Modélisation-Probabilités

Examen du 10 janvier 2018

Durée: 2 heures

Il sera tenu compte de la qualité de la rédaction. Tous les arguments doivent être soigneusement justifiés.

Les points sont donnés à titre indicatif.

Problème 1 [8 points]

1. Soit X une variable aléatoire de loi normale, centrée, de variance $\sigma^2 > 0$. Montrer que pour toute fonction dérivable $F : \mathbb{R} \to \mathbb{R}$ telle que

$$\lim_{x \to \pm \infty} F(x) e^{-x^2/(2\sigma^2)} = 0 ,$$

on a

$$\mathbb{E}(XF(X)) = \sigma^2 \mathbb{E}(F'(X)).$$

2. On se donne maintenant des variables aléatoires réelles X_1, \ldots, X_n . Chaque X_i suit une loi normale centrée. On ne suppose pas les X_i indépendantes, et on note $C_{ij} = \mathbb{E}(X_i X_j) - \mathbb{E}(X_i) \mathbb{E}(X_j) = \mathbb{E}(X_i X_j)$ leurs covariances. Soit $F: \mathbb{R}^n \to \mathbb{R}$. Montrer que sous des hypothèses adéquates sur F, que l'on spécifiera, on a pour tout $i \in \{1, \ldots, n\}$

$$\mathbb{E}(X_i F(X)) = \sum_{j=1}^n C_{ij} \mathbb{E}\left(\frac{\partial F}{\partial X_j}(X)\right).$$

Rappel : La densité du vecteur (X_1, \ldots, X_n) est proportionnelle à $e^{-\langle x, C^{-1}x \rangle/2}$, où C est la matrice d'éléments C_{ij} .

- 3. En appliquant le résultat précédent à $F(X) = X_2 X_3 X_4$, exprimer $\mathbb{E}(X_1 X_2 X_3 X_4)$ en fonction des C_{ij} . Faire de même pour $\mathbb{E}(X_1 X_2 X_3)$.
- 4. On suppose que n est impair. Calculer par récurrence $\mathbb{E}(\prod_{i=1}^n X_i)$.
- 5. Dans toute la suite, on suppose que n=2m est pair. Un appariement de $\{1,\ldots,2m\}$ est une partition de $\{1,\ldots,2m\}=\{i_1,j_1\}\bigcup\ldots\bigcup\{i_m,j_m\}$ en m ensembles disjoints deux à deux de 2 éléments chacun. Soit N(2m) le nombre d'appariements de $\{1,\ldots,2m\}$. Déterminer N(2), N(4), puis N(2m+2) en fonction de N(2m).
- 6. Démontrer le théorème d'Isserlis-Wick:

$$\mathbb{E}\big(X_1\cdots X_{2m}\big) = \sum_{\substack{\text{appariements}\\ \text{de } \{1,\ldots,2m\}}} \left[\prod_{\ell=1}^m C_{i_\ell j_\ell}\right].$$

7. On suppose que $X_1 = X_2 = \cdots = X_n$, et on pose $\mathbb{E}(X_1^2) = \sigma^2$. Déduire $\mathbb{E}(X^n)$ des trois points précédents.

Suite au verso

Problème 2 [4 points]

Soit $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_n)_{n \in \mathbb{N}})$ un espace probabilisé filtré et $(X_n)_{n \in \mathbb{N}}$ une \mathcal{F}_n -martingale à valeurs positives. Pour tout $N \in \mathbb{N}$ on pose

$$\overline{X}_N = \max_{0 \le n \le N} X_n \ .$$

On fixe $N \in \mathbb{N}$ et $\lambda > 0$. Soit A l'événement $A = \{\overline{X}_N \geqslant \lambda\}$ et soit T le temps d'arrêt

$$T = \inf\{n \in \mathbb{N} \colon X_n \geqslant \lambda\} \land N$$

(on rappelle la notation $a \wedge b = \min\{a, b\}$).

- 1. Montrer que $\lambda \mathbb{P}(A) \leq \mathbb{E}(X_T \mathbb{1}_A)$.
- 2. Montrer que T = N sur $\Omega \setminus A$ et en déduire que $\mathbb{E}(X_T \mathbb{1}_A) = \mathbb{E}(X_N \mathbb{1}_A)$.
- 3. En déduire l'inégalité de Doob:

$$\mathbb{P}\{\overline{X}_N \geqslant \lambda\} \leqslant \frac{1}{\lambda} \mathbb{E}(X_N) .$$

Problème 3 [8 points]

Soit M>0. On se donne deux suites $(a_n)_{n\geqslant 0}$ et $(\sigma_n)_{n\geqslant 1}$ de nombres réels satisfaisant $0< a_n\leqslant M$ et $0<\sigma_n\leqslant M$ pour tout n. Soit $(Z_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes, telles que Z_n suive une loi normale centrée de variance σ_n^2 . Enfin on définit par récurrence une suite $(X_n)_{n\geqslant 0}$ de variables aléatoires en posant $X_0=0$ et

$$X_{n+1} = a_n X_n + Z_{n+1} \qquad \forall n \geqslant 0 .$$

- 1. Calculer $\mathbb{E}(e^{\gamma Z_n})$ pour $\gamma > 0$.
- 2. Quelle est la filtration naturelle associée au processus $(X_n)_{n\geqslant 0}$?
- 3. Sous quelle condition $(X_n)_{n\geqslant 0}$ est-elle une martingale ?
- 4. On pose $b_0=1$ et $b_n=\prod_{i=0}^{n-1}a_i$ pour $n\geqslant 1$. Soit $Y_n=X_n/b_n$. Déterminer une relation de récurrence pour les Y_n , et montrer que $(Y_n)_{n\geqslant 0}$ est une martingale.
- 5. Déterminer le processus croissant $(\langle Y \rangle_n)_{n \geqslant 0}$ associé à $(Y_n)_{n \geqslant 0}$. **Rappel :** $\langle Y \rangle_n = \sum_{i=1}^n \mathbb{E}((Y_i Y_{i-1})^2 \mid \mathcal{F}_{i-1})$.
- 6. Soit $\gamma > 0$. On pose $U_n = \exp(\gamma Y_n \frac{1}{2}\gamma^2 \langle Y \rangle_n)$. Montrer que $(U_n)_{n \geqslant 0}$ est une martingale. Que vaut $\mathbb{E}(U_n)$?
- 7. Donner une condition sur les σ_n et les b_n pour que la suite $(Y_n)_{n\geqslant 0}$ converge presque sûrement et dans L^2 .
- 8. Soit $N \in \mathbb{N}^*$ et $\lambda > 0$. Majorer

$$\mathbb{P}\bigg\{\max_{1\leqslant n\leqslant N}Y_n\geqslant\lambda\bigg\}$$

en appliquant l'inégalité de Doob à $(U_n)_{n\geqslant 0}$. Quelle majoration obtient-on en optimisant sur γ ?