

Sujet d'examen - 1^{ère} session Semestres 1-3-5-7-9 Année universitaire 2020-2021

Analyse de données qualitatives

Intitulé de l'épreuve :

Nils Berglund

Nom de l'enseignant :

M1 ESA

Mention / Parcours:

2020-2021

Année :

2 heures

Durée de l'épreuve :

Résumé manuscrit de 4 pages A4

Documents autorisés :

Calculatrice non programmable

Matériels autorisés :

15/12/2020

SUJET

Les téléphones portables, ordinateurs et tablettes doivent être éteints durant l'examen. Il sera tenu compte de la qualité de la rédaction. Les points sont donnés à titre indicatif.

Problème 1 [4 points]

On considère la matrice

$$A = \begin{bmatrix} 17 & -6 \\ -6 & 8 \end{bmatrix} .$$

- 1. Déterminer les valeurs propres de A.
- 2. Déterminer, pour chaque valeur propre de A, un vecteur propre de norme 1.
- 3. Soit \mathscr{E}_c l'ellipse d'équation

$$\begin{bmatrix} x & y \end{bmatrix} A^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = c^2 \tag{1}$$

Que vaut son demi-grand axe ? Son demi-petit axe ? Esquisser l'ellipse \mathscr{E}_c dans le plan (x,y) pour c=1 et $c=\frac{1}{2}$.

4. Si A est la matrice de covariance d'un jeu de données, que représentent les ellipses \mathcal{E}_c ?

Problème 2 [6 points]

Le tableau de contingence suivant montre les effectifs pour un jeu de donnés croisant deux variables qualitatives. La première variable a 4 modalités, notées a, b, c, d, alors que la seconde en a 3, notées A, B, C.

	A	В	С
a	80	60	160
b	20	100	40
c	60	120	120
d	40	120	80

- 1. Expliquer la propriété d'équivalence distributionnelle. Utiliser cette propriété afin de simplifier le tableau de contingence ci-dessus.
- 2. Effectuer un test d'indépendance du chi-deux sur le tableau simplifié, en expliquant chaque étape du calcul. Peut-on rejeter l'hypothèse d'indépendance à un ou plusieurs seuils indiqués ci-dessous ?

Tableau de valeurs de la loi du χ^2 :

Degrés de liberté	90%	95%	97.5%	99%	99.9%
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
7	12.017	14.067	16.013	18.475	24.322
8	13.362	15.507	17.535	20.090	26.125

- 3. Déterminer les matrices X des profils-ligne et Y des profils colonne.
- 4. Calculer la matrice $S = X^T Y^T$. Calculer les valeurs propres de S.
- 5. Donner, sans calcul supplémentaire, les valeurs propres de $T = Y^T X^T$.
- 6. Que peut-on dire sur les nuages de points (dans quels espaces se trouvent-ils, quelle est leur forme)?

Problème 3 [7 points]

Le tableau sur la page suivante montre les résultats de l'élection présidentielle américaine de novembre 2020. Il représente, pour les 50 états plus le District of Columbia (DC), le nombre de voix comptées pour les candidats suivants (source: Washington Post):

- Joseph Biden (Démocrates)
- Donald Trump (Républicains)
- Jo Jorgensen (Libéraux)
- Autres, don't Kanye West, Howie Hawkins.
- Non listés (noms ajoutés au bulletin électoral).

Ci-dessous on a représenté les résultats d'une AFC faite sur ces données.

Questions:

1. Expliquer les lignes suivantes fournies par le logiciel R:

```
Number of cases in table: 157815214
Number of factors: 2
Test for independence of all factors:
Chisq = 6199279, df = 200, p-value = 0
```

- 2. Discuter les valeurs des inerties. Une étude restreinte aux deux premiers axes factoriels vous semble-t-elle pertinente ?
- 3. Quels sont les états mal représentés sur le plan factoriel ?
- 4. Quelles sont les modalités contribuant fortement au premier axe factoriel ? Donner une description résumant la signification de cet axe.
- 5. Quelles sont les modalités contribuant fortement au second axe factoriel ? Donner une description résumant la signification de cet axe.
- 6. Citer des exemples d'états mal représentés sur le *premier axe* factoriel. Que peut-on dire à leur sujet ?
- 7. Discuter les cas particuliers des états suivants : DC (District of Columbia), Wyoming (WY), Arkansas (AR), Virginie (VA), Nevada (NV).

```
> afcin$TOT
	inertia 	 cum 	 cum(%)
Ax1 0.033165191 0.03316519 84.42872
Ax2 0.003194416 0.03635961 92.56075
Ax3 0.001798445 0.03815805 97.13906
Ax4 0.001123830 0.03928188 100.00000
```

État	Abrév.	Biden	Trump	Jorgensen	Autres	Non listé
Alabama	AL	849624	1441170	25176	0	7312
Alaska	AK	153778	189951	8897	2673	1961
Arizona	AZ	1672143	1661686	51465	0	1928
Arkansas	AR	423932	760647	13133	21358	0
California	CA	11098676	5994674	187885	192216	80
Colorado	CO	1804196	1364471	52454	34449	0
Connecticut	СТ	1080680	715291	20227	7541	580
Delaware	DE	296268	200603	5000	2139	0
\mid DC	DC	317323	18586	2036	3274	3137
Florida	FL	5297045	5668731	70324	30301	1055
Georgia	GA	2474507	2461837	62138	0	84
Hawaii	HI	366130	196864	5539	5005	0
Idaho	ID	287021	554118	16404	9817	745
Illinois	IL	3461763	2438696	65991	48000	5547
Indiana	IN	1242495	1729852	58900	0	1951
Iowa	IA	758881	897467	19726	10766	1470
Kansas	KS	551144	752903	29466	0	291
Kentucky	KY	772474	1326646	26234	10082	0
Louisiana	LA	856034	1255776	21645	14607	0
Maine	ME	431277	360446	14036	9452	0
Maryland	MD	1985023	976414	33488	21683	0
Massachusetts	MA	2382202	1167202	47009	18658	16337
Michigan	MI	2804040	2649852	60381	23939	1090
Minnesota	MN	1717077	1484065	34976	10033	9965
Mississippi	MS	539494	756731	8024	9568	1423
Missouri	MO	1253561	1717912	41165	8307	4723
Montana	MT	244786	343602	15252	0	2110
Nebraska	NE	374583	556846	20283	0	559
Nevada	NV	703486	669890	14738	18217	0
New Hampshire	NH	424921	365654	13235	10217	620
New Jersey	NJ	2608271	1883140	31673	26065	14879
New Mexico	NM	501614	401894	12585	6232	0
New York	NY	4943074	3148139	57464	52416	0
North Carolina	NC	2684306	2758779	48678	12194	13315
North Dakota	ND	114902	235595	9393	12194	1929
Ohio	OH	2679165	3154734	67569	18812	2225
Olilo Oklahoma	OK	503890	1020280	24731	9251	0
Oregon	OR	1340291	958411	41581	$\frac{9231}{11832}$	14078
Pennsylvania	PA	3459998	3378362	79400	11032	6423
Rhode Island	RI	306210	199837	5047	2533	0423
South Carolina	SC	1091541	1385103	27016	8769	0
South Dakota	SD	150471	261043	11095	26909	2044
Tennessee	TN	1139376	1849820	29842	26898	2044
Texas	TX	5259126	5890347	126243	33396	8799
Utah	UT	560282	865140	38477	23808	612
Vermont	VT	242820	112704	3608	5742	1942
Virginia Washington	VA	2413568	1962430	64761	0 25614	19765
Washington West Virginia	WA	2369437	1584588	80489	25614	166
West Virginia	WV	235984	545382	10687	2599	7025
Wisconsin	WI	1630716	1610151	38333	5266	7825
Wyoming	WY	73491	193559	5768	2208	1739
TOTAL		80933097	74078021	1859667	785720	158709

Contributions absolues et relatives des colonnes (multipliées par 10000) :

<pre>> round(afcin\$col.abs*100)</pre>			<pre>> round(afcin\$col.rel*100)</pre>		
	Axis1	Axis2		Axis1	Axis2
Biden	4641	77	Biden	9966	16
Trump	5170	19	Trump	-9988	-4
Jorgensen	20	13	Jorgensen	-513	31
Autres	165	6263	Autres	1742	-6376
Non liste	4	3629	Non liste	61	5240

Contributions absolues et relatives des lignes (multipliées par 10000):

> ro	und(afcin	Frow.abs*100)	<pre>> round(afcin\$row.rel*100)</pre>
	Axis1	Axis2	Axis1 Axis2
AL	415	217	AL -9309 469
AK	14	16	AK -3506 391
ΑZ	17	136	AZ -3352 2584
AR	205	874	AR -6437 -2644
CA	2252	1415	CA 9426 -570
CO	62	337	CO 5658 -2964
CT	84	4	CT 9353 46
DE	20	0	DE 9057 2
DC	465	216	DC 9228 412
FL	135	0	FL -6063 -1
GA	25	112	GA -3378 1460
ΗI	73	17	HI 9735 -215
ID	194	188	ID -8490 -792
IL	202	67	IL 9621 -310
IN	272	63	IN -8929 200
IA	49	30	IA -9187 -546
KS	111	18	KS -8161 127
KY	378	83	KY -9787 -206
LA	210	161	LA -9195 -677
ME	4	125	ME 1962 -5356
MD	501	17	MD 9828 -33
MA	598	608	MA 8714 854
MI	3	10	MI -2746 -881
MN	4	253	MN 1196 6737
MS	103	54	MS -8474 -428
MO	235	19	MO -9864 78
MT	56	93	MT -6887 1104
NE	112	16	NE -8912 122
NV	0	343	NV -17 -8587
NH	1	50	NH 465 3975
NJ	126	174	NJ 6967 926
NM	8	19	NM 7137 -1697
NY	503	66	NY 9258 -116
NC	38	292	NC -4748 3510
ND	104	82	ND -8151 620
OH	184	1	OH -9716 -7
OK	420	125	OK -9664 -276

OR	64	530	OR 3423 2714
PA	22	364	PA -2760 4371
RI	26	0	RI 9359 -5
SC	128	15	SC -9604 -111
SD	83	1	SD -8666 14
TN	421	348	TN -8887 -708
TX	229	18	TX -9649 75
UT	155	701	UT -5213 -2272
VT	79	1	VT 7966 -8
VA	21	1430	VA 1197 7814
WA	172	23	WA 7413 -96
WV	291	25	WV -9918 -81
WI	11	239	WI -3237 6552
WY	118	3	WY -8285 23

			d = 0.5
	Non liste		
		DC	
ND AL MT AWIII WY SD NEW Jorgense	VA OR MA		
W SD F Jorgense WOK TN MS N	OR MA NH NJ N Biden MDVT NM CO CA		
UT [AR]			
	Autres		

Problème 4 [3 points]

Le tableau suivant montre la classe d'âge, le restaurant préféré et le budget réservé par sortie au restaurant pour un groupe de 20 personnes.

	Age	Restaurant	Budget
Anne	Moins de 20 ans	Fast Food	Moins de 20 euros
Bernard	Moins de 20 ans	Fast Food	Moins de 20 euros
Clément	Moins de 20 ans	Fast Food	20 à 40 euros
Djalil	Moins de 20 ans	Indien	Moins de 20 euros
Erika	21 à 40 ans	Fast Food	Moins de 20 euros
Fatima	21 à 40 ans	Fast Food	20 à 40 euros
Gaston	21 à 40 ans	Indien	Moins de 20 euros
Hubert	21 à 40 ans	Indien	Moins de 20 euros
Inez	21 à 40 ans	Indien	20 à 40 euros
Jennifer	21 à 40 ans	Etoilé	20 à 40 euros
Karine	21 à 40 ans	Etoilé	Plus de 40 euros
Luc	41 à 60 ans	Etoilé	Plus de 40 euros
Mathieu	41 à 60 ans	Indien	Plus de 40 euros
Nathalie	41 à 60 ans	Indien	20 à 40 euros
Oscar	41 à 60 ans	Etoilé	20 à 40 euros
Pascal	41 à 60 ans	Etoilé	Plus de 40 euros
Quentin	Plus de 60 ans	Indien	20 à 40 euros
Rita	Plus de 60 ans	Etoilé	20 à 40 euros
Stefan	Plus de 60 ans	Etoilé	Plus de 40 euros
Tatiana	Plus de 60 ans	Etoilé	Plus de 40 euros

- 1. Déterminer le tableau de Burt associé à ce jeu de données.
- 2. Quelle est l'utilité du tableau de Burt pour l'analyse des correspondances multiples ?