratic part in z,Z and no linear part in y. Then the new
! =/

coordinates (y',0',2',2') = ®7(y, 6, z, Z) satisfy

) _ OH* /I _ __ OH* :
0j= %7 Y= —%g> 1<j<n
J J
=/ -OH* =/ SOH* . (NH)
G5=i%r, Zi=—i%y, Jjz1l
J J

In particular, the solution to (NVH) with initial condition
(67(0),%/(0), z(0), Zj(0)) = (¢;°, 0,0,0) reads

(03(£), %7 (1), 2i(1), Zj(1)) = (tA] +6;°,0,0,0).

Hence we have constructed a quasi-periodic solution to (NLS).
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The homological equation

Aim : Solve N
{N7 F} +R=N,
with .

N=> XNy + > Nz .

=) j>1
We look for a solution F of the form
_ ik-0 m_q—q
F = E E Fimgge” "y z'Z".
2|m|+[q+q|<2 kezZn

A direct computation gives

Rimqg . B
if |k _
k-M&)+(qg—79) A€’ |k| +1q9 —q| #0,

0, otherwise,

I’kaqﬁ =

i\\l = [R] = Z Rquqymzqfq.

m|+|q|=1
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Control of the frequencies

We show that we can find (fc)1<k<n such that

Small divisors control : There exist a subset M, C M with Meas(M\MN,) — 0
when « — 0 and 7 > 1, such that for all £ € M,

h
[k X&) +1-A(&)| > am7 (k,)) € 2,

where Z := {(k,I) € Z" x Z, (k,1) £ 0, |I| < 2}.

To perform the KAM method, we now have to check this condition persists
after each iteration. This will be the case if the perturbation A; satisfies
IAj| < Cej™" for some 3 > 0.
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Control of the frequencies

We have e ,
=~ 0N P
/\1(5) - szafj (07010707 5) - sz(?fj

(0,0,0,0,¢).

€ 4 62P 2 2
In our case, we have P = 5 |u|®, therefore =2¢ | @iinlul”
R R

0z;0z; B
Now by the dispersive estimate ||¢;||oo@) < G2 we get
P 2 2 —1/6 (12
(52,02, | < cllesnllillullize < Cei™/ulffzg,
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Reducibility of the linear equation

We consider the linear equation

(LS)

iOeu+ 2u — xPu+eV(tw,x)u=0, (t,x)€R xR,
(0, %) = to(x),

where the potential V : T" x R 5 (6, x) — R satisfies
» V is analytic in 6.
» Vis C*™ in x, with bounded derivatives.
» V satisfies [V/(0,x)| < C(1 + x?)~° for some § > 0.
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Reducibility of the linear equation

{i@tu—i—&%u—x2u—i—eV(t<,u,x)u=07 (t,x) e R x R, (LS)

u(0, x) = wo(x).

Theorem (B. Grébert - LT)

There exists o such that for all 0 < € < €o there exists A. C [0,27)" such that
[[0,27)"\A:| — 0 as e — 0, and such that for all w € A., the linear Schrédinger
equation (LS) reduces, in L>(R), to a linear equation with constant coefficients.
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Reducibility of the linear equation

(LS)

ideu+ Zu— x*u+ eV(tw,x)u=0, (t,x)€RxR,
u(0, x) = wo(x).

Theorem (B. Grébert - LT)

There exists €o such that for all 0 < € < o there exists A\ C [0,27)" such that
[[0,27)"\A:| — 0 as e — 0, and such that for all w € A., the linear Schrédinger
equation (LS) reduces, in L*(R), to a linear equation with constant coefficients.

Corollary

Let w € A, then any solution u of (LS) is almost-periodic in time and we have
the bounds

(1 —eQ)|luoflre < flu(t)llre < (1+eC)|uollre, ViEER,

for some C = C(p,w).
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Reducibility of the linear equation

Some previous results

» D. Bambusi & S. Graffi '01; J. Lui & X. Yuan '10:
Case x°, 8> 2.

» W.-M. Wang '08 :
Case x2, for some particular V.

» H. Eliasson & S.B. Kuksin '08 :
NLS on T¢.
» W.-M. Wang '08, J.-M. Delort '10, D. Fang & Q. Zhang '10 :

NLS on T¢ : Bounds ||u(t)||me < (Int)? if V is analytic.

» J.-M. Delort '10 :
Existence of solutions so that ||u(t)||2e = tP/? if V is allowed to be a
pseudo-differential operator.

Laurent THOMANN KAM for NLS with harmonic potential



Hamiltonian formulation

Equation (LS) reads as a non autonomous Hamiltonian system
2J' = _I(2J - l)ZJ - i&%é(t,z,i), ./ >1
J
5 =i~ 1)z +iezQt,2,2), j=>1
J

where

Q(t,z,z) = / (wt, x) ZZJ (x)) ZZJ

j>1 j>1

We re-interpret this system as an autonomous Hamiltonian system in an
extended phase space

g =—i(2j— 1)z - ie 3 Q0.2.2) j>1
zzmw—nz+maowzz) j>1

;= wj j=1---,n
—56%1_0(6’,2,2) j=1,--,n

S &2
I

where

Q(0,z,2) :/ (8, x) szh(x (Zijhj(x))dx

jz1 i1
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Linear dynamics

Here the external parameters are directly the frequencies

w = (wj)1<j<n € [0,27)" =: 1 and the normal frequencies Q; = 2j — 1 are
constant.

Using the KAM scheme, we are able to show the existence of a set of
parameters IN. C N with [[T\M| — 0 when € — 0 and a coordinate
transformation @ : M. x P° — P°, such that H o ® = N*, where N* takes

the form
n
N*(w) =Y wiyi+ > Q73
Jj=1 j>1
In the new coordinates, (y',0’,2',2') = ®~(y, 0, z, z), the dynamic is linear
with y’ invariant :

Z; =iz j>1
5 -i0z =1
0} = w; j=1,---,n
}',J./:o j=1,---,n.
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