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I- Introduction

Pure and mixed state
Pure state :

We know with certainty the state of the system

|ψ� ∈ H �ψ|ψ� = 1with

For a pure state,  ρ is the projector on |ψ�

eiφ

or

ρ = |ψ��ψ|Density operator tr[ρ] = tr[ρ2] = 1with



Mixed state :
Probabilistic description of our knowledge about 
the system ρ : H→ H ρ = ρ† ρ > 0 tr[ρ] = 1

ρ =
�

i

pi|φi��φi|example: pi > 0

tr[ρ2] < 1

Pure and mixed state
I- Introduction

von Neumann entropy: S = −tr[ρ ln ρ]
S = 0

S > 0

Pure state
Mixed state

�

i

pi = 1



I- Introduction

Expectation value of an observable  

OLet hermitian operator
state of the systemρ

The expectation of O : �O�ρ

�O�ρ ≡ tr [Oρ]

�O�ρ = �ψ|O|ψ�
If ρ is pure, ρ = |ψ��ψ|



Entanglement Definition
for a pure state 

The state of the system is entangled if it is not a product
Examples : 

is entangled|Ψ� = |φ�a ⊗ |ψ�b + |ψ�a ⊗ |φ�b

is separable|Ψ� = |φ�a ⊗ |ψ�b

I- Introduction

Two Quantum sub-systems a and b of S: 
|φ�a ∈ Ha; |φ�b ∈ Hb |Ψ� ∈ Ha ⊗Hb



Entanglement characterization
for a bipartite pure state 

A pure state is entangled     ⇔ reduced state is a mixed state

ρ = |Ψ��Ψ|; ρa = trb[ρ] ≡
�

i
b�φi|ρ|φi�b

⇔⇔ ρa mixed stateis entangled|Ψ� S[ρa] > 0

I- Introduction

Conclusion: 
|Ψ� entangled ? »    « is Answering the question :     

is a simple task 

S[ρa] is the von Neumann entropy     



Entanglement Definition
for a mixed state 

The state of the system is entangled if it is not separable

I- Introduction

Separable state : ρ =
�

i

piρ
a
i ⊗ ρb

i ; pi > 0;
�

i

pi = 1

Motivation : Entanglement between N>3 levels systems 

OPEN PROBLEM : 
Necessary and sufficient condition for the separability 
of mixed states with dim>2x3 



Entanglement witness
I- Introduction

W operator such that:
is entangledtr[ρW ] > 0⇒ ρstate

nothing can be concludedtr[ρW ] < 0

tr[ρW ] > 0
tr[ρW ] < 0

separable
states

Sufficient but not necessary entanglement criterion



Entanglement witness
Example CHSH inequality 2-levels system

σz =
�

1 0
0 −1

�
σx =

�
0 1
1 0

�

But

If is separable then

I- Introduction

ρ

σ(θ) = cos θσz + sin θσx

C(θ, θ�) = σa(θ)⊗ σb(θ�)Correlator : 

W (θ, θ�) ≡ C(0, 0) + C(θ, 0) + C(0, θ�)− C(θ, θ�)

|tr [ρW (θ, θ�)]| ≤ 2

sup
θ,θ�,ρ

|tr [ρW (θ, θ�)]| = 2
√

2 > 2



Motivation
I- Introduction

 Molecules as a tool for exploring entanglement in 
N-levels systems

Molecular orientation correlation based CHSH 
inequality, for detecting entanglement

Molecular chains
 Thermal entanglement
Information transfer



N levels systems = rotational levels

Jz|j,m� = m|j,m�

j = 0
j = 1

j = 2

j = 3
x

θ

φ
y

z

m = −j,−j + 1, · · · , j

EJm = Bj(j + 1)

�θ,φ|jm� = Yjm(θ,φ)

H = BJ
2 U(t) = e−iBJ2t

II-Entanglement characterization

J2|j,m� = j(j + 1)|j,m�



Oriented states

Orientation of a state  : O = �Ô�ρ ≡ tr[ρÔ]
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O = 0.57 O = 0.96

Ô|λjmax� = λjmax |λjmax�

jmax = 1 jmax = 5

|λjmax� =
jmax�

j=|m|

Cj |j,m�

Orientation observable: Ô ≡ cos(θ̂)

Oriented state are not stationary :  
O(t) = �U−1(t)ÔU(t)�ρ

θ

II-Entanglement characterization



Orientation correlations

if we know that    then:   

if    then   is entangled   ρ

II-Entanglement characterization

Correlator: Ĉ(t1, t2) = Ô1(t1)⊗ Ô2(t2)
Ôi ≡ cos(θ̂i)Ôi(t) ≡ U

−1(t)ÔiU(t),

Witness:Ŵ (t1, t2) = Ĉ(0, 0) + Ĉ(t1, 0) + Ĉ(0, t2)− Ĉ(t1, t2)

if    ρthen   is entangled   
����Ŵ (t1, t2)�ρ

��� > 2

����Ŵ (t1, t2)�ρ

��� > 2λ2
jmax

j ≤ jmax
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Fig. 1. (Color online) Maximal value of 〈B1〉 as a function of t1 and t2 in units of the rotational period. Left z-axis: highest
eigenvalue β1. Right z-axis: relative violation b1 defined by equation (11). (a): jmax = 1, m = 0, (b): jmax = 5, m = 0.

3.3 Reference frame and temporal origin

A straightforward application of the results derived in Sec-
tion 3 consists of showing that, in order to study the spec-
trum of B1, we can, without loss of generality, numerically
diagonalize it in the specific case of t′1 = t′2 = 0. This result
is due to the fact that both operators are related by a local
unitary transformation. Using the notation of Section 2,
we have here that t1 = φ′

A−φA and t2 = φ′
B−φB . Another

interesting application of the general results of Section 2
consists of showing that the inequalities discussed here
allow for local realism violation even in the case where
observers A and B have different time origins. The same
happens for the spatial reference frame: violation is in-
dependent of any previous agreement between observers.
However, different temporal origins and reference frames
correspond to different non-local detected states, that are
related to each other by local unitary transformations.

We start by discussing in more details the time ori-
gin chosen by both observers. Usually, the orientation
Bell-type inequalities depend on four times of measure-
ments, as defined in equation (8). However, as pointed out
previously, different times correspond to the application of
different unitary transformations. We can thus apply the
results of Section 3, identifying the general operator Ô to
the operator cos θ̂. This leads to the inequalities:

〈B1(t1, t2, t′1, t
′
2)〉 = 〈B1(0, 0, t′1 − t1, t

′
2 − t2)〉 ≤ 2λ2

max.
(10)

The first identity shows that states maximally violat-
ing the Bell-type inequality for t1, t2, t′1, t

′
2, defined as

|smax(t1, t2, t′1, t′2)〉 can be obtained by the one maxi-
mally violating it for 0, 0, t′1 − t1, t′2 − t2, that we will call
|smax(0, 0, t′1 − t1, t′2 − t2)〉 by the application of the trans-
formation U(t1)⊗U(t2) |smax(0, 0, t′1 − t1, t′2 − t2)〉. Tem-
poral uncertainties of τ1, τ2 for each one of the molecules
can always be translated as the application of the uni-
tary operator U(τ1)⊗U(τ2), so that their only effect is to
change the eigenstates of operators Bi by the same trans-
formation. Violation can thus still be observed, and the
subspace of states violating local realism are obtained by
a simple unitary transformation on the original subspace.

The same type of argument can be used for uncertain-
ties of the reference frame for each observer. All reference

frames are connected by local unitary transformations de-
scribing rotations about some direction of space, and re-
sults for different references frames are connected by these
same unitary transformations.

We apply these results to simplify the investigation of
possible violations of inequality (9).

3.4 Results

For a given value of jmax, we have numerically diagonal-
ized operator B1(0, 0, t1, t2), and obtained for each (t1, t2),
its highest eigenvalue β1(t1, t2), which gives the maximal
value of 〈B1〉 (maximal violation of (9)). This quantity de-
pends on the dimensionality of the system, and we com-
pare the amplitude of the violation when different values
of jmax are used by defining the relative violation

b1(t1, t2) ≡
β1(t1, t2) − 2(λmax)2

2(λmax)2
. (11)

Results for different values of jmax and m = 0 are shown
in Figure 1. We can see that the proposed inequalities are
violated for a significant region of parameters t1 and t2.
This result, which generalizes the one discussed in [22],
represents an advantage from the point of view of ex-
perimental implementations. It shows that both observers
have the freedom to independently choose the times when
measurements are performed, and to have different un-
certainties with respect to it. Figure 1 also calls one’s at-
tention because of its symmetries. The central symmetry
with respect to the point t1 = t2 = 0.5 corresponds to the
time reversal symmetry. One can also easily understand
the mirror symmetry about the t1 = t2 line with the help
of the particle exchange symmetry of operator B1.

We have shown in [22] that equation (9) can be vio-
lated by a number of pure states, and numerically studied
the relative violation (11) with increasing dimension. The
results, shown in Figure 2 were obtained in a particular
case, where both molecules had a vanishing angular mo-
mentum z-axis projection (m = 0 for both molecules).
The effects of considering different values of m will be dis-
cussed in the following. We focus here in the m = 0 case
in order to discuss the behaviour of violation of (9) with
respect to the dimensionality of the system. We see that

jmax = 5
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3.3 Reference frame and temporal origin

A straightforward application of the results derived in Sec-
tion 3 consists of showing that, in order to study the spec-
trum of B1, we can, without loss of generality, numerically
diagonalize it in the specific case of t′1 = t′2 = 0. This result
is due to the fact that both operators are related by a local
unitary transformation. Using the notation of Section 2,
we have here that t1 = φ′

A−φA and t2 = φ′
B−φB . Another

interesting application of the general results of Section 2
consists of showing that the inequalities discussed here
allow for local realism violation even in the case where
observers A and B have different time origins. The same
happens for the spatial reference frame: violation is in-
dependent of any previous agreement between observers.
However, different temporal origins and reference frames
correspond to different non-local detected states, that are
related to each other by local unitary transformations.

We start by discussing in more details the time ori-
gin chosen by both observers. Usually, the orientation
Bell-type inequalities depend on four times of measure-
ments, as defined in equation (8). However, as pointed out
previously, different times correspond to the application of
different unitary transformations. We can thus apply the
results of Section 3, identifying the general operator Ô to
the operator cos θ̂. This leads to the inequalities:

〈B1(t1, t2, t′1, t
′
2)〉 = 〈B1(0, 0, t′1 − t1, t

′
2 − t2)〉 ≤ 2λ2

max.
(10)

The first identity shows that states maximally violat-
ing the Bell-type inequality for t1, t2, t′1, t

′
2, defined as

|smax(t1, t2, t′1, t′2)〉 can be obtained by the one maxi-
mally violating it for 0, 0, t′1 − t1, t′2 − t2, that we will call
|smax(0, 0, t′1 − t1, t′2 − t2)〉 by the application of the trans-
formation U(t1)⊗U(t2) |smax(0, 0, t′1 − t1, t′2 − t2)〉. Tem-
poral uncertainties of τ1, τ2 for each one of the molecules
can always be translated as the application of the uni-
tary operator U(τ1)⊗U(τ2), so that their only effect is to
change the eigenstates of operators Bi by the same trans-
formation. Violation can thus still be observed, and the
subspace of states violating local realism are obtained by
a simple unitary transformation on the original subspace.

The same type of argument can be used for uncertain-
ties of the reference frame for each observer. All reference

frames are connected by local unitary transformations de-
scribing rotations about some direction of space, and re-
sults for different references frames are connected by these
same unitary transformations.

We apply these results to simplify the investigation of
possible violations of inequality (9).

3.4 Results

For a given value of jmax, we have numerically diagonal-
ized operator B1(0, 0, t1, t2), and obtained for each (t1, t2),
its highest eigenvalue β1(t1, t2), which gives the maximal
value of 〈B1〉 (maximal violation of (9)). This quantity de-
pends on the dimensionality of the system, and we com-
pare the amplitude of the violation when different values
of jmax are used by defining the relative violation

b1(t1, t2) ≡
β1(t1, t2) − 2(λmax)2

2(λmax)2
. (11)

Results for different values of jmax and m = 0 are shown
in Figure 1. We can see that the proposed inequalities are
violated for a significant region of parameters t1 and t2.
This result, which generalizes the one discussed in [22],
represents an advantage from the point of view of ex-
perimental implementations. It shows that both observers
have the freedom to independently choose the times when
measurements are performed, and to have different un-
certainties with respect to it. Figure 1 also calls one’s at-
tention because of its symmetries. The central symmetry
with respect to the point t1 = t2 = 0.5 corresponds to the
time reversal symmetry. One can also easily understand
the mirror symmetry about the t1 = t2 line with the help
of the particle exchange symmetry of operator B1.

We have shown in [22] that equation (9) can be vio-
lated by a number of pure states, and numerically studied
the relative violation (11) with increasing dimension. The
results, shown in Figure 2 were obtained in a particular
case, where both molecules had a vanishing angular mo-
mentum z-axis projection (m = 0 for both molecules).
The effects of considering different values of m will be dis-
cussed in the following. We focus here in the m = 0 case
in order to discuss the behaviour of violation of (9) with
respect to the dimensionality of the system. We see that

jmax = 1

max|ψ��ψ|Ŵ (t1, t2)|ψ�

tude of the violation for different values of jmax in Fig. 1.
While jmax ! 1 corresponds to a two-level system, jmax !
2 and jmax ! 5 are two examples of higher dimensional
systems where local realism can, in principle, be violated.

A first motivating result is that for a broad range of
times, Max"hB1#t$i%> 2!2

max, thus violating Eq. (3). It
proves that hB1#t$i is useful for nonlocality tests. In par-
ticular, in the two dimensional case jmax ! 1,
Max"hB1#t$i% reaches its maximal value of 2

!!!
2

p
!2
max, as

for CHSH inequalities with two level systems. However,
with increasing dimensionality, the maximum relative vio-
lation decreases. This is shown in Fig. 1: the maximal
relative violation of Eq. (3) decreases from 41% to 29%
when jmax varies from 1 to 5. In addition, the highest
possible local-realism threshold given by Eq. (3) is ob-
tained in a true infinite dimensional space, in which case
!max ! 1. The cos" eigenvalues then form a continuum,
and Eq. (3) becomes a CHSH inequality for continuous
measurement values. In an experiment, one does not al-
ways control the dimension of the subspace where entan-
glement is created, and the maximum threshold 2!2

max ! 2
should be considered. Figure 1 shows that already for low
values of jmax it is possible to violate this general threshold.
Indeed, for jmax ! 5, the maximum of hB1#t$i is 9=4, and
for all values jmax & 5, some entangled state violates
Eq. (3). This can be very useful in an experiment, and is
a consequence of two facts: high orientation (high values
of !max) can be obtained in reduced angular momentum
subspaces [23]; entanglement enhances two particle ori-
entation correlations [13].

We have shown that the operator defined by Eq. (2)
allows not only for the realization of Bell-type tests in
finite angular momentum subspaces, but also when the
size of the subspace is not a priori known. However, the
maximal value of the violation decreases with dimension-

ality. This may render the proposed test more difficult in
very high dimensions. We can overcome this by a dichoto-
mizing procedure, in which a high dimensional system is
transformed into an effective two-level one. The dichoto-
mization is defined as follows: the states j!ni for which
!n ! h!nj cos"j!ni> 0 are said to be positively oriented,
while those for which !n ' 0 are considered as negatively
oriented. The orientation eigenstates are thus separated in
two classes, j!(i and j!)i, depending on the sign of their
associated eigenvalue. We now define, for each molecule,
the projectors on the subspaces of positive or negative
orientation: !* ! P

!* j!*ih!*j. The measured observ-
able for the molecule i is then !i ! !( )!). This mea-
surement consists in counting the asymmetry of the mo-
lecular angular distribution. For a given single-molecule
state j’i ! P

!(c!( j!(i(
P

!)c!) j!)i, h’j!ij’i can
take any value in the interval "(1;)1%. The total two-
molecule observable is defined as ! ! !1 +!2. We
refer, as before, to two-molecule correlation measurements
realized at two different times, using !#t1; t2$ ! !1#t1$ +
!2#t2$ where !i#ti$ ! Û)1

i #ti$!iÛi#ti$. In analogy to
Eq. (2), we now define the operator

 B 2#t$ ! !#t; t$ (!#t; 0$ (!#0; t$ )!#0; 0$: (4)

Since !#ti; tj$2 ! 1, one can show that the highest value
hB2#t$i can reach is given by the Cirel’son bound 2

!!!
2

p
[18].

In addition, in the framework of a local theory, we have

 jhB2#t$iLTj ' 2; 8 t > 0: (5)

Figure 2 shows the maximum value of hB2#t$i as a function
of time for jmax ! 1, 2, and 5. For jmax ! 1 we obtain
trivially the same result as with B1 (with a simple scaling
factor). However, for jmax > 1, measuring B2 has some
advantages over B1. Cirel’son and locality bounds do not
depend on dimensionality anymore, remaining valid even
in the continuous case. Furthermore, Figs. 1 and 2 show

FIG. 1 (color online). Maximal value of hB1#t$i in the sub-
space H with j ' jmax as a function of t in units of the
rotational period #. The black, red (gray), and blue (dark gray)
curves correspond to jmax ! 1, 2, and 5, respectively. The
associated local-realism thresholds are represented by dashed
horizontal lines. The continuous case associated with the limit
jmax ! (1 is also shown as a dotted horizontal line.

FIG. 2 (color online). Maximal value of hB2#t$i as a function
of t in units of the rotational period #. The solid, dashed, and
dotted curves correspond to jmax ! 1, 2, and 5, respectively. The
local-realism threshold and the Cirel’son bound are shown as
horizontal lines.

PRL 99, 130405 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
28 SEPTEMBER 2007

130405-3

t1 = t2 = t

∃(t1, t2), Ŵ (t1, t2)
is an entanglement witness

P. Milman,  et al. Eur. Phys. J. (2009)

P. Milman et al. Phys. Rev. Lett. (2007)
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Entanglement in many body systems

Finite chain of N polar molecules

Questions: 

Information transmission along the chain

Entanglement as a function of temperature

III- Molecular Chain

j = 1, m = 0,±1

j = 0, m = 0



ces, are also considered in the present work. In this case,
entanglement is created in an uncontrolled way in a collec-
tion of N molecules, two by two. Finally, we investigate
some ways of detecting entanglement given the possibilities
of each system, and describe how to perform nonlocality
tests.

In Sec. II, we describe the basic principles for entangle-
ment creation between the rotational levels of two polar mol-
ecules. The effects of dissipation are discussed in Sec. III,
together with possible experimental realizations. Finally, a
direct detection test of this entanglement is described in Sec.
IV.

II. LASER-ASSISTED CREATION OF ROTATIONAL
ENTANGLEMENT

A. General frame

We consider here two identical diatomic polar molecules,
initially prepared in their ground electronic and rotational
levels. For simplicity, and in order to describe the physical
process on which relies this entanglement creation proce-
dure, we ignore in this section the vibrational degree of free-
dom. The additional complexity introduced by the vibra-
tional motion will be dealt with in Sec. II B.

Since the mechanism proposed in the next section for the
implementation of a quantum phase gate is based on unitary
transformations conserving the projection of the rotational
quantum number of both molecules on the intermolecular
axis, this projection is fixed at zero in the following !see the
justification given at the end of Sec. II B for details".

The rotational stationary states of each isolated molecule,
with energies

!N = BrotN!N + 1" , !1"

are denoted by #N$i, with

%"i,#i#N$i = YN,0!"i,#i" , !2"

where YN,0!"i ,#i" represents the spherical harmonic associ-
ated with the molecular rotational quantum number N of pro-
jection zero on the intermolecular axis. The index identifying
each molecule is i=1,2. The angular coordinates of the two
molecules with respect to the relative intermolecular coordi-
nate r! are denoted by the polar and azimuthal angles "i and
#i !see Fig. 1 for a schematic representation". The molecular
rotational constant Brot corresponds to the rotational period
Trot=$% /Brot.

For the two-molecule interacting system, the field free
Hamiltonian reads

Ĥ = Ĥ0 + Vd!r!" , !3"

where the noninteraction Hamiltonian Ĥ0 is written as the
following sum of monomolecular Hamiltonians

Ĥ0 = &
i

&
N

!N#N$i i%N# , !4"

and the dipole interaction potential Vd!r!" takes the form

Vd!r!" =
1

4%&0

'2

r3 '− 2 cos "1 cos "2

+ sin "1 sin "2 cos!#1 − #2"( . !5"

In this equation, ' is the permanent dipole moment of the
molecule.

The interaction of the two molecules with a sequence of
linearly polarized laser pulses is described within the dipole
approximation by the length-gauge laser interaction Hamil-
tonian

Ĥlaser = − 'E!t"!cos "1 + cos "2" , !6"

where we have assumed that the polarization of the electric
field E! !t" is parallel to the intermolecular vector r!.

Since in our scheme the projection of the rotational quan-
tum number on the intermolecular axis remains equal to
zero, the second part of the dipole interaction potential in Eq.
!5" averages to zero, and one is left with

Vd!r!" = −
1

2%&0

'2

r3 cos "1 cos "2. !7"

This dipole interaction only couples angular momentum
states N, which differ by one unit, and the selection rule
(N= ±1 applies for each molecule.

For the sake of simplicity let us first analyze the effect of
the dipole interaction in the angular subspace spanned by the
quantum numbers N=0 and 1 only. This subspace is entirely
characterized by the tensorial product basis set #0$1 ! #0$2,
#0$1 ! #1$2, #1$1 ! #0$2 and #1$1 ! #1$2, which we can reference
more simply as the states #00$, #01$, #10$, and #11$. Note that
out of these four eigenstates of the noninteracting Hamil-
tonian Ĥ0, #01$ and #10$ are degenerate. The perturbation
regime therefore applies when

FIG. 1. !Color online" Schematic view of the molecular configu-
ration. The quantization axis is chosen as the intermolecular axis.
The electric fields E! !t" associated with the laser pulses are assumed
to be linearly polarized along this same direction. The orientations
of the permanent dipoles !! 1 and !! 2 of the two molecules are char-
acterized by the angles !"1 ,#1" and !"2 ,#2".

CHARRON et al. PHYSICAL REVIEW A 75, 033414 !2007"

033414-2

Dipole-Dipole interaction
Vd(�r) =

µ1µ2

4π�0r3
[−2 cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)]

j = 0

j = 1

|00�a|00�b

|00�a|1m�b ± |1m�a|00�b

|1m1�a|1m2�b

III- Molecular Chain

Dipole-Dipole interaction creates entanglement



III- Molecular Chain

Hamiltonian of the chain

�
H
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[H(m)

, H
(m�)] = 0

3 indépendents XX-Heisenberg Chains (m = 0± 1)

E(|m|)
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Entanglement Measure
let ρ =

�

ijkn

ρijkn|i�a�j| ⊗ |k�b�n|

=
�

m

rm|Ψm��Ψm|Diagonalisation

N (ρ) =
�

rm<0

|rm| EN (ρ) = log2(2N + 1)

Negativity Logarithmic negativity

measures by how much     fails to be positive definiteρTA

Partial transpose ρTa =
�

ijkn

ρjikn|i�a�j| ⊗ |k�b�n|



 Thermal entanglement

Entanglement of a molecule with the rest of the chain 
increases with the temperature.
P. Milman, A. Keller, Phys. Rev.  A. 79, 52303 (2009).

effects of detection inefficiency. Following the definition
!!Ô"2= #Ô2$− #Ô$2, we have that W=%i!jWi,j =!!Ô"2

−Nd /3!0, with Ô=%iôi as also a sufficient condition to
detect entanglement in the system. Notice that W can be
inferred from collective measurements only.

By computing Lp and W, we obtain that entanglement is
different from zero only for excited states, as announced pre-
viously. Consequently, the system displays thermal entangle-
ment: starting from the ground state, entanglement is created
by raising the temperature T &21'. It is thus natural to inves-
tigate how entanglement in thermal equilibrium depends on
T for W and Lp. We restrict the discussion here to the range
of temperatures of T(B. In this case, it is reasonable to
consider only the subspace where one rotational excitation is
distributed over the molecular chain. Of course, this picture
is less accurate as temperature increases since the effect of
highly excited states should be taken into account. However,
the exact calculation of entanglement in such higher excited
subspaces requires applying other diagonalization techniques
and presents an increasing degree of complexity. This prob-
lem will thus be the subject of a subsequent study. An im-
portant parameter for studying entanglement in the present
system in this regime is ". Entanglement can reach higher
values with increasing ", always respecting the condition "
#1. Figures 1 and 3 show L26 and W as a function of T for
"(0.05 !HCl" and for "(10−2 !NaCs" for a chain of N
=50 molecules. Both figures show that, when only the first-
excited states are considered, a maximum of entanglement is
obtained for T(!0.5–1.0"B. The dependency of entangle-
ment with T can be easily understood: while for very low
temperatures the !entangled" first-excited states are not suf-
ficiently populated so as to give significant contribution to
L26 and W, a saturation is reached when the population of
each excited level becomes more significant. In the limit of

higher T, where all entangled eigenstates are almost equally
populated, the system become separable.

IV. QUANTUM MOLECULAR WIRE

We now discuss one application of entanglement in PM
chains to quantum communications. The idea, as reviewed in
&5', is to use a chain of interacting particles as a medium
through which the state of one particle, at one extremum of a
chain, is transferred to its opposite extremum. It has been
shown &5,7' that this operation can be achieved with a fidel-
ity F higher than classical for systems of different dimen-
sions. While for spin 1/2 and spin 1 systems the model
Hamiltonian corresponds to physically observed phenomena,
in &7', a high dimension generalization of the Heisenberg
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FIG. 2. !Color online" Entanglement as a function of tempera-
ture, measured by W and L26 in a chain of N=50 NaCs molecules.
In this case, "(0.01.

0 1000 2000 3000 4000 5000
0.40

0.42

0.44

0.46

0.48

0.50

t

F
id

el
it

y

FIG. 3. !Color online" Average fidelity for finding an arbitrary
input state, initially at site 1 at t=0, at the Nth site of a polar
molecule chain with N sites, as a function of time !in units of 1 /v1",
for different chain sizes: N=31 !green, large dashed line", N=33
!red line", and N=43 !blue, dashed line". We plot the region above
2/5, the highest classical communication fidelity for transmitting a
four level system.
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and presents an increasing degree of complexity. This prob-
lem will thus be the subject of a subsequent study. An im-
portant parameter for studying entanglement in the present
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values with increasing ", always respecting the condition "
#1. Figures 1 and 3 show L26 and W as a function of T for
"(0.05 !HCl" and for "(10−2 !NaCs" for a chain of N
=50 molecules. Both figures show that, when only the first-
excited states are considered, a maximum of entanglement is
obtained for T(!0.5–1.0"B. The dependency of entangle-
ment with T can be easily understood: while for very low
temperatures the !entangled" first-excited states are not suf-
ficiently populated so as to give significant contribution to
L26 and W, a saturation is reached when the population of
each excited level becomes more significant. In the limit of

higher T, where all entangled eigenstates are almost equally
populated, the system become separable.
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We now discuss one application of entanglement in PM
chains to quantum communications. The idea, as reviewed in
&5', is to use a chain of interacting particles as a medium
through which the state of one particle, at one extremum of a
chain, is transferred to its opposite extremum. It has been
shown &5,7' that this operation can be achieved with a fidel-
ity F higher than classical for systems of different dimen-
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molecule chain with N sites, as a function of time !in units of 1 /v1",
for different chain sizes: N=31 !green, large dashed line", N=33
!red line", and N=43 !blue, dashed line". We plot the region above
2/5, the highest classical communication fidelity for transmitting a
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ρ =
1
Z

exp− H

kBT



Information transmission along the chain

t = 0 |α�1

?

|α�N

Fidelity : 
averaged over all input states�F (t)� ≡

F (t) = tr [ρ(t)|α�N �α|] = �α|ρ(t)|α�N

Classical communication �F (t)� ≤ 2
d + 1

=
2
5

t > 0 ρ(t) = tr1···N−1

�
U(t)|α�1�α|U−1(t)

�

III- Molecular Chain



Information transmission along the chain

effects of detection inefficiency. Following the definition
!!Ô"2= #Ô2$− #Ô$2, we have that W=%i!jWi,j =!!Ô"2

−Nd /3!0, with Ô=%iôi as also a sufficient condition to
detect entanglement in the system. Notice that W can be
inferred from collective measurements only.

By computing Lp and W, we obtain that entanglement is
different from zero only for excited states, as announced pre-
viously. Consequently, the system displays thermal entangle-
ment: starting from the ground state, entanglement is created
by raising the temperature T &21'. It is thus natural to inves-
tigate how entanglement in thermal equilibrium depends on
T for W and Lp. We restrict the discussion here to the range
of temperatures of T(B. In this case, it is reasonable to
consider only the subspace where one rotational excitation is
distributed over the molecular chain. Of course, this picture
is less accurate as temperature increases since the effect of
highly excited states should be taken into account. However,
the exact calculation of entanglement in such higher excited
subspaces requires applying other diagonalization techniques
and presents an increasing degree of complexity. This prob-
lem will thus be the subject of a subsequent study. An im-
portant parameter for studying entanglement in the present
system in this regime is ". Entanglement can reach higher
values with increasing ", always respecting the condition "
#1. Figures 1 and 3 show L26 and W as a function of T for
"(0.05 !HCl" and for "(10−2 !NaCs" for a chain of N
=50 molecules. Both figures show that, when only the first-
excited states are considered, a maximum of entanglement is
obtained for T(!0.5–1.0"B. The dependency of entangle-
ment with T can be easily understood: while for very low
temperatures the !entangled" first-excited states are not suf-
ficiently populated so as to give significant contribution to
L26 and W, a saturation is reached when the population of
each excited level becomes more significant. In the limit of

higher T, where all entangled eigenstates are almost equally
populated, the system become separable.

IV. QUANTUM MOLECULAR WIRE

We now discuss one application of entanglement in PM
chains to quantum communications. The idea, as reviewed in
&5', is to use a chain of interacting particles as a medium
through which the state of one particle, at one extremum of a
chain, is transferred to its opposite extremum. It has been
shown &5,7' that this operation can be achieved with a fidel-
ity F higher than classical for systems of different dimen-
sions. While for spin 1/2 and spin 1 systems the model
Hamiltonian corresponds to physically observed phenomena,
in &7', a high dimension generalization of the Heisenberg
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!red line", and N=43 !blue, dashed line". We plot the region above
2/5, the highest classical communication fidelity for transmitting a
four level system.
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5 Quantum transmission
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Perfect state transfer with 2 levels systems
III- Molecular Chain

σ+
i = |1�i�0| σ−i = |0�i�1|

H =
N−1�

i<j=1

�
hijσ

+
i ⊗ σ

−
j + h

∗
ijσ

+
j ⊗ σ

−
i

�

t = 0 |α�1

?

|α�Nt > 0

Objective : find      such that perfect transfer 
occurs at a time t>0

hj�j



III- Molecular Chain

Perfect state transfer with 2 levels systems

(j = 1, · · · , N)

Dynamics takes place in the mono-excited subspace
|j� ≡ |0�1 ⊗ |0�2 ⊗ · · ·⊗ |1�j ⊗ |0�j+1 ⊗ · · ·⊗ |0�N
|0� ≡ |0�1 ⊗ |0�2 ⊗ · · ·⊗ |0�j ⊗ |0�j+1 ⊗ · · ·⊗ |0�N

ρ(t) = tr1···N−1|ψ(t > 0)��ψ(t > 0)|

F (t) = �ψ(0)|ρ(t)|ψ(0)� = (|α|4 + |β|4) |UN1(t)|2 + 2 |α|2 |β|2 � [UN1(t)]

|ψ(t = 0)� = α|0� + β|1� |ψ(t > 0)� = e−iHt [α|0� + β|1�]
= α|0� + βe−iht|1�|α|2 + |β|2 = 1

where UN1(t) = �N |e−iht|1�

F (t) = cte �= 0∀α,β ⇔ F (t) = 1∀α,β ⇔ UN1(t) = 1

h N ×Nis a hermitian matrix



Perfect state transfer with 2 levels systems
III- Molecular Chain

We look for the hermitian          matrix  h

such that ∃t ∈ R+�1|e−iht|N� = 1

N ×N

with hnn = 0 (n = 1, · · · , N)

Finally the problem reduces to:



Perfect state transfer with 2 levels systems
III- Molecular Chain

One Solution: (M. Christandl et all Phys. Rev. Lett 2004)

nearest neighbors

|n� ↔ |J, m�Mapping to angular momentum states

N odd J =
N − 1

2
m = −J + n− 1; n ∈ [1, N ] m ∈ [−J, J ]

Jy =
1
2i

��
J(J + 1) − m(m + 1)|J, m + 1��J,m|

�
J(J + 1) − m(m − 1)|J, m − 1��J,m|

�

UN1(t) ↔ �J, J | exp−iJyt|J,−J� = DJ
J,−J(0, t, 0) =

�
sin

t

2

�2J

hnn� = (Knδn�n−1 + K∗
nδn�n+1)

h↔ Jy :

t = π UN1(t) = 1Perfect transfer



Perspectives

How to find others chains with perfect transfer
How to explore all the solutions in the mono-

excited subspace
Explore the relation between entanglement and 

quantum state transfer
Extension to multi-excited subspace

 Detecting entanglement measuring correlation 
of photons orbital angular momentum instead of 
molecules.


