Oscillations multimodales dans les équations différentielles stochastiques

Nils Berglund
MAPMO, Université d’Orléans
CNRS, UMR 6628 et Fédération Denis Poisson
www.univ-orleans.fr/mapmo/membres/berglund

Collaborateurs:
Stéphane Cordier, Damien Landon, Simona Mancini, MAPMO, Orléans
Barbara Gentz, University of Bielefeld
Christian Kuehn, Max Planck Institute, Dresden

Projet ANR MANDy, Mathematical Analysis of Neuronal Dynamics

GdT Modélisation, LPMA, Paris, 5 mai 2011
Oscillations in natural systems

Belousov-Zhabotinsky reaction [Hudson 79]

Stellate cells [Dickson 00]

Mean temperature based on ice core measurements [Johnson et al 01]
Oscillations in natural systems

Belousov-Zhabotinsky reaction [Hudson 79]
Stellate cells [Dickson 00]

- **Deterministic models** reproducing these oscillations exist and have been abundantly studied.
 - They often involve singular perturbation theory.

- We want to understand the effect of **noise** on oscillatory patterns.
 - Noise may also induce oscillations not present in deterministic case.
Example: Van der Pol oscillator

\[x'' + \varepsilon^{-1/2}(x^2 - 1)x' + x = 0 \]

\[\dot{x} = y + x - \frac{1}{3}x^3 \quad \text{and} \quad \varepsilon \dot{x} = y + x - \frac{1}{3}x^3 \]

\[\dot{y} = -\varepsilon x \quad \text{and} \quad \dot{y} = -x \]
Example: Van der Pol oscillator

\[x'' + \varepsilon^{-1/2}(x^2 - 1)x' + x = 0 \]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 \\
\dot{y} &= -\varepsilon x
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 \\
\dot{y} &= -x
\end{align*}
\]

\[
\begin{align*}
\varepsilon \to 0 \\
\downarrow
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 \\
\dot{y} &= 0
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 \\
\dot{y} &= -(x - \frac{1}{3}x^3)
\end{align*}
\]

\[
\begin{align*}
\varepsilon \to 0 \\
\downarrow
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= \frac{x}{1 - x^2}
\end{align*}
\]
Example: Van der Pol oscillator

\[x'' + \varepsilon^{-1/2}(x^2 - 1)x' + x = 0 \]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 & \quad \varepsilon \rightarrow 0 \\
\dot{y} &= -\varepsilon x & \quad \varepsilon \rightarrow 0 \\
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 & \quad t \rightarrow \varepsilon t \\
\dot{y} &= -x & \quad \varepsilon \rightarrow 0 \\
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 & \quad \varepsilon \rightarrow 0 \\
\dot{y} &= 0 & \quad \varepsilon \rightarrow 0 \\
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= y + x - \frac{1}{3}x^3 & \quad \varepsilon \rightarrow 0 \\
\dot{y} &= -x & \quad \varepsilon \rightarrow 0 \\
\Rightarrow \dot{x} &= \frac{x}{1 - x^2} \\
\end{align*}
\]
Example: Van der Pol oscillator

\[x'' + \varepsilon^{-1/2}(x^2 - 1)x' + x = 0 \]

\[\dot{x} = y + x - \frac{1}{3}x^3 \]
\[\dot{y} = -\varepsilon x \]

Relaxation oscillations
Effect of noise on the Van der Pol oscillator

\[dx_t = \left[y_t + x_t - \frac{x_t^3}{3} \right] dt + \sigma \, dW_t \]

\[dy_t = -\varepsilon x_t \, dt \]
Effect of noise on the Van der Pol oscillator

\[
\begin{align*}
\, dx_t &= \left[y_t + x_t - \frac{x_t^3}{3} \right] \, dt + \sigma \, dW_t \\
\, dy_t &= -\varepsilon x_t \, dt
\end{align*}
\]

Theorem [B & Gentz 2006]

- \(\sigma < \sqrt{\varepsilon} \): Cycles comparable to deterministic ones with probability \(1 - \mathcal{O}(e^{-\varepsilon/\sigma^2}) \)
- \(\sigma > \sqrt{\varepsilon} \): Cycles are smaller, by \(\mathcal{O}(\sigma^4/3) \), than deterministic cycles, with probability \(1 - \mathcal{O}(e^{-\sigma^2/\varepsilon|\log \sigma|}) \)
Single neuron communicates by generating action potential

- **Excitable**: small change in parameters yields spike generation
- May display **Mixed-Mode Oscillations (MMOs) and Relaxation Oscillations**
Conductance-based models for membrane potential

Hodgkin–Huxley model (1952)

\[
\begin{align*}
C \frac{\text{d}v}{\text{d}t} &= - \sum_i \bar{g}_i \varphi_i^\alpha \chi_i^\beta (v - v_i^*) \\
\tau_{\varphi, i}(v) \frac{\text{d}\varphi_i}{\text{d}t} &= - (\varphi_i - \varphi_i^*(v)) \\
\tau_{\chi, i}(v) \frac{\text{d}\chi_i}{\text{d}t} &= - (\chi_i - \chi_i^*(v))
\end{align*}
\]

\(\varphi_i^*(v), \chi_i^*(v)\) sigmoïdal functions, e.g. \(\tanh(av + b)\)

\(\varphi_i(\text{v}), \chi_i(\text{v})\) sigmoïdal functions, e.g. \(\tanh(\alpha v + b)\)

\(\varphi_i^*(v), \chi_i^*(v)\) sigmoïdal functions, e.g. \(\tanh(\alpha v + b)\)
Conductance-based models for membrane potential

Hodgkin–Huxley model (1952)

\[C\dot{v} = -\sum_i \bar{g}_i \varphi_i^\alpha \chi_i^\beta (v - v_i^*) \] voltage

\[\tau_{\varphi,i}(v) \dot{\varphi}_i = -(\varphi_i - \varphi_i^*(v)) \] activation

\[\tau_{\chi,i}(v) \dot{\chi}_i = -(\chi_i - \chi_i^*(v)) \] inactivation

\(\triangleright i \in \{\text{Na}^+, \text{K}^+, \ldots\} \) describes different types of ion channels

\(\triangleright \varphi_i^*(v), \chi_i^*(v) \) sigmoïdal functions, e.g. \(\tanh(av + b) \)

For \(C/\bar{g}_i \ll \tau_{x,i} \): slow–fast systems of the form

\[\varepsilon \dot{v} = f(v, w) \]

\[\dot{w}_i = g_i(v, w) \]
Conductance-based models for membrane potential

Fitzhugh–Nagumo model (1962)

\[\varepsilon \dot{x} = x - x^3 + y \]
\[\dot{y} = \alpha - \beta x - \gamma y \]
Conductance-based models for membrane potential

Fitzhugh–Nagumo model (1962)

\[
\begin{align*}
\varepsilon \dot{x} &= x - x^3 + y \\
\dot{y} &= \alpha - \beta x - \gamma y \\
&= \frac{1}{\sqrt{3}} + \delta - x
\end{align*}
\]

The canard (french duck) phenomenon

\[
\begin{align*}
\varepsilon &= 0.05 \\
\alpha &= \frac{1}{\sqrt{3}} + \delta \\
\beta &= 1 \\
\gamma &= 0 \\
\delta_1 &= -0.003 \\
\delta_2 &= -0.003765458 \\
\delta_3 &= -0.003765459 \\
\delta_4 &= -0.005
\end{align*}
\]
Conductance-based models for membrane potential

Fitzhugh–Nagumo model (1962)

\[\begin{align*}
\varepsilon \dot{x} &= x - x^3 + y \\
\dot{y} &= \alpha - \beta x - \gamma y \\
&= \frac{1}{\sqrt{3}} + \delta - x
\end{align*}\]

The canard (french duck) phenomenon

\[\begin{align*}
\varepsilon &= 0.05 \\
\alpha &= \frac{1}{\sqrt{3}} + \delta \\
\beta &= 1 \\
\gamma &= 0 \\
\delta_1 &= -0.003 \\
\delta_2 &= -0.003765458 \\
\delta_3 &= -0.003765459 \\
\delta_4 &= -0.005
\end{align*}\]
The canard (french duck) phenomenon

Normal form near fold point

\[
\begin{align*}
\varepsilon \dot{x} &= y - x^2 \\
\dot{y} &= \delta - x
\end{align*}
\] (+ higher-order terms)
Folded node singularity

Normal form [Benoît, Lobry '82, Szmolyan, Wechselberger '01]:

\[\begin{align*}
\epsilon \dot{x} &= y - x^2 \\
\dot{y} &= -(\mu + 1)x - z \\
\dot{z} &= \frac{\mu}{2}
\end{align*} \] (\(+\) higher-order terms)
Folded node singularity

Normal form [Benoït, Lobry '82, Szmolyan, Wechselberger '01]:

\[
\begin{align*}
\epsilon \dot{x} &= y - x^2 \\
\dot{y} &= -(\mu + 1)x - z \\
\dot{z} &= \frac{\mu}{2}
\end{align*}
\]

(+ higher-order terms)
Folded node singularity

Theorem [Benoït, Lobry '82, Szmolyan, Wechselberger '01]:
For $2k + 1 < \mu^{-1} < 2k + 3$, the system admits k canard solutions
The j^{th} canard makes $(2j + 1)/2$ oscillations

Mixed-mode oscillations (MMOs)

Picture: Mathieu Desroches
Effect of noise

\[
\begin{align*}
 dx_t &= \frac{1}{\varepsilon}(y_t - x_t^2) \, dt + \frac{\sigma}{\sqrt{\varepsilon}} \, dW_t^{(1)} \\
 dy_t &= \left[-(\mu + 1)x_t - z_t \right] \, dt + \sigma \, dW_t^{(2)} \\
 dz_t &= \frac{\mu}{2} \, dt
\end{align*}
\]

- Noise smears out small amplitude oscillations
- Early transitions modify the mixed-mode pattern
Covariance tubes

Linearized stochastic equation around a canard \((x^\text{det}_t, y^\text{det}_t, z^\text{det}_t)\)

\[
d\zeta_t = A(t)\zeta_t \, dt + \sigma \, dW_t \quad A(t) = \begin{pmatrix} -2x^\text{det}_t & 1 \\ -1 & 0 \end{pmatrix}
\]

\[
\zeta_t = U(t)\zeta_0 + \sigma \int_0^t U(t, s) \, dW_s \quad (U(t, s) : \text{principal solution of } \dot{U} = AU)
\]

Gaussian process with covariance matrix

\[
\text{Cov}(\zeta_t) = \sigma^2 V(t) \quad V(t) = U(t)V(0)U(t)^{-1} + \int_0^t U(t, s)U(t, s)^T \, ds
\]
Covariance tubes

Linearized stochastic equation around a canard \((x_t^{\det}, y_t^{\det}, z_t^{\det})\)

\[
d\zeta_t = A(t)\zeta_t \, dt + \sigma \, dW_t \quad A(t) = \begin{pmatrix} -2x_t^{\det} & 1 \\ -(1+\mu) & 0 \end{pmatrix}
\]

\[
\zeta_t = U(t)\zeta_0 + \sigma \int_0^t U(t,s) \, dW_s \quad (U(t,s) : \text{principal solution of } \dot{U} = AU)
\]

Gaussian process with covariance matrix

\[
\text{Cov}(\zeta_t) = \sigma^2 V(t) \quad V(t) = U(t)U(0)U(t)^{-1} + \int_0^t U(t,s)U(t,s)^T \, ds
\]

Covariance tube:

\[
\mathcal{B}(h) = \left\{ \langle (x,y) - (x_t^{\det}, y_t^{\det}), V(t)^{-1}[(x,y) - (x_t^{\det}, y_t^{\det})] \rangle < h^2 \right\}
\]

Theorem [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time \(t\) (with \(z_t \leq 0\)):

\[
\mathbb{P}\{\tau_{\mathcal{B}(h)} < t\} \leq C(t) e^{-\kappa h^2/2\sigma^2}
\]
Covariance tubes

Theorem [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with $z_t \leq 0$):

$$\mathbb{P}\{\tau_B(h) < t\} \leq C(t) e^{-\kappa h^2/2\sigma^2}$$

Sketch of proof:
- (Sub)martingale: $\{M_t\}_{t \geq 0}$, $\mathbb{E}\{M_t | M_s\} = (\geq)M_s$ for $t \geq s \geq 0$
- Doob’s submartingale inequality: $\mathbb{P}\left\{\sup_{0 \leq t \leq T} M_t \geq L\right\} \leq \frac{1}{L} \mathbb{E}[M_T]$
Covariance tubes

Theorem [B, Gentz, Kuehn 2010]

Probability of leaving covariance tube before time t (with $z_t \leq 0$):

$$P\{\tau_B(h) < t\} \leq C(t) e^{-\kappa h^2/2\sigma^2}$$

Sketch of proof:

- (Sub)martingale: $\{M_t\}_{t \geq 0}$, $E\{M_t|M_s\} = (\geq)M_s$ for $t \geq s \geq 0$

- Doob’s submartingale inequality: $P\left\{ \sup_{0 \leq t \leq T} M_t \geq L \right\} \leq \frac{1}{L} E[M_T]$

- Linear equation: $\zeta_t = \sigma \int_0^t U(t,s) \, dW_s$ is no martingale
 but can be approximated by martingale on small time intervals

- $\exp\{\gamma \langle \zeta_t, V(t)^{-1}\zeta_t \rangle\}$ approximated by submartingale

- Doob’s inequality yields bound on probability of leaving $B(h)$ during small time intervals. Then sum over all time intervals
Covariance tubes

Theorem [B, Gentz, Kuehn 2010]
Probability of leaving covariance tube before time t (with $z_t \leq 0$):

$$
\mathbb{P}\left\{ \tau_{B(h)} < t \right\} \leq C(t) e^{-\kappa h^2/2\sigma^2}
$$

Sketch of proof:

- (Sub)martingale: $\{M_t\}_{t\geq0}$, $\mathbb{E}\{M_t|M_s\} = (\geq)M_s$ for $t \geq s \geq 0$
- Doob’s submartingale inequality: $\mathbb{P}\left\{ \sup_{0\leq t \leq T} M_t \geq L \right\} \leq \frac{1}{L} \mathbb{E}[M_T]$
- Linear equation: $\zeta_t = \sigma \int_0^t U(t,s) \, dW_s$ is no martingale
 but can be approximated by martingale on small time intervals
- $\exp\{\gamma \langle \zeta_t, V(t)^{-1} \zeta_t \rangle\}$ approximated by submartingale
- Doob’s inequality yields bound on probability of leaving $B(h)$ during small
 time intervals. Then sum over all time intervals
- Nonlinear equation: $d\zeta_t = A(t)\zeta_t \, dt + b(\zeta_t, t) \, dt + \sigma \, dW_t$

$$
\zeta_t = \sigma \int_0^t U(t,s) \, dW_s + \int_0^t U(t,s)b(\zeta_s, s) \, ds
$$

Second integral can be treated as small perturbation for $t \leq \tau_{B(h)}$
Small-amplitude oscillations and noise

One shows that for $z = 0$

- The distance between the k^{th} and $(k+1)^{st}$ canard has order $e^{-(2k+1)^2\mu}$
- The section of $\mathcal{B}(h)$ is close to circular with radius $\mu^{-1/4}h$
Small-amplitude oscillations and noise

One shows that for $z = 0$

- The distance between the k^{th} and $k + 1^{st}$ canard has order $e^{-(2k+1)^2 \mu}$
- The section of $B(h)$ is close to circular with radius $\mu^{-1/4}h$

Sketch of proof:
- Dynamic diagonalization of equation linearized around central (“weak”) canard
- $V(t) = \sigma^{-2} \text{Cov}(\zeta_i)$ satisfies fast-slow equation

$$\mu \frac{dV}{dz} = A(z)V + VA(z)^T + 1$$

which can be studied by singular perturbation theory.

Note: Hopf bifurcation at $z = 0$!
Small-amplitude oscillations and noise

One shows that for \(z = 0 \)

\[\nabla \text{The distance between the } k^{\text{th}} \text{ and } k + 1^{\text{st}} \text{ canard has order } e^{- (2k+1)^2 \mu} \]

\[\nabla \text{The section of } B(h) \text{ is close to circular with radius } \mu^{-1/4} h \]

Corollary

Let

\[\sigma_k(\mu) = \mu^{1/4} e^{- (2k+1)^2 \mu} \]

Canards with \(\frac{2k+1}{4} \) oscillations become indistinguishable from noisy fluctuations for \(\sigma > \sigma_k(\mu) \)
Small-amplitude oscillations and noise

One shows that for $z = 0$

- The distance between the k^{th} and $k + 1^{st}$ canard has order $e^{-(2k+1)^2\mu}$
- The section of $B(h)$ is close to circular with radius $\mu^{-1/4}h$

Corollary

Let

$$\sigma_k(\mu) = \mu^{1/4} e^{-(2k+1)^2\mu}$$

Canards with $\frac{2k+1}{4}$ oscillations become indistinguishable from noisy fluctuations for $\sigma > \sigma_k(\mu)$
Early transitions

Let \mathcal{D} be neighbourhood of size \sqrt{z} of a canard for $z > 0$ (unstable).

Theorem [B, Gentz, Kuehn 2010]

\[\exists \kappa, C, \gamma_1, \gamma_2 > 0 \text{ such that for } \sigma |\log \sigma|^{\gamma_1} \leq \mu^{3/4} \text{ probability of leaving } \mathcal{D} \text{ after } z_t = z \text{ satisfies} \]

\[\mathbb{P}\{z_{\tau_{\mathcal{D}}} > z\} \leq C |\log \sigma|^{\gamma_2} e^{-\kappa(z^2 - \mu)/(\mu |\log \sigma|)} \]

Small for $z \gg \sqrt{\mu |\log \sigma|/\kappa}$
Early transitions

Let D be neighbourhood of size \sqrt{z} of a canard for $z > 0$ (unstable)

Theorem [B, Gentz, Kuehn 2010]

$\exists \kappa, C, \gamma_1, \gamma_2 > 0$ such that for $\sigma |\log \sigma|^{\gamma_1} \leq \mu^{3/4}$ probability of leaving D after $z_t = z$ satisfies

$$
\mathbb{P}\{z_{\tau_D} > z\} \leq C |\log \sigma|^{\gamma_2} e^{-\kappa(z^2-\mu)/(\mu|\log \sigma|)}
$$

Small for $z \gg \sqrt{\mu|\log \sigma|/\kappa}$

Sketch of proof :

- Escape from neighbourhood of size $\sigma |\log \sigma|/\sqrt{z}$: compare with linearized equation on small time intervals + Markov property
- Escape from annulus $\sigma |\log \sigma|/\sqrt{z} \leq ||\zeta|| \leq \sqrt{z}$: use polar coordinates and averaging
- To combine the two regimes : use Laplace transforms
Early transitions

Let \mathcal{D} be neighbourhood of size \sqrt{z} of a canard for $z > 0$ (unstable)

Theorem [B, Gentz, Kuehn 2010]

$\exists \kappa, C, \gamma_1, \gamma_2 > 0$ such that for $\sigma|\log \sigma|^{\gamma_1} \leq \mu^{3/4}$ probability of leaving \mathcal{D} after $z_t = z$ satisfies

$$\mathbb{P}\{z_{\tau_D} > z\} \leq C|\log \sigma|^{\gamma_2} e^{-\kappa(z^2 - \mu)/(\mu|\log \sigma|)}$$

Small for $z \gg \sqrt{\mu|\log \sigma|/\kappa}$
Further work

▷ Better understanding of distribution of noise-induced transitions
▷ Effect on mixed-mode pattern in conjunction with global return mechanism
Further work

▷ Better understanding of distribution of noise-induced transitions
▷ Effect on mixed-mode pattern in conjunction with global return mechanism
Noise-induced MMOs [D. Landon, PhD thesis, in progress]

FitzHugh–Nagumo, normal form near bifurcation point:

\[
\begin{align*}
 \frac{dx_t}{dt} &= (y_t - x_t^2) \, dt + \sigma \, dW_t \\
 \frac{dy_t}{dt} &= \varepsilon(\delta - x_t) \, dt
\end{align*}
\]

\(\delta > \sqrt{\varepsilon} \): equilibrium \((\delta, \delta^2)\) is a node, effectively 1D problem

- \(\sigma \ll \delta^{3/2} \): rare spikes, approx. exponential interspike times
- \(\sigma \gg \delta^{3/2} \): repeated spikes

\(\delta < \sqrt{\varepsilon} \): equilibrium \((\delta, \delta^2)\) is a focus. Two-dimensional problem
Noise-induced MMOs [D. Landon, PhD thesis, in progress]

FitzHugh–Nagumo, normal form near bifurcation point:

\[
\begin{align*}
\frac{dx_t}{dt} &= (y_t - x_t^2) \, dt + \sigma \, dW_t \\
\frac{dy_t}{dt} &= \varepsilon(\delta - x_t) \, dt
\end{align*}
\]

\(\delta > \sqrt{\varepsilon}\): equilibrium \((\delta, \delta^2)\) is a node, effectively 1D problem

- \(\sigma \ll \delta^{3/2}\): rare spikes, approx. exponential interspike times
- \(\sigma \gg \delta^{3/2}\): repeated spikes

\(\delta < \sqrt{\varepsilon}\): equilibrium \((\delta, \delta^2)\) is a focus. Two-dimensional problem
Noise-induced MMOs [D. Landon, PhD thesis, in progress]

Conjectured bifurcation diagram [Muratov and Vanden Eijnden (2007)]:

\[\sigma = \delta^{3/2}\]

\[\sigma = (\delta \varepsilon)^{1/2}\]

\[\sigma = \delta \varepsilon^{1/4}\]
Noise-induced MMOs [D. Landon, PhD thesis, in progress]

Conjectured bifurcation diagram [Muratov and Vanden Eijnden (2007)]:

\[
\begin{align*}
&\sigma = \delta^{3/2} \\
&\varepsilon^{3/4} = (\delta \varepsilon)^{1/2} \\
&\varepsilon^{1/2} = \delta \varepsilon^{1/4}
\end{align*}
\]

Work in progress:

▷ Prove bifurcation diagram is correct
▷ Characterize interspike time statistics and spike train statistics
▷ Characterize distribution of mixed-mode patterns
Noise-induced MMOs

[D. Landon, PhD thesis, in progress]

Definition of random number of SAOs N:

N = survival time of substochastic Markov chain

Theorem (2011):

- $\lim_{n \to \infty} P\{N = n + 1 | N > n\} = 1 - \lambda_0$, λ_0 = principal ev
- Weak noise: $\sigma_1^2 + \sigma_2^2 \leq (\varepsilon^{1/4}\delta)^2 \Rightarrow 1 - \lambda_0 \leq e^{-\kappa(\varepsilon^{1/4}\delta)^2/(\sigma_1^2 + \sigma_2^2)}$
- Increasing noise:

$$1 - \lambda_0 \simeq \Phi\left(-\frac{(\pi\varepsilon)^{1/4}(\delta - \sigma_1^2/\varepsilon)}{\sqrt{\sigma_1^2 + \sigma_2^2}} \right)$$
References

