Loi binomiale et loi de Poisson

Rappels de théorie

1. On dit que X suit une loi binomiale de paramètres $n \in \mathbb{N}$ et $p \in [0,1]$ et on écrit $X \sim \mathcal{B}(n,p)$ si

$$\mathbb{P}{X = k} = \binom{n}{k} p^k (1-p)^{n-k}$$
 pour $k \in \{0, \dots, n\}$.

Dans ce cas on a $\mathbb{E}(X) = np$, Var(X) = np(1-p), $\mathbb{E}(z^X) = (pz + 1 - p)^n$. Si n = 1, on dit que X suit une loi de Bernoulli.

2. On dit que X suit une loi de Poisson de paramètre $\lambda > 0$ et on écrit $X \sim \mathcal{P}(\lambda)$ si

$$\mathbb{P}{X = k} = e^{-\lambda} \frac{\lambda^k}{k!}$$
 pour $k \in \mathbb{N}$.

Dans ce cas on a $\mathbb{E}(X) = \lambda$, $Var(X) = \lambda$, $\mathbb{E}(z^X) = e^{\lambda(z-1)}$.

Exercice 1

Soit $(p_n)_{n\geqslant 0}$ une suite de nombres dans [0,1] telle que

$$\lim_{n\to\infty} np_n = \lambda > 0 .$$

On suppose que $X_n \sim \mathcal{B}(n, p_n)$. Montrer que pour tout $k \in \mathbb{N}$,

$$\lim_{n \to \infty} \mathbb{P}\{X_n = k\} = \mathbb{P}\{Y = k\}$$

où $Y \sim \mathcal{P}(\lambda)$. On pourra poser $\lambda_n = np_n$.

Exercice 2

- 1. Soient X et Y deux variables aléatoires réelles indépendantes, avec $X \sim \mathcal{B}(n,p)$ et $Y \sim \mathcal{B}(m,p)$. Montrer que $X + Y \sim \mathcal{B}(n+m,p)$.
- 2. Soient X et Y deux variables aléatoires réelles indépendantes, avec $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$. Montrer que $X + Y \sim \mathcal{P}(\lambda + \mu)$.

Exercice 3

Soit $n \in \mathbb{N}$ et $q \in]0,1[$. On se donne des espaces probabilisés discrets (Ω_i, p_i) , pour $i=1,\ldots,n$, définis par $\Omega_i=\{-1,0,1,2,\ldots\}$ et

$$p_i(\omega_i) = \begin{cases} e^{-q} - (1 - q) & \text{si } \omega_i = -1, \\ 1 - q & \text{si } \omega_i = 0, \\ e^{-q} \frac{q^{\omega_i}}{\omega_i!} & \text{si } \omega_i \geqslant 1. \end{cases}$$

Sur chaque Ω_i , on introduit les deux variables aléatoires

$$X_i(\omega_i) = \begin{cases} 0 & \text{si } \omega_i = 0 ,\\ 1 & \text{sinon } , \end{cases} \qquad Y_i(\omega_i) = \begin{cases} \omega_i & \text{si } \omega_i \geqslant 1 ,\\ 0 & \text{sinon } . \end{cases}$$

- 1. Vérifier que (Ω_i, p_i) est bien un espace probabilisé discret.
- 2. Quelle est la loi de X_i ? Quelle est la loi de Y_i ?
- 3. Montrer que

$$\mathbb{P}\{X_i \neq Y_i\} = q(1 - e^{-q}) \leqslant q^2$$
.

4. Soit (Ω, p) l'espace produit des (Ω_i, p_i) . On rappelle que cela signifie que $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$ et

$$p((\omega_1,\ldots,\omega_n))=p_1(\omega_1)\ldots p_n(\omega_n)$$
.

Quelle est la loi de $X = X_1 + \cdots + X_n$? Quelle est la loi de $Y = Y_1 + \cdots + Y_n$?

5. Montrer que

$$\mathbb{P}\{X \neq Y\} \leqslant nq^2 .$$

6. Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} . Montrer que

$$\sum_{k=0}^{\infty} \left| \mathbb{P}\{X = k\} - \mathbb{P}\{Y = k\} \right| \leqslant 2\mathbb{P}\{X \neq Y\} .$$

On pourra se servir de l'ensemble $A = \{k \in \mathbb{N} \colon \mathbb{P}\{X = k\} > \mathbb{P}\{Y = k\}\}.$

7. En déduire que si $X \sim \mathcal{B}(n, q_n)$ et $Y \sim \mathcal{P}(nq_n)$, alors

$$\sum_{k=0}^{\infty} \left| \mathbb{P}\{X=k\} - \mathbb{P}\{Y=k\} \right| \leqslant nq_n^2.$$

Que peut-on en conclure si $\lim_{n\to\infty} nq_n = \lambda > 0$?