Konstanz, 8th International Conference on Random Dynamical Systems

Metastability in a Kuramoto model with nearest neighbour interaction

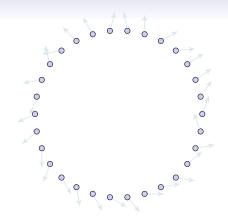
Nils Berglund

Institut Denis Poisson, University of Orléans, France

22 July 2025

Joint work with Georgi Medvedev and Gideon Simpson (Drexel Univ.)

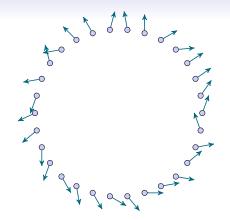
The model



- ightharpoonup Lattice $\Lambda = \mathbb{Z}/n\mathbb{Z}, n \geqslant 1$
- ▷ Configuration: $u: \Lambda \to \mathbb{S} = \mathbb{R}/\mathbb{Z}$ (config. space: $\mathbb{S}^{\Lambda} = (\mathbb{R}/\mathbb{Z})^{\mathbb{Z}/n\mathbb{Z}}$)

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi(u_{i+1} - u_i)) \qquad K > 0$$

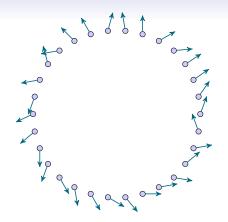
The model



- \triangleright Lattice $\Lambda = \mathbb{Z}/n\mathbb{Z}, n \geqslant 1$
- $\qquad \qquad \vdash \mathsf{Configuration} \colon \ u : \Lambda \to \mathbb{S} = \mathbb{R}/\mathbb{Z} \ \big(\mathsf{config. space} \colon \, \mathbb{S}^{\Lambda} = (\mathbb{R}/\mathbb{Z})^{\mathbb{Z}/n\mathbb{Z}} \big)$
- Energy of configuration:

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi(u_{i+1} - u_i)) \qquad K > 0$$

The model



- \triangleright Lattice $\Lambda = \mathbb{Z}/n\mathbb{Z}, n \geqslant 1$
- > Configuration: $u: \Lambda \to \mathbb{S} = \mathbb{R}/\mathbb{Z}$ (config. space: $\mathbb{S}^{\Lambda} = (\mathbb{R}/\mathbb{Z})^{\mathbb{Z}/n\mathbb{Z}}$)
- ▷ Energy of configuration:

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi(u_{i+1} - u_i)) \qquad K > 0$$

Dynamics

▷ Gradient dynamics with noise $(0 < \varepsilon \ll 1)$:

$$du(t) = -\nabla V(u(t)) dt + \sqrt{2\varepsilon} dW_t$$

▷ In components:

$$du_i = K \left[\sin(2\pi(u_{i+1} - u_i)) + \sin(2\pi(u_{i-1} - u_i)) \right] dt + \sqrt{2\varepsilon} dW_t^{(i)}$$

Dynamics

▷ Gradient dynamics with noise $(0 < \varepsilon \ll 1)$:

$$du(t) = -\nabla V(u(t)) dt + \sqrt{2\varepsilon} dW_t$$

▷ In components:

$$du_{i} = K \Big[\sin(2\pi(u_{i+1} - u_{i})) + \sin(2\pi(u_{i-1} - u_{i})) \Big] dt + \sqrt{2\varepsilon} dW_{t}^{(i)}$$

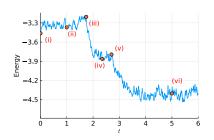
Dynamics

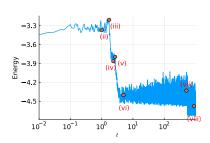
▷ Gradient dynamics with noise $(0 < \varepsilon \ll 1)$:

$$du(t) = -\nabla V(u(t)) dt + \sqrt{2\varepsilon} dW_t$$

▷ In components:

$$du_{i} = K \Big[\sin(2\pi(u_{i+1} - u_{i})) + \sin(2\pi(u_{i-1} - u_{i})) \Big] dt + \sqrt{2\varepsilon} dW_{t}^{(i)}$$





$$dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$$

$V: \mathbb{R}^n \to \mathbb{R}$ confining potential, bounded below

- ▷ Invariant Gibbs measure: $\mu(dx) = \frac{1}{7} e^{-V(x)/\varepsilon} dx$
- \triangleright Dynamics is reversible wrt μ (detailed balance)
- $\triangleright \varepsilon = 0$: stationary states x^* satisfy $\nabla V(x^*) = 0$
- \triangleright Assume V is Morse function: Hessian of V non-degenerate at any $oldsymbol{x}$
- \triangleright Morse index of x^* : number of negative eigenvalues of Hessian at \triangleright
 - index 0: local minima, stable
 - index 1: 1-saddles, contained in optimal paths between minima

$$dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$$

- $V: \mathbb{R}^n \to \mathbb{R}$ confining potential, bounded below
 - ▷ Invariant Gibbs measure: $\mu(dx) = \frac{1}{Z} e^{-V(x)/\varepsilon} dx$
 - \triangleright Dynamics is reversible wrt μ (detailed balance
 - \triangleright $\varepsilon = 0$: stationary states x^* satisfy $\nabla V(x^*) = 0$
 - \triangleright Assume V is Morse function: Hessian of V non-degenerate at any x
 - \triangleright Morse index of x^* : number of negative eigenvalues of Hessian at x^*
 - index 0: local minima, stable
 - index 1: 1-saddles, contained in optimal paths between minima

$$\mathrm{d} x_t = -\nabla V(x_t)\,\mathrm{d} t + \sqrt{2\varepsilon}\,\mathrm{d} W_t$$

- $V: \mathbb{R}^n \to \mathbb{R}$ confining potential, bounded below
 - ▷ Invariant Gibbs measure: $\mu(dx) = \frac{1}{Z} e^{-V(x)/\varepsilon} dx$
 - \triangleright Dynamics is reversible wrt μ (detailed balance)
 - $\triangleright \varepsilon = 0$: stationary states x^* satisfy $\nabla V(x^*) = 0$
 - \triangleright Assume V is Morse function: Hessian of V non-degenerate at any x^*
 - \triangleright Morse index of x^* : number of negative eigenvalues of Hessian at x^*
 - ♦ index 0: local minima, stable
 - index 1: 1-saddles, contained in optimal paths between minima

$$\mathrm{d} x_t = -\nabla V(x_t)\,\mathrm{d} t + \sqrt{2\varepsilon}\,\mathrm{d} W_t$$

- $V: \mathbb{R}^n \to \mathbb{R}$ confining potential, bounded below
 - ▷ Invariant Gibbs measure: $\mu(dx) = \frac{1}{Z} e^{-V(x)/\varepsilon} dx$
 - \triangleright Dynamics is reversible wrt μ (detailed balance)
 - \triangleright $\varepsilon = 0$: stationary states x^* satisfy $\nabla V(x^*) = 0$
 - \triangleright Assume V is Morse function: Hessian of V non-degenerate at any x^*
 - \triangleright Morse index of x^* : number of negative eigenvalues of Hessian at x^*
 - ♦ index 0: local minima, stable
 - index 1: 1-saddles, contained in optimal paths between minima

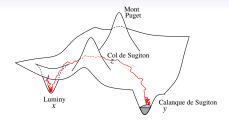
$$\mathrm{d} x_t = -\nabla V(x_t)\,\mathrm{d} t + \sqrt{2\varepsilon}\,\mathrm{d} W_t$$

- $V:\mathbb{R}^n \to \mathbb{R}$ confining potential, bounded below
 - ▷ Invariant Gibbs measure: $\mu(dx) = \frac{1}{Z} e^{-V(x)/\varepsilon} dx$
 - \triangleright Dynamics is reversible wrt μ (detailed balance)
 - \triangleright $\varepsilon = 0$: stationary states x^* satisfy $\nabla V(x^*) = 0$
 - \triangleright Assume V is Morse function. Hessian of V non-degenerate at any x^*
 - \triangleright Morse index of x^* : number of negative eigenvalues of Hessian at x^*
 - ♦ index 0: local minima, stable
 - ♦ index 1: 1-saddles, contained in optimal paths between minima

Metastability in a double-well potential

$$dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$$

 $V: \mathbb{R}^n \to \mathbb{R}$ confining potential $\tau_y^{\mathsf{x}} = \inf\{t > 0: x_t \in \mathcal{B}_{\varepsilon}(y)\}$ first-hitting time of small ball $\mathcal{B}_{\varepsilon}(y)$, when starting in x



Metastability in a double-well potential

$$dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$$

 $V: \mathbb{R}^n \to \mathbb{R}$ confining potential $\tau_y^x = \inf\{t > 0: x_t \in \mathcal{B}_{\varepsilon}(y)\}$ first-hitting time of small ball $\mathcal{B}_{\varepsilon}(y)$, when starting in x

Arrhenius' law (1889): $\mathbb{E}[\tau_v^{\mathsf{x}}] \simeq \mathrm{e}^{[V(z)-V(x)]/\varepsilon}$

Eyring-Kramers law (1935, 1940):

Eigenvalues of Hessian of V at minimum x: $0 < \nu_1 \le \nu_2 \le \cdots \le \nu_d$ Eigenvalues of Hessian of V at saddle z: $\lambda_1 < 0 < \lambda_2 \le \cdots \le \lambda_d$

$$\mathbb{E}[\tau_y^x] = 2\pi \sqrt{\frac{\lambda_2...\lambda_d}{|\lambda_1|\nu_1...\nu_d}} e^{[V(z)-V(x)]/\varepsilon} [1 + \mathcal{O}_{\varepsilon}(1)]$$

Metastability in a double-well potential

$$dx_t = -\nabla V(x_t) dt + \sqrt{2\varepsilon} dW_t$$

 $V: \mathbb{R}^n \to \mathbb{R}$ confining potential $\tau_y^{\times} = \inf\{t > 0: x_t \in \mathcal{B}_{\varepsilon}(y)\}$ first-hitting time of small ball $\mathcal{B}_{\varepsilon}(y)$

first-hitting time of small ball $\mathcal{B}_{\varepsilon}(y)$, when starting in x

Arrhenius' law (1889):
$$\mathbb{E}[\tau_y^x] \simeq e^{[V(z)-V(x)]/\varepsilon}$$

Eyring-Kramers law (1935, 1940):

Eigenvalues of Hessian of V at minimum x: $0 < \nu_1 \le \nu_2 \le \cdots \le \nu_d$ Eigenvalues of Hessian of V at saddle z: $\lambda_1 < 0 < \lambda_2 \le \cdots \le \lambda_d$

$$\mathbb{E}[\tau_y^x] = 2\pi \sqrt{\frac{\lambda_2...\lambda_d}{|\lambda_1|\nu_1...\nu_d}} \, \mathrm{e}^{[V(z)-V(x)]/\varepsilon} \big[1 + \mathcal{O}_{\varepsilon}(1) \big]$$

Arrhenius' law: proved by [Freidlin, Wentzell, 1979] using large deviations
Eyring-Kramers law: [Bovier, Eckhoff, Gayrard, Klein, 2004] using potential theory,
[Helffer, Klein, Nier, 2004] using Witten Laplacian, . . .

Multiwell landscapes

Rot Rhätische Ba Grün ganzjährig o Blau Wintersperre	ffen	
Nr. Pass	Land	Passhöhe (m.ü.M.)
1 Flüela	CH	2383
2 Albula	CH	2312
3 Julier	CH	2284
4 Maloja	CH	1815
5 Splügen	I - CH	2115
6 Reschen	A - I	1507
7 Ofen	CH	2149
8 Umbrail	CH - I	2502
9 Stilfserjoch	1	2757
10 Foscagno	1	2291
11 Bernina	CH - I	2323
12 Fla. di Livigno	1	2315

- $ightharpoonup G = (\mathcal{V}, \mathcal{E})$: graph where \mathcal{V} is set of local minima of V $x^*, y^* \in \mathcal{V}$ connected by an edge $\Leftrightarrow \exists$ 1-saddle whose unstable manifold reaches x^* and y^*
- \triangleright Dynamics resembles markovian jump process on $\mathcal V$ with transition rates given by inverses of EK law [Landim, Seo, ..., B, ...]

Multiwell landscapes

Rot				
Blau Wintersperre				
Nr.	Pass	Land	Passhöhe (m.ü.M.)	
1	Flüela	CH	2383	
2	Albula	CH	2312	
3	Julier	CH	2284	
4	Maloja	CH	1815	
5	Splügen	I - CH	2115	
6	Reschen	A - I	1507	
7	Ofen	CH	2149	
8	Umbrail	CH - I	2502	
9	Stilfserjoch	1	2757	
10	Foscagno	1	2291	
11	Bernina	CH - I	2323	
12	Fla. di Livigno	1	2315	

- $ightharpoonup G = (\mathcal{V}, \mathcal{E})$: graph where \mathcal{V} is set of local minima of V $x^*, y^* \in \mathcal{V}$ connected by an edge $\Leftrightarrow \exists$ 1-saddle whose unstable manifold reaches x^* and y^*
- \triangleright Dynamics resembles markovian jump process on $\mathcal V$ with transition rates given by inverses of EK law [Landim, Seo, ..., B, ...]

Kuramoto model

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi(u_{i+1} - u_i)) \qquad K > 0$$

- ho Problem: V is degenerate in $(1,1,\ldots,1)^{\top}$ direction \Rightarrow not a Morse function
- Solution: rotation, $u = \bar{u}q_0 + Qv$, $\bar{u} \in \mathbb{R}$, $v \in \mathbb{R}^{n-1}$ $(q_0|Q)$ orthogonal matrix, $q_0 = \frac{1}{\sqrt{n}}(1,1,\ldots,1)^{\top}$

$$\begin{split} \mathrm{d} \bar{u}_t &= \sqrt{2\varepsilon} \, \mathrm{d} \widehat{W}_t^0 \\ \mathrm{d} v_t &= \nabla V_1 \left(v_t \right) \mathrm{d} t + \sqrt{2\varepsilon} \, \mathrm{d} \widehat{W}_t^1 \end{split}$$

with
$$V_{\pm}(v)=V(Qv),\,(\widehat{W}_t^0)_t$$
 and $(\widehat{W}_t^{\pm})_t$ indep. B.M.

 $\Rightarrow \bar{u}_t$ performs B.M. independent of v_t , V_1 Morse function

Kuramoto model

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi(u_{i+1} - u_i)) \qquad K > 0$$

- ▶ Problem: V is degenerate in $(1,1,\ldots,1)^{\mathsf{T}}$ direction \Rightarrow not a Morse function
- ▷ Solution: rotation, $u = \bar{u}q_0 + Qv$, $\bar{u} \in \mathbb{R}$, $v \in \mathbb{R}^{n-1}$ $(q_0|Q)$ orthogonal matrix, $q_0 = \frac{1}{\sqrt{n}}(1,1,\ldots,1)^{\top}$

$$\begin{split} \mathrm{d}\, \bar{u}_t &= \sqrt{2\varepsilon}\, \mathrm{d} \widehat{W}_t^0 \\ \mathrm{d} v_t &= \nabla V_\perp \big(v_t\big)\, \mathrm{d} t + \sqrt{2\varepsilon}\, \mathrm{d} \widehat{W}_t^\perp \end{split}$$

with $V_{\perp}(v) = V(Qv)$, $(\widehat{W}_t^0)_t$ and $(\widehat{W}_t^{\perp})_t$ indep. B.M.

 $\Rightarrow \bar{u}_t$ performs B.M. independent of v_t , V_1 Morse function

Kuramoto model

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi(u_{i+1} - u_i)) \qquad K > 0$$

- $ightharpoonup \operatorname{\mathsf{Problem}} \colon V$ is degenerate in $(1,1,\ldots,1)^{\mathsf{T}}$ direction \Rightarrow not a Morse function
- ▷ Solution: rotation, $u = \bar{u}q_0 + Qv$, $\bar{u} \in \mathbb{R}$, $v \in \mathbb{R}^{n-1}$ $(q_0|Q)$ orthogonal matrix, $q_0 = \frac{1}{\sqrt{n}}(1,1,\ldots,1)^{\top}$

$$\begin{split} \mathrm{d} \bar{u}_t &= \sqrt{2\varepsilon} \, \mathrm{d} \widehat{W}_t^0 \\ \mathrm{d} v_t &= \nabla V_\perp \big(v_t \big) \, \mathrm{d} t + \sqrt{2\varepsilon} \, \mathrm{d} \widehat{W}_t^\perp \end{split}$$

with $V_{\perp}(v) = V(Qv)$, $(\widehat{W}_t^0)_t$ and $(\widehat{W}_t^{\perp})_t$ indep. B.M.

 \Rightarrow \bar{u}_t performs B.M. independent of v_t , V_{\perp} Morse function

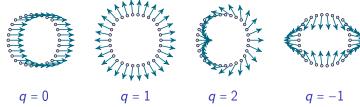
ightharpoonup q-twisted state: $u_i^{(q)} = q \frac{i}{n}$, for $-\frac{n}{2} < q \leqslant \frac{n}{2}$, $q \in \mathbb{Z}$

- ightharpoonup stable for $|q|<\frac{n}{4}$ (unstable with Morse index n-1 if $|q|>\frac{n}{4}$)
- ≥ 1-saddles: $u_i^{(r)} = \hat{q} \frac{i-i_0}{n}$, with $\hat{q} = r \frac{n}{n-2} = r(1+\mathcal{O}(n^{-1}))$, $r \in \mathbb{Z} + \frac{1}{2}$

$$r=\frac{3}{2}$$

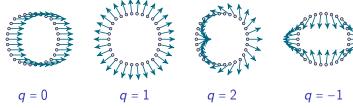
$$r = -\frac{1}{2}$$

 $\ \, \text{$ p$-twisted state: } u_i^{(q)} = q \tfrac{i}{n}, \text{ for } -\tfrac{n}{2} < q \leqslant \tfrac{n}{2}, \text{ } q \in \mathbb{Z}$



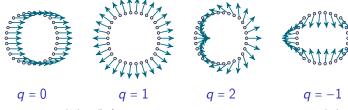
- ightharpoonup stable for $|q| < \frac{n}{4}$ (unstable with Morse index n-1 if $|q| > \frac{n}{4}$)
- ≥ 1-saddles: $u_i^{(r)} = \hat{q} \frac{i i_0}{n}$, with $\hat{q} = r \frac{n}{n-2} = r(1 + \mathcal{O}(n^{-1}))$, $r \in \mathbb{Z} + \frac{1}{2}$

ightharpoonup q-twisted state: $u_i^{(q)} = q \frac{i}{n}$, for $-\frac{n}{2} < q \leqslant \frac{n}{2}$, $q \in \mathbb{Z}$



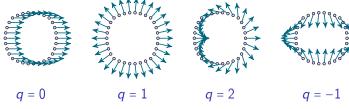
- ightharpoonup stable for $|q| < \frac{n}{4}$ (unstable with Morse index n-1 if $|q| > \frac{n}{4}$)
- ≥ 1-saddles: $u_i^{(r)} = \hat{q} \frac{i i_0}{n}$, with $\hat{q} = r \frac{n}{n-2} = r(1 + \mathcal{O}(n^{-1}))$, $r \in \mathbb{Z} + \frac{1}{2}$

ho q-twisted state: $u_i^{(q)} = q \frac{i}{n}$, for $-\frac{n}{2} < q \leqslant \frac{n}{2}$, $q \in \mathbb{Z}$



- ightharpoonup stable for $|q|<\frac{n}{4}$ (unstable with Morse index n-1 if $|q|>\frac{n}{4}$)
- ▷ 1-saddles: $u_i^{(r)} = \hat{q} \frac{i i_0}{n}$, with $\hat{q} = r \frac{n}{n-2} = r(1 + \mathcal{O}(n^{-1}))$, $r \in \mathbb{Z} + \frac{1}{2}$

ightharpoonup q-twisted state: $u_i^{(q)} = q \frac{i}{n}$, for $-\frac{n}{2} < q \leqslant \frac{n}{2}$, $q \in \mathbb{Z}$



- ightharpoonup stable for $|q| < \frac{n}{4}$ (unstable with Morse index n-1 if $|q| > \frac{n}{4}$)
- ▷ 1-saddles: $u_i^{(r)} = \hat{q} \frac{i-i_0}{n}$, with $\hat{q} = r \frac{n}{n-2} = r(1 + \mathcal{O}(n^{-1}))$, $r \in \mathbb{Z} + \frac{1}{2}$

$$r=\frac{1}{2}$$

 $r=\frac{3}{2}$

 $r=\frac{5}{2}$

$$r = -\frac{1}{2}$$

Classification of equilibria

$$\nabla V(u) = 0 \quad \Leftrightarrow \quad \sin(2\pi(\underbrace{u_{i+1} - u_i})) = \sin(2\pi(\underbrace{u_i - u_{i-1}})) \quad \forall i \in \Lambda$$

 \Rightarrow the $2\pi a_i$ can only take two supplementary values

Proposition

Assume $n \ge 5$.

- ightharpoonup If all a_i equal and in $\left(-\frac{1}{4},\frac{1}{4}\right)$: q-twisted state $u^{(q)}$ with $|q|<\frac{n}{4}$, stable
- hd If all but one a_i equal and in $\left(-rac{1}{4},rac{1}{4}
 ight)$: 1-saddle $u^{(r)}$ with $|r|<rac{n}{4}-rac{1}{2}$
- ▷ All other cases: saddle of index ≥2
- \triangleright q-twisted state: Hess V is circulant matrix, use discrete Fourier transf.
- $\triangleright u^{(r)}$: Hess V is rank 1 perturbation of circulant matrix
- \triangleright Other cases: find 2-dim subspace on which $\langle v, (\text{Hess } V)v \rangle < 0$ if $v \neq 0$

Classification of equilibria

$$\nabla V(u) = 0 \quad \Leftrightarrow \quad \sin(2\pi(\underbrace{u_{i+1} - u_i})) = \sin(2\pi(\underbrace{u_i - u_{i-1}})) \quad \forall i \in \Lambda$$

 \Rightarrow the $2\pi a_i$ can only take two supplementary values

Proposition

Assume $n \ge 5$.

- ightharpoonup If all a_i equal and in $\left(-\frac{1}{4},\frac{1}{4}\right)$: q-twisted state $u^{(q)}$ with $|q|<\frac{n}{4}$, stable
- ▷ If all but one a_i equal and in $\left(-\frac{1}{4}, \frac{1}{4}\right)$: 1-saddle $u^{(r)}$ with $|r| < \frac{n}{4} \frac{1}{2}$
- ▷ All other cases: saddle of index ≥2
- \triangleright q-twisted state: Hess V is circulant matrix, use discrete Fourier transf.
- $\triangleright u^{(r)}$: Hess V is rank 1 perturbation of circulant matrix
- \triangleright Other cases: find 2-dim subspace on which $\langle v, (\text{Hess } V)v \rangle < 0$ if $v \neq 0$

Classification of equilibria

$$\nabla V(u) = 0 \quad \Leftrightarrow \quad \sin(2\pi(\underbrace{u_{i+1} - u_i})) = \sin(2\pi(\underbrace{u_i - u_{i-1}})) \quad \forall i \in \Lambda$$

 \Rightarrow the $2\pi a_i$ can only take two supplementary values

Proposition

Assume $n \ge 5$.

- ightharpoonup If all a_i equal and in $\left(-\frac{1}{4},\frac{1}{4}\right)$: q-twisted state $u^{(q)}$ with $|q|<\frac{n}{4}$, stable
- ▷ If all but one a_i equal and in $\left(-\frac{1}{4}, \frac{1}{4}\right)$: 1-saddle $u^{(r)}$ with $|r| < \frac{n}{4} \frac{1}{2}$
- ▷ All other cases: saddle of index ≥2
- ightharpoonup -twisted state: Hess V is circulant matrix, use discrete Fourier transf.
- $\triangleright u^{(r)}$: Hess V is rank 1 perturbation of circulant matrix
- ▷ Other cases: find 2-dim subspace on which $\langle v, (\text{Hess } V)v \rangle < 0$ if $v \neq 0$

The potential V has the following symmetries $(V(g(u)) = V(u) \forall u)$:

- ightharpoonup Integer translations: $T_k(u) = (u_0 + k_0, \dots, u_{n-1} + k_{n-1}), \ k \in \mathbb{Z}^n$
- ightharpoonup Global phase shift: $S_{\varphi}(u) = (u_0 + \varphi, \dots, u_{n-1} + \varphi), \ \varphi \in \mathbb{R}$
- ightharpoonup Cyclic permutation: $C_p(u) = (u_p, \dots, u_{n-1+p}), p \in \Lambda$
- \triangleright Inversion: I(u) = -u

- \triangleright For integer translations: $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- ▶ For global phase shifts: plane $\Sigma = \{u_0 + \cdots + u_{n-1} = 0\}$
- For integer translations and global phase shifts:
 obtained by orthogonal projection of integer lattice on Σ

The potential V has the following symmetries $(V(g(u)) = V(u) \forall u)$:

- ightharpoonup Integer translations: $T_k(u)=(u_0+k_0,\ldots,u_{n-1}+k_{n-1}),\ k\in\mathbb{Z}^n$
- \triangleright Global phase shift: $S_{\varphi}(u) = (u_0 + \varphi, \dots, u_{n-1} + \varphi), \ \varphi \in \mathbb{R}$
- \triangleright Cyclic permutation: $C_p(u) = (u_p, \dots, u_{n-1+p}), p \in \Lambda$
- \triangleright Inversion: I(u) = -u

- \triangleright For integer translations: $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- ▷ For global phase shifts: plane $\Sigma = \{u_0 + \cdots + u_{n-1} = 0\}$
- ightharpoonup For integer translations and global phase shifts: obtained by orthogonal projection of integer lattice on Σ

The potential V has the following symmetries $(V(g(u)) = V(u) \forall u)$:

- ightharpoonup Integer translations: $T_k(u) = (u_0 + k_0, \dots, u_{n-1} + k_{n-1}), \ k \in \mathbb{Z}^n$
- ightharpoonup Global phase shift: $S_{\varphi}(u) = (u_0 + \varphi, \dots, u_{n-1} + \varphi), \ \varphi \in \mathbb{R}$
- \triangleright Cyclic permutation: $C_p(u) = (u_p, \dots, u_{n-1+p}), p \in \Lambda$
- \triangleright Inversion: I(u) = -u

- \triangleright For integer translations: $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- ▶ For global phase shifts: plane $\Sigma = \{u_0 + \cdots + u_{n-1} = 0\}$
- ightharpoonup For integer translations and global phase shifts: obtained by orthogonal projection of integer lattice on Σ

The potential V has the following symmetries $(V(g(u)) = V(u) \forall u)$:

- ightharpoonup Integer translations: $T_k(u) = (u_0 + k_0, \dots, u_{n-1} + k_{n-1}), \ k \in \mathbb{Z}^n$
- \triangleright Global phase shift: $S_{\varphi}(u) = (u_0 + \varphi, \dots, u_{n-1} + \varphi), \ \varphi \in \mathbb{R}$
- \triangleright Cyclic permutation: $C_p(u) = (u_p, \dots, u_{n-1+p}), p \in \Lambda$
- \triangleright Inversion: I(u) = -u

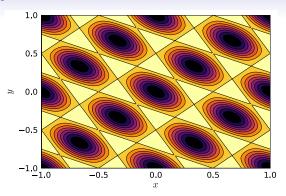
- \triangleright For integer translations: $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- \triangleright For global phase shifts: plane $\Sigma = \{u_0 + \cdots + u_{n-1} = 0\}$
- \triangleright For integer translations and global phase shifts: obtained by orthogonal projection of integer lattice on Σ

The potential V has the following symmetries $(V(g(u)) = V(u) \forall u)$:

- ightharpoonup Integer translations: $T_k(u) = (u_0 + k_0, \dots, u_{n-1} + k_{n-1}), \ k \in \mathbb{Z}^n$
- \triangleright Global phase shift: $S_{\varphi}(u) = (u_0 + \varphi, \dots, u_{n-1} + \varphi), \ \varphi \in \mathbb{R}$
- \triangleright Cyclic permutation: $C_p(u) = (u_p, \dots, u_{n-1+p}), p \in \Lambda$
- \triangleright Inversion: I(u) = -u

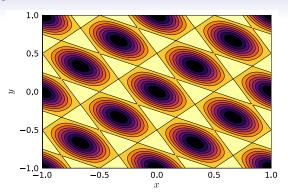
- \triangleright For integer translations: $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$
- \triangleright For global phase shifts: plane $\Sigma = \{u_0 + \cdots + u_{n-1} = 0\}$
- For integer translations and global phase shifts: obtained by orthogonal projection of integer lattice on Σ

Case N = 3



$$\triangleright \ u^{(0)}$$
: stable $\triangleright \ u^{(1)}, u^{(-1)}$: 2-saddles $\triangleright \ u^{(1/2)}, C_1 u^{(1/2)}, C_2 u^{(1/2)}$: 1-saddles

Case N = 3



$$\triangleright u^{(0)}$$
: stable

$$\triangleright u^{(1)}, u^{(-1)}$$
: 2-saddles

$$\triangleright u^{(1/2)}, C_1 u^{(1/2)}, C_2 u^{(1/2)}$$
: 1-saddles

Potential landscape

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi (u_{i+1} - u_i)) \qquad K > 0$$

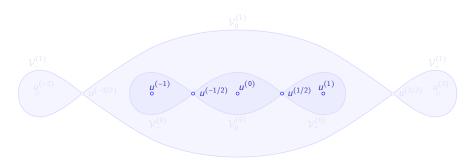
$$V(u^{(q)}) = -n\frac{K}{2\pi} \cos(\frac{2\pi q}{n})$$

$$V(u^{(q+1/2)}) = -(n-2)\frac{K}{2\pi} \cos(\frac{2\pi (q+\frac{1}{2})}{n-2})$$

$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi (u_{i+1} - u_i)) \qquad K > 0$$

$$V(u^{(q)}) = -n\frac{K}{2\pi} \cos(\frac{2\pi q}{n})$$

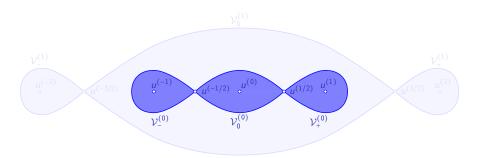
$$V(u^{(q+1/2)}) = -(n-2)\frac{K}{2\pi} \cos(\frac{2\pi (q+\frac{1}{2})}{n-2})$$



$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi (u_{i+1} - u_i)) \qquad K > 0$$

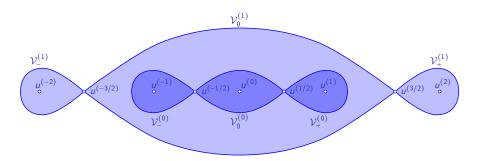
$$V(u^{(q)}) = -n\frac{K}{2\pi} \cos(\frac{2\pi q}{n})$$

$$V(u^{(q+1/2)}) = -(n-2)\frac{K}{2\pi} \cos(\frac{2\pi (q+\frac{1}{2})}{n-2})$$



$$V(u) = -\frac{K}{2\pi} \sum_{i \in \Lambda} \cos(2\pi(u_{i+1} - u_i)) \qquad K > 0$$

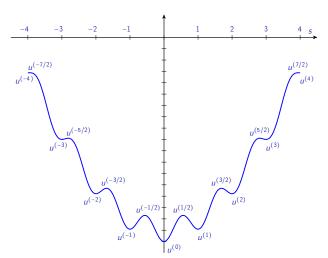
$$V(u^{(q)}) = -n\frac{K}{2\pi}\cos\left(\frac{2\pi q}{n}\right)$$
$$V(u^{(q+1/2)}) = -(n-2)\frac{K}{2\pi}\cos\left(\frac{2\pi(q+\frac{1}{2})}{n-2}\right)$$



$$H_{q} = V(u^{(q-1/2)}) - V(u^{(q)}) = \frac{K}{\pi} - \left(q - \frac{1}{4}\right)\frac{K\pi}{n} + \mathcal{O}(n^{-2})$$

$$\bar{H}_{q} = V(u^{(q+1/2)}) - V(u^{(q)}) = \frac{K}{\pi} + \left(q + \frac{1}{4}\right)\frac{K\pi}{n} + \mathcal{O}(n^{-2})$$

$$(q > 0)$$



Eyring-Kramers law for minimum $u^{(q)}$ and saddle $u^{(q-1/2)}$:

$$\mathbb{E}^{u^{(q)}}[\tau_{q-1}] = \frac{2\pi}{|\mu_1|} \sqrt{\frac{|\det M_\perp|}{\det L_\perp}} \, \mathrm{e}^{H_q/\varepsilon} (1 + \mathcal{O}_\varepsilon(1))$$

where L_{\perp} = Hess $V_{\perp}(u^{(q)})$, M_{\perp} = Hess $V_{\perp}(u^{(q-1/2)})$, μ_1 negative ev of M_{\perp}

Proposition

$$\frac{\det M_{\perp}}{\det L_{\perp}} = -1 + \frac{2}{n}$$

Proof: Take limit as $\varepsilon \to 0$ of regularization

$$\frac{\det(\varepsilon \mathbb{1} + M)}{\det(\varepsilon \mathbb{1} + L)} = \det\left[\left(\varepsilon \mathbb{1} + M\right)\left(\varepsilon \mathbb{1} + L\right)^{-1}\right] = \det\left[\mathbb{1} + \left(M - L\right)\left(\varepsilon \mathbb{1} + L\right)^{-1}\right]$$

where $M - L = \psi \psi^{\top}$ rank 1, $(\varepsilon \mathbb{1} + L_{\perp})^{-1} = \sum_{k} (\varepsilon + \lambda_{k})^{-1} \Pi_{k}$ explicit.

$$-\frac{4}{3} \leqslant \mu_1 \leqslant -\frac{4}{3} + \frac{1}{3^{n-3}}$$

Eyring-Kramers law for minimum $u^{(q)}$ and saddle $u^{(q-1/2)}$:

$$\mathbb{E}^{u^{(q)}}\left[\tau_{q-1}\right] = \frac{2\pi}{|\mu_1|} \sqrt{\frac{|\det M_\perp|}{\det L_\perp}} \, \mathrm{e}^{H_q/\varepsilon} (1 + \mathcal{O}_\varepsilon(1))$$

where L_{\perp} = Hess $V_{\perp}(u^{(q)})$, M_{\perp} = Hess $V_{\perp}(u^{(q-1/2)})$, μ_1 negative ev of M_{\perp}

Proposition

$$\frac{\det M_{\perp}}{\det L_{\perp}} = -1 + \frac{2}{n}$$

Proof: Take limit as $\varepsilon \to 0$ of regularization

$$\frac{\det(\varepsilon \mathbb{1} + M)}{\det(\varepsilon \mathbb{1} + L)} = \det\left[\left(\varepsilon \mathbb{1} + M\right)\left(\varepsilon \mathbb{1} + L\right)^{-1}\right] = \det\left[\mathbb{1} + \left(M - L\right)\left(\varepsilon \mathbb{1} + L\right)^{-1}\right]$$

where
$$M - L = \psi \psi^{\mathsf{T}}$$
 rank 1, $(\varepsilon \mathbb{1} + L_{\perp})^{-1} = \sum_{k} (\varepsilon + \lambda_{k})^{-1} \Pi_{k}$ explicit.

$$-\frac{4}{3} \leqslant \mu_1 \leqslant -\frac{4}{3} + \frac{1}{3^{n-3}}$$

Eyring-Kramers law for minimum $u^{(q)}$ and saddle $u^{(q-1/2)}$:

$$\mathbb{E}^{u^{(q)}}[\tau_{q-1}] = \frac{2\pi}{|\mu_1|} \sqrt{\frac{|\det M_{\perp}|}{\det L_{\perp}}} \, \mathrm{e}^{H_q/\varepsilon} (1 + \mathcal{O}_{\varepsilon}(1))$$

where L_{\perp} = Hess $V_{\perp}(u^{(q)})$, M_{\perp} = Hess $V_{\perp}(u^{(q-1/2)})$, μ_1 negative ev of M_{\perp}

Proposition

$$\frac{\det M_{\perp}}{\det L_{\perp}} = -1 + \frac{2}{n}$$

Proof: Take limit as $\varepsilon \to 0$ of regularization

$$\frac{\det(\varepsilon \mathbb{1} + M)}{\det(\varepsilon \mathbb{1} + L)} = \det\left[\left(\varepsilon \mathbb{1} + M\right)\left(\varepsilon \mathbb{1} + L\right)^{-1}\right] = \det\left[\mathbb{1} + \left(M - L\right)\left(\varepsilon \mathbb{1} + L\right)^{-1}\right]$$

where
$$M - L = \psi \psi^{\mathsf{T}}$$
 rank 1, $(\varepsilon \mathbb{1} + L_{\perp})^{-1} = \sum_{k} (\varepsilon + \lambda_{k})^{-1} \Pi_{k}$ explicit.

$$-\frac{4}{3} \leqslant \mu_1 \leqslant -\frac{4}{3} + \frac{1}{3^{n-3}}$$

Eyring-Kramers law for minimum $u^{(q)}$ and saddle $u^{(q-1/2)}$:

$$\mathbb{E}^{u^{(q)}}[\tau_{q-1}] = \frac{2\pi}{|\mu_1|} \sqrt{\frac{|\det M_\perp|}{\det L_\perp}} \, \mathrm{e}^{H_q/\varepsilon} (1 + \mathcal{O}_\varepsilon(1))$$

where L_{\perp} = Hess $V_{\perp}(u^{(q)})$, M_{\perp} = Hess $V_{\perp}(u^{(q-1/2)})$, μ_1 negative ev of M_{\perp}

Proposition

$$\frac{\det M_{\perp}}{\det L_{\perp}} = -1 + \frac{2}{n}$$

Proof: Take limit as $\varepsilon \to 0$ of regularization

$$\frac{\det(\varepsilon \mathbb{1} + M)}{\det(\varepsilon \mathbb{1} + L)} = \det\left[(\varepsilon \mathbb{1} + M)(\varepsilon \mathbb{1} + L)^{-1} \right] = \det\left[\mathbb{1} + (M - L)(\varepsilon \mathbb{1} + L)^{-1} \right]$$

where $M - L = \psi \psi^{\mathsf{T}}$ rank 1, $(\varepsilon \mathbb{1} + L_{\perp})^{-1} = \sum_{k} (\varepsilon + \lambda_{k})^{-1} \Pi_{k}$ explicit.

$$-\frac{4}{3} \leqslant \mu_1 \leqslant -\frac{4}{3} + \frac{1}{3^{n-3}}$$

Eyring-Kramers law

Theorem

For $0 \le q < \frac{n}{4}$, $\delta > 0$, first-hitting time

$$au_q = \inf\{t > 0 : \operatorname{dist}(u_t, \{u^{(0)}, \dots, u^{(q)}\}) < \delta\} \text{ satisfies}$$

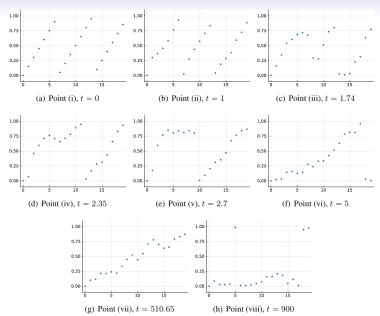
$$\mathbb{E}^{u^{(q+1)}}[\tau_q] = C(q, n) e^{H_{q+1}/\varepsilon} [1 + \mathcal{O}_{\varepsilon}(1)]$$

where

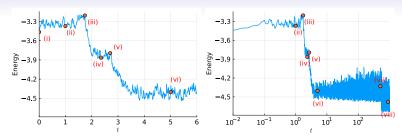
$$C(q, n) = \frac{3}{4Kn} \left(1 + \frac{\pi^2 (4q+3) - 4}{4n} \right) + \mathcal{O}(n^{-3})$$

$$H_{q+1} = \frac{K}{\pi} - \left(q + \frac{3}{4} \right) \frac{K\pi}{n} + \mathcal{O}(n^{-2})$$

Simulation



Simulation



Outlook

- ▷ Limit $n \to \infty$? For what scaling?
- ▷ Beyond nearest-neighbour coupling?
- ▷ Λ of higher dimension? Effect of topology?

References

- N. B., G. Medvedev & G. Simpson, Metastability in the stochastic nearest-neighbor Kuramoto model of coupled phase oscillators, arXiv/2412.15136
- C. Cosco, A. Shapira, Topologically induced metastability in periodic XY chain, arXiv/2001.07950
- N.B., Reducing metastable continuous-space Markov chains to Markov chains on a finite set, 44p (2023), to appear in Annales de l'Institut Henri Poincaré
- N. B., S. Dutercq, The Eyring-Kramers law for Markovian jump processes with symmetries, J. Theoretical Probability, 29 (4):1240−1279 (2016)

Model on \mathbb{T}^2

(Online: https://youtube.com/shorts/xKe9_RCcRho)

Model on \mathbb{S}^2

(Online: https://youtube.com/shorts/FQYA5udyY_E)